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Abstract 

The acaricide propargite has been widely used for over 50 years without significant 

resistance issues. Addressing to the propargite defects of poor crop safety, thirty-six 

novel halogenated propargite analogues were designed, synthesized, and charac-

terized using 1H NMR, 13C NMR spectroscopy, and HRMS. All target compounds 

were screened for activity against adult Tetranychus cinnabarinus (spider mites) 

and Myzus persicae (aphids). Two compounds exhibiting higher insecticidal activity 

were further evaluated for crop safety on cowpea seedlings. Structural modifications, 

such as replacing the tert-butyl group on the propargite benzene ring with chlorine 

or trifluoromethoxy, and substituting the propargyl group with fluorinated alkyl groups 

(e.g., 2-fluoroethyl or 3,3,3-trifluoropropyl), significantly enhanced both acaricidal and 

aphicidal activity. Compound 5.16 demonstrated superior acaricidal activity (LC
50

: 

14.85 mg L-1) on Tetranychus cinnabarinus and excellent crop safety on cowpea 

seedlings. Additionally, Compound 5.32 exhibited both acaricidal (LC
50

: 14.32 mg L-1) 

and aphicidal activity, which is unusual in this chemical class. The compounds 5.16 

and 5.32 could be used as promising leads for the discovery of novel acaricides or 

insecticides.

Introduction

Leaf mites, characterized by their small body size, short generation cycles, strong 
reproductive capacity, and high egg-laying rates, pose a significant threat to agri-
cultural productivity. Among the most harmful species, Tetranychus cinnabarinus 
has been particularly damaging to crop yields [1]. In recent years, controlling mite 
infestations has become increasingly challenging due to the rapid development of 
resistance to conventional acaricides. Notable examples of such acaricides include 
bifenazate [2,3], cyenopyrafen [3], spirodiclofen [4], etoxazole [5], avermectin [6], 
pyridaben [7], cyflumetofen [7–11], and fenpropathrin [12,13].

In contrast, propargite, an ATP inhibitor introduced to the market in 1969, has not 
exhibited significant resistance issues to date. However, its application is limited by its 
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phytotoxic effects on certain crops, particularly when applied under high-temperature 
conditions [14].

Recently, a novel pesticide, flupentiofenox, has been developed. This compound 
features a unique trifluoroethyl phenylsulfoxide structure and has demonstrated 
potent efficacy in reducing ATP levels in two-spotted spider mites at practical doses 
[15]. Additionally, flupentiofenox has shown high efficacy in controlling mites and 
other sucking insects, making it a promising candidate for integrated pest manage-
ment strategies [16].

Many pharmaceuticals utilize halogenated molecules to facilitate the formation of 
halogen bonds with biomolecules, a strategy that has been widely documented in the 
literature [17–19]. Inspired by the presence of multiple halogen substitutions on both 
the benzene ring and the alkyl chain of the flupentiofenox molecule, we hypothesized 
that introducing halogen atoms into the propargite molecule could discover new mol-
ecules with better biological efficacy, as illustrated in Fig 1.

Acaricidal sulfite compounds were first reported by Rubber Company in 1964 
[20,21]. Following this, Uniroyal Company disclosed a series of structurally similar 
compounds exhibiting notable acaricidal activity [22]. The majority of these early stud-
ies focused primarily on the modifications of propargite molecule to the hexane ring 
moiety [20–22]. However, there is limited literature available concerning the design, 
synthesis, and biological activity of propargite analogues, highlighting a significant 
gap in this area of research [23].

This study focused on the design and synthesis of a series of novel halogenated 
sulfite compounds. The synthetic route was illustrated in Scheme 1. Biological 
activity evaluations were conducted on adult T. cinnabarinus (spider mite) and Myzus 
persicae (green peach aphid), while crop safety assessments were performed on 
cowpea seedlings. The results demonstrated that several of the newly synthesized 
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Fig 1.  Design of target compounds: introduction of halogens.
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halogenated compounds exhibited significant acaricidal or aphicidal activity, while also proving to be safe for cowpea 
seedlings.

Materials and methods

Chemical synthesis

Reaction progress was monitored by thin-layer chromatography (TLC) on silica gel GF254 (Tianzhe, Qingdao, China), and 
spots were visualized with ultraviolet (UV) light (Gongyi, Zhengzhou, China). Column chromatography purification was 
performed using silica gel (200–300; Qingdao Haiyang Chemical, Qingdao, China). 1H NMR and 13C NMR spectra were 
recorded utilizing an JNM-ECZ600R spectrometer (JEOL, Tokyo, Japan), Bruker AVANCE 500 or 400 MHz spectrometer 
(Bruker Biospin, Rheinstetten, Germany) in CDCl

3
 solution using tetramethylsilane as an internal reference standard at 

a temperature of 23–28˚C. Chemical shifts were reported in ppm from the solvent resonance as the internal standard: 
CDCl

3
 δ H = 7.26 ppm, δ C = 77.12 ppm; Multiplicity was indicated as follows: s (singlet), d (doublet), dd (doublet of dou-

blets), t (triplet), q (quartet), ddd (doublet of double doublets), and m (multiplet); coupling constants were reported in Hz. 
High-resolution electrospray ionization mass spectra were obtained with an exactive focus mass spectrometer (LCQ Deca 
XP Max, Thermo Fisher, Waltham, USA; or 1290–6230 TOF, Agilent, CA, USA). High Performance Liquid Chromatogra-
phy (HPLC) were performed with Agilent 1260 Infinity (Agilent Technologies, CA, USA).

All of the reagents and solvents, as well as propargite sample, are commercially available and were used directly with-
out further purification.

The preparation of intermediates 2.  All 2-(substituted-phenoxy)cyclohexan-1-ols 2 were synthesized according to 
the procedures described in the literature [24], and the reactions proceeded smoothly. The resulting intermediates 2 were 
used directly in subsequent reactions without the need of further purification.

The general procedure for the synthesis of target compounds 5.01–5.36.  To a solution of 2-(substituted-phenoxy) 
cyclohexan-1-ols 2 (10.0 mmol) in toluene (25 mL), thionyl chloride (1.30 g, 11.0 mmol) was added dropwise at 0 °C 
with ice bath. The R2-OH 4 (15.0 mmol) and triethylamine (1.50 g, 15.0 mmol) were then sequentially added dropwise 
over a period of 10 min after the reaction mixture had been stirred for 2 h. The resulting solution was further stirred at 
room temperature for 2 h until the reaction was complete, as monitored by TLC. The reaction solution was added into 
water (30 mL) and extracted with ethyl acetate (50 mL × 2). The combined organic layer was washed with brine, dried 

Scheme 1.  Synthetic route and target compounds 5.01-5.36 prepared.  Reagents and conditions: (a) NaOH, water, reflux; (b) toluene, 0 °C to r.t.; 
(c) Et

3
N, toluene, 0 °C to r.t..

https://doi.org/10.1371/journal.pone.0327587.g002
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over anhydrous sodium sulfate (2.0 g), and concentrated under vacuum. The residue was purified by silica gel column 
chromatography (fluent: EtOAc/hexane = 1/20, v/v) to afford the target compounds 5.

The 1H NMR, 13C NMR Spectra, and HRMS of compounds 5.01–5.36 were provided in S1 File. The structure for each 
compound were provided in S3 File, and the primary NMR data files were provided in S4 File.

The yields and their structural characterization data of target compounds 5.01–5.36 were as follows.
2-(2-fluorophenoxy)cyclohexyl prop-2-yn-1-yl sulfite (5.01): colorless oil, yield, 62%; 1H NMR (400 MHz, Chloroform-d, 

c(concentration) = 60 mg/mL) δ 7.12–6.99 (m, 3H, Ph-H), 6.92 (ttd, J = 8.0, 4.7, 4.1, 2.2 Hz, 1H, Ph-H), 4.74–4.46 (m, 3H, 
OCH and OCH

2
), 4.25–4.15 (m, 1H, OCH), 2.52 (dt, J = 13.6, 2.5 Hz, 1H, CCH), 2.24–2.08 (m, 2H, CH

2
), 1.83–1.71 (m, 

2H, CH
2
), 1.71–1.45 (m, 2H, CH

2
), 1.42–1.26 (m, 2H, CH

2
); 13C NMR (126 MHz, Chloroform-d, c = 60 mg/mL) δ 123.33, 

123.30, 121.49, 121.43, 121.32, 121.26, 117.46, 117.24, 115.73, 115.69, 115.58, 115.54, 79.49, 78.81, 75.11, 74.85, 
74.67, 74.59, 47.23, 47.20, 30.23, 30.11, 28.70, 28.32, 22.36, 22.02, 21.88, 21.58. HRMS (ESI) m/z: Calcd for C

15
H

17
F-

NaO
4
S [M + Na]+ 335.0724, found 335.0724.

