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Abstract

In this paper the global dynamic characteristics of a piecewise smooth rotor/stator
rubbing system with high speed, which significantly differs from those of a low-speed
system, are explored by numerical simulation and theoretical analysis. A sigmoid
function is utilized to smoothen the governing equations, enabling the derivation and
validation of bifurcation diagrams, as well as corresponding orbits, full spectra and
Poincaré sections for both periodic and quasi-periodic motions. Additionally, the fre-
quency relations of the quasi-periodic motions are determined. Based on the stability
analysis of the periodic solutions, the presence of Hopf bifurcation boundaries, which
indicate ‘jump’ phenomena between periodic and quasi-periodic motions, along with
saddle-node bifurcation boundaries, is confirmed. Consequently, the global dynamic
characteristics are obtained by the evolution of equilibrium solutions. Notably, zero-
Hopf bifurcation is identified for the first time in the rotor/stator rubbing system with
high speed. The work also reveals deep insights into the interactive effect of parame-
ters on the dynamic characteristics of the smoothening model.

1 Introduction

Due to the improvement of energy efficiency of the rotating machinery, the clearance
between the rotor and the stator of a rotating machine has been steeply reduced,
inducing the increased risk of rotor/stator rubbing fault. During rubbing, a rotat-

ing machine performance is degraded and the catastrophic consequences of the
machine may be provoked. Therefore, a large number of valuable studies on the
dynamic phenomena of the rotor/stator rubbing systems surge to reveal why rubbing
can happen and how rubbing should work [1-3].
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The synchronous and sub-synchronous whirling motions of a horizontal Jeffcott
rotor with bearing clearances are obtained by using a HB (Harmonic Balance)/AFT
(Alternating Frequency/Time) technique [4]. Additionally, the nonlinear forced oscil-
lations of a rotating shaft with the nonlinear characteristics of spring and internal
damping are studied, and 1/2 order sub-harmonic oscillations of the forward and
backward whirling modes are investigated [5,6]. Torsional effects in a rotor/stator con-
tact model are discussed by numerical simulation [7,8]. From the rubbing phenomena
in the rotor/stator rubbing model, it is found a rotor can remain rubbing with the stator
under certain conditions, even if the initial perturbation no longer exists [9]. For the
rich dynamic responses of the rotor/stator rubbing system [10-12], the studies of
the dynamic behaviors and bifurcations have been drawing attention. Based on the
mathematical model in two dimensions [13] and three dimensions [14], the dynamic
behaviors and bifurcations are investigated by taking gravity effect into account.
Correspondingly, the nonlinear dynamic characteristics of a vertical Jeffcott rotor with
radial rubbing are studied without taking gravity into account [8]. In addition, the sta-
bility analysis of sliding whirl in a nonlinear Jeffcott rotor/stator system is presented by
discussing the dynamic behaviors and bifurcations of the subsystems [15,16]. Then,
the onset and existence conditions of dry friction backward whirl are investigated in a
Jeffcott rotor/stator system [17,18]. Compared with the traditionally local analysis, the
methods of global analysis can be introduced to explore the global response charac-
teristics of the rotor/stator rubbing system. So the global response characteristics and
research techniques of the rotor/stator rubbing system are determined and raised,
and the five types of the co-existence of the different rotor responses are confirmed
[19]. The nonlinear normal modes with a constraint condition are analytically derived
from the free vibration equation of the non-conservative nonlinear subsystems of the
piecewise smooth rotor/stator rubbing system [20]. Moreover, a harmonic balance
method (HBM) coupled with a pseudo arc-length continuation algorithm is developed
and used for the prediction of the stable dynamic behaviors of the rotor/stator rubbing
system [21,22]. In addition, the dynamic characteristics of the rotor/stator rubbing
system have been widely verified by experiments [23—-28].

For the intrinsic discontinuity in the rotor/stator rubbing system, the non-smooth
characteristics should be explicitly explained even though the bifurcation concepts
and mathematical techniques of the discontinuous dynamical systems are completely
undeveloped. According to the degree of discontinuity, non-smooth dynamic systems
can be divided into three types, i.e., non-smooth continuous systems with the discon-
tinuous Jacobian matrix, discontinuous systems of Filippov-type and impulse-type
systems [29,30]. In the discontinuous systems, the dynamics and bifurcations of the
stick-slip oscillations are developed [30—32], wherein three kinds of different friction
models are considered in the rotor/stator rubbing system [30]. From the bifurcation
viewpoints of non-smooth systems, the bifurcation behaviors of the non-smooth
systems are explored by the generalized Jacobian matrix and fundamental solution
matrix [33—35]. On the other hand, the majority of the concepts and definitions of
bifurcation are also given in the piecewise-smooth systems, including border-collision
bifurcation, boundary equilibrium bifurcation, limit cycle bifurcation, sliding bifurcation

PLOS One | https://doi.org/10.137 1/journal.pone.0328132  July 15, 2025 2/21




PLO\Sﬁ\\.- One

and grazing bifurcation, etc. [36,37]. Furthermore, these concepts can be applied in many different areas and utilized to
explain the dynamic phenomena in the piecewise smooth rotor/stator rubbing systems.

The purpose of this contribution is to analyze the nonlinear dynamic behaviors and bifurcations of a Jeffcott rotor/
stator rubbing system with high speed. From the numerical solutions of the response characteristics of the high-speed
rubbing rotors, it can be concluded that the rotor undergoes a route from the period to the quasi-period, and then from
the quasi-period to the period when the rotating speed rises in the high-speed region [38—40]. The response characteris-
tics of the piecewise smooth rotor/stator rubbing systems have been studied by taking two subsystems into account [41],
which show the dynamic behaviors of period-one and quasi-periodic motions. In practice, it is essential to get the global
characteristics of the switching phenomena between the periodic-one and quasi-periodic motions. While the local singu-
larity caused by the discontinuity has not been discussed completely when sliding occurs on the discontinuous boundary.
Hence, in order to reveal the global dynamic characteristics of the rotor/stator rubbing system, a discontinuous system
is transformed into a continuous system by smoothening functions [36,42]. Based on the comparison of the bifurcation
diagrams in discontinuous and continuous systems, the parameters of the approximated smoothening functions can be
determined. Then through the analysis of the bifurcation points between period-one and quasi-periodic solutions, the char-
acteristics and existence conditions of responses can be explicitly verified with the aid of the eigenvalues of the Jacobian
matrix.

