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Abstract 

In this paper the global dynamic characteristics of a piecewise smooth rotor/stator 

rubbing system with high speed, which significantly differs from those of a low-speed 

system, are explored by numerical simulation and theoretical analysis. A sigmoid 

function is utilized to smoothen the governing equations, enabling the derivation and 

validation of bifurcation diagrams, as well as corresponding orbits, full spectra and 

Poincaré sections for both periodic and quasi-periodic motions. Additionally, the fre-

quency relations of the quasi-periodic motions are determined. Based on the stability 

analysis of the periodic solutions, the presence of Hopf bifurcation boundaries, which 

indicate ‘jump’ phenomena between periodic and quasi-periodic motions, along with 

saddle-node bifurcation boundaries, is confirmed. Consequently, the global dynamic 

characteristics are obtained by the evolution of equilibrium solutions. Notably, zero-

Hopf bifurcation is identified for the first time in the rotor/stator rubbing system with 

high speed. The work also reveals deep insights into the interactive effect of parame-

ters on the dynamic characteristics of the smoothening model.

1  Introduction

Due to the improvement of energy efficiency of the rotating machinery, the clearance 
between the rotor and the stator of a rotating machine has been steeply reduced, 
inducing the increased risk of rotor/stator rubbing fault. During rubbing, a rotat-
ing machine performance is degraded and the catastrophic consequences of the 
machine may be provoked. Therefore, a large number of valuable studies on the 
dynamic phenomena of the rotor/stator rubbing systems surge to reveal why rubbing 
can happen and how rubbing should work [1–3].
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The synchronous and sub-synchronous whirling motions of a horizontal Jeffcott 
rotor with bearing clearances are obtained by using a HB (Harmonic Balance)/AFT 
(Alternating Frequency/Time) technique [4]. Additionally, the nonlinear forced oscil-
lations of a rotating shaft with the nonlinear characteristics of spring and internal 
damping are studied, and 1/2 order sub-harmonic oscillations of the forward and 
backward whirling modes are investigated [5,6]. Torsional effects in a rotor/stator con-
tact model are discussed by numerical simulation [7,8]. From the rubbing phenomena 
in the rotor/stator rubbing model, it is found a rotor can remain rubbing with the stator 
under certain conditions, even if the initial perturbation no longer exists [9]. For the 
rich dynamic responses of the rotor/stator rubbing system [10–12], the studies of 
the dynamic behaviors and bifurcations have been drawing attention. Based on the 
mathematical model in two dimensions [13] and three dimensions [14], the dynamic 
behaviors and bifurcations are investigated by taking gravity effect into account. 
Correspondingly, the nonlinear dynamic characteristics of a vertical Jeffcott rotor with 
radial rubbing are studied without taking gravity into account [8]. In addition, the sta-
bility analysis of sliding whirl in a nonlinear Jeffcott rotor/stator system is presented by 
discussing the dynamic behaviors and bifurcations of the subsystems [15,16]. Then, 
the onset and existence conditions of dry friction backward whirl are investigated in a 
Jeffcott rotor/stator system [17,18]. Compared with the traditionally local analysis, the 
methods of global analysis can be introduced to explore the global response charac-
teristics of the rotor/stator rubbing system. So the global response characteristics and 
research techniques of the rotor/stator rubbing system are determined and raised, 
and the five types of the co-existence of the different rotor responses are confirmed 
[19]. The nonlinear normal modes with a constraint condition are analytically derived 
from the free vibration equation of the non-conservative nonlinear subsystems of the 
piecewise smooth rotor/stator rubbing system [20]. Moreover, a harmonic balance 
method (HBM) coupled with a pseudo arc-length continuation algorithm is developed 
and used for the prediction of the stable dynamic behaviors of the rotor/stator rubbing 
system [21,22]. In addition, the dynamic characteristics of the rotor/stator rubbing 
system have been widely verified by experiments [23–28].

For the intrinsic discontinuity in the rotor/stator rubbing system, the non-smooth 
characteristics should be explicitly explained even though the bifurcation concepts 
and mathematical techniques of the discontinuous dynamical systems are completely 
undeveloped. According to the degree of discontinuity, non-smooth dynamic systems 
can be divided into three types, i.e., non-smooth continuous systems with the discon-
tinuous Jacobian matrix, discontinuous systems of Filippov-type and impulse-type 
systems [29,30]. In the discontinuous systems, the dynamics and bifurcations of the 
stick-slip oscillations are developed [30–32], wherein three kinds of different friction 
models are considered in the rotor/stator rubbing system [30]. From the bifurcation 
viewpoints of non-smooth systems, the bifurcation behaviors of the non-smooth 
systems are explored by the generalized Jacobian matrix and fundamental solution 
matrix [33–35]. On the other hand, the majority of the concepts and definitions of 
bifurcation are also given in the piecewise-smooth systems, including border-collision 
bifurcation, boundary equilibrium bifurcation, limit cycle bifurcation, sliding bifurcation 
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and grazing bifurcation, etc. [36,37]. Furthermore, these concepts can be applied in many different areas and utilized to 
explain the dynamic phenomena in the piecewise smooth rotor/stator rubbing systems.

The purpose of this contribution is to analyze the nonlinear dynamic behaviors and bifurcations of a Jeffcott rotor/
stator rubbing system with high speed. From the numerical solutions of the response characteristics of the high-speed 
rubbing rotors, it can be concluded that the rotor undergoes a route from the period to the quasi-period, and then from 
the quasi-period to the period when the rotating speed rises in the high-speed region [38–40]. The response characteris-
tics of the piecewise smooth rotor/stator rubbing systems have been studied by taking two subsystems into account [41], 
which show the dynamic behaviors of period-one and quasi-periodic motions. In practice, it is essential to get the global 
characteristics of the switching phenomena between the periodic-one and quasi-periodic motions. While the local singu-
larity caused by the discontinuity has not been discussed completely when sliding occurs on the discontinuous boundary. 
Hence, in order to reveal the global dynamic characteristics of the rotor/stator rubbing system, a discontinuous system 
is transformed into a continuous system by smoothening functions [36,42]. Based on the comparison of the bifurcation 
diagrams in discontinuous and continuous systems, the parameters of the approximated smoothening functions can be 
determined. Then through the analysis of the bifurcation points between period-one and quasi-periodic solutions, the char-
acteristics and existence conditions of responses can be explicitly verified with the aid of the eigenvalues of the Jacobian 
matrix.