2-(2-chlorophenoxy)cyclohexyl prop-2-yn-1-yl sulfite (5.02): yellow oil, yield, 63%; 1H NMR (400 MHz, Chloroform-d, 
c = 40 mg/mL) δ 7.28 (dd, J = 7.9, 1.6 Hz, 1H, Ph-H), 7.16–7.08 (m, 1H, Ph-H), 6.92 (td, J = 8.3, 7.8, 1.4 Hz, 1H, Ph-H), 
6.83 (tt, J = 7.6, 1.6 Hz, 1H, Ph-H), 4.67–4.43 (m, 3H, OCH and OCH

2
), 4.21 (dddd, J = 17.6, 9.8, 7.7, 4.2 Hz, 1H, OCH), 

2.43 (dt, J = 12.1, 2.5 Hz, 1H, CCH), 2.23–1.96 (m, 2H, CH
2
), 1.80–1.63 (m, 2H, CH

2
), 1.63–1.42 (m, 2H, CH

2
), 1.41–1.22 

(m, 2H, CH
2
); 13C NMR (101 MHz, Chloroform-d, c = 40 mg/mL) δ 153.05, 130.63, 130.61, 130.45, 127.69, 124.37, 122.31, 

122.14, 116.11, 115.82, 79.54, 78.60, 75.76, 75.74, 75.19, 48.42, 48.12, 30.96, 30.77, 29.35, 28.81, 23.20, 22.73, 22.33. 
HRMS (ESI) m/z: Calcd for C

15
H

17
ClNaO

4
S [M + Na]+ 351.0428, found 351.0428.

2-(2-bromophenoxy)cyclohexyl prop-2-yn-1-yl sulfite (5.03): yellow oil, yield, 60%; 1H NMR (400 MHz, Chloroform-d, 
c = 40 mg/mL) δ 7.45 (dd, J = 7.9, 1.6 Hz, 1H, Ph-H), 7.23–7.13 (m, 1H, Ph-H), 6.90 (dd, J = 8.3, 1.4 Hz, 1H, Ph-H), 6.76 
(td, J = 7.6, 1.4 Hz, 1H, Ph-H), 4.61–4.47 (m, 3H, OCH and OCH

2
), 4.25 (ddd, J = 8.7, 7.2, 4.1 Hz, 1H, OCH), 2.42 (t, 

J = 2.5 Hz, 1H, CCH), 2.16–2.07 (m, 1H, CH
2
), 2.07–1.95 (m, 1H, CH

2
), 1.76–1.47 (m, 4H, CH

2
), 1.42–1.23 (m, 2H, CH

2
); 

13C NMR (126 MHz, Chloroform-d, c = 40 mg/mL) δ 152.87, 152.83, 132.66, 132.63, 132.43, 127.39, 127.34, 121.66, 
121.50, 114.67, 114.40, 112.64, 112.49, 78.22, 77.24, 76.57, 76.47, 74.74, 74.49, 73.80, 47.53, 47.13, 29.75, 29.64, 
29.52, 28.64, 28.14, 27.57, 22.01, 21.88, 21.65, 21.57, 21.51, 21.13. HRMS (ESI) m/z: Calcd for C

15
H

17
BrNaO

4
S [M + Na]+ 

394.9923, found 394.9926.
prop-2-yn-1-yl (2-(2-(trifluoromethoxy)phenoxy)cyclohexyl) sulfite (5.04): colorless oil, yield, 63%; 1H NMR (400 MHz, 

Chloroform-d, c = 20 mg/mL) δ 7.26–7.17 (m, 2H, Ph-H), 7.12–7.02 (m, 1H, Ph-H), 7.00–6.89 (m, 1H, Ph-H), 4.69–4.55 
(m, 3H, OCH and OCH

2
), 4.30 (ddd, J = 8.6, 7.1, 4.1 Hz, 1H, OCH), 2.53 (dt, J = 39.3, 2.5 Hz, 1H, CCH), 2.24–1.97 (m, 

2H, CH
2
), 1.83–1.70 (m, 2H, CH

2
), 1.64–1.55 (m, 2H, CH

2
), 1.50–1.30 (m, 2H, CH

2
); 13C NMR (126 MHz, Chloroform-d, 

c = 20 mg/mL) δ 148.74, 138.19, 126.83, 122.26, 120.60, 120.46, 115.28, 115.16, 77.99, 77.11, 76.51, 74.72, 74.49, 47.49, 
47.21, 29.85, 28.03, 27.52, 22.03, 21.55, 21.07. HRMS (ESI) m/z: Calcd for C

16
H

17
F

3
NaO

5
S [M + Na]+ 401.0641, found 

401.0601.
prop-2-yn-1-yl (2-(2-(2,2,2-trifluoroethoxy)phenoxy)cyclohexyl) sulfite (5.05): yellow oil, yield, 48%; 1H NMR (400 MHz, 

Chloroform-d, c = 40 mg/mL) δ 7.13–6.82 (m, 4H, Ph-H), 4.81–4.48 (m, 3H, OCH and OCH
2
), 4.38 (qd, J = 8.4, 6.6 Hz, 

2H, CF
3
CH

2
), 4.29–4.14 (m, 1H, OCH), 2.49 (dt, J = 13.2, 2.5 Hz, 1H, CCH), 2.29–2.07 (m, 2H, CH

2
), 1.84–1.70 (m, 2H, 

CH
2
), 1.70–1.30 (m, 4H, CH

2
); 13C NMR (101 MHz, Chloroform-d, c = 40 mg/mL) δ 148.58, 148.55, 148.16, 148.04, 124.16, 

124.05, 122.51, 122.35, 118.32, 117.89, 117.74, 117.57, 79.94, 79.24, 76.28, 75.72, 75.69, 75.56, 67.73, 48.48, 48.11, 
31.13, 31.05, 29.59, 29.21, 23.34, 22.99, 22.84, 22.54. HRMS (ESI) m/z: Calcd for C

17
H

19
F

3
NaO

5
S [M + Na]+ 415.0798, 

found 415.0797.
2-(3-fluorophenoxy)cyclohexyl prop-2-yn-1-yl sulfite (5.06): colorless oil, yield, 63%; 1H NMR (400 MHz, Chloroform-d, 

c = 60 mg/mL) δ 7.21 (td, J = 8.5, 6.8 Hz, 1H, Ph-H), 6.81–6.55 (m, 3H, Ph-H), 4.68–4.64 (m, 1H, OCH), 4.62–4.59 (m, 
1H, OCH

2
), 4.53–4.42 (m, 1H, OCH

2
), 4.19 (ddt, J = 10.3, 8.1, 5.2 Hz, 1H, OCH), 2.70–2.46 (m, 1H, CCH), 2.29–2.06 (m, 
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2H, CH
2
), 1.83–1.70 (m, 2H, CH

2
), 1.70–1.53 (m, 1H, CH

2
), 1.51–1.30 (m, 3H, CH

2
); 13C NMR (101 MHz, Chloroform-d, 

c = 60 mg/mL) δ 164.86, 158.82, 158.71, 130.39, 130.29, 111.64, 111.61, 108.24, 108.03, 103.82, 103.58, 78.12, 76.30, 
75.85, 75.70, 50.02, 48.31, 48.28, 31.17, 29.18, 23.12, 22.87, 22.64. HRMS (ESI) m/z: Calcd for C

15
H

17
FNaO

4
S [M + Na]+ 

335.0724, found 335.0724.
2-(3-chlorophenoxy)cyclohexyl prop-2-yn-1-yl sulfite (5.07): colorless oil, yield, 55%; 1H NMR (400 MHz, Chloroform-d, 

c = 60 mg/mL) δ 7.27–7.07 (m, 1H, Ph-H), 7.03–6.86 (m, 2H, Ph-H), 6.86–6.71 (m, 1H, Ph-H), 4.76–4.45 (m, 3H, OCH and 
OCH

2
), 4.29–4.08 (m, 1H, OCH), 2.62–2.48 (m, 1H, CCH), 2.22–2.04 (m, 2H, CH

2
), 1.75 (tq, J = 7.0, 3.7 Hz, 2H, CH

2
), 

1.69–1.29 (m, 4H, CH
2
); 13C NMR (126 MHz, Chloroform-d, c = 60 mg/mL) δ 157.16, 133.91, 129.37, 129.33, 120.64, 

120.50, 115.58, 115.46, 113.54, 113.37, 77.61, 77.14, 74.97, 74.82, 74.64, 47.32, 47.26, 30.17, 30.13, 28.45, 28.14, 
22.33, 22.08, 21.81, 21.60. HRMS (ESI) m/z: Calcd for C

15
H

17
ClNaO

4
S [M + Na]+ 351.0428, found 351.0433.

2-(3-bromophenoxy)cyclohexyl prop-2-yn-1-yl sulfite (5.08): yellow oil, yield, 59%; 1H NMR (400 MHz, Chloroform-d, 
c = 40 mg/mL) δ 7.10–6.97 (m, 3H, Ph-H), 6.84–6.75 (m, 1H, Ph-H), 4.63–4.46 (m, 2H, OCH