Until now, the comprehensive studies focus on the global response characteristics in the rotor/stator rubbing system
with low speed rather than high speed. Based on a mathematical model with low speed, the global dynamic characteris-
tics, including the response characteristics of different whirling motions and their corresponding existence conditions, are
theoretically determined with the aid of the characteristics of Saddle-node bifurcation and Hopf bifurcation in [6,15,18,19].
In contrast, for the high-speed rotor/stator rubbing systems, the dynamic behaviors are primarily elucidated through
numerical calculations, lacking the in-depth explanation for why and how these dynamic phenomena can occur. By ana-
lyzing each local subsystem derived from discretizing solutions in high-speed micro-rotor/stator rubbing systems of MEMS
(Micro Electro Mechanical Systems), the Hopf bifurcation condition derived from stability analysis of the local subsystems
is just utilized to define regions of stable rubbing motions, such as quasi-periodic ones [15]. However, as indicated in [41],
it is acknowledged that global response characteristics of a holonomic system cannot be completely discerned by the
discretization of local solutions in general non-smooth systems, even though some characteristics can be predicted and
explained. The main goal of the global dynamic analysis in this paper is to clearly tackle these issues of the holonomic
rotor/stator rubbings system without relying on discretization of solutions, offering supplementary insights into the global
response characteristics of a piecewise smooth rotor/stator rubbing system with high speed.

The remainder of this paper is organized as follows: In Section 2, the model of a Jeffcott rotor/stator rubbing system is
introduced with the smoothening function identified through the comparison of the bifurcation diagrams. In Section 3, the
dynamic behaviors of the high-speed rotor/stator rubbing system are obtained by the orbits, full spectra, Poincaré sections
and bifurcation diagrams. In Section 4, based on the analytical solutions of periodic motion, the stability analysis is carried
out theoretically with the aid of the eigenvalues of the Jacobian matrix. In Section 5, the characteristics of the bifurcation
solutions and responses as well as their dependence on the system parameters are shown. Finally, conclusions are given
in Section 6.

2 Mathematical model
2.1 Piecewise smooth rotor/stator rubbing model

A Jeffcott rotor/stator system depicted in Fig 1 is studied in the work. The model consists of a rotor in contact with a
non-rotating, compliant circular stator or a mechanical seal, as descripted in Fig 1(a). A massless and spindle shaft
fixed with a disc at the middle is supported by a pair of idealized bearings. The disc with radius of ry is eccentric with
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Fig 1. (a) Schematic diagram of Jeffcott rotor with stator. (b) Schematic diagram of the rubbing forces.

https://doi.org/10.1371/journal.pone.0328132.9001

an unbalanced mass m located at distance e from its geometrical center. The stiffness of the rotating shaft is ks. ry rep-
resents the clearance between the rotor and the stator. k;, indicates the stiffness of the annular radius spring of the stator.
w denotes the rotating speed of the rotor. During rubbing, the tangential friction force F,, and the normal force F, are
triggered at the contact points between the rotor and the stator, as illustrated in Fig 1(b). The Coulomb friction model of
F,, = pF, with the dry friction coefficient of 1 is employed in the system. w,, denotes the whirling angular speed of the
rotor. O1 and O are respectively the geometrical centers of the rotor and the stator. ¢ is the whirling angle between the
direction of the deflection of the rotor and the horizontal axis x. In the present analysis, the gravity is neglected.
According to the Newton’s law of motion, the governing equation of the rotor/stator rubbing system is

MX + CsX + ksX + Okp(1— ) [x —sign(Vyer) - 1y] = mew? cos wt
my + sy + ksy + Oky(1 — 2)[sign(Vye) - X + y] = mew? sinwt

Viel = Fgw + Moy (1)

where c; is damping ratio of the rotor and v, is the relative velocity between the rotor and the stator at the contact point
with sign(v,e) representing the direction of dry friction force. r = \/)Wy2 is the radial displacement of the rotor. O is
Heaviside function with © = 0 forr<ry and © = 1forr > r,.

For convenience of study, the governing equation of Eq (1) can be rewritten as the non-dimensional form.

X"+ 20X + BX + O(1 - B8)[X=sign(Vye) - nY] = Q2 cos Qr
Y’ +2CY + BY + O(1 - Bo)[sign(Vie) - uX + Y] = Q%sinQr
Viel = RaQ2 + RQy, (2)

where the non-dimensional variables and parameters are defined as

X=% Y=Y R=L Ry=2 Ry=1%
X =% y—d& (—_G0 B =k

According to Heaviside function © in Eq 2, the non-degenerate scalar function of (R, — R) on the system states X and Y
is defined as the discontinuous boundary, across which the discontinuities of the piecewise smooth rotor/stator rubbing
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system occurs. It is noteworthy that the vector fields and their trajectories of the piecewise smooth system cannot sliding
on the discontinuous boundary of (Ry — R) [32]. This means that the deflection of rotor can only run across through the
discontinuous boundary, once rubbing occurs with R > R. Thus the global dynamic characteristics induced by the discon-
tinuous boundary of (Ry — R) should be comprehensively studied for the piecewise smooth rotor/stator rubbing systems.

2.2 Rotor/stator rubbing model with smoothening function

In order to reveal the dynamics of the piecewise smooth rotor/stator rubbing system governed by Eqgs (1) and (2), the

smoothening function of sigmoid function sigm(R) [36] instead of the discontinuous Heaviside function © is introduced
for numerical simulation and theoretical analysis. Then the governing equation of the smoothening rotor/stator rubbing
system is shown as follows.

X" 4 2¢X" + BX + sigm(R)(1 — 52)[X = sign(Vyel) - Y] = Q% cos Qr
Y’ +2CY + BY + sigm(R)(1 - %)[sign(vre,) -uX + Y] = Q%sinQr
Vrel = RdQ + RQW
sigm(R) = 1 grmm (3)
where & is a control parameter of smoothness.