Until now, the comprehensive studies focus on the global response characteristics in the rotor/stator rubbing system 
with low speed rather than high speed. Based on a mathematical model with low speed, the global dynamic characteris-
tics, including the response characteristics of different whirling motions and their corresponding existence conditions, are 
theoretically determined with the aid of the characteristics of Saddle-node bifurcation and Hopf bifurcation in [6,15,18,19]. 
In contrast, for the high-speed rotor/stator rubbing systems, the dynamic behaviors are primarily elucidated through 
numerical calculations, lacking the in-depth explanation for why and how these dynamic phenomena can occur. By ana-
lyzing each local subsystem derived from discretizing solutions in high-speed micro-rotor/stator rubbing systems of MEMS 
(Micro Electro Mechanical Systems), the Hopf bifurcation condition derived from stability analysis of the local subsystems 
is just utilized to define regions of stable rubbing motions, such as quasi-periodic ones [15]. However, as indicated in [41], 
it is acknowledged that global response characteristics of a holonomic system cannot be completely discerned by the 
discretization of local solutions in general non-smooth systems, even though some characteristics can be predicted and 
explained. The main goal of the global dynamic analysis in this paper is to clearly tackle these issues of the holonomic 
rotor/stator rubbings system without relying on discretization of solutions, offering supplementary insights into the global 
response characteristics of a piecewise smooth rotor/stator rubbing system with high speed.

The remainder of this paper is organized as follows: In Section 2, the model of a Jeffcott rotor/stator rubbing system is 
introduced with the smoothening function identified through the comparison of the bifurcation diagrams. In Section 3, the 
dynamic behaviors of the high-speed rotor/stator rubbing system are obtained by the orbits, full spectra, Poincaré sections 
and bifurcation diagrams. In Section 4, based on the analytical solutions of periodic motion, the stability analysis is carried 
out theoretically with the aid of the eigenvalues of the Jacobian matrix. In Section 5, the characteristics of the bifurcation 
solutions and responses as well as their dependence on the system parameters are shown. Finally, conclusions are given 
in Section 6.

2  Mathematical model

2.1  Piecewise smooth rotor/stator rubbing model

A Jeffcott rotor/stator system depicted in Fig 1 is studied in the work. The model consists of a rotor in contact with a 
non-rotating, compliant circular stator or a mechanical seal, as descripted in Fig 1(a). A massless and spindle shaft 
fixed with a disc at the middle is supported by a pair of idealized bearings. The disc with radius of rd  is eccentric with 
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an unbalanced mass m located at distance e from its geometrical center. The stiffness of the rotating shaft is ks. r0 rep-
resents the clearance between the rotor and the stator. kb indicates the stiffness of the annular radius spring of the stator. 
ω denotes the rotating speed of the rotor. During rubbing, the tangential friction force Fµ and the normal force Fn are 
triggered at the contact points between the rotor and the stator, as illustrated in Fig 1(b). The Coulomb friction model of 

Fµ = µFn with the dry friction coefficient of µ is employed in the system. ωw  denotes the whirling angular speed of the 
rotor. O1 and O are respectively the geometrical centers of the rotor and the stator. ϕ is the whirling angle between the 
direction of the deflection of the rotor and the horizontal axis x. In the present analysis, the gravity is neglected.

According to the Newton’s law of motion, the governing equation of the rotor/stator rubbing system is

	




mẍ+ csẋ+ ksx+Θkb(1 – r0
r )[x – sign(vrel) · µy] = meω2 cosωt

mÿ+ csẏ+ ksy+Θkb(1 – r0
r )[sign(vrel) · µx+ y] = meω2 sinωt

vrel = rdω + rωw 	 (1)

where cs is damping ratio of the rotor and vrel is the relative velocity between the rotor and the stator at the contact point 
with sign(vrel) representing the direction of dry friction force. r =

√
x2 + y2  is the radial displacement of the rotor. Θ is 

Heaviside function with Θ = 0 for r < r0 and Θ = 1 for r ≥ r0.
For convenience of study, the governing equation of Eq (1) can be rewritten as the non-dimensional form.

	




X′′ + 2ζX′ + βX+Θ(1 – R0

R )[X – sign(Vrel) · µY] = Ω2 cosΩτ

Y′′ + 2ζY′ + βY+Θ(1 – R0

R )[sign(Vrel) · µX+ Y] = Ω2sinΩτ

Vrel = RdΩ+ RΩw 	 (2)

where the non-dimensional variables and parameters are defined as

	

X = x
e , Y = y

e , R = r
e , R0 = r0

e , Rd =
rd
e

X′ = dX
dτ , Y′ = dY

dτ , ζ = cs
2
√
kbm

, β = ks
kb

ω0 =
√

kb
m , τ = ω0t, Ω = ω

ω0
, Ωw = ωw

ω0 	

According to Heaviside function Θ in Eq 2, the non-degenerate scalar function of (R0 – R) on the system states X and Y 
is defined as the discontinuous boundary, across which the discontinuities of the piecewise smooth rotor/stator rubbing 

Fig 1.  (a) Schematic diagram of Jeffcott rotor with stator. (b) Schematic diagram of the rubbing forces.

https://doi.org/10.1371/journal.pone.0328132.g001

https://doi.org/10.1371/journal.pone.0328132.g001
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system occurs. It is noteworthy that the vector fields and their trajectories of the piecewise smooth system cannot sliding 
on the discontinuous boundary of (R0 – R) [32]. This means that the deflection of rotor can only run across through the 
discontinuous boundary, once rubbing occurs with R ≥ R0. Thus the global dynamic characteristics induced by the discon-
tinuous boundary of (R0 – R) should be comprehensively studied for the piecewise smooth rotor/stator rubbing systems.

2.2  Rotor/stator rubbing model with smoothening function

In order to reveal the dynamics of the piecewise smooth rotor/stator rubbing system governed by Eqs (1) and (2), the 
smoothening function of sigmoid function sigm(R) [36] instead of the discontinuous Heaviside function Θ is introduced 
for numerical simulation and theoretical analysis. Then the governing equation of the smoothening rotor/stator rubbing 
system is shown as follows.