2
), 4.46–4.35 (m, 1H, OCH), 

4.17–4.06 (m, 1H, OCH), 2.46 (dt, J = 5.8, 2.5 Hz, 1H, CCH), 2.15–2.03 (m, 2H, CH
2
), 1.78–1.63 (m, 2H, CH

2
), 1.60–1.49 

(m, 1H, CH
2
), 1.43–1.22 (m, 3H, CH

2
); 13C NMR (126 MHz, Chloroform-d, c = 40 mg/mL) δ 157.20, 129.70, 129.66, 123.58, 

123.44, 118.49, 118.36, 114.05, 113.87, 77.63, 77.15, 75.97, 75.27, 74.97, 74.85, 74.63, 48.99, 47.35, 47.28, 30.17, 
30.12, 28.44, 28.13, 22.32, 22.07, 21.81, 21.59. HRMS (ESI) m/z: Calcd for C

15
H

17
BrNaO

4
S [M + Na]+ 394.9923, found 

394.9923.
prop-2-yn-1-yl (2-(3-(trifluoromethoxy)phenoxy)cyclohexyl) sulfite (5.09): colorless oil, yield, 59%; 1H NMR (400 MHz, 

Chloroform-d, c = 40 mg/mL) δ 7.26 (d, J = 8.3 Hz, 1H, Ph-H), 6.91–6.73 (m, 3H, Ph-H), 4.75–4.38 (m, 3H, OCH and 
OCH

2
), 4.30–4.11 (m, 1H, OCH), 2.51 (dt, J = 8.3, 2.5 Hz, 1H, CCH), 2.16 (dddd, J = 15.0, 6.2, 4.5, 2.7 Hz, 2H, CH

2
), 

1.88–1.72 (m, 2H, CH
2
), 1.67–1.33 (m, 4H, CH

2
); 13C NMR (126 MHz, Chloroform-d, c = 40 mg/mL) δ 157.45, 149.14, 

129.33, 129.28, 113.35, 113.18, 112.56, 112.44, 108.25, 108.14, 77.62, 77.13, 74.82, 74.80, 74.53, 47.37, 47.28, 30.11, 
28.41, 28.10, 22.30, 22.04, 21.79, 21.56. HRMS (ESI) m/z: Calcd for C

16
H

17
F

3
NaO

5
S [M + Na]+ 401.0641, found 401.0614.

2-(4-fluorophenoxy)cyclohexyl prop-2-yn-1-yl sulfite (5.10): colorless oil, yield, 63%; 1H NMR (400 MHz, Chloroform-d, 
c = 60 mg/mL) δ 7.04–6.79 (m, 4H, Ph-H), 4.77–4.54 (m, 2H, OCH

2
), 4.47 (ddd, J = 10.3, 8.0, 4.6 Hz, 1H, OCH), 4.09 (dtd, 

J = 16.5, 8.9, 4.3 Hz, 1H, OCH), 2.51 (dt, J = 8.2, 2.5 Hz, 1H, CCH), 2.24–2.05 (m, 2H, CH
2
), 1.77 (tt, J = 13.0, 6.2 Hz, 

2H, CH
2
), 1.67–1.56 (m, 1H, CH

2
), 1.49–1.28 (m, 3H, CH

2
); 13C NMR (101 MHz, Chloroform-d, c = 60 mg/mL) δ 158.84, 

156.58, 156.46, 153.57, 117.97, 117.89, 117.66, 117.58, 116.11, 116.06, 115.88, 115.83, 79.79, 79.09, 77.49, 76.39, 
75.95, 75.77, 48.27, 48.12, 31.18, 29.70, 29.33, 23.45, 23.17, 22.93, 22.68. HR-MS (ESI) m/z: Calcd for C

15
H

17
FNaO

4
S 

[M + Na]+ 335.0724, found 335.0724.
2-(4-bromophenoxy)cyclohexyl prop-2-yn-1-yl sulfite (5.11): colorless oil, yield, 62%; 1H NMR (400 MHz, Chloroform-d, 

c = 40 mg/mL) δ 7.41–7.29 (m, 2H, Ph-H), 6.87–6.78 (m, 2H, Ph-H), 4.74–4.53 (m, 2H, OCH
2
), 4.48 (ddd, J = 10.3, 8.0, 

4.5 Hz, 1H, OCH), 4.16 (qd, J = 8.4, 4.2 Hz, 1H, OCH), 2.61–2.48 (m, 1H, CCH), 2.15 (tt, J = 11.4, 4.5 Hz, 2H, CH
2
), 1.76 

(ddp, J = 13.0, 9.1, 4.4 Hz, 2H, CH
2
), 1.68–1.57 (m, 1H, CH

2
), 1.51–1.27 (m, 3H, CH

2
); 13C NMR (101 MHz, Chloroform-d, 

c = 40 mg/mL) δ 156.59, 132.47, 132.43, 118.14, 117.94, 113.53, 78.87, 78.26, 76.14, 75.84, 75.68, 48.37, 48.23, 31.19, 
31.12, 29.54, 29.19, 23.38, 23.10, 22.87, 22.62. HR-MS (ESI) m/z: Calcd for C

15
H

17
BrNaO

4
S [M + Na]+ 394.9923, found 

394.9923.
prop-2-yn-1-yl (2-(4-(trifluoromethoxy)phenoxy)cyclohexyl) sulfite (5.12): colorless oil, yield, 63%; 1H NMR (400 MHz, 

Chloroform-d, c = 40 mg/mL) δ 7.13 (d, J = 8.6 Hz, 2H, Ph-H), 6.97–6.83 (m, 2H, Ph-H), 4.72–4.53 (m, 2H, OCH
2
), 4.50 

(ddd, J = 10.1, 7.8, 4.3 Hz, 1H, OCH), 4.17 (qd, J = 9.0, 4.4 Hz, 1H, OCH), 2.51 (dt, J = 9.3, 2.6 Hz, 1H, CCH), 2.16 (dt, 
J = 13.6, 6.6 Hz, 2H, CH

2
), 1.84–1.70 (m, 2H, CH

2
), 1.69–1.57 (m, 1H, CH

2
), 1.40 (dddd, J = 38.5, 27.6, 13.7, 4.9 Hz, 3H, 

CH
2
); 13C NMR (101 MHz, Chloroform-d, c = 40 mg/mL) δ 155.98, 143.14, 122.56, 122.52, 117.19, 116.95, 79.17, 78.52, 

76.18, 75.82, 75.66, 48.39, 48.20, 31.20, 31.13, 29.58, 29.22, 23.39, 23.09, 22.88, 22.62. HR-MS (ESI) m/z: Calcd for 
C

16
H

17
F

3
NaO

5
S [M + Na]+ 401.0641, found 401.0641.
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prop-2-yn-1-yl (2-(4-((trifluoromethyl)thio)phenoxy)cyclohexyl) sulfite (5.13): colorless oil, yield, 56%; 1H NMR (400 
MHz, Chloroform-d, c = 40 mg/mL) δ 7.56 (d, J = 8.3 Hz, 2H, Ph-H), 7.00–6.91 (m, 2H, Ph-H), 4.68–4.46 (m, 3H, OCH and 
OCH

2
), 4.27 (td, J = 8.6, 4.2 Hz, 1H, OCH), 2.50 (t, J = 2.4 Hz, 1H, CCH), 2.23–2.10 (m, 2H, CH

2
), 1.79 (dtd, J = 10.3, 7.2, 

3.7 Hz, 2H, CH
2
), 1.67 (dtd, J = 13.6, 10.0, 3.2 Hz, 1H, CH

2
), 1.54–1.45 (m, 1H, CH

2
), 1.44–1.32 (m, 2H, CH

2
); 13C NMR 

(101 MHz, Chloroform-d, c = 40 mg/mL) δ 159.79, 138.38, 131.14, 128.07, 116.68, 115.40, 77.82, 75.88, 75.40, 48.50, 
31.10, 29.11, 23.03, 22.57. HR-MS (ESI) m/z: Calcd for C

16
H

17
F

3
NaO

4
S

2
 [M + Na]+ 417.0413, found 417.0414.

prop-2-yn-1-yl (2-(4-(2,2,2-trifluoroethoxy)phenoxy)cyclohexyl) sulfite (5.14): colorless oil, yield, 48%; 1H NMR (400 
MHz, Chloroform-d, c = 40 mg/mL) δ 6.94–6.83 (m, 4H, Ph-H), 4.70–4.53 (m, 2H, CF

3
CH

2
O), 4.47 (ddd, J = 10.1, 8.0, 4.5 

Hz, 1H, OCH), 4.29 (q, J = 8.2 Hz, 2H, OCH
2
), 4.09 (dddd, J = 12.6, 9.9, 8.0, 4.3 Hz, 1H, OCH), 2.51 (dt, J = 8.1, 2.5 Hz, 