The values of sigmoid functions sigm(R) as the different values of x are shown in Fig 2. It is seen from the lines of
x =10, k = 100 and x = 1000 that the larger the value of the control parameter «, the closer the values of sigm(R) are to
those of Heaviside function ©. Especially, when the control parameter takes a very large value, i.e., £ = 1000, the line of
sigm(R) can almost overlap that of ©. While the tradeoff is that the large value of a control parameter « can dramatically
increases the computational expense and the degree of difficulty of the global analysis. So the value of a control param-
eter x is not the larger the better, but within a suitable range in the rotor/stator rubbing system. Only by comparing the
dynamic behaviors of the piecewise smooth system and the smoothening system can the control parameter « of the rotor/
stator rubbing system be identified.

Firstly, with the variation of the rotating speed (), the following system parameters are always fixed as follows.

¢ =0.0553=0.04, 1 = 0.08, Ry = 1.05 (4)

as those from the model in [16,17,41] and the test rig in [10]. Then the non-dimensional governing equation is rewritten as
the first-order equation with the initial condition of (X=0,Y =0,X =0, Y = 0), and integrated numerically by fourth-order

1
k=10 !
— k=100
0.8  — 1000
0.6
j
g
£ 4
0.2
.... I
o y / ‘
0 0.5 1 15 2
R

Fig 2. Sigmoid function sigm(R) under the different control parameter .

https://doi.org/10.1371/journal.pone.0328132.9002
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Runge-Kutta method to obtain the deflection amplitude of the high-speed rotor in the rotor/stator rubbing system. Through
the brute-force numerical bifurcation analysis with the variation of the control parameter «, the optimal value of « is
determined as s = 73.35. With the increase of the rotating speed ) from 0 to 4, the bifurcation diagram of the rotor in the
piecewise smooth rotor/stator rubbing system is shown in Fig 3(a) and that in the smoothening system with k = 73.35 is
shown in Fig 3(b).

From the deflection in x direction of the rotor in Fig 3, the bifurcation diagram of the smoothening rotor/stator rubbing
system with « = 73.35 depicted in Fig 3(b), is consistent with that of the piecewise smooth system depicted in Fig 3(a). So
the validity of the control parameter of « = 73.35 is verified for the rubbing rotors with high speed. From the consistency of
the results, it is also concluded that it is an effective method to transform a piecewise smooth system into a smoothening
system. In practice, it should be noticed that a rotor is considered to rotate with high speed when Q > 1 in the rotor/stator
rubbing system.

In addition, a machinery fault simulator (MFS) from SpectraQuest@, Louisville, USA, is employed to experimentally
determine the behaviors of the rotor during the run-up process. The rotor/stator testing system can achieve a maximum
speed of 15000 r/min, with a defined clearance of r, = 0.1mm between the rotor and the stator. Under indirect measure-
ment of the equivalent stiffness of the shaft, the natural frequency of wy = 571rad/s = 5457r/min of the coupled rotor/
stator testing system is obtained. As the rotating speed w of the rotor progressively increases from 0 to 15000 r/min,

i.e., the normalized rotating speed Q2 grows from 0 to 2.7, with ¢s = 139 Ns/m, = 0.12, and e = 0.0668 mm, the exper-
imental results of the rotating speed-dependent variable deflection of the rotor in x direction are displayed in Fig 4. In

(b)

Fig 3. Bifurcation diagrams of the rotor/stator rubbing system with ¢ = 0.05, 3 = 0.04, © = 0.08 and Ry = 1.05 obtained from (a) the piece-
wise smooth governing equation, (b) the smoothening governing equation with x = 73.35.

https://doi.org/10.1371/journal.pone.0328132.9003
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the bifurcation diagram shown in Fig 4(a), the rotor transitions from a periodic no-rub motion to a periodic/quasi-periodic
rubbing motion. Considering unavoidable testing errors, the deflection of the rotor in periodic motion fluctuates over a
narrow circle, evident in the periodic no-rub motion with €2 = 0.04 in Fig 4(b), the periodic synchronous full annular rub
with Q = 1.12 in Fig 4(c) and the same type of rub with @ = 2.5 in Fig 4(e). On the contrary, the deflection of the rotor in
quasi-periodic motion covers a wider circle area, as shown in the quasi-periodic dry friction backward whirl with 2 = 2.2 of
Fig 4(d).

As the rotating speed grows with Q > 1, it can be observed from Fig 4 that a jump’ phenomenon between periodic and
quasi-periodic motions occurs, marked by the deflection of the high-speed rotor sharply rising from 0.1 mm to 0.4 mm at
2 = 1.58. Subsequently, when Q = 2.42, the deflection of the rotor ‘jumps’ back down from 0.4 mm to 0.2 mm. By quali-
tatively comparing experimental outcomes with the numerical results found in Fig 3, it is apparent that the behaviors of
the high-speed rotor in the rotor/stator testing system align with those derived from numerical simulation of the piece-
wise smooth/smoothening governing equation. Hence the piecewise smooth/smoothening governing equation of the
rotor/stator rubbing system with high speed is valid and reasonable for investigating the transition between periodic and
quasi-periodic motions.

From the experimental and numerical results of bifurcation diagrams, it is seen that the switching scenario with the
increase of rotating speed () is something like: periodic motion — quasi-periodic motion — periodic motion. In other words,
only the period-one and quasi-periodic attractors appear, which can also be detected through numerical simulation in a
micro-rotor system [15], an overcritical high-speed rotor system [39] and a rotor/stator model of a turbogenerator [40].
During the process from periodic motion to quasi-periodic motion or from quasi-periodic motion to periodic motion, the
‘jump’ phenomena appear, in which the ‘jump’ points are defined as bifurcation points and draw enough attention. And
whereas the quasi-periodic motion in the smoothening system is triggered by the imbalance with the rotating speed of
= 1.257, which is lightly smaller than the bifurcation point of €2 = 1.280 in the piecewise smooth system. Despite the tiny

0.6
—
£
=)
E
<
x10* x10™ %104
1 — e — ’
" \\\ 1
7 . _ 1
§,0, : ‘I 1 §, 0 éo
> L ' > >
| K -1
1 \\\\- _—",' ] . " 2 s .
o 0 1 40 1 - 2 0 2
X(m) L q0% X(m)  q0 X(m) 10 X(m) g0

) © @ ()

Fig 4. Experimental results of the rotor/stator testing system. (a) Bifurcation diagram. (b) Orbit with {2 = 0.04. (c) Orbit with Q = 1.12. (d)
Orbit with 2 = 2.2. (e) Orbit with Q = 2.5. In Figs 4(b) to 4(e), the clearance between the rotor and the stator is represented by the red dashed
cycle with the rotor orbit of blue curves.

https://doi.org/10.1371/journal.pone.0328132.9004
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gap, the bifurcation points of the smoothening rotor/stator rubbing system coincides with those of the piecewise smooth
rotor/stator rubbing system. When 2 = 2.485, the quasi-periodic motion ceases to exist and period motion is triggered by
imbalance again.

