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Abstract 

MALDI-TOF MS (matrix-assisted laser desorption/ionization time-of-flight mass 

spectrometry) of ethoxylate products produces spectra with distributions of regularly 

spaced peaks resulting from the addition of monomer units of ethylene oxide to the 

oligomer. We show that overlapping peak distributions from the different ethoxylated 

constituents of natural raw materials can be resolved, so that features of the individ-

ual distributions (m/z at distribution maximum, intensity at the distribution maximum, 

width of the distribution at half height, and ratio of the distribution to the major peak 

distribution) can be extracted and used with statistical pattern recognition techniques 

to study ethoxylated products. Crucially, we weight the extracted features, so that 

features from a distribution with a high ratio to the main distribution are given more 

importance (‘ratio-scaled’). We exemplify the method by characterizing the structural 

variation between types of compositionally diverse Polysorbate 80, PEG castor oil 

and Oleth-20, and compare the chemometric analysis using our extracted features 

with analysis of the full spectra. We demonstrate that using ratio-scaled extracted 

features gives superior results to the full spectrum, both in terms of identifying subtle 

compositional differences that would otherwise be missed, and in interpretability. 

Importantly, the integrated auto-assignment of peak distributions to possible com-

pounds allows the results to be reported in terms of the most abundant oligomers of 

the raw material constituents. This simplification facilitates interpretation of the results 

and allows the comparison of closely related products.

Introduction

MALDI-TOF MS (matrix-assisted laser desorption/ ionization time-of-flight mass 
spectrometry) is a well-known analytical technique that is often used for the study of 
polymers and peptides [1–3]. Typically generating singly charged ions [4], this soft 
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ionization [3] technology has proven to be important for structural characterisation in 
industrial chemistry [5]. Ethoxylated products are widely used in the personal care 
[6,7], pharmaceutical [8,9], food [10,11] and surfactant industries [7,12,13] and they 
respond exceptionally well to analysis using MALDI-TOF [9,14]. These products are 
made through living polymerisation with ethylene oxide as the monomer [15,16], 
ethoxylating natural raw materials such as mixtures of fatty alcohols and acids [7], 
producing a mixture of ethoxylated constituents within the final product [7,17]. The 
degree of ethoxylation of these fatty alcohols and acids affects the amphiphilicity of 
the resulting products [9]. Through calibrated acquisition and optimized matrix selec-
tion [18], the addition of monomers to the oligomer can easily be monitored by the 
presence of regularly spaced peaks in the MALDI spectrum, with a difference of fixed 
mass of 44 Da between peaks. As shown by Zhu et al. [19], such peaks make up a 
bell-shaped distribution (Fig 1), where the peak of greatest intensity at the distribution 
centre relates to the most abundant oligomer present [16]. Depending on the com-
plexity of the product, several overlapping distributions can be present in the spec-
trum from the various different ethoxylated constituents [17]. This leads to difficulties 
in comparison between spectra (and therefore products), and the need for multivar-
iate methods, such a principal component analysis (PCA) and partial least squares 
regression (PLS-R), to analyse such data.

The use of chemometric techniques to compare samples is a familiar practice in 
analytical chemistry and the methods can be applied to MALDI spectra of industrial 
ethoxylates to provide information on the composition of products. However, the iden-
tification of multiple peaks from the same distribution is less meaningful when these 
peaks could be grouped to represent one ethoxylated species of various oligomer 
lengths in a complex mixture. Commercial packages exist to study polymers, such as 
Polytools from Bruker [20], which are able to resolve these peak distributions per-
forming Kendrick Mass Defect Analysis to aid comparison of spectra. This method 
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Fig 1.  MALDI-TOF-MS spectrum of PEG castor oil. The spectrum shows many regularly spaced peaks, which make up several overlapping distribu-
tions from different ethoxylated components.