1H, CCH), 2.23–2.08 (m, 2H, CH
2
), 1.83–1.70 (m, 2H, CH

2
), 1.62–1.53 (m, 1H, CH

2
), 1.50–1.25 (m, 3H, CH

2
); 13C NMR 

(101 MHz, Chloroform-d, c = 40 mg/mL) δ 152.96, 152.36, 124.79, 122.03, 117.99, 117.67, 116.41, 116.38, 79.75, 79.02, 
77.58, 76.43, 75.99, 75.75, 75.72, 67.02, 66.67, 48.25, 48.11, 31.21, 31.16, 29.75, 29.36, 23.45, 23.16, 22.92, 22.67. 
HR-MS (ESI) m/z: Calcd for C

17
H

19
F

3
NaO

5
S [M + Na]+ 415.0803, found 415.0804.

prop-2-yn-1-yl (2-(4-(2,2,3,3-tetrafluoropropoxy)phenoxy)cyclohexyl) sulfite (5.15): colorless oil, yield, 62%; 1H NMR 
(400 MHz, Chloroform-d, c = 20 mg/mL) δ 6.97–6.79 (m, 4H, Ph-H), 6.06 (tt, J = 53.1, 5.0 Hz, 1H, CHF

2
CF

2
), 4.72–4.53 (m, 

2H, -CF
2
CH

2
O), 4.53–4.40 (m, 1H, OCH), 4.29 (ddt, J = 12.6, 11.5, 1.6 Hz, 2H, OCH

2
), 4.16–3.99 (m, 1H, OCH), 2.51 (dt, 

J = 7.7, 2.5 Hz, 1H, CCH), 2.23–2.08 (m, 2H, CH
2
), 1.84–1.70 (m, 2H, CH

2
), 1.70–1.58 (m, 1H, CH

2
), 1.49–1.26 (m, 3H, 

CH
2
); 13C NMR (101 MHz, Chloroform-d, c = 20 mg/mL) δ 152.89, 152.83, 152.28, 152.14, 118.03, 117.72, 116.09, 116.06, 

79.79, 79.05, 75.98, 75.75, 75.72, 66.53, 66.24, 65.94, 48.25, 48.10, 31.21, 31.15, 29.75, 29.36, 23.45, 23.16, 22.93, 
22.67. HR-MS (ESI) m/z: Calcd for C

18
H

20
F

4
NaO

5
S [M + Na]+ 447.0865, found 447.0871.

2-(4-(tert-butyl)phenoxy)cyclohexyl (2-fluoroethyl) sulfite (5.16): colorless oil, yield, 65%; 1H NMR (600 MHz, 
Chloroform-d, c = 60 mg/mL) δ 7.31–7.27 (m, 2H, Ph-H), 6.90–6.81 (m, 2H, Ph-H), 4.65–4.37 (m, 3H, -CH

2
F, OCH), 

4.33–4.22 (m, 1H, OCH), 4.21–4.09 (m, 2H, OCH
2
), 2.22–2.08 (m, 2H, CH

2
), 1.82–1.69 (m, 2H, CH

2
), 1.67–1.31 (m, 4H, 

CH
2
CH

2
), 1.28 (d, J = 1.1 Hz, 9H, C(CH

3
)

3
); 13C NMR (151 MHz, Chloroform-d, c = 60 mg/mL) δ 155.34, 155.22, 144.32, 

144.20,126.44 (d, J = 3.9 Hz), 115.99, 115.76, 82.36 (d, J = 8.8 Hz), 81.22 (d, J = 9.0 Hz), 78.81, 78.36, 77.35, 77.14, 76.92, 
76.28, 59.33 (dd, J = 30.2, 20.8 Hz), 34.20, 31.59, 31.43 (d, J = 10.4 Hz), 29.89, 29.63, 23.57, 23.40, 22.97 (d, J = 19.6 
Hz); 19F NMR (565 MHz, Chloroform-d) δ −223.68 – −224.14 (m). HR-MS (ESI) m/z: Calcd for C

18
H

27
FNaO

4
S [M + Na]+ 

381.1506, found 381.1506.
2-(4-(tert-butyl)phenoxy)cyclohexyl (2,2-difluoroethyl) sulfite (5.17): colorless oil, yield, 65%; 1H NMR (400 MHz, 

Chloroform-d, c = 40 mg/mL) δ 7.26–7.19 (m, 2H, Ph-H), 6.83–6.72 (m, 2H, Ph-H), 5.81 (tdt, J = 55.2, 20.9, 4.2 Hz, 1H, 
CHF

2
), 4.38 (dddd, J = 25.0, 10.5, 8.2, 4.6 Hz, 1H, OCH), 4.25–4.04 (m, 2H, OCH

2
), 3.97 (tdd, J = 12.4, 9.4, 4.7 Hz, 1H, 

OCH), 2.09 (dddd, J = 31.2, 13.8, 8.0, 4.7 Hz, 2H, CH
2
), 1.77–1.64 (m, 2H, CH

2
), 1.64–1.26 (m, 4H, CH

2
CH

2
), 1.22 (s, 9H, 

C(CH
3
)

3
); 13C NMR (101 MHz, Chloroform-d, c = 40 mg/mL) δ 154.09, 153.96, 143.38, 143.26, 125.39, 125.36, 114.87, 

114.59, 112.19, 77.71, 77.39, 57.33, 57.02, 33.10, 30.47, 30.37, 28.85, 28.64, 22.54, 22.44, 21.96, 21.89. HR-MS (ESI) 
m/z: Calcd for C

18
H

26
F

2
NaO

4
S [M + Na]+ 399.1412, found 399.1413.

2-(4-(tert-butyl)phenoxy)cyclohexyl (2,2,2-trifluoroethyl) sulfite (5.18): colorless oil, yield, 68%; 1H NMR (400 MHz, 
Chloroform-d, c = 60 mg/mL) δ 7.30–7.19 (m, 2H, Ph-H), 6.88–6.70 (m, 2H, Ph-H), 4.42 (dddd, J = 23.5, 10.9, 8.3, 4.8 Hz, 1H, 
OCH), 4.34–4.20 (m, 1H, OCH), 4.18–3.98 (m, 2H, CH

2
CF

3
), 2.10 (dtd, J = 26.8, 8.7, 8.2, 3.9 Hz, 2H, CH

2
), 1.70 (q, J = 10.1, 

8.8 Hz, 2H, CH
2
), 1.63–1.26 (m, 4H, CH

2
CH

2
), 1.22 (d, J = 1.7 Hz, 9H, C(CH

3
)
3
); 13C NMR (101 MHz, Chloroform-d, c = 60 mg/

mL) δ 155.02, 154.91, 144.47, 144.32, 126.45, 126.41, 115.87, 115.56, 78.70, 78.24, 56.17, 34.13, 31.50, 31.45, 29.91, 
29.64, 23.62, 23.45, 23.02, 22.89. HR-MS (ESI) m/z: Calcd for C

18
H

25
F

3
NaO

4
S [M + Na]+417.1318, found 417.1316.

2-(4-(tert-butyl)phenoxy)cyclohexyl (3-fluoropropyl) sulfite (5.19): yellow oil, yield, 49%; 1H NMR (400 MHz, 
Chloroform-d, c = 60 mg/mL) δ 7.28 (d, J = 8.4 Hz, 2H, Ph-H), 6.86 (d, J = 8.3 Hz, 2H, Ph-H), 4.69–4.34 (m, 3H, OCH and 
OCH

2
), 4.34–4.11 (m, 2H, CH

2
F), 4.03 (ddd, J = 24.3, 11.2, 6.3 Hz, 1H, OCH), 2.24–2.08 (m, 2H, CH

2
), 2.00 (tp, J = 18.3, 
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6.1 Hz, 2H, CH
2
), 1.76 (dq, J = 10.8, 5.5, 5.0 Hz, 2H, CH

2
), 1.68–1.32 (m, 4H, CH

2
CH

2
), 1.29 (s, 9H, C(CH

3
)

3
); 13C NMR 

(101 MHz, Chloroform-d, c = 60 mg/mL) δ 155.34, 155.27, 144.18, 144.04, 126.35, 126.32, 115.88, 115.61, 81.05, 79.40, 
78.49, 78.39, 75.82, 75.61, 56.91, 56.86, 34.11, 31.52, 31.34, 30.62, 30.42, 29.71, 29.56, 23.37, 23.32, 22.84. HR-MS 
(ESI) m/z: Calcd for C

19
H

29
FNaO

4
S [M + Na]+395.1663, found 395.1662.

2-(4-(tert-butyl)phenoxy)cyclohexyl (3,3,3-trifluoropropyl) sulfite (5.20): colorless oil, yield, 63%; 1H NMR (400 MHz, 
Chloroform-d, c = 60 mg/mL) δ 7.31–7.26 (m, 2H, Ph-H), 6.86 (d, J = 2.0 Hz, 1H, Ph-H), 6.84 (s, 1H, Ph-H), 4.51–4.22 
(m, 2H, OCH), 4.22–4.00 (m, 2H, OCH