As a result of the jJump’ phenomena between period and quasi-periodic motions, it is very difficult to capture the numer-
ical proof of the bifurcation and explain the phenomena in the piecewise smooth rotor/stator rubbing system. Therefore,
with the aid of the proximate smoothening function of sigm(R), the abundant dynamic behaviors originating from the varia-
tion of the system parameters and initial conditions, can be studied by the global analysis of bifurcations in the smoothen-
ing rotor/stator rubbing system with the appropriate control parameter of x = 73.35 under high-speed rotating operation.

3 Dynamic behaviors of the high-speed rotor/stator rubbing system

The rotor/stator rubbing system with the parameters of ( = 0.05, 8 = 0.04, 1 = 0.08 and Ry = 1.05, as documented in

the literature [10,16,17,41], is examined for the high-speed performance in the work. With the variation of the rotating
speed 2, the global dynamic responses of the rotor/stator rubbing system can be delineated by numerical simulation and
theoretical analysis in the smoothening system with the control parameter of « = 73.35. The numerical simulation of the
smoothening rotor/stator rubbing system is tackled with the aid of orbit analysis, phase diagrams, Poincaré sections, Lya-
punov exponents and full spectra. Based on the bifurcation diagram of the smoothening rotor/stator rubbing system, the
orbits and full spectra of the rotors with the high rotating speed of O = 1.12, 2 = 1.75, Q@ = 2.1875 and 2 = 2.5, are respec-
tively depicted in Fig 5.

In Fig 5(a), the period motion occurs with the rotating speed of ) = 1.12, which is smaller than the rotating speed of
Q = 1.257 for the onset of the quasi-periodic motion. The orbit of the rotor represented by the solid black lines is less than
the clearance represented by the red dashed cycle, i.e., R < Ry. The full spectra derived from Fast Fourier transform on
both variables X and Y, can yield both positive and negative frequency components respectively representing the forward
and backward motion. The response is no-rub motion with the positive frequency of Q) = 1.12, due to the forward harmonic
excitation.

In Fig 5(b), the quasi-periodic motion occurs with the rotating speed of €2 = 1.75. The orbit of the rotor represented
by the solid black lines is partly greater than the clearance represented by the red dashed cycle, i.e., R<RyorR > Ry
. Moreover, the deflection R of the rotor is somewhat bouncing. From full spectrum, the system response is partial rub
with backward whirl frequencies of Q_;, Q_s, ..., Q_,(n =1, 2, ...) due to friction induced nonlinear modal motion, together
with the positive frequencies of Q11, Q49, ..., Q1n(n = 1,2,...). The second positive frequency of 2, is equal to the fre-
quency 2 of harmonic excitation, i.e., Qo = Q = 1.75. The quasi-periodic responses with multiple positive and negative
frequency components during high-speed rotating are vastly different from the quasi-periodic motion with only one exciting
frequency and one whirling frequency during low-speed running with ) < 1in [18,20,21].

In Fig 5(c), the quasi-periodic motion occurs with the rotating speed of 2 = 1.1875, which almost has the same
partial-rub characteristics with the quasi-periodic motion with 2 = 1.75 in Fig 5(b). Similarly, the deflection R of the rotor
in Fig 5(c) fluctuates over a wide range with multiple positive and negative frequency components. In Fig 5(d), the period
motion occurs with the rotating speed of {2 = 2.5, which is bigger than the rotating speed of 2 = 2.485 for the cease of the
quasi-periodic motion. It is also seen from the orbit and the full spectrum of the rotor in Fig 5(d) that the response shows
nearly the same no-rub characteristics with the forward excitation frequency of the high-speed rotor.

Based on the response characteristics of the high-speed rotor, the frequency of period motion and the second fre-
quency of quasi-periodic motion are respectively equal to the frequencies of the harmonic excitation in a rotor/stator
rubbing system. According to a plethora of simulation data, the frequency of the whirling rotor in the rotor/stator rubbing
system can be obtained as

Qip =Ny —(n=1)2
{ an = ”le— (n—l)Q+11 (neNy) o
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where N, denotes the set of all positive integers.

Taking the rotor/stator rubbing system with € = 1.75 for example, it is concluded from Fig 5(b) that the frequency val-

ues of Q2 and Q_, satisfy the frequency relation of Eq (5). Then the frequency values of Q. , and €)_, for partial rub with
2 = 1.75 are shown in Table 1.
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Fig 5. Orbits and full spectra of the rotor with ¢ = 0.05, 3 = 0.04, © = 0.08, R, = 1.05 and « = 73.35. (a) Periodic motion with Q = 1.12. (b)

Quasi-periodic motion with Q = 1.75. (c) Quasi-periodic motion with 2 = 2.1875. (d) Periodic motion with 2 = 2.5. In the orbits, the rotor/sta-
tor clearance is represented by the red dashed cycle.

https://doi.org/10.1371/journal.pone.0328132.9005
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Then the Poincaré sections of the rotor/stator rubbing systems with the different rotating speeds of ) = 1.12, 2 = 1.75,
Q = 2.1875 and 2 = 2.5, are respectively showed in Fig 6. From the projections of Poincaré sections for Q = 1.12 and
@ = 2.5in Figs 6(a) to 6(d), there are two isolated points respectively. Then taking into account only one discrete fre-
quency component in full spectrum, a limited circle in orbit and two isolated points in Poincaré section, it is proved that
the motions of the rotor with ) = 1.12 and Q2 = 2.5 are clearly periodic-one. From the projections of Poincaré sections for
2 =1.75 and 2 = 2.1875 in Figs 6(b) and 6(c), there is a closed circle respectively. The trajectory of the rotor is irregular.
The corresponding Lyapunov exponent is zero. Then taking into account six discrete frequency components in full spec-
trum, a limited circle in orbit and a closed circle in Poincaré section, it is proved that the motions of the rotor with 2 = 1.75
and 2 = 2.1875 are quasi-periodic and the quasi-periodic motion remains from 2 = 1.257 to 2 = 2.485. So, it is illustrated
that just the periodic-one and quasi-periodic attractors appear and the strange attractors do not occur in the rotor/stator
rubbing system with high speed.