	




X′′ + 2ζX′ + βX+ sigm(R)(1 – R0

R )[X – sign(Vrel) · µY] = Ω2 cosΩτ

Y′′ + 2ζY′ + βY+ sigm(R)(1 – R0

R )[sign(Vrel) · µX+ Y] = Ω2sinΩτ

Vrel = RdΩ+ RΩw

sigm(R) = 1
1+eκ(R0–R) 	 (3)

where κ is a control parameter of smoothness.
The values of sigmoid functions sigm(R) as the different values of κ are shown in Fig 2. It is seen from the lines of 

κ = 10, κ = 100 and κ = 1000 that the larger the value of the control parameter κ, the closer the values of sigm(R) are to 
those of Heaviside function Θ. Especially, when the control parameter takes a very large value, i.e., κ = 1000, the line of 
sigm(R) can almost overlap that of Θ. While the tradeoff is that the large value of a control parameter κ can dramatically 
increases the computational expense and the degree of difficulty of the global analysis. So the value of a control param-
eter κ is not the larger the better, but within a suitable range in the rotor/stator rubbing system. Only by comparing the 
dynamic behaviors of the piecewise smooth system and the smoothening system can the control parameter κ of the rotor/
stator rubbing system be identified.

Firstly, with the variation of the rotating speed Ω, the following system parameters are always fixed as follows.

	 ζ = 0.05,β = 0.04,µ = 0.08,R0 = 1.05	 (4)

as those from the model in [16,17,41] and the test rig in [10]. Then the non-dimensional governing equation is rewritten as 
the first-order equation with the initial condition of (X = 0,Y = 0,X′ = 0,Y′ = 0), and integrated numerically by fourth-order 

Fig 2.  Sigmoid function sigm(R) under the different control parameter κ.

https://doi.org/10.1371/journal.pone.0328132.g002

https://doi.org/10.1371/journal.pone.0328132.g002
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Runge-Kutta method to obtain the deflection amplitude of the high-speed rotor in the rotor/stator rubbing system. Through 
the brute-force numerical bifurcation analysis with the variation of the control parameter κ, the optimal value of κ is 
determined as κ = 73.35. With the increase of the rotating speed Ω from 0 to 4, the bifurcation diagram of the rotor in the 
piecewise smooth rotor/stator rubbing system is shown in Fig 3(a) and that in the smoothening system with κ = 73.35 is 
shown in Fig 3(b).

From the deflection in x direction of the rotor in Fig 3, the bifurcation diagram of the smoothening rotor/stator rubbing 
system with κ = 73.35 depicted in Fig 3(b), is consistent with that of the piecewise smooth system depicted in Fig 3(a). So 
the validity of the control parameter of κ = 73.35 is verified for the rubbing rotors with high speed. From the consistency of 
the results, it is also concluded that it is an effective method to transform a piecewise smooth system into a smoothening 
system. In practice, it should be noticed that a rotor is considered to rotate with high speed when Ω ≥ 1 in the rotor/stator 
rubbing system.

In addition, a machinery fault simulator (MFS) from SpectraQuest@, Louisville, USA, is employed to experimentally 
determine the behaviors of the rotor during the run-up process. The rotor/stator testing system can achieve a maximum 
speed of 15000 r/min, with a defined clearance of r0 = 0.1mm between the rotor and the stator. Under indirect measure-
ment of the equivalent stiffness of the shaft, the natural frequency of ω0 = 571rad/s = 5457r/min of the coupled rotor/
stator testing system is obtained. As the rotating speed ω of the rotor progressively increases from 0 to 15000 r/min, 
i.e., the normalized rotating speed Ω grows from 0 to 2.7, with cs = 139 Ns/m, µ = 0.12, and e = 0.0668 mm, the exper-
imental results of the rotating speed-dependent variable deflection of the rotor in x direction are displayed in Fig 4. In 

Fig 3.  Bifurcation diagrams of the rotor/stator rubbing system with ζ = 0.05, β = 0.04, µ = 0.08 and R0 = 1.05 obtained from (a) the piece-
wise smooth governing equation, (b) the smoothening governing equation with κ = 73.35.

https://doi.org/10.1371/journal.pone.0328132.g003

https://doi.org/10.1371/journal.pone.0328132.g003
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the bifurcation diagram shown in Fig 4(a), the rotor transitions from a periodic no-rub motion to a periodic/quasi-periodic 
rubbing motion. Considering unavoidable testing errors, the deflection of the rotor in periodic motion fluctuates over a 
narrow circle, evident in the periodic no-rub motion with Ω = 0.04 in Fig 4(b), the periodic synchronous full annular rub 
with Ω = 1.12 in Fig 4(c) and the same type of rub with Ω = 2.5 in Fig 4(e). On the contrary, the deflection of the rotor in 
quasi-periodic motion covers a wider circle area, as shown in the quasi-periodic dry friction backward whirl with Ω = 2.2 of 
Fig 4(d).

As the rotating speed grows with Ω > 1, it can be observed from Fig 4 that a ‘jump’ phenomenon between periodic and 
quasi-periodic motions occurs, marked by the deflection of the high-speed rotor sharply rising from 0.1 mm to 0.4 mm at 
Ω = 1.58. Subsequently, when Ω = 2.42, the deflection of the rotor ‘jumps’ back down from 0.4 mm to 0.2 mm. By quali-
tatively comparing experimental outcomes with the numerical results found in Fig 3, it is apparent that the behaviors of 
the high-speed rotor in the rotor/stator testing system align with those derived from numerical simulation of the piece-
wise smooth/smoothening governing equation. Hence the piecewise smooth/smoothening governing equation of the 
rotor/stator rubbing system with high speed is valid and reasonable for investigating the transition between periodic and 
quasi-periodic motions.

From the experimental and numerical results of bifurcation diagrams, it is seen that the switching scenario with the 
increase of rotating speed Ω is something like: periodic motion → quasi-periodic motion → periodic motion. In other words, 
only the period-one and quasi-periodic attractors appear, which can also be detected through numerical simulation in a 
micro-rotor system [15], an overcritical high-speed rotor system [39] and a rotor/stator model of a turbogenerator [40]. 
During the process from periodic motion to quasi-periodic motion or from quasi-periodic motion to periodic motion, the 
‘jump’ phenomena appear, in which the ‘jump’ points are defined as bifurcation points and draw enough attention. And 
whereas the quasi-periodic motion in the smoothening system is triggered by the imbalance with the rotating speed of 
Ω = 1.257, which is lightly smaller than the bifurcation point of Ω = 1.280 in the piecewise smooth system. Despite the tiny 

Fig 4.  Experimental results of the rotor/stator testing system. (a) Bifurcation diagram. (b) Orbit with Ω = 0.04. (c) Orbit with Ω = 1.12. (d) 
Orbit with Ω = 2.2. (e) Orbit with Ω = 2.5. In Figs 4(b) to 4(e), the clearance between the rotor and the stator is represented by the red dashed 
cycle with the rotor orbit of blue curves.

https://doi.org/10.1371/journal.pone.0328132.g004

https://doi.org/10.1371/journal.pone.0328132.g004
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gap, the bifurcation points of the smoothening rotor/stator rubbing system coincides with those of the piecewise smooth 
rotor/stator rubbing system. When Ω = 2.485, the quasi-periodic motion ceases to exist and period motion is triggered by 
imbalance again.