2
), 2.43 (dtdd, J = 23.4, 12.8, 10.1, 6.5 Hz, 2H, CH

2
CF

3
), 2.26–2.07 (m, 2H, CH

2
), 

1.84–1.71 (m, 2H, CH
2
), 1.70–1.33 (m, 4H, CH

2
CH

2
), 1.29 (s, 9H, C(CH

3
)

3
); 13C NMR (101 MHz, Chloroform-d, c = 60 mg/

mL) δ 155.24, 155.13, 144.20, 126.38, 126.36, 115.90, 115.61, 78.72, 78.57, 76.37, 53.31, 53.11, 34.47, 34.24, 34.18, 
34.11, 31.50, 31.40, 29.86, 29.74, 23.50, 23.48, 22.96. HR-MS (ESI) m/z: Calcd for C

19
H

27
F

3
NaO

4
S [M + Na]+ 431.1474, 

found 431.1473.
2-(4-(tert-butyl)phenoxy)cyclohexyl (2,2,3,3-tetrafluoropropyl) sulfite (5.21): colorless oil, yield, 66%; 1H NMR (400 MHz, 

Chloroform-d, c = 60 mg/mL) δ 7.34–7.25 (m, 2H, Ph-H), 6.84 (d, J = 8.3 Hz, 2H, Ph-H), 5.78 (dtt, J = 75.5, 53.0, 4.5 Hz, 
CHF

2
), 4.58–4.26 (m, 2H, OCH

2
), 4.26–4.07 (m, 2H, OCH), 2.32–2.05 (m, 2H, CH

2
), 1.89–1.68 (m, 2H, CH

2
), 1.67–1.32 

(m, 4H, CH
2
CH

2
), 1.29 (s, 9H, C(CH

3
)

3
); 13C NMR (101 MHz, Chloroform-d, c = 60 mg/mL) δ 155.04, 154.88, 144.46, 

144.31, 126.44, 126.41, 115.83, 115.43, 78.66, 78.37, 56.00, 55.70, 55.47, 34.13, 31.49, 31.38, 29.95, 29.66, 23.62, 
23.51, 23.02, 22.94. HR-MS (ESI) m/z: Calcd for C

19
H

26
F

4
NaO

4
S [M + Na]+ 449.1380, found 449.1380.

2-(4-(tert-butyl)phenoxy)cyclohexyl (3-chloropropyl) sulfite (5.22): colorless oil, yield, 65%; 1H NMR (400 MHz, 
Chloroform-d, c = 60 mg/mL) δ 7.28 (d, J = 8.3 Hz, 2H, Ph-H), 6.86 (dd, J = 8.7, 1.6 Hz, 2H, Ph-H), 4.44 (dddd, J = 18.5, 
10.3, 8.0, 4.5 Hz, 1H, OCH), 4.34–4.12 (m, 2H, OCH

2
), 4.12–3.99 (m, 1H, OCH), 3.57 (dt, J = 30.5, 6.4 Hz, 2H, CH

2
Cl), 

2.27–1.98 (m, 4H, CH
2
), 1.85–1.69 (m, 2H, CH

2
), 1.69–1.33 (m, 4H, CH

2
CH

2
), 1.29 (s, 9H, C(CH

3
)

3
); 13C NMR (101 MHz, 

Chloroform-d, c = 60 mg/mL) δ 155.33, 155.26, 144.21, 144.06, 126.36, 126.33, 115.89, 115.60, 78.53, 78.41, 75.96, 
75.69, 57.70, 57.65, 40.95, 40.90, 34.12, 32.39, 31.52, 31.40, 29.74, 29.59, 23.37, 22.86. HR-MS (ESI) m/z: Calcd for 
C

19
H

29
ClNaO

4
S [M + Na]+ 411.1367, found 411.1367.

2-bromoethyl (2-(4-(tert-butyl)phenoxy)cyclohexyl) sulfite (5.23): colorless oil, yield, 54%; 1H NMR (400 MHz, 
Chloroform-d, c = 60 mg/mL) δ 7.29 (d, J = 8.4 Hz, 2H, Ph-H), 6.86 (d, J = 8.3 Hz, 2H, Ph-H), 4.54–4.27 (m, 2H, OCH), 
4.16 (ddt, J = 17.6, 11.8, 6.7 Hz, 2H, OCH

2
), 3.49 (t, J = 6.4 Hz, 1H, CH

2
Br), 3.43 (t, J = 6.7 Hz, 1H, CH

2
Br), 2.25–2.13 (m, 

2H, CH
2
), 1.84–1.71 (m, 2H, CH

2
), 1.68–1.33 (m, 4H, CH

2
CH

2
), 1.29 (s, 9H, C(CH

3
)

3
); 13C NMR (101 MHz, Chloroform-d, 

c = 60 mg/mL) δ 155.25, 155.16, 144.15, 126.39, 126.37, 115.89, 115.63, 78.63, 78.41, 76.24, 60.15, 59.89, 34.12, 31.52, 
31.48, 29.82, 29.66, 29.25, 29.00, 23.48, 23.40, 22.94, 22.89. HR-MS (ESI) m/z: Calcd for C

18
H

27
BrNaO

4
S [M + Na]+ 

441.0706, found 441.0705.
3-bromopropyl (2-(4-(tert-butyl)phenoxy)cyclohexyl) sulfite (5.24): colorless oil, yield, 56%; 1H NMR (400 MHz, Chloroform-d, 

c = 60 mg/mL) δ 7.28 (d, J = 8.3 Hz, 2H, Ph-H), 6.93–6.79 (m, 2H, Ph-H), 4.44 (dddd, J = 21.8, 10.0, 8.0, 4.5 Hz, 1H, OCH), 4.35–
4.12 (m, 2H, OCH

2
), 4.11–3.97 (m, 1H, OCH), 3.42 (dt, J = 31.3, 6.2 Hz, 2H, CH

2
Br), 2.15 (dp, J = 18.7, 6.4 Hz, 4H, CH

2
CH

2
), 

1.85–1.68 (m, 2H, CH
2
), 1.69–1.32 (m, 4H, CH

2
CH

2
), 1.29 (s, 9H, C(CH

3
)
3
); 13C NMR (101 MHz, Chloroform-d, c = 60 mg/mL) 

δ 155.26, 126.37, 126.34, 115.90, 115.60, 78.54, 78.43, 76.01, 75.71, 58.70, 58.65, 34.12, 32.49, 31.53, 31.43, 29.76, 29.60, 
29.25, 29.18, 23.37, 22.87. HR-MS (ESI) m/z: Calcd for C

19
H

29
BrNaO

4
S [M + Na]+ 455.0862, found 455.0861.

2-fluoroethyl (2-(2-fluorophenoxy)cyclohexyl) sulfite (5.25): colorless oil, yield, 65%; 1H NMR (500 MHz, Chloroform-d, 
c = 60 mg/mL) δ 7.06–6.93 (m, 3H, Ph-H), 6.89–6.81 (m, 1H, Ph-H), 4.62–4.51 (m, 1H, OCH), 4.51–4.36 (m, 2H, OCH

2
), 

4.31–4.07 (m, 3H, OCH and CH
2
F), 2.17–2.05 (m, 2H, CH

2
), 1.78–1.67 (m, 2H, CH

2
), 1.64–1.40 (m, 2H, CH

2
), 1.37–1.19 

(m, 2H, CH
2
); 13C NMR (126 MHz, Chloroform-d, c = 60 mg/mL) δ 153.68, 151.72, 144.32, 123.36, 123.33, 121.40, 121.35, 

121.23, 121.17, 117.32, 116.96, 115.70, 115.66, 115.54, 115.51, 81.37, 81.30, 80.00, 79.93, 79.49, 78.92, 75.09, 74.90, 
58.63, 58.46, 58.33, 58.16, 30.42, 30.39, 28.78, 28.52, 22.41, 22.20, 21.93, 21.77. HRMS (ESI) m/z: Calcd for C

14
H

18
F-

2
NaO

4
S [M + Na]+ 343.0786, found 343.0796.
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2-(2-chlorophenoxy)cyclohexyl (2-fluoroethyl) sulfite (5.26): yellow oil, yield, 65%; 1H NMR (400 MHz, Chloroform-d, 
c = 60 mg/mL) δ 7.26 (dd, J = 7.9, 1.7 Hz, 1H, Ph-H), 7.11 (ddt, J = 8.8, 7.4, 1.6 Hz, 1H, Ph-H), 6.92 (ddd, J = 8.4, 5.4, 
1.4 Hz, 1H, Ph-H), 6.82 (tt, J = 7.6, 1.4 Hz, 1H, Ph-H), 4.67–4.32 (m, 3H, OCH and OCH