Table 1. Q, and Q_, for partial rub with & = 1.75.

Frequency Q3 Qo Q1 Qi1 Qo Qys

Value -3.01 -1.82 -0.63 0.56 1.75 2.94

https://doi.org/10.1371/journal.pone.0328132.t001
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Fig 6. Poincaré sections of the rotor/stator rubbing system with (=0.05, 3=0.04, ©=0.08, Ry=1.05 and k=73.35. (a) Periodic motion with
Q=1.12. (b) Quasi-periodic motion with 2=1.75. (c) Quasi-periodic motion with £2=2.1875. (d) Periodic motion with 2=2.5.

https://doi.org/10.1371/journal.pone.0328132.9006
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When © = 2.0 with the initial condition of (X =0, Y =0,X =0, Y = 0), the dynamic characteristics of the smoothening
rotor/stator rubbing system are studied by the aid of the bifurcation diagrams with the variation of system parameters. Fig
7(a) shows the bifurcation diagram with the variation of 1 when ¢ = 0.05, 8 = 0.04 and Ry = 1.05. Fig 7(b) shows the bifur-
cation diagram with the variation of ¢ when 3 = 0.04, ¢ = 0.08 and Ry, = 1.05. Fig 7(c) shows the bifurcation diagram with
the variation of 8 when ¢ = 0.05, = 0.08 and Ry = 1.05. Fig 7(d) shows the bifurcation diagram with the variation of Ry
when ¢ = 0.05, 8 = 0.04 and ¢ = 0.08. It is seen that the chaotic phenomena do not appear in the rotor/stator rubbing sys-
tem with the variation of u, ¢, 8 and Ry. In addition, it is also concluded from Figs 7(a) and 7(b) that dry friction backward
whirl occurs when i > 0.1504 or ¢ < 0.0269, which conforms to the analytical solutions of the existence condition of dry
friction backward whirl, i.e., u > 2¢v/B+ 1 or ¢ < u/(%/ﬁﬁ), for the rotor/stator rubbing system in full speed range, as
illustrated in [17,18]. So, the accuracy of the smoothening model of the rotor/stator rubbing system is confirmed through
the consistent results of both numerical simulation and analytical solutions.

4 Stability of high-speed rotor responses

According to the results of the numerical simulation in the smoothening rotor/stator rubbing system with high speed,
period motion and quasi-periodic motion can dramatically switch as the rotating speed of the rotor increases. It is valuable
to reveal the characteristics of the jump’ phenomena from period motion to quasi-periodic motion or from quasi-periodic
motion to period motion, which have been analytically studied by the assembling of each local subsystem derived from
the discretizing of the solutions in the holonomic system [15,16]. Therefore, the global characteristics of the high-speed
rubbing rotors should be elaborated by the smoothening functions with the control parameter of x = 73.35.

4.1 Full annular rub solutions of periodic motion

By denoting n = [X, Y, X', Y], the governing equation of the smoothening rotor/stator rubbing system in Eq (3) can be
reformed as a set of first order autonomous ordinary differential equations with smoothening right-hand side.

3 3
2
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s 1
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0 0.04 0.08 0.12 0.16 0
o
(@)
5
<ol
2 -5
0 0.1 0.2 0.3 0.4 0.5 0 1 2 3 4 5
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0
(©) (d)

Fig 7. Bifurcation diagrams of the smoothening rotor/stator rubbing system with 2 = 2.0 and « = 73.35, during (a) ¢ = 0.05, 3 = 0.04,
Ry = 1.05, (b) 8 = 0.04, 4 = 0.08, Ry = 1.05, (c) ¢ = 0.05, # = 0.08, Ry = 1.05, (d) ¢ = 0.05, 3 = 0.04, = 0.08,

https://doi.org/10.1371/journal.pone.0328132.9007
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m'=mn=X

' =mu=Y

03’ ==2Cnz — B — W( - E)(X 1Y) + Q2 cos Qr

' = =200 = B2 = pgrtmem (1= ) (WX + Y) + QsinQr (6)

According to the orbit, the full spectra and the Poincaré sections of the period motion in Figs 4 and 5, the whirling fre-
quency of the full annular rub response is equal to the rotating speed of the rotor. Then, the reasonable form of the peri-
odic solution of Eq (6) can be determined as

{ 1 = A cos(Qr + )
172 = A sin(Q71 + ¢) (7)

where A and ¢ are respectively the amplitude and the phase angle.
Substituting the solution of Eq (7) into Eq (6), it yields

TterRoA —

2U0A 4+ LERD - — _2sing ()

1ter(Ro-A —

{ (B=QH)A+ ARl 2c0s

Then a polynomial with the amplitude A is got as

CQA2 +ClA+cy=0 (9)
where ¢, = [1+en(R0—A) +B8- 92] [QCQ + WP’
_ “2Ro(14+4%) | —2Ro(B+2u¢0-0?) _ _R3(+u?) 4
c = [1+e0~<Ro—A)]2 OHen(Ro—A) and ¢y = [1+Z~<R0—A>]2 -0~

From the practical point of view, the amplitude of A in Eq (7) not only needs to be real and positive but also ought to be
greater than the clearance Ry between the rotor and the stator. Then the existence condition of A is

imag(A) =0and A> Ry (10)