https://doi.org/10.1371/journal.pone.0328462.g001
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produces visual representations with aligned repetitive patterns found within the polymer, simplifying complexities such 
as different adducts or charges [21]. However, our work goes further than any known commercial packages or analyses 
available, developing a multivariate analysis with weighted variables based on the ratios of the resolved peak distributions. 
Here we extract characteristic features of these peak distributions: m/z at distribution maximum, intensity at the distribu-
tion maximum, width of the distribution at half height, and, most importantly, the ratio of the distribution to the major peak 
distribution in the spectrum. These new variables of distribution features are weighted by scaling by relative importance, 
based on the ratio of the minor constituent to the major constituent, as shown in Fig 2. This allows detection of differences 
that multivariate analysis using the full spectrum would otherwise miss. Furthermore, the known masses of the possible 
raw material constituents also allow assignment of each distribution to a particular oligomer series. Ratios of such distri-
butions to the main ethoxylated product constituent make the results more meaningful, allowing results to be interpreted 
in terms of the relative proportions of the compounds present in the product. This makes the results accessible to non-MS 
specialists and provides a methodology suitable for comparison in industrial polymer manufacture. Such comparisons 
are essential for quality assurance to ensure that product composition remains consistent for customers, perhaps when 
the same product may be manufactured at different global locations and is reliant on naturally varying raw materials, or 
perhaps when manufacture is scaled up or moved between different industrial plants.

Materials and methods

Sample selection and preparation

All samples analysed were provided by speciality chemical manufacturer Croda Europe Ltd. Although the same methodol-
ogy could be applied analogously to a propoxylates, the products selected and discussed in this study are all ethoxylates 

Fig 2.  Workflow of methodology. Steps of investigation are shown through two routes, where multivariate analysis of the full MALDI-MS spectrum is 
compared to analysis of the extracted distribution features.

https://doi.org/10.1371/journal.pone.0328462.g002
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due to both sample availability and for consistency of product type. These were Polysorbate 80 (used in beauty products), 
PEG castor oil (used in agricultural and pharmaceutical applications) and Oleth-20 (used in beauty products). The number 
of batches analysed of the three types of ethoxylates are shown in Table 1. All samples were dissolved in >99.95% meth-
anol (Fisher scientific) to a concentration of 45 mg/mL. The matrix used was α-cyano-4-hydroxycinnamic acid (CCA, 99%, 
Sigma Aldrich) dissolved in >99.95% methanol to a concentration of 45 mg/mL. The adduct salt used was sodium lactate 
(NaLac, 99%, Fisher scientific), dissolved in >99.95% methanol to a concentration of 30 mg/mL. 50 μL aliquots of each 
sample solution were mixed with 50 μL of matrix solution and 50 μL adduct salt solution. This resulted in spotting solu-
tions containing equivalent of 15 mg/mL sample, 15 mg/mL matrix and 10 mg/mL adduct salt. The spotting solutions were 
spotted onto a 384 well stainless steel MALDI plate using a 10 μL plastic pipette tip. The spots were left to dry at ambient 
temperature for ~ 1 minute before being inserted into the MALDI-MS instrument for analysis. Samples were spotted onto 
the MALDI plate in a randomised manor to combat any plate inhomogeneity [22,23]. Five spots were arranged in a diago-
nal line on the plate to avoid confining sites to one area of the plate, resulting in five technical replicates for each sample. 
Samples were run in batches of 10 maximum (50 spots).

Data acquisition

The instrument used for data acquisition was a Shimadzu Axima Performance MALDI-TOF mass spectrometer. Calibra-
tion of the mass spectrometer was achieved using a simple polymer of known masses within the range of product being 
analysed, e.g., polyethylene glycol (PEG). Prior investigations into optimum matrix showed that α-cyano-4- 
hydroxycinnamic acid (CCA) performed best across the range of masses under investigation. Pre-runs were used to 
optimise laser power for each product (generally between 70–100) to prevent fragmentation and maintain spectral output 
within 50mv-500mV. Any MALDI spectra outside of this range, or with excess noise or evidence of contamination/addi-
tional peaks were deemed to be poor quality spectra and either re-run or dis-carded, ensuring that each sample had at 
least 4 replicates for data analysis. Mass spectra were exported as comma delimited ASCII files for processing using the 
Shimadzu batch processor program.