2
), 4.32–4.00 (m, 3H, OCH and 

CH
2
F), 2.18–1.97 (m, 2H, CH

2
), 1.79–1.62 (m, 2H, CH

2
), 1.63–1.40 (m, 2H, CH

2
), 1.40–1.22 (m, 2H, CH

2
); 13C NMR (126 

MHz, Chloroform-d, c = 60 mg/mL) δ 152.68, 129.50, 129.41, 126.71, 126.54, 123.44, 121.29, 121.02, 115.86, 84.52, 
83.81, 83.75, 83.20, 80.84, 80.74, 74.19, 72.34, 61.18, 61.03, 31.09, 30.92, 28.73, 28.60, 23.71, 23.02, 22.99, 22.90, 
22.79, 22.62. HRMS (ESI) m/z: Calcd for C

14
H

18
ClFNaO

4
S [M + Na]+ 359.0491, found 359.0497.

2-fluoroethyl (2-(2-(trifluoromethoxy)phenoxy)cyclohexyl) sulfite (5.27): yellow oil, yield, 64%; 1H NMR (400 MHz, 
Chloroform-d, c = 40 mg/mL) δ 7.21–7.11 (m, 2H, Ph-H), 6.99 (td, J = 8.9, 8.2, 1.5 Hz, 1H, Ph-H), 6.88 (ddt, J = 9.0, 7.7, 
1.4 Hz, 1H, Ph-H), 4.67–4.36 (m, 3H, OCH and OCH

2
), 4.33–4.00 (m, 3H, OCH and CH

2
F), 2.19–1.98 (m, 2H, CH

2
), 

1.76–1.63 (m, 2H, CH
2
), 1.60–1.40 (m, 2H, CH

2
), 1.37–1.18 (m, 2H, CH

2
); 13C NMR (126 MHz, Chloroform-d, c = 40 mg/

mL) δ 148.79, 138.04, 126.87, 122.26, 122.23, 120.55, 120.44, 115.26, 115.11, 81.31, 81.21, 79.95, 79.85, 78.11, 77.46, 
74.36, 74.19, 58.59, 58.54, 58.43, 58.37, 30.05, 29.95, 28.17, 27.82, 22.12, 21.76, 21.65, 21.36. HRMS (ESI) m/z: Calcd 
for C

15
H

18
F

4
NaO

5
S [M + Na]+ 409.0703, found 409.0695.

2-fluoroethyl (2-(3-fluorophenoxy)cyclohexyl) sulfite (5.28): colorless oil, yield, 60%; 1H NMR (400 MHz, Chloroform-d, 
c = 40 mg/mL) δ 7.21 (td, J = 8.2, 6.8 Hz, 1H, Ph-H), 6.81–6.55 (m, 3H, Ph-H), 4.72–4.59 (m, 1H, OCH), 4.56–4.37 (m, 2H, 
OCH

2
), 4.34–4.04 (m, 3H, OCH and CH

2
F), 2.17 (dddd, J = 19.0, 13.0, 5.6, 3.1 Hz, 2H, CH

2
), 1.77 (tdt, J = 8.9, 5.6, 2.8 Hz, 

2H, CH
2
), 1.69–1.29 (m, 4H, CH

2
CH

2
); 13C NMR (126 MHz, Chloroform-d, c = 40 mg/mL) δ 163.58, 161.63, 129.38, 129.35, 

129.30, 129.28, 110.81, 110.78, 110.65, 107.30, 107.20, 107.13, 107.03, 102.91, 102.77, 102.71, 102.58, 81.32, 81.25, 
79.95, 79.89, 77.72, 77.38, 74.89, 74.76, 58.46, 58.42, 58.30, 58.25, 30.32, 30.23, 28.57, 28.32, 22.36, 22.18, 21.86, 
21.72. HRMS (ESI) m/z: Calcd for C

14
H

18
F

2
NaO

4
S [M + Na]+ 343.0786, found 343.0786.

2-(3-chlorophenoxy)cyclohexyl (2-fluoroethyl) sulfite (5.29): colorless oil, yield, 50%; 1H NMR (500 MHz, Chloroform-d, 
c = 40 mg/mL) δ 7.12 (t, J = 8.1 Hz, 1H, Ph-H), 6.92–6.81 (m, 2H, Ph-H), 6.78–6.70 (m, 1H, Ph-H), 4.62–4.49 (m, 1H, 
OCH), 4.49–4.30 (m, 2H, OCH

2
), 4.28–3.98 (m, 3H, OCH and CH

2
F), 2.16–2.01 (m, 2H, CH

2
), 1.79–1.64 (m, 2H, CH

2
), 

1.57 (dddd, J = 13.7, 11.5, 10.1, 3.8 Hz, 1H, CH
2
), 1.47–1.20 (m, 3H, CH

2
); 13C NMR (126 MHz, Chloroform-d, c = 40 mg/

mL) δ 157.22, 133.91, 129.36, 129.34, 120.62, 120.52, 115.46, 113.58, 113.44, 81.25, 79.88, 77.78, 77.46, 74.76, 58.44, 
58.27, 30.32, 30.23, 28.68, 28.57, 28.33, 22.36, 22.19, 21.87, 21.74. HRMS (ESI) m/z: Calcd for C

14
H

18
ClFNaO

4
S 

[M + Na]+ 359.0491, found 359.0490.
2-fluoroethyl (2-(3-(trifluoromethoxy)phenoxy)cyclohexyl) sulfite (5.30): colorless oil, yield, 55%; 1H NMR (400 MHz, 

Chloroform-d, c = 20 mg/mL) δ 7.26 (d, J = 8.3 Hz, 1H, Ph-H), 6.91–6.72 (m, 3H, Ph-H), 4.71–4.39 (m, 3H, OCH and 
OCH

2
), 4.34–4.06 (m, 3H, OCH and CH

2
F), 2.23–2.05 (m, 2H, CH

2
), 1.78 (tdd, J = 7.9, 4.1, 2.1 Hz, 2H, CH

2
), 1.69–1.56 

(m, 1H, CH
2
), 1.48–1.29 (m, 3H, CH

2
); 13C NMR (126 MHz, Chloroform-d, c = 20 mg/mL) δ 157.51, 129.29, 113.20, 112.46, 

108.15, 81.20, 79.84, 77.41, 58.48, 58.31, 30.29, 28.28, 22.33, 22.14, 21.69. HRMS (ESI) m/z: Calcd for C
15

H
18

F
4
NaO

5
S 

[M + Na]+ 409.0703, found 409.0703.
2-fluoroethyl (2-(4-fluorophenoxy)cyclohexyl) sulfite (5.31): colorless oil, yield, 66%; 1H NMR (400 MHz, Chloroform-d, 

c = 40 mg/mL) δ 6.96 (t, J = 8.6 Hz, 2H, Ph-H), 6.88 (dd, J = 9.1, 4.3 Hz, 2H, Ph-H), 4.69–4.56 (m, 1H, OCH), 4.55–4.48 (m, 
1H, OCH

2
), 4.43 (ddd, J = 10.2, 7.9, 4.7 Hz, 1H, OCH

2
), 4.34–3.99 (m, 3H, OCH and CH

2
F), 2.14 (dh, J = 12.5, 4.0 Hz, 2H, 

CH
2
), 1.85–1.69 (m, 2H, CH

2
), 1.61 (ddd, J = 13.8, 10.5, 3.9 Hz, 1H, CH

2
), 1.50–1.25 (m, 3H, CH

2
); 13C NMR (101 MHz, 

Chloroform-d, c = 40 mg/mL) δ 158.86, 156.48, 153.62, 117.74, 117.66, 116.06, 115.84, 82.48, 80.77, 79.39, 76.03, 59.41, 
59.20, 31.36, 29.49, 23.26, 22.79. HR-MS (ESI) m/z: Calcd for C

14
H

18
F

2
NaO

4
S [M + Na]+ 343.0786, found 343.0786.

2-(4-chlorophenoxy)cyclohexyl (2-fluoroethyl) sulfite (5.32): yellow oil, yield, 66%; 1H NMR (400 MHz, Chloroform-d, 
c = 40 mg/mL) δ 7.28–7.19 (m, 2H, Ph-H), 6.91–6.83 (m, 2H, Ph-H), 4.68–4.58 (m, 1H, OCH), 4.57–4.39 (m, 2H, OCH

2
), 

4.35–4.01 (m, 3H, OCH and CH
2
F), 2.15 (dq, J = 13.7, 4.5 Hz, 2H, CH

2
), 1.76 (dtt, J = 13.2, 9.7, 4.5 Hz, 2H, CH

2
), 1.61 

(ddt, J = 17.4, 11.3, 3.2 Hz, 1H, CH
2
), 1.52–1.26 (m, 3H, CH

2
); 13C NMR (101 MHz, Chloroform-d, c = 40 mg/mL) δ 156.23, 
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156.13, 129.50, 129.48, 126.40, 126.26, 117.73, 117.53, 82.51, 82.45, 80.75, 79.15, 78.67, 76.07, 75.82, 59.49, 59.45, 
59.28, 59.25, 31.31, 31.24, 29.66, 29.37, 23.40, 23.20, 22.91, 22.74. HR-MS (ESI) m/z: Calcd for C