4.2 Stability analysis of periodic solution

By using the theory of matrix characteristic root, the eigenvalues of Jacobian matrix of the linearized governing equation
of the rotor/stator rubbing system are introduced and analyzed to study the stability of the periodic solutions. According to
the Poincaré sections of the period motion in Fig 5, the equilibrium point 1° of Eq (6) is defined as

m° = A% cos(Qr + ) = A° cos 0°
7720 = AOSin(QT + (,00) = A%sin° (11)

where A is the amplitude, which is achieved by the solution of Eq (7).
From the governing equation of Eq (6), the linearized equation in terms of the equilibrium point of Eq (11) is given as

61" = Dfly—yo 0 = [J] dn (12)

where D is derivative operator and [J] is the Jacobian matrix.
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The Jacobian matrix [J] of the system is

0 0 1 0
0 0 0 1
] = —3—B~-C-cos? uB+ uC - sin*6 ¢ 0
~ | +uC-sinfcosd —C -sinf cos 6
—uB—uC - cos?6 —-B3—-B-C-sin*0 0 —ac
—C-sinfcos? —uC - sinfcos
(13)
where B = —— oy (1~ 73) and
. @r(Ro=A%) 1 R,
C o K-€ (AO —Ro) + 0

L+ en(RoA))? 1 + er(R-A%) A0

From Eq (13), the Jacobian matrix [J] is periodic time-dependent, by which the time-dependent eigenvalues cannot be uti-
lized to assess the stability of the rotor/stator rubbing system. Therefore, the coordinate transformation relation of Eq (14)
is employed to transform the time-dependent Jacobian matrix [J] to the time-independent Jacobian matrix [Jp].

on = [T} 6U (14)
cosf —sind 0 0
sind cosf 0 0
where [T] = 0 0 cosf —siné
0 0 sind cosé
From &1/ = [T]'6U + [T| §U, it yields
U = [Jo] SU (15)

where [Jo] = [T (Y] [T] = [T])

Then the time-independent Jacobian matrix [Jy] is derived.

0 Q 1 0
S = -Q 0 0 1
o = -8-B-C uB -2 Q
—-uw(B+C) —-p-B -Q =2 (16)

With the time-independent Jacobian matrix [Jy] of Eq (16), the real parts of its eigenvalues can be used for the stability
criterion of 6U, i.e., 6n and 7°, and thus the stability of the full annular rub in the rotor/stator rubbing system. When all the
real parts of the eigenvalues of [Jy] are negative, the system is defined as stability, but not vice versa.

From \Jo - )\I| = 0 with ©, the characteristic equation of [Jy] in terms of the eigenvalues A can be determined as the
following polynomial equation.

M AN + oA + b+ by =0 (17)
where A represents the eigenvalues of the Jacobian matrix [Jy] and

by = 4¢% +2(8 + B) + 202,

by = 4¢(B + B) + 2(2uB + C)Q + 4¢Q2,
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by = Q* + (4¢* - C)0% + 2[u¢(B+ C) —2(B + B)|Q
+(B+B)(B+B+C)+ u’B(B+C)

Then the two pairs of the eigenvalues, i.e., A1, A2 and A3, A4, can be obtained by the solutions of Eq (17), which respec-
tively vary with the rotating speed Q) of the rotor in the rotor/stator rubbing system.

According to the dynamic behaviors of the high-speed rotor/stator rubbing system, only the period motion and quasi-
periodic motion can occur. Then the switch between the period motion and the quasi-periodic motion can be detected by
the transition between the stable and unstable states of the periodic solutions. Thus the alternation of the real parts of
A1, A2 and A3, A4 from positive to negative, or from negative to positive, can decide the ‘jump’ phenomena of the period
motion and the quasi-periodic motion in the rotor/stator rubbing system with high speed. As the rotating speed ) varies
between 0 and 4 with the step size of AQ = 0.0001, the behaviors of the real parts Re()\) and the imaginary parts Im(}\) of
the eigenvalues A1, A, and A3, A4 are obtained, as shown in Fig 8.

From Fig 8, it is seen that the real parts of eigenvalues \; represented by blue squares and )\, represented by green
diamonds are always negative with positive or negative imaginary parts during the variation of Q2 € [0, 4]. While the real
parts of eigenvalues \; represented by black dots and \; represented by magenta crosses can alter between the positive
and the negative. Therefore, the stability of the rotor/stator rubbing system can be decided by the negative real parts of
the eigenvalues \; and \,. It is concluded that the real parts of A\; and A\, crosses over the critical points with Re(\) = 0,
namely stability boundary represented by the red dashed line, when 2 = 1.257 and €2 = 2.485. The critical rotating speeds
are also deemed as the bifurcation points which coincides with the jump’ points from period motion to quasi-periodic
motion and from quasi-periodic motion to period motion in Figs 3 and 4.

According to the characteristics of bifurcation points and the distribution of the two pairs of the eigenvalues A1, A; and
A3, A4, the stability of the periodic solutions can also be ascertained by the algebraic criterion of Saddle-node bifurcation
and Hopf bifurcation in the smoothening rotor/stator rubbing system with high speed. Therefore, the occurrence from
period motion to quasi-periodic motion or from quasi-periodic motion to period motion can be elaborately explained from
the point of view of bifurcation theory.

When one of the eigenvalues A1, A2 and A3, A4 of the Jacobin matrix [Jy] is equal to zero, saddle-node bifurcation
occurs in the rotor/stator rubbing system. From Eq (17) with the existence of a zero eigenvalue, the saddle-node bifurca-
tion condition is derived by by = 0. That is

O+ (4¢2 - C)02 + 2[u¢(B+ C) - 2(5 + B)|2
+(B+B)(B+ B+ C) + u?B(B+C) =0 (18)

0.1

Fig 8. Behaviors of eigenvalues with the variation of () from 0 to 4 with AQ = 0.0001 in the smoothening rotor/stator rubbing system with
¢ = 0.05, 3 = 0.04, = 0.08, Ry = 1.05 and « = 73.35. The red dashed line represented the stability boundary with Re(\) = 0.

https://doi.org/10.1371/journal.pone.0328132.9008

PLOS One | https://doi.org/10.137 1/journal.pone.0328132  July 15, 2025 141721



https://doi.org/10.1371/journal.pone.0328132.g008

PLO\Sﬁ\\.- One

The positive solutions of 2 can be used to determine the existence boundary of saddle-node bifurcation in the parameter
space of the rotor/stator rubbing system.