As a result of the ‘jump’ phenomena between period and quasi-periodic motions, it is very difficult to capture the numer-
ical proof of the bifurcation and explain the phenomena in the piecewise smooth rotor/stator rubbing system. Therefore, 
with the aid of the proximate smoothening function of sigm(R), the abundant dynamic behaviors originating from the varia-
tion of the system parameters and initial conditions, can be studied by the global analysis of bifurcations in the smoothen-
ing rotor/stator rubbing system with the appropriate control parameter of κ = 73.35 under high-speed rotating operation.

3  Dynamic behaviors of the high-speed rotor/stator rubbing system

The rotor/stator rubbing system with the parameters of ζ = 0.05, β = 0.04, µ = 0.08 and R0 = 1.05, as documented in 
the literature [10,16,17,41], is examined for the high-speed performance in the work. With the variation of the rotating 
speed Ω, the global dynamic responses of the rotor/stator rubbing system can be delineated by numerical simulation and 
theoretical analysis in the smoothening system with the control parameter of κ = 73.35. The numerical simulation of the 
smoothening rotor/stator rubbing system is tackled with the aid of orbit analysis, phase diagrams, Poincaré sections, Lya-
punov exponents and full spectra. Based on the bifurcation diagram of the smoothening rotor/stator rubbing system, the 
orbits and full spectra of the rotors with the high rotating speed of Ω = 1.12, Ω = 1.75, Ω = 2.1875 and Ω = 2.5, are respec-
tively depicted in Fig 5.

In Fig 5(a), the period motion occurs with the rotating speed of Ω = 1.12, which is smaller than the rotating speed of 
Ω = 1.257 for the onset of the quasi-periodic motion. The orbit of the rotor represented by the solid black lines is less than 
the clearance represented by the red dashed cycle, i.e., R < R0. The full spectra derived from Fast Fourier transform on 
both variables X and Y, can yield both positive and negative frequency components respectively representing the forward 
and backward motion. The response is no-rub motion with the positive frequency of Ω = 1.12, due to the forward harmonic 
excitation.

In Fig 5(b), the quasi-periodic motion occurs with the rotating speed of Ω = 1.75. The orbit of the rotor represented 
by the solid black lines is partly greater than the clearance represented by the red dashed cycle, i.e., R < R0 or R ≥ R0

. Moreover, the deflection R of the rotor is somewhat bouncing. From full spectrum, the system response is partial rub 
with backward whirl frequencies of Ω–1, Ω–2, …, Ω–n(n = 1, 2, ...) due to friction induced nonlinear modal motion, together 
with the positive frequencies of Ω+1, Ω+2, …, Ω+n(n = 1, 2, ...). The second positive frequency of Ω+2 is equal to the fre-
quency Ω of harmonic excitation, i.e., Ω+2 = Ω = 1.75. The quasi-periodic responses with multiple positive and negative 
frequency components during high-speed rotating are vastly different from the quasi-periodic motion with only one exciting 
frequency and one whirling frequency during low-speed running with Ω < 1 in [18,20,21].

In Fig 5(c), the quasi-periodic motion occurs with the rotating speed of Ω = 1.1875, which almost has the same 
partial-rub characteristics with the quasi-periodic motion with Ω = 1.75 in Fig 5(b). Similarly, the deflection R of the rotor 
in Fig 5(c) fluctuates over a wide range with multiple positive and negative frequency components. In Fig 5(d), the period 
motion occurs with the rotating speed of Ω = 2.5, which is bigger than the rotating speed of Ω = 2.485 for the cease of the 
quasi-periodic motion. It is also seen from the orbit and the full spectrum of the rotor in Fig 5(d) that the response shows 
nearly the same no-rub characteristics with the forward excitation frequency of the high-speed rotor.

Based on the response characteristics of the high-speed rotor, the frequency of period motion and the second fre-
quency of quasi-periodic motion are respectively equal to the frequencies of the harmonic excitation in a rotor/stator 
rubbing system. According to a plethora of simulation data, the frequency of the whirling rotor in the rotor/stator rubbing 
system can be obtained as

	

{
Ω+n = nΩ+1 – (n – 1)Ω–1

Ω–n = nΩ–1 – (n – 1)Ω+1
(n ∈ N+)

	 (5)
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where N+ denotes the set of all positive integers.
Taking the rotor/stator rubbing system with Ω = 1.75 for example, it is concluded from Fig 5(b) that the frequency val-

ues of Ω+n and Ω–n satisfy the frequency relation of Eq (5). Then the frequency values of Ω+n and Ω–n for partial rub with 
Ω = 1.75 are shown in Table 1.

Fig 5.  Orbits and full spectra of the rotor with ζ = 0.05, β = 0.04, µ = 0.08, R0 = 1.05 and κ = 73.35. (a) Periodic motion with Ω = 1.12. (b) 
Quasi-periodic motion with Ω = 1.75. (c) Quasi-periodic motion with Ω = 2.1875. (d) Periodic motion with Ω = 2.5. In the orbits, the rotor/sta-
tor clearance is represented by the red dashed cycle.

https://doi.org/10.1371/journal.pone.0328132.g005

https://doi.org/10.1371/journal.pone.0328132.g005
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Then the Poincaré sections of the rotor/stator rubbing systems with the different rotating speeds of Ω = 1.12, Ω = 1.75,  
Ω = 2.1875 and Ω = 2.5, are respectively showed in Fig 6. From the projections of Poincaré sections for Ω = 1.12 and 
Ω = 2.5 in Figs 6(a) to 6(d), there are two isolated points respectively. Then taking into account only one discrete fre-
quency component in full spectrum, a limited circle in orbit and two isolated points in Poincaré section, it is proved that 
the motions of the rotor with Ω = 1.12 and Ω = 2.5 are clearly periodic-one. From the projections of Poincaré sections for 
Ω = 1.75 and Ω = 2.1875 in Figs 6(b) and 6(c), there is a closed circle respectively. The trajectory of the rotor is irregular. 
The corresponding Lyapunov exponent is zero. Then taking into account six discrete frequency components in full spec-
trum, a limited circle in orbit and a closed circle in Poincaré section, it is proved that the motions of the rotor with Ω = 1.75 
and Ω = 2.1875 are quasi-periodic and the quasi-periodic motion remains from Ω = 1.257 to Ω = 2.485. So, it is illustrated 
that just the periodic-one and quasi-periodic attractors appear and the strange attractors do not occur in the rotor/stator 
rubbing system with high speed.