14
H

18
ClFNaO

4
S 

[M + Na]+ 359.0491, found 359.0491.
2-(4-bromophenoxy)cyclohexyl (2-fluoroethyl) sulfite (5.33): colorless oil, yield, 63%; 1H NMR (400 MHz, Chloroform-d, 

c = 40 mg/mL) δ 7.44–7.29 (m, 2H, Ph-H), 6.81 (dd, J = 9.0, 2.4 Hz, 2H, Ph-H), 4.69–4.57 (m, 1H, OCH), 4.56–4.37 (m, 
2H, OCH

2
), 4.34–3.97 (m, 3H, OCH and CH

2
F), 2.14 (dh, J = 13.5, 5.3, 4.3 Hz, 2H, CH

2
), 1.76 (dhept, J = 12.8, 4.0 Hz, 

2H, CH
2
), 1.62 (dddd, J = 17.1, 11.3, 8.7, 3.4 Hz, 1H, CH

2
), 1.49–1.25 (m, 3H, CH

2
); 13C NMR (101 MHz, Chloroform-d, 

c = 40 mg/mL) δ 156.74, 156.65, 132.46, 132.43, 118.19, 117.99, 113.71, 113.55, 82.51, 82.45, 80.80, 80.74, 79.03, 78.55, 
76.03, 75.78, 59.50, 59.47, 59.29, 31.30, 31.23, 29.63, 29.35, 23.39, 23.19, 22.90, 22.73. HR-MS (ESI) m/z: Calcd for 
C

14
H

18
BrFNaO

4
S [M + Na]+ 402.9985, found 402.9985.

2-fluoroethyl (2-(4-(trifluoromethoxy)phenoxy)cyclohexyl) sulfite (5.34): colorless oil, yield, 55%; 1H NMR (400 MHz, 
Chloroform-d, c = 20 mg/mL) δ 7.10–7.01 (m, 2H, Ph-H), 6.90–6.81 (m, 2H, Ph-H), 4.61–4.52 (m, 1H, OCH), 4.52–4.34 (m, 
2H, OCH

2
), 4.28–4.14 (m, 1H, OCH), 4.11 (ddd, J = 7.1, 5.3, 3.5 Hz, 1H, CH

2
F), 4.08–3.98 (m, 1H, CH

2
F), 2.14–2.02 (m, 

2H, CH
2
), 1.77–1.65 (m, 2H, CH

2
), 1.61–1.53 (m, 1H, CH

2
), 1.44–1.22 (m, 3H, CH

2
); 13C NMR (101 MHz, Chloroform-d, 

c = 20 mg/mL) δ 156.04, 122.51, 119.29, 117.02, 82.43, 80.72, 78.80, 75.75, 59.52, 59.32, 31.30, 29.37, 23.18, 22.73
.
 

HR-MS (ESI) m/z: Calcd for C
15

H
18

F
4
NaO

5
S [M + Na]+ 409.0703, found 409.0713.

2-fluoroethyl (2-(4-((trifluoromethyl)thio)phenoxy)cyclohexyl) sulfite (5.35): colorless oil, yield, 60%; 1H NMR (400 MHz, 
Chloroform-d, c = 40 mg/mL) δ 7.59–7.52 (m, 2H, Ph-H), 6.95 (dd, J = 9.0, 3.2 Hz, 2H, Ph-H), 4.62 (dq, J = 16.0, 3.5, 2.6 Hz, 
1H, OCH), 4.58–4.43 (m, 2H, OCH

2
), 4.34–4.02 (m, 3H, OCH and CH

2
F), 2.17 (ddq, J = 13.7, 9.2, 4.7 Hz, 2H, CH

2
), 1.85–1.71 

(m, 2H, CH
2
), 1.70–1.58 (m, 1H, CH

2
), 1.53–1.30 (m, 3H, CH

2
); 13C NMR (101 MHz, Chloroform-d, c = 40 mg/mL) δ 159.85, 

138.39, 116.82, 116.70, 115.42, 82.47, 82.39, 80.68, 78.47, 78.07, 75.89, 75.56, 59.62, 59.51, 59.41, 59.30, 31.29, 31.23, 
29.56, 29.29, 23.35, 23.14, 22.87, 22.70. HR-MS (ESI) m/z: Calcd for C

15
H

18
F

4
NaO

4
S

2
 [M + Na]+ 425.0475, found 425.0475.

2-fluoroethyl (2-(4-(2,2,2-trifluoroethoxy)phenoxy)cyclohexyl) sulfite (5.36): colorless oil, yield, 55%; 1H NMR (400 MHz, 
Chloroform-d, c = 20 mg/mL) δ 6.98–6.78 (m, 4H, Ph-H), 4.70–4.67 (m, 1H, OCH

2
CF

3
), 4.66–4.59 (m, 1H, OCH

2
CF

3
), 

4.58–4.54 (m, 1H, OCH), 4.50–4.42 (m, 1H, OCH), 4.31–4.28 (m, 2H, OCH
2
), 4.24–4.20 (m, 1H, CH

2
F), 4.09 (dddd, 

J = 18.1, 8.2, 5.6, 3.1 Hz, 1H, CH
2
F), 2.14 (ddt, J = 14.1, 9.6, 4.1 Hz, 2H, CH

2
), 1.76 (qt, J = 8.2, 6.0, 4.7 Hz, 2H, CH

2
), 1.63 

(ddt, J = 19.3, 6.0, 3.2 Hz, 1H, CH
2
), 1.48–1.26 (m, 3H, CH

2
); 13C NMR (101 MHz, Chloroform-d, c = 20 mg/mL) δ 152.96, 

152.26, 124.79, 118.03, 117.75, 116.41, 82.52, 82.48, 82.32, 80.61, 79.88, 79.32, 76.25, 76.06, 67.04, 66.69, 61.22, 
61.01, 59.40, 59.19, 31.33, 31.25, 29.81, 29.52, 23.44, 23.24, 22.93, 22.78. HR-MS (ESI) m/z: Calcd for C

16
H

20
F

4
NaO

5
S 

[M + Na]+ 423.0865, found 423.0866.

Biological activity and safety testing on cowpea seedlings

Acaricidal activity evaluation against T. cinnabarinus.  Biological assays against adults of T. cinnabarinus were 
conducted according to procedures described in the literature [25–27]. All prepared compounds as well as the propargite 
were dissolved in acetone and diluted with water containing 0.1% Tween 80 to give solutions with different concentrations. 
One true leaf of kidney bean plants was infested with 110–130 adult T. cinnabarinus individuals. The test solutions (1 mL) 
were sprayed using an airbrush at 25 ± 1°C. Once it was dry, the leaf blade was transferred to a standard observation 
room in a green house. The commercial acaricide propargite was used as a positive control at the same time. A blank 
control was treated as above without the addition of compounds. The mortality of the mite under the action of compounds 
was evaluated after 72 h of exposure. Each treatment was repeated three times. Evaluation of mortality was based on 
a percentage scale of 0–100, in which 0 equals no activity, and 100 equals total lethality. Mortality rates were corrected 
using Abbott’s formula [28]. Median lethal concentration (LC

50
) values were calculated by probit analysis [29].

	
Corrected mortality rate (% ) =

T - C
1 – C

× 100
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T was the mortality rate of the tested compound group, and C was the mortality rate of the blank control group (both T 
and C were expressed as percentages). The statistical analysis of all acaricidal activity assays was calculated using IBM 
SPSS Statistics 23.0.

Aphicidal activity evaluation against Myzus persicae.  Biological assays against M. persicae were conducted 
according to procedures described in the literature [30,31]. A single true leaf (3–5 cm in length) of rapeseed plants 
was selected and infested with 25–35 second- to third-instar nymphs of M. persicae (green peach aphid). At 25 ± 1°C, 
the test solutions (2 mL) (prepared as described in 3.3.1) were sprayed onto both sides of the leaf using a trigger-
type spray bottle. The treated leaf was then placed in a sealed petri dish and transferred to a standard observation 
room in a greenhouse. The commercial acaricide propargite was used as a positive control at the same time. Two 
blank controls—a solvent control (acetone + 0.1% Tween 80 solution) and an environmental control (untreated)—were 
processed following the same protocol without the addition of test compounds. After 72 hours of incubation at 25 ± 1°C, 
aphid mortality was assessed. Each treatment was repeated three times. Evaluation of mortality was based on a 
percentage scale of 0–100, in which 0 equals no activity, and 100 equals total lethality. Mortality rates were corrected 
using Abbott’s formula [28].

Preliminary safety evaluation on cowpea seedlings.  The test solutions (1 mL) (prepared as described in 3.3.1) were 
sprayed using an airbrush on the cowpea seedlings with newly expanded leaves. The commercial acaricide propargite 
was used as a positive control at the same time. A blank control was treated as above without the addition of compounds. 
Treated cowpea seedlings were placed in a constant temperature incubator at 35 °C. After 24 h, the cowpea seedlings 
were transferred to a standard observation room in a green house and maintained growing for 48 h. The damage to the 
plants was evaluated visually [32,33].