When the eigenvalues A\, A2 and A3, A4 are conjugated complex numbers wherein a pair of pure imaginary values are
given in the Jacobin matrix [Jy], Hopf bifurcation appears in the rotor/stator rubbing system. Then the eigenvalues Ay, Ao
and )3, A4 can be denoted as

5\1,2 = +iw, 5\3,4 =c=xid (19)
where i = v/-1.

Taking A1, A2, A3 and A4 as the solutions of a polynomial equation, the characteristic equation of the rotor/stator rubbing
system can be given as the following equation.

M —2eX3 + (¢ + & + )N\ = 2c0? \ + w?(¢? + &P) (20)

Through comparison between Eq (17) and Eq (20), it yields

4¢ =-2¢,by = * + d? + w?, by = 2cw?, by = w2(02 + d2) (21)

From Eq (21), the equation of by, b; and b, is obtained.

16¢2bg = 4Cb1by — b2 (22)

Substituting the mathematic representations of by, by and by in Eq (17) into Eq (22), the equation in terms of Q is obtained
and solved for the critical rotating speed (), i.e., the existence boundary of Hopf bifurcation in the rotor/stator rubbing
system.

For the smoothening rotor/stator rubbing system with ¢ = 0.05, 3 = 0.04, ¢ = 0.08, Ry = 1.05 and s = 73.35, the criti-
cal rotating speed ) of Hopf bifurcation is theoretically solved as 2 = 1.257 or 2 = 2.485, which is in accordance with the
numerical results derived by numerical simulation and stability analysis. It is elaborated from the results in a good agree-
ment that the ‘jump’ phenomena between period motion and quasi-periodic motion are all ascribed to Hopf bifurcation in
the rotor/stator rubbing system with high speed.

5 Influences of system parameters on high-speed rotor responses

From the discussion in the bifurcation of the smoothening rotor/stator rubbing system, it is noted that the dynamic behav-
iors can be influenced by the system parameters. With the aid of a bifurcation analysis tool of MATCONT [43], which is
mainly used for the continuous system and/or the autonomous system, the characteristics of the system responses are
illustrated versus the rotating speed ) with the variation of the control parameter x and friction coefficient u, through
brute-force numerical bifurcation analysis.

5.1 Influence of control parameter s

By fixing ¢ = 0.05, 3 = 0.04, p = 0.08 and Ry, = 1.05 with x € [73, 75] and different Q, the plot of control parameter ver-
sus rotating speed, namely on the parameter plane x — {2, is shown in Fig 9. Curves HP, and HP, indicate the rotating
speed whereby the ‘jump’ phenomena between period motion and quasi-periodic motion occur due to Hopf bifurcation.

It is interesting to note that the rotating speed 2 of curve HP, varies from 1.12 to 1.10 while Q of curve HP, varies from
1.76 to 2.425 when & € [73, 75]. Therefore, the responses of the whirling rotor primarily depend on the value of the control
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parameter « in the smoothening rotor/stator rubbing system. However, the value of the control parameter « cannot affect
the jJump’ behavior of the responses of the high-speed rubbing rotor. Considering synthetically the solving precision and
the computational expense, the value of the control parameter « in the smoothening system is not the larger the better,
which can be determined by the approximately comparation of the solutions between the smoothening system and the
discontinuous system.

5.2 Influence of friction coefficient p

By fixing ¢ = 0.05, 3 = 0.04, p = 0.08, Ry = 1.05 and s = 73.35, the equilibrium point of n° at time 7° under different
rotating speed ) of the rotor, can be obtained by MATCONT in the rotor/stator rubbing system, as shown in Fig 10. As the
rotating speed (2 increases from 0 to 4, the equilibrium curve of the deflection R° that is defined as R® = /1,0 + 1,9,
is shown in Fig 10(a), while the equilibrium curve of the phase difference (QWO - Q)7% where 0,0 is the whirling angular
speed of the rotor at time 7°, is shown in Fig 10(b). Points HP, and HP, represent the Hopf bifurcation boundaries, and
points SN,, SN,, SN, and SN, represent the saddle-node bifurcation boundaries. From the existence condition of bifurca-
tion points in Fig 10, the equilibrium solutions SN, of saddle-node bifurcation is (0.9833, —0.7156, 0, 0) at 2 = 0.1495 with
SN, (1.0305, -0.7628, 0, 0) at {2 = 0.1462, SN, (1.9161, -2.8761, 0, 0) at 2 = 0.9956 and SN, (1.0555, -3.0164, 0, 0) at
2 = 0.8478. In addition, the equilibrium solutions HP, of Hopf bifurcation is (1.0258, -3.0500, 0, 0) at €2 = 1.2568 with HP,
(1.0046, —-3.1043, 0, 0) at Q2 = 2.4847, which are the supercritical Hopf bifurcation points in the sense of the state evolution
from a fixed point to the periodic one.

By fixing ¢ = 0.05, 3 = 0.04, Ry = 1.05 and ~ = 73.35 with the variation of 1 € [0,0.4] and Q € [0, 1.5], the global
response characteristics on the parameter planes of {2 — . are depicted as shown in Fig 11. Lines SN, SN,, SN, and
SN, represent the saddle-node bifurcation boundaries, and curves HP, and HP, represent the Hopf bifurcation bound-
aries where the ‘jump’ phenomena between periodic motion and quasi-periodic motion occur. The characteristics of the
supercritical Hopf bifurcation curve HP, between the two Saddle-node bifurcation curves SN, and SN, are in accordance
with those in [8,15,41]. When 1 = 0.1869 and €2 = 0.8473, one of the eigenvalues of the Jacobin matrix is equal to zero,
one pair is formed of conjugated imaginary eigenvalues, and the other one is complex number with a non-zero real part.
This means a zero-Hopf bifurcation that is also known as a fold-Hopf bifurcation represented by the point ZHP in Fig 11
appears. From the isolated zero-Hopf equilibrium point, the rotor/stator rubbing system undergoes a change in behavior,
and a local chaos may birth under certain conditions, which has been detected by numerical simulation in [15,39]. Accord-
ing to the comparison between the numerical simulation results and the theoretical bifurcation boundaries, the agreements

75

74.5 HP
HP1 2
2 74
73.5| Period Quasi-period Period
motion motion motion

73
0.5 1 1.5 2 2.5 3 35 4

Q

Fig 9. Plot of xk — Q2 when ¢ = 0.05, 8 = 0.04, # = 0.08 and Ry = 1.05. Lines HP, and HP, are the Hopf bifurcation boundaries of periodic
motion.

https://doi.org/10.1371/journal.pone.0328132.9009
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of the global dynamic characteristics indicate the ability of the smoothening system based on a sigmoid function sigm(R)
in dealing with the bifurcation behaviors of the rotor/stator rubbing system with high speed.