Table 1. Ω+n and Ω–n for partial rub with Ω = 1.75.

Frequency Ω–3 Ω–2 Ω–1 Ω+1 Ω+2 Ω+3

Value −3.01 −1.82 −0.63 0.56 1.75 2.94

https://doi.org/10.1371/journal.pone.0328132.t001

Fig 6.  Poincaré sections of the rotor/stator rubbing system with ζ=0.05, β=0.04, µ=0.08, R0=1.05 and κ=73.35. (a) Periodic motion with 
Ω=1.12. (b) Quasi-periodic motion with Ω=1.75. (c) Quasi-periodic motion with Ω=2.1875. (d) Periodic motion with Ω=2.5.

https://doi.org/10.1371/journal.pone.0328132.g006

https://doi.org/10.1371/journal.pone.0328132.t001
https://doi.org/10.1371/journal.pone.0328132.g006
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When Ω = 2.0 with the initial condition of (X = 0,Y = 0,X′ = 0,Y′ = 0), the dynamic characteristics of the smoothening 
rotor/stator rubbing system are studied by the aid of the bifurcation diagrams with the variation of system parameters. Fig 
7(a) shows the bifurcation diagram with the variation of µ when ζ = 0.05, β = 0.04 and R0 = 1.05. Fig 7(b) shows the bifur-
cation diagram with the variation of ζ  when β = 0.04, µ = 0.08 and R0 = 1.05. Fig 7(c) shows the bifurcation diagram with 
the variation of β when ζ = 0.05, µ = 0.08 and R0 = 1.05. Fig 7(d) shows the bifurcation diagram with the variation of R0 
when ζ = 0.05, β = 0.04 and µ = 0.08. It is seen that the chaotic phenomena do not appear in the rotor/stator rubbing sys-
tem with the variation of µ, ζ , β and R0. In addition, it is also concluded from Figs 7(a) and 7(b) that dry friction backward 
whirl occurs when µ ≥ 0.1504 or ζ ≤ 0.0269, which conforms to the analytical solutions of the existence condition of dry 
friction backward whirl, i.e., µ ≥ 2ζ

√
β + 1 or ζ ≤ µ

/
(2
√
β + 1), for the rotor/stator rubbing system in full speed range, as 

illustrated in [17,18]. So, the accuracy of the smoothening model of the rotor/stator rubbing system is confirmed through 
the consistent results of both numerical simulation and analytical solutions.

4  Stability of high-speed rotor responses

According to the results of the numerical simulation in the smoothening rotor/stator rubbing system with high speed, 
period motion and quasi-periodic motion can dramatically switch as the rotating speed of the rotor increases. It is valuable 
to reveal the characteristics of the ‘jump’ phenomena from period motion to quasi-periodic motion or from quasi-periodic 
motion to period motion, which have been analytically studied by the assembling of each local subsystem derived from 
the discretizing of the solutions in the holonomic system [15,16]. Therefore, the global characteristics of the high-speed 
rubbing rotors should be elaborated by the smoothening functions with the control parameter of κ = 73.35.

4.1  Full annular rub solutions of periodic motion

By denoting η = [X,Y,X′,Y′], the governing equation of the smoothening rotor/stator rubbing system in Eq (3) can be 
reformed as a set of first order autonomous ordinary differential equations with smoothening right-hand side.

Fig 7.  Bifurcation diagrams of the smoothening rotor/stator rubbing system with Ω = 2.0 and κ = 73.35, during (a) ζ = 0.05, β = 0.04, 
R0 = 1.05, (b) β = 0.04, µ = 0.08, R0 = 1.05, (c) ζ = 0.05, µ = 0.08, R0 = 1.05, (d) ζ = 0.05, β = 0.04, µ = 0.08.

https://doi.org/10.1371/journal.pone.0328132.g007

https://doi.org/10.1371/journal.pone.0328132.g007
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



η1
′ = η3 = X′

η2
′ = η4 = Y′

η3
′ = –2ζη3 – βη1 – 1

1+eκ(R0–R)
(1 – R0

R )(X – µY) + Ω2 cosΩτ
η4

′ = –2ζη4 – βη2 – 1
1+eκ(R0–R)

(1 – R0

R )(µX+ Y) + Ω2sinΩτ 	 (6)

According to the orbit, the full spectra and the Poincaré sections of the period motion in Figs 4 and 5, the whirling fre-
quency of the full annular rub response is equal to the rotating speed of the rotor. Then, the reasonable form of the peri-
odic solution of Eq (6) can be determined as

	

{
η1 = A cos(Ωτ + φ)
η2 = A sin(Ωτ + φ) 	 (7)

where A and φ are respectively the amplitude and the phase angle.
Substituting the solution of Eq (7) into Eq (6), it yields

	

{
(β – Ω2)A+ (A–R0)

1+eκ(R0–A)
= Ω2 cosφ

2ζΩA+ µ(A–R0)

1+eκ(R0–A)
= –Ω2 sinφ 	 (8)

Then a polynomial with the amplitude A is got as

	 c2A2 + c1A+ c0 = 0	 (9)

where c2 = [ 1
1+eκ(R0–A)

+ β – Ω2]2 + [2ζΩ+ µ
1+eκ(R0–A)

]2,

c1 = –2R0(1+µ2)

[1+eκ(R0–A)]
2 + –2R0(β+2µζΩ–Ω2)

1+eκ(R0–A)
 and c0 =

R2
0(1+µ2)

[1+eκ(R0–A)]
2 – Ω4.