Data pre-processing

Alignment of all processed MALDI-MS spectra was conducted in R version 4.1.1 (R Core Team 2021, R Foundation for 
Statistical Computing, Vienna, Austria) using the packages MALDIquant and MALDIquantForeign [24]. Using C code writ-
ten in-house, counts were combined to give data at 0.1 Da resolution in order that spectra from different samples could be 
compared. This was achieved by adding the counts to the nearest 0.1Da bins above and below the recorded m/z value in 

Table 1.  Number of batches of ethoxylates analysed.

Product Type Number of batches

Polysorbate 80 1 18

2 6

3 6

PEG Castor Oil 1 27

2 17

Oleth-20 R1* 10

R2* 8

R3* 20

For each batch of respective ethoxylates, four or five replicates were analysed by MALDI-TOF-MS. *See  
Table 4 for further information.

https://doi.org/10.1371/journal.pone.0328462.t001
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proportion to their proximity. Matrix peaks were removed by replacing the intensities with the mean average of the intensi-
ties for peaks one ethylene oxide (EO) unit away on either side. To improve the consistency between technical replicates, 
all spectra were normalized to the same total integral before replicate analyses were combined by averaging intensities 
over the available spectra. The resulting data are referred to as the full MALDI spectra in the following analyses.

Distribution detection and feature extraction

Again, using C code written in-house, the m/z value for the most abundant compound was identified from the maximum 
intensity in each spectrum, and the common 44 Da spacing used to track the related ions, which corresponded to the dis-
tribution of EO units added. After storing the m/z values and intensities characterising this compound’s distribution, these 
intensities were removed from the data matrix so that the next most abundant distribution could be identified. In this way, new 
distributions were identified until the maximum intensity available was less than a predefined threshold. Similarly, a thresh-
old was used to determine when the intensity of an ion is too low to be considered part of a distribution. As the distributions 
were identified within each individual spectrum, they needed to be matched across all spectra for comparisons to be made. 
Each distribution in the first spectrum was given an ID number and, where possible, matched based on m/z values to the 
corresponding distribution in all other spectra. Any distribution occurring in the second spectrum, but not the first, was then 
assigned the next ID number and the matching repeated in subsequent spectra. This process was repeated until all distribu-
tions were associated with an ID number. For each identified distribution, the maximum intensity and its m/z value, as well as 
the width of the distribution at half height, were recorded for each spectrum the distribution occurred in, providing information 
on the range and mean number of EO units for the compound. These features, together with the intensity ratio of each distri-
bution to the first distribution, represent the mass spectra and were used as variables in a multivariate analysis.

Ratio-scaling of extracted features

As the extracted distribution features are on different scales, some form of re-scaling was necessary. Whilst scaling to unit 
variance (UV) would prevent those with greater values dominating the analysis, this would also give equal weight to every 
distribution, even those close to the noise level. Therefore, a new scaling method was developed for the extracted distri-
bution features so that more important distributions had greater weight in the analysis. For each distribution, the extracted 
variables (m/z at distribution maximum, intensity at the distribution maximum, width of the distribution at half height, and 
ratio of the distribution to the major peak distribution) were UV-scaled and then were subsequently weighted in proportion 
to the ratio between the average intensity for this distribution and the average intensity for the first major distribution (Fig 
2). These ratios used for weighting were calculated before the variables were UV-scaled. This resulted in the variables 
for a particular distribution having equal weight but gave more importance to those from higher intensity distributions. The 
resulting data are referred to as the extracted features in following analyses.

Multivariate analysis

Principal component analysis (PCA) was performed as an unsupervised method to determine any patterns or outliers, fol-
lowed by supervised analysis using partial least squares regression (PLS-R) for classification, all conducted in R version 
4.1.1. The pls package was used for PLS-R [25]. For the classification of different types of PEG castor oil, spectra were 
classified by taking predicted values less than 1.5 as Type 1 and those above 1.5 as Type 2. 3-fold cross-validation was 
used to obtain more accurate error estimates.