From above discussion, the smoothening sigmoid function is employed in the rotor/stator rubbing system to highlight its
benefits and explore the global dynamic characteristics, such as detecting the onset of the rotor responses, identifying the
boundaries between periodic and quasi-periodic motions via stability analysis and bifurcation theory, and assessing the
influences of the system parameters on design. Results from numerical simulation and theoretical analysis reveal that not
only the global responses but also their corresponding evolution can be accurately captured by the proposed rotor/stator
system with smoothening function. Moreover, the application of smoothening function to the global dynamic analysis of
the rotor/stator rubbing system embarks upon the holonomic solutions rather than the discrete solutions in [15]. Conse-
quently, the smoothening function offers more benefits compared to Heaviside function. Nevertheless, caution should

6
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1 !
0.95] ,
0.145 0.15
HP2
2 2.5 3 3.5 4
Q
(a)
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0.7 X
-0.8 SNz
0.120.16 0.2
HP2
-4
0 0.5 1 1.5 2 2.5 3 3.5 4
Q
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Fig 10. Bifurcation characteristics under different rotating speed of the rotor in the rotor/stator rubbing system with { = 0.05, 3 = 0.04,
1= 0.08, Ry = 1.05 and k = 73.35. (a) R® versus Q. (b) (2,° — Q)7° versus 0. HP, and HP, represent the Hopf bifurcation boundaries. SN,
SN,, SN, and SN, represent the saddle-node bifurcation boundaries.

https://doi.org/10.1371/journal.pone.0328132.9010
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Fig 11. Rotor response characteristics on the plane of (2 — 1, where ¢ = 0.05, 8 = 0.04, Ry = 1.05 and x = 73.35. Curves HP1 and HP, indi-
cate the rotating speed where the ‘jump’ phenomena between periodic motion and quasi-periodic motion occur. Lines SN,, SN,, SN, and SN,
represent the saddle-node bifurcation boundaries. ZHP is Zero-Hopf bifurcation point.

https://doi.org/10.1371/journal.pone.0328132.9011

be taken while selecting the control parameter « of the smoothening function, as it can significantly influence the global
response characteristics, posing challenges in achieving the reasonable tradeoff between accuracy and cost. Additionally,
adopting the proposed smoothening method allows for addressing more intricate and detailed issues of the rubbing rotors
efficiently, ensuring smooth operation of the rotor during rubbing without the failure under any circumstances.

6 Conclusions

In this paper, the global dynamic characteristics of a piecewise smooth rotor/stator rubbing system with high speed are
presented through analytical analysis and numerical simulation. A method is introduced to determine the global response
characteristics of the smoothening system, which involves analyzing the smoothening equation of motion by replacing the
Heaviside function with the sigmoid function. By comparing the dynamic behaviors of the piecewise smooth system and
smoothening system, the control parameter of smoothness is determined in the sense of the tradeoff between the compu-
tational cost and the accuracy of global responses. Finally, the study integrates periodic and quasi-periodic motions within
the same parameter space to derive the global response characteristics of the smoothening rotor/stator rubbing system
through numerical simulation and stability analysis.

From the point view of global responses, the switching scenario of the rotor/stator rubbing system with high speed fol-
lows: periodic motion — quasi-periodic motion — periodic motion, indicating the absence of chaotic behavior. Bifurcation
diagrams align well with numerical orbits and Poincaré sections of periodic-one and quasi-periodic attractors. During high-
speed rotating, the frequencies of the whirling rotor align with Eq (5), differing from the analytical solutions in [18,20,21].
Through stability analysis of periodic solutions in high-speed rotor responses, the Hopf bifurcation boundaries identifying
‘jump’ phenomena between periodic and quasi-periodic motions, as well as the saddle-node bifurcation boundaries, are
verified. With the aid of the evolution of the equilibrium solutions of Hopf bifurcation and saddle-node bifurcation, the
global dynamic characteristics in the parameter planes of rotating speed and dry friction coefficient are obtained, wherein
zero-Hopf bifurcation is detected in the rotor/stator rubbing system with high speed. It is observed from the influences of
control parameter and friction coefficient that small friction on the contact surfaces can benefit the rotor rubbing behavior
by avoiding the occurrence of quasi-periodic motion. The results discussed in this paper provide deep insights into the
interactive effect of different parameters on the response characteristics of the high-speed rubbing rotors, consistent with
analytical predictions. Furthermore, experimental studies are crucial for validating global behavior, paving the way for
future research in the rotor/stator rubbing system with high speed.
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Nomenclature

Ro Non-dimensional clearance
R Non-dimensional deflection of the shaft center
Ry Non-dimensional radius of the rotor
X, Y Non-dimensional deflections of the shaft center
Cs Damping of the rotor, N-s/m
e Rotor mass eccentricity, m
ks, ko Stiffness of the rotor shaft and the stator, N/m
m Imbalanced mass of the rotor, kg
ro Clearance between rotor and stator, m
r Defection of the shaft geometric center, m
rq Radius of the disk at contact point, m
t Time, s
B Stiffness ratio of rotor-to-stator, or contact stiffness ratio, ks/kp
A Eigenvalues of the Jacobian matrix
1) Whirling angel at contact point, rad
m Coefficient of friction
T Non-dimensional time

Control parameter of smoothness
w Rotating speed of the rotor, rad/s
wo Natural frequency of the rotor system with zero clearance, rad/s
Wy Whirling speed of the rotor, rad/s
Q Normalized rotating speed of the rotor, w/wy
Qu Normalized whirling speed of the rotor, wy/wp
¢ Damping ratio of the rotor system

https://doi.org/10.1371/journal.pone.0328132.t002
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