From the practical point of view, the amplitude of A in Eq (7) not only needs to be real and positive but also ought to be 
greater than the clearance R0 between the rotor and the stator. Then the existence condition of A is

	 imag(A) = 0 and A ≥ R0	 (10)

4.2  Stability analysis of periodic solution

By using the theory of matrix characteristic root, the eigenvalues of Jacobian matrix of the linearized governing equation 
of the rotor/stator rubbing system are introduced and analyzed to study the stability of the periodic solutions. According to 
the Poincaré sections of the period motion in Fig 5, the equilibrium point η0 of Eq (6) is defined as

	

{
η1

0 = A0 cos(Ωτ + φ0) = A0 cos θ0

η2
0 = A0sin(Ωτ + φ0) = A0 sin θ0 	 (11)

where A0 is the amplitude, which is achieved by the solution of Eq (7).
From the governing equation of Eq (6), the linearized equation in terms of the equilibrium point of Eq (11) is given as

	 δη′ = Df|η=η0 δη = [J] δη	 (12)

where D is derivative operator and [J] is the Jacobian matrix.
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The Jacobian matrix [J] of the system is

	

[J] =




0 0 1 0
0 0 0 1

–β – B – C · cos2θ
+µC · sin θ cos θ

µB+ µC · sin2θ
–C · sin θ cos θ –2ζ 0

–µB – µC · cos2θ
–C · sin θ cos θ

–β – B – C · sin2θ
–µC · sin θ cos θ 0 –2ζ



	 (13)

where B = 1

1+eκ(R0–A
0)
(1 – R0

A0 ) and

	
C =

κ · eκ(R0–A
0)

[1 + eκ(R0–A0)]
2 (A

0 – R0) +
1

1 + eκ(R0–A0)

R0

A0
.
	

From Eq (13), the Jacobian matrix [J] is periodic time-dependent, by which the time-dependent eigenvalues cannot be uti-
lized to assess the stability of the rotor/stator rubbing system. Therefore, the coordinate transformation relation of Eq (14) 
is employed to transform the time-dependent Jacobian matrix [J] to the time-independent Jacobian matrix [J0].

	 δη = [T] δU 	 (14)

where [T] =



cos θ – sin θ 0 0
sin θ cos θ 0 0
0 0 cos θ – sin θ
0 0 sin θ cos θ


.

From δη′ = [T]′δU+ [T] δU′, it yields

	 δU′ = [J0] δU 	 (15)

where [J0] = [T]–1([J] [T] – [T]′)
Then the time-independent Jacobian matrix [J0] is derived.

	

[J0] =




0 Ω 1 0
–Ω 0 0 1

–β – B – C µB –2ζ Ω
–µ(B+ C) –β – B –Ω –2ζ



	 (16)

With the time-independent Jacobian matrix [J0] of Eq (16), the real parts of its eigenvalues can be used for the stability 
criterion of δU , i.e., δη and η0, and thus the stability of the full annular rub in the rotor/stator rubbing system. When all the 
real parts of the eigenvalues of [J0] are negative, the system is defined as stability, but not vice versa.

From 
∣∣J0 – λI

∣∣ = 0 with Ω, the characteristic equation of [J0] in terms of the eigenvalues λ can be determined as the 
following polynomial equation.

	 λ4 + 4ζλ3 + b2λ2 + b1λ+ b0 = 0	 (17)

where λ represents the eigenvalues of the Jacobian matrix [J0] and

	 b2 = 4ζ2 + 2(β + B) + 2Ω2,	

	 b1 = 4ζ(β + B) + 2(2µB+ C)Ω + 4ζΩ2,	
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b0 = Ω4 + (4ζ2 – C)Ω2 + 2[µζ(B+ C) – 2(β + B)]Ω
+ (β + B)(β + B+ C) + µ2B(B+ C) 	

Then the two pairs of the eigenvalues, i.e., λ1, λ2 and λ3, λ4, can be obtained by the solutions of Eq (17), which respec-
tively vary with the rotating speed Ω of the rotor in the rotor/stator rubbing system.

According to the dynamic behaviors of the high-speed rotor/stator rubbing system, only the period motion and quasi-
periodic motion can occur. Then the switch between the period motion and the quasi-periodic motion can be detected by 
the transition between the stable and unstable states of the periodic solutions. Thus the alternation of the real parts of 
λ1, λ2 and λ3, λ4 from positive to negative, or from negative to positive, can decide the ‘jump’ phenomena of the period 
motion and the quasi-periodic motion in the rotor/stator rubbing system with high speed. As the rotating speed Ω varies 
between 0 and 4 with the step size of ∆Ω = 0.0001, the behaviors of the real parts Re(λ) and the imaginary parts Im(λ) of 
the eigenvalues λ1, λ2 and λ3, λ4 are obtained, as shown in Fig 8.

From Fig 8, it is seen that the real parts of eigenvalues λ3 represented by blue squares and λ4 represented by green 
diamonds are always negative with positive or negative imaginary parts during the variation of Ω ∈ [0, 4]. While the real 
parts of eigenvalues λ1 represented by black dots and λ2 represented by magenta crosses can alter between the positive 
and the negative. Therefore, the stability of the rotor/stator rubbing system can be decided by the negative real parts of 
the eigenvalues λ1 and λ2. It is concluded that the real parts of λ1 and λ2 crosses over the critical points with Re(λ) = 0, 
namely stability boundary represented by the red dashed line, when Ω = 1.257 and Ω = 2.485. The critical rotating speeds 
are also deemed as the bifurcation points which coincides with the ‘jump’ points from period motion to quasi-periodic 
motion and from quasi-periodic motion to period motion in Figs 3 and 4.

According to the characteristics of bifurcation points and the distribution of the two pairs of the eigenvalues λ1, λ2 and 
λ3, λ4, the stability of the periodic solutions can also be ascertained by the algebraic criterion of Saddle-node bifurcation 
and Hopf bifurcation in the smoothening rotor/stator rubbing system with high speed. Therefore, the occurrence from 
period motion to quasi-periodic motion or from quasi-periodic motion to period motion can be elaborately explained from 
the point of view of bifurcation theory.

When one of the eigenvalues λ1, λ2 and λ3, λ4 of the Jacobin matrix [J0] is equal to zero, saddle-node bifurcation 
occurs in the rotor/stator rubbing system. From Eq (17) with the existence of a zero eigenvalue, the saddle-node bifurca-
tion condition is derived by b0 = 0. That is

	

Ω4 + (4ζ2 – C)Ω2 + 2[µζ(B+ C) – 2(β + B)]Ω
+(β + B)(β + B+ C) + µ2B(B+ C) = 0 	 (18)

Fig 8.  Behaviors of eigenvalues with the variation of Ω from 0 to 4 with ∆Ω = 0.0001 in the smoothening rotor/stator rubbing system with 
ζ = 0.05, β = 0.04, µ = 0.08, R0 = 1.05 and κ = 73.35. The red dashed line represented the stability boundary with Re(λ) = 0.

https://doi.org/10.1371/journal.pone.0328132.g008

https://doi.org/10.1371/journal.pone.0328132.g008
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The positive solutions of Ω can be used to determine the existence boundary of saddle-node bifurcation in the parameter 
space of the rotor/stator rubbing system.