Compound identification

Using knowledge of the chemical reactions taking place during manufacture and the composition of the raw materials, 
lists of possible constituents with associated m/z values were generated using in-house R scripts; such constituents and 
associated masses were generated from the synthesis of all possible intermediates before final product synthesis. These 
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masses were subsequently matched automatically to the masses found in the spectral distributions assigned to the ethox-
ylated products – this was possible through accurate masses generated through effective instrument calibration. At this 
resolution, the distributions for the second and even third isotopes of a compound can be identified separately, but this is 
accounted for in the compound identification.

The comparisons between these constituents of products analysed are all relative proportions and qualitative – ioniza-
tion efficiencies based on hydrophobicity/hydrophilicity balance of the components are therefore not affecting the reported 
comparisons. No calibration with standards was carried out for quantitative absolute concentrations, as this was not nec-
essary for the comparisons or the purpose of the investigation.

Results and discussion

Polysorbate 80 is comprised of oleate esters, sorbitol and sorbitol anhydrides condensed with approximately 20 moles of 
EO, but different types of this product may vary in composition, for example by subtle fluctuating natural raw material com-
position. Although compositional differences were observed between PS80 Type 1 and the other types when using the 
full data (that is, all peaks in the mass spectra), it was not possible to distinguish between the other Types 2 and 3 from 
MALDI data alone. This was the case whether the data is unscaled (Fig 3a) or scaled to unit variance to prevent large 
peaks dominating the analysis (Fig 3b). The separation was greater for scaled data showing that smaller peaks were con-
tributing to the difference in PS80 Type 1 samples. This was especially observed in the main peak distribution, most likely 
from the ethoxylation of Sorbitan/Sorbitan monooleate/Sorbitan dioleate/Isosorbide monopalmitate – many possible ethox-
ylated species with the same mass made identification of individual constituent oligomer series impossible. Type 1 had the 
lowest degree of ethoxylation with 2–3 EO units less than the other types. However, the PCA scores plot in Fig 4 showed 
that the analysis of features extracted from each identified distribution not only separated Type 1 samples along the first 
principal component (PC1) but also distinguished between Type 2 and Type 3 along the second component (PC2). Type 
3 could be differentiated from the other PS80 types based on the presence of ethoxylated high molecular weight con-
stituents, including PEG sorbitol. This demonstrates how the chemometric analysis of extracted MALDI-MS distribution 
features is superior in identifying subtle compositional differences over and above the analysis of the full spectrum.

Fig 3.  PCA score plots of MALDI data of polysorbate 80. Scores plot for the first two principal components obtained from full MALDI spectra 
unscaled (a) and scaled (b) of three different types of Polysorbate 80, showing that types 2 and 3 are indistinguishable. Observations are coloured by 
type.

https://doi.org/10.1371/journal.pone.0328462.g003

https://doi.org/10.1371/journal.pone.0328462.g003
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Fig 5 shows typical MALDI spectra for each type of PEG castor oil product, with the peak distributions isolated. It 
can be seen that the ratios of main compounds vary between the two types, although some expected batch-to-batch 
variance can occur within each type (not shown). Using the m/z value of the maximum intensity, these distributions 
can be assigned (within 0.5 m/z units) to sodiated PEG with an average 18 EO units (m/z 834) and sodiated glycerol 
with an average 29 EO units (m/z 1392). The ratio of glycerol to PEG is increased in Type 2 in relation to Type 1. This 
difference can also be seen in partial least squares regression (PLS-R) analysis of the extracted distribution features 
(Figs 6 and 7, and Tables 2 and 3). Fig 6a shows the scores plot obtained from this supervised method that relates 
the variance in the variables to a response (or responses), in this case the type, encoded as 1.0 for Type 1 and 2.0 

Fig 4.  PCA score plots of extracted distribution features of MALDI data of polysorbate 80. Scores plot for the first two principal components 
obtained from features extracted from the distributions of peaks identified in the mass spectra of Polysorbate 80. The plot shows that there is distinction 
between all types of Polysorbate 80. Observations are coloured by type.