When the eigenvalues λ1, λ2 and λ3, λ4 are conjugated complex numbers wherein a pair of pure imaginary values are 
given in the Jacobin matrix [J0], Hopf bifurcation appears in the rotor/stator rubbing system. Then the eigenvalues λ1, λ2 
and λ3, λ4 can be denoted as

	 λ̄1,2 = ±iϖ, λ̄3,4 = c± id	 (19)

where i =
√
–1 .

Taking λ̄1, λ̄2, λ̄3 and λ̄4 as the solutions of a polynomial equation, the characteristic equation of the rotor/stator rubbing 
system can be given as the following equation.

	 λ4 – 2cλ3 + (c2 + d2 +ϖ2)λ2 – 2cϖ2λ+ϖ2(c2 + d2)	 (20)

Through comparison between Eq (17) and Eq (20), it yields

	 4ζ = –2c, b2 = c2 + d2 +ϖ2, b1 = –2cϖ2, b0 = ϖ2(c2 + d2)	 (21)

From Eq (21), the equation of b0, b1 and b2 is obtained.

	 16ζ2b0 = 4ζb1b2 – b21	 (22)

Substituting the mathematic representations of b0, b1 and b2 in Eq (17) into Eq (22), the equation in terms of Ω is obtained 
and solved for the critical rotating speed Ω, i.e., the existence boundary of Hopf bifurcation in the rotor/stator rubbing 
system.

For the smoothening rotor/stator rubbing system with ζ = 0.05, β = 0.04, µ = 0.08, R0 = 1.05 and κ = 73.35, the criti-
cal rotating speed Ω of Hopf bifurcation is theoretically solved as Ω = 1.257 or Ω = 2.485, which is in accordance with the 
numerical results derived by numerical simulation and stability analysis. It is elaborated from the results in a good agree-
ment that the ‘jump’ phenomena between period motion and quasi-periodic motion are all ascribed to Hopf bifurcation in 
the rotor/stator rubbing system with high speed.

5  Influences of system parameters on high-speed rotor responses

From the discussion in the bifurcation of the smoothening rotor/stator rubbing system, it is noted that the dynamic behav-
iors can be influenced by the system parameters. With the aid of a bifurcation analysis tool of MATCONT [43], which is 
mainly used for the continuous system and/or the autonomous system, the characteristics of the system responses are 
illustrated versus the rotating speed Ω with the variation of the control parameter κ and friction coefficient µ, through 
brute-force numerical bifurcation analysis.

5.1  Influence of control parameter κ

By fixing ζ = 0.05, β = 0.04, µ = 0.08 and R0 = 1.05 with κ ∈ [73, 75] and different Ω, the plot of control parameter ver-
sus rotating speed, namely on the parameter plane κ – Ω, is shown in Fig 9. Curves HP

1
 and HP

2
 indicate the rotating 

speed whereby the ‘jump’ phenomena between period motion and quasi-periodic motion occur due to Hopf bifurcation. 
It is interesting to note that the rotating speed Ω of curve HP

1
 varies from 1.12 to 1.10 while Ω of curve HP

2
 varies from 

1.76 to 2.425 when κ ∈ [73, 75]. Therefore, the responses of the whirling rotor primarily depend on the value of the control 
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parameter κ in the smoothening rotor/stator rubbing system. However, the value of the control parameter κ cannot affect 
the ‘jump’ behavior of the responses of the high-speed rubbing rotor. Considering synthetically the solving precision and 
the computational expense, the value of the control parameter κ in the smoothening system is not the larger the better, 
which can be determined by the approximately comparation of the solutions between the smoothening system and the 
discontinuous system.

5.2  Influence of friction coefficient µ

By fixing ζ = 0.05, β = 0.04, µ = 0.08, R0 = 1.05 and κ = 73.35, the equilibrium point of η0 at time τ0 under different 
rotating speed Ω of the rotor, can be obtained by MATCONT in the rotor/stator rubbing system, as shown in Fig 10. As the 
rotating speed Ω increases from 0 to 4, the equilibrium curve of the deflection R0 that is defined as R0 =

√
η10 + η20 ,  

is shown in Fig 10(a), while the equilibrium curve of the phase difference (Ωw
0 – Ω)τ0 where Ωw

0 is the whirling angular 
speed of the rotor at time τ0, is shown in Fig 10(b). Points HP

1
 and HP

2
 represent the Hopf bifurcation boundaries, and 

points SN
1
, SN

2
, SN

3
 and SN

4
 represent the saddle-node bifurcation boundaries. From the existence condition of bifurca-

tion points in Fig 10, the equilibrium solutions SN
1
 of saddle-node bifurcation is (0.9833, −0.7156, 0, 0) at Ω = 0.1495 with 

SN
2
 (1.0305, −0.7628, 0, 0) at Ω = 0.1462, SN

3
 (1.9161, −2.8761, 0, 0) at Ω = 0.9956 and SN

4
 (1.0555, −3.0164, 0, 0) at 

Ω = 0.8478. In addition, the equilibrium solutions HP
1
 of Hopf bifurcation is (1.0258, −3.0500, 0, 0) at Ω = 1.2568 with HP

2
 

(1.0046, −3.1043, 0, 0) at Ω = 2.4847, which are the supercritical Hopf bifurcation points in the sense of the state evolution 
from a fixed point to the periodic one.

By fixing ζ = 0.05, β = 0.04, R0 = 1.05 and κ = 73.35 with the variation of µ ∈ [0, 0.4] and Ω ∈ [0, 1.5], the global 
response characteristics on the parameter planes of Ω – µ are depicted as shown in Fig 11. Lines SN

1
, SN

2
, SN

3
 and 

SN
4
 represent the saddle-node bifurcation boundaries, and curves HP

1
 and HP

2
 represent the Hopf bifurcation bound-

aries where the ‘jump’ phenomena between periodic motion and quasi-periodic motion occur. The characteristics of the 
supercritical Hopf bifurcation curve HP

1
 between the two Saddle-node bifurcation curves SN

1
 and SN

2
 are in accordance 

with those in [8,15,41]. When µ = 0.1869 and Ω = 0.8473, one of the eigenvalues of the Jacobin matrix is equal to zero, 
one pair is formed of conjugated imaginary eigenvalues, and the other one is complex number with a non-zero real part. 
This means a zero-Hopf bifurcation that is also known as a fold-Hopf bifurcation represented by the point ZHP in Fig 11 
appears. From the isolated zero-Hopf equilibrium point, the rotor/stator rubbing system undergoes a change in behavior, 
and a local chaos may birth under certain conditions, which has been detected by numerical simulation in [15,39]. Accord-
ing to the comparison between the numerical simulation results and the theoretical bifurcation boundaries, the agreements 

Fig 9.  Plot of κ – Ω when ζ = 0.05, β = 0.04, µ = 0.08 and R0 = 1.05. Lines HP1 and HP2 are the Hopf bifurcation boundaries of periodic 
motion.

https://doi.org/10.1371/journal.pone.0328132.g009

https://doi.org/10.1371/journal.pone.0328132.g009
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of the global dynamic characteristics indicate the ability of the smoothening system based on a sigmoid function sigm(R) 
in dealing with the bifurcation behaviors of the rotor/stator rubbing system with high speed.