https://doi.org/10.1371/journal.pone.0328462.g004

Fig 5.  Distributions isolated within the MALDI-MS spectrum of a typical batch of PEG castor oil. Plots relate to (a) type 1 and (b) type 2.

https://doi.org/10.1371/journal.pone.0328462.g005

https://doi.org/10.1371/journal.pone.0328462.g004
https://doi.org/10.1371/journal.pone.0328462.g005
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for Type 2. The results shown in Table 2 are those obtained for test data that was not used during training. It is clear 
that PLS-R using extracted features produces a successful model with 95% classification rate. In comparison, PLS-R 
using the full spectrum produces a less successful model with 59% correct classification rate (Table 3), where Type 1 
is often classified as Type 2. However, as well as model performance, the purpose of this analysis is to show that the 
variable importance in projection (VIP) of the full spectrum analysis are difficult to interpret, stating importance of indi-
vidual MALDI-MS peaks, and are therefore not particularly useful without subsequent further investigation and prior MS 
knowledge. This is shown in plot A of Fig 7. Conversely, the VIP of the extracted distribution features gives easily inter-
pretable results, even for the non-MS specialist, as shown in Fig 7 plot B. This plot is more informative, showing that 
for several distributions, the m/z at distribution maximum is clearly important in distinguishing between the two types of 
product, most likely signifying a shift of the distribution between the types of PEG castor oil, and a subtle different level 
of ethoxylation between the two types of product. Similarly, the ratio of distributions from PEG and glycerol (‘ratio 3 to 
1’) has also been shown to be important in plot B, demonstrating how the proportions of constituents can be highlighted 
for product classification, and ultimately quality control.

Finally we were able to demonstrate the method’s ability to identify and, more importantly, show the impact of differ-
ences in the ethoxylation process using samples of Oleth-20. As shown in Table 4, type R1 of Oleth-20 has a higher 
ethylene oxide to fatty alcohol ratio than the other two types. The impact of this can be seen clearly in Fig 8a when only 
the curves obtained by connecting the peaks within a distribution are plotted, with one curve for each observation. For 
type R1, this resulted in a shift of the main distribution to higher mass (corresponding to ~ 2 EO units) compared to the 
other two types R2 and R3. This distribution was assigned to the highest intensity/concentration constituent, ethoxyl-
ated oleyl alcohol, based on molecular weight. Fig 8b shows that type R3 observations have very different intensities 
from R1 and R2 for the distribution assigned as ethoxylated cetyl alcohol (with the order reversed from that seen for 
oleyl alcohol in Fig 8a). This can be explained by the different percentages of the major fatty alcohol used in the pro-
cess (Table 4). This type of presentation of the data, and auto-assignment of extracted distributions to chemical constit-
uents, is easy to summarise and interpret, so that the impact of process changes can easily be monitored. This would 
be very difficult to accomplish and visualise using the full MALDI-MS spectrum, due to obvious complexity of many 
peaks.

Fig 6.  Partial least squares regression (PLS-R) analysis of PEG Castor oil using extracted features of MALDI-MS data. The scores plot for the 
first two PLS latent variables is shown in (a) with the values predicted by the PLS-R model using 3-fold cross-validation in (b). Here Type 1 and Type 2 
are encoded as 1.0 and 2.0 respectively. The dotted line represents a predicted value of 1.5, taken as the boundary between classes.

https://doi.org/10.1371/journal.pone.0328462.g006

https://doi.org/10.1371/journal.pone.0328462.g006
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Conclusions

In all example analyses, identification and isolation of the peak distributions relating to particular constituents not only 
reduced background noise and simplified interpretation of the results, but also provided the potential for compound 
identification. Subtle differences between types can be distinguished and interpreted more easily using ratio-scaled 
distribution features in comparison to use of the full spectrum. Although the three examples used for demonstration 
are all ethoxylated species, the methods can easily be transferred to propoxylated products, which would follow the 

Fig 7.  Variable importance in projection (VIP) plots from PLS-R of PEG Castor oil MALDI data. (A) Full spectrum analysis, showing important vari-
ables as MALDI peaks (m/z); (B) Extracted features analysis showing more informative results, based on general distribution shifts (distribution maxima 
m/z) and ratios of distributions and therefore constituents.

https://doi.org/10.1371/journal.pone.0328462.g007

https://doi.org/10.1371/journal.pone.0328462.g007
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same methodology but with a greater spacing of 58 Da between peaks (molecular mass of propylene oxide) in a dis-
tribution rather than the 44 Da observed in ethoxylates. In future, the process could be extended to include the decon-
volution of overlapping peak distributions using information on the expected isotope distributions of particular isobaric 
compounds.

Table 2.  PLS classification results of test data for PEG castor oil using extracted distribution features.

Predicted Class

Type 1 Type 2

Real
Class

Type 1 26 1

Type 2 1 16

Successful classification rate is 95%. Values were obtained by taking predicted values less than 1.5 as Type 1 and  
those above 1.5 as Type 2.

https://doi.org/10.1371/journal.pone.0328462.t002

Table 3.  PLS classification results of test data for PEG castor oil using the full spectrum.

Predicted Class

Type 1 Type 2

Real
Class

Type 1 9 18

Type 2 0 17

Successful classification rate is 59%. Values were obtained by taking predicted values less than 1.5 as Type 1 and  
those above 1.5 as Type 2.

https://doi.org/10.1371/journal.pone.0328462.t003

Table 4.  Types of Oleth-20 analysed.

Type EO to fatty alcohol ratio Major fatty alcohol %

R1 3.35 90–98

R2 3.01 90–98

R3 2.91 70–90

Differences in the ethoxylation process are shown between types R1, R2 and R3 of Oleth-20.

https://doi.org/10.1371/journal.pone.0328462.t004

Fig 8.  Distributions obtained from the peak maxima for the two highest intensity ethoxylated constituents of Oleth-20, coloured according to 
type. (a) shows the distribution attributed to ethoxylated oleyl alcohol and (b) that assigned to ethoxylated cetyl alcohol.

https://doi.org/10.1371/journal.pone.0328462.g008

https://doi.org/10.1371/journal.pone.0328462.t002
https://doi.org/10.1371/journal.pone.0328462.t003
https://doi.org/10.1371/journal.pone.0328462.t004
https://doi.org/10.1371/journal.pone.0328462.g008
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Despite the fact that MALDI-TOF is a soft ionization technique with minimal fragmentation [3], any fragments produced 
would occur at the same molecular weight as the low EO constituents and be difficult to differentiate. This fragmentation, 
however, would still not impact the overall concept and methodology when making comparisons between types of polymer 
products or identifying and assigning the distributions to ethoxylated species in a mixture – the same ethoxylated species 
found in products with subtle differences in concentrations would undergo the same fragmentation, therefore the method-
ology described here would be unaffected, and still be applicable and useful.

Although we have given three different examples to demonstrate the success of this new methodology, this has proven 
successful across many more products throughout our investigation and has also been extended to compare similar 
products between different manufacturers, to extrapolate confidential competitor manufacturing processes. We have also 
used the same methods to deduce the impact of new manufacturing conditions on the composition of products, and to test 
whether raw materials came from sustainable sources.

Most importantly, our method simplifies analysis by providing results that are easily interpreted. Rather than simply 
reporting changes in peak intensities for different m/z values which would need further interpretation, the ratios of iden-
tified constituents are provided and can be reported quickly, for example, as “the greatest variance between two types 
of product is due to the ratio of distribution 2 (constituent y) to distribution 1 (constituent x)”. This makes the results of 
analyses more informative and accessible to the wider industrial community, allowing faster, more revealing results to be 
used for essential decision making. Equally, we demonstrate the method’s simplicity, versatility and ease of application for 
spectroscopists to adopt. The method could prove to be important in industrial process development, providing assurance 
that the use of new sustainable technologies does not materially alter the composition of products, ensuring no change to 
quality and continued consistency of manufacture, thereby maintaining customer trust.
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