From above discussion, the smoothening sigmoid function is employed in the rotor/stator rubbing system to highlight its 
benefits and explore the global dynamic characteristics, such as detecting the onset of the rotor responses, identifying the 
boundaries between periodic and quasi-periodic motions via stability analysis and bifurcation theory, and assessing the 
influences of the system parameters on design. Results from numerical simulation and theoretical analysis reveal that not 
only the global responses but also their corresponding evolution can be accurately captured by the proposed rotor/stator 
system with smoothening function. Moreover, the application of smoothening function to the global dynamic analysis of 
the rotor/stator rubbing system embarks upon the holonomic solutions rather than the discrete solutions in [15]. Conse-
quently, the smoothening function offers more benefits compared to Heaviside function. Nevertheless, caution should 

Fig 10.  Bifurcation characteristics under different rotating speed of the rotor in the rotor/stator rubbing system with ζ = 0.05, β = 0.04, 
µ = 0.08, R0 = 1.05 and κ = 73.35. (a) R0 versus Ω. (b) (Ωw

0 – Ω)τ0 versus Ω. HP1 and HP2 represent the Hopf bifurcation boundaries. SN1, 
SN2, SN3 and SN4 represent the saddle-node bifurcation boundaries.

https://doi.org/10.1371/journal.pone.0328132.g010

https://doi.org/10.1371/journal.pone.0328132.g010
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be taken while selecting the control parameter κ of the smoothening function, as it can significantly influence the global 
response characteristics, posing challenges in achieving the reasonable tradeoff between accuracy and cost. Additionally, 
adopting the proposed smoothening method allows for addressing more intricate and detailed issues of the rubbing rotors 
efficiently, ensuring smooth operation of the rotor during rubbing without the failure under any circumstances.

6  Conclusions

In this paper, the global dynamic characteristics of a piecewise smooth rotor/stator rubbing system with high speed are 
presented through analytical analysis and numerical simulation. A method is introduced to determine the global response 
characteristics of the smoothening system, which involves analyzing the smoothening equation of motion by replacing the 
Heaviside function with the sigmoid function. By comparing the dynamic behaviors of the piecewise smooth system and 
smoothening system, the control parameter of smoothness is determined in the sense of the tradeoff between the compu-
tational cost and the accuracy of global responses. Finally, the study integrates periodic and quasi-periodic motions within 
the same parameter space to derive the global response characteristics of the smoothening rotor/stator rubbing system 
through numerical simulation and stability analysis.

From the point view of global responses, the switching scenario of the rotor/stator rubbing system with high speed fol-
lows: periodic motion → quasi-periodic motion → periodic motion, indicating the absence of chaotic behavior. Bifurcation 
diagrams align well with numerical orbits and Poincaré sections of periodic-one and quasi-periodic attractors. During high-
speed rotating, the frequencies of the whirling rotor align with Eq (5), differing from the analytical solutions in [18,20,21]. 
Through stability analysis of periodic solutions in high-speed rotor responses, the Hopf bifurcation boundaries identifying 
‘jump’ phenomena between periodic and quasi-periodic motions, as well as the saddle-node bifurcation boundaries, are 
verified. With the aid of the evolution of the equilibrium solutions of Hopf bifurcation and saddle-node bifurcation, the 
global dynamic characteristics in the parameter planes of rotating speed and dry friction coefficient are obtained, wherein 
zero-Hopf bifurcation is detected in the rotor/stator rubbing system with high speed. It is observed from the influences of 
control parameter and friction coefficient that small friction on the contact surfaces can benefit the rotor rubbing behavior 
by avoiding the occurrence of quasi-periodic motion. The results discussed in this paper provide deep insights into the 
interactive effect of different parameters on the response characteristics of the high-speed rubbing rotors, consistent with 
analytical predictions. Furthermore, experimental studies are crucial for validating global behavior, paving the way for 
future research in the rotor/stator rubbing system with high speed.

Fig 11.  Rotor response characteristics on the plane of Ω – µ, where ζ = 0.05, β = 0.04, R0 = 1.05 and κ = 73.35. Curves HP1 and HP2 indi-
cate the rotating speed where the ‘jump’ phenomena between periodic motion and quasi-periodic motion occur. Lines SN1, SN2, SN3 and SN4 
represent the saddle-node bifurcation boundaries. ZHP is Zero-Hopf bifurcation point.

https://doi.org/10.1371/journal.pone.0328132.g011

https://doi.org/10.1371/journal.pone.0328132.g011
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Nomenclature

R0 Non-dimensional clearance

R Non-dimensional deflection of the shaft center

Rd Non-dimensional radius of the rotor

X, Y Non-dimensional deflections of the shaft center

cs Damping of the rotor, N·s/m

e Rotor mass eccentricity, m

ks, kb Stiffness of the rotor shaft and the stator, N/m

m Imbalanced mass of the rotor, kg

r0 Clearance between rotor and stator, m

r Defection of the shaft geometric center, m

rd Radius of the disk at contact point, m

t Time, s

β Stiffness ratio of rotor-to-stator, or contact stiffness ratio, ks/kb
λ Eigenvalues of the Jacobian matrix

ϕ Whirling angel at contact point, rad

µ Coefficient of friction

τ Non-dimensional time

κ Control parameter of smoothness

ω Rotating speed of the rotor, rad/s

ω0 Natural frequency of the rotor system with zero clearance, rad/s

ωw Whirling speed of the rotor, rad/s

Ω Normalized rotating speed of the rotor, ω/ω0

Ωw Normalized whirling speed of the rotor, ωw/ω0

ζ Damping ratio of the rotor system

https://doi.org/10.1371/journal.pone.0328132.t002
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