Results and discussion

The synthesis of Compounds 5.01–5.36

The synthesis of the target compounds (5.01–5.36), as outlined in Scheme 1, was straightforward and proceeded 
smoothly. The yield for each step in the synthetic route typically exceeded 70%. Following purification via column chro-
matography, the purity of all target compounds, as determined by HPLC and 1H NMR analysis, ranged between 95% and 
99%. The structures of the target compounds were characterized using 1H NMR, 13C NMR spectroscopy and HRMS.

The acaricidal activity against adult T. cinnabarinus

As presented in Table 1, most of the target compounds demonstrated acaricidal activities against adult T. cinnabarinus at 
200 mg/L.

The median lethal concentration (LC
50

) values for the highest seven target compounds, together with propargite, were 
provided in Table 2.

On the benzene ring (R1 part), replacing of the tert-butyl group with chlorine or trifluoromethoxy preserved the acaricidal 
activity. For the same group such as trifluoromethoxy, the 4-position substitution showed the highest activity, followed by 
3-position substitution and 2-position substitution. Introduction of fluorinated alkyl groups in place of the propargyl group 
(R2 part) resulted in enhanced acaricidal activity.

Based on the acaricidal activity results in Tables 1 and 2, the acaricidal structure-activity relationship of the target com-
pounds were summarized in Fig 2.

Five novel compounds showed higher acaricidal activity than that of propargite (LC
50

 = 26.94 mg/L). Keeping the same 
benzene ring part as propargite, the compound 5.16 (LC

50
 = 14.85 mg/L) was chosen for further crop safety study.

The aphicidal activity against M. persicae.  Considering the broad insecticidal spectrum of flupentiofenox, all the 
target compounds were screened for aphicidal activity. As presented in Table 3, twelve compounds demonstrated better 
aphicidal activities against M. persicae than that of propargite at 100 mg/L.
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Introduction fluorinated alkyl groups in place of the propargyl group (R2 part) promoted aphicidal activity significantly. 
The most of 2-fluoroethyl derivatives showed good activity. On the benzene ring (R1 part), replacement of the tert-butyl 
group with chlorine and fluorinated alkyl groups strengthened the aphicidal activity.

Based on the aphicidal activity results in Table 3, the aphicidal structure-activity relationship of the target compounds 
were summarized in Fig 3.

Table 1.  Mortalities of the target compounds against adult Tetranychus cinnabarinus.

Compound Mortality rate (mean ± SD, %) (mg L − 1)

200 100 50 25 12.5

Propargite 99.5 ± 0.7 95.6 ± 1.8 76.1 ± 5.4 48.0 ± 4.1 15.2 ± 7.6

5.01 97.7 ± 0.7 77.0 ± 5.3 45.0 ± 9.3 —a —

5.02 99.4 ± 0.8 97.2 ± 0.5 76.0 ± 3.6 — —

5.03 95.2 ± 0.4 80.4 ± 1.5 33.5 ± 1.2 — —

5.04 100 ± 0.0 99.2 ± 1.1 68.2 ± 4.6 — —

5.05 100 ± 0.0 92.2 ± 1.3 73.6 ± 5.8 — —

5.06 96.4 ± 1.4 45.9 ± 7.5 41.4 ± 2.2 — —

5.07 99.5 ± 0.7 98.3 ± 0.4 67.0 ± 5.5 — —

5.08 97.8 ± 0.4 82.1 ± 1.1 78.4 ± 6.3 — —

5.09 100 ± 0.0 95.8 ± 1.3 87.3 ± 3.2 42.0 ± 11.4 23.4 ± 4.4

5.10 97.1 ± 1.0 88.8 ± 4.5 66.7 ± 8.9 — —

5.11 94.7 ± 1.5 90.2 ± 3.0 73.9 ± 4.1 — —

5.12 100 ± 0.0 97.3 ± 2.7 83.9 ± 2.8 67.4 ± 4.1 29.6 ± 9.8

5.13 41.7 ± 8.2 10.3 ± 3.4 0 ± 0 — —

5.14 100 ± 0.0 90.2 ± 0.6 59.2 ± 0.7 — —

5.15 52.6 ± 4.4 38.5 ± 5.9 15.7 ± 4.2 — —

5.16 100 ± 0.0 100 ± 0.0 90.2 ± 2.0 67.1 ± 4.4 41.9 ± 6.4

5.17 98.8 ± 0.8 93.1 ± 1.3 66.3 ± 2.6 — —

5.18 94.8 ± 0.6 89.9 ± 0.8 55.2 ± 3.3 — —

5.19 77.8 ± 4.2 43.7 ± 11.9 11.1 ± 4.3 — —

5.20 100 ± 0.0 97.6 ± 0.8 93.6 ± 0.8 71.0 ± 6.6 43.7 ± 0.6

5.21 86.0 ± 6.7 55.3 ± 6.6 24.0 ± 18.1 — —

5.22 80.9 ± 3.6 67.1 ± 1.8 36.8 ± 7.5 — —

5.23 88.1 ± 3.1 76.1 ± 3.3 47.8 ± 5.7 — —

5.24 65.1 ± 3.0 29.6 ± 1.0 6.4 ± 4.4 — —

5.25 96.7 ± 1.1 92.2 ± 1.7 59.8 ± 10.0 — —

5.26 100 ± 0.0 95.5 ± 2.3 68.1 ± 4.4 — —

5.27 100 ± 0.0 98.8 ± 0.8 79.8 ± 3.5 50.8 ± 1.2 20.8 ± 3.2

5.28 99.5 ± 0.7 96.5 ± 0.8 72.7 ± 3.9 — —

5.29 98.1 ± 0.1 85.4 ± 6.2 66.0 ± 6.2 — —

5.30 100 ± 0.0 92.3 ± 4.4 82.6 ± 7.6 — —

5.31 100 ± 0.0 94.6 ± 1.4 69.5 ± 0.6 — —

5.32 98.1 ± 0.4 97.0 ± 1.2 87.6 ± 2.6 81.5 ± 3.6 34.6 ± 5.1

5.33 90.6 ± 1.7 80.2 ± 1.2 54.7 ± 3.3 — —

5.34 100 ± 0.0 97.4 ± 1.1 88.4 ± 1.0 72.7 ± 4.2 44.6 ± 1.9

5.35 73.9 ± 6.2 47.1 ± 8.3 14.1 ± 3.6 — —

5.36 100 ± 0.0 93.3 ± 1.0 63.1 ± 9.0 — —

a“—” refers to “not tested”.

https://doi.org/10.1371/journal.pone.0327587.t001

https://doi.org/10.1371/journal.pone.0327587.t001
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Table 2.  Median lethal concentration (LC50) values for target compounds against adult T. cinnabarinus.

Compound LC50 (mg L-1) 95% confidence interval Formula (y = ax + b) Correlation coefficient

Propargite 26.94 24.84 - 29.14 y = 2.95x − 4.23 0.999

5.09 23.98 17.55 - 31.26 y = 2.91x − 4.01 0.969

5.12 18.79 16.74 - 20.79 y = 2.70x − 3.45 0.988

5.16 14.85 12.33 - 17.55 y = 2.28x − 2.68 0.993

5.20 14.50 12.49 - 16.40 y = 2.44x − 2.81 0.983

5.27 24.23 22.11 - 26.39 y = 3.31x − 4.55 0.980

5.32 14.32 2.34 - 23.88 y = 1.96x − 2.19 0.920

5.34 14.29 11.89 - 16.45 y = 2.29x − 2.63 0.998

https://doi.org/10.1371/journal.pone.0327587.t002

Fig 2.  The acaricidal SAR of synthesized halogenated propargite analogues.

https://doi.org/10.1371/journal.pone.0327587.g003

Table 3.  Mortalities of the target compounds against M. persicae.

Compound Mortality rate (%) (mg L − 1) Compound Mortality rate (%) (mg L − 1)

400 100 25 400 100 25

Propargite 77.1 0 0 5.19 0 — —

5.01 0 —a — 5.20 0 — —

5.02 75.7 — — 5.21 0 — —

5.03 0 — — 5.22 0 — —

5.04 94.2 0 0 5.23 0 — —

5.05 0 — — 5.24 0 — —

5.06 83.9 — — 5.25 100 89.8 66.1

5.07 0 — — 5.26 100 89.3 0

5.08 0 — — 5.27 99.1 95.8 46.2

5.09 96.3 0 0 5.28 100 100 83.9

5.10 96.4 0 0 5.29 83.1 0 0

5.11 71.3 0 0 5.30 100 84.6 0

5.12 0 — — 5.31 100 94.8 0

5.13 100 64.8 26.4 5.32 100 100 57.3

5.14 71 — — 5.33 99.1 88.7 0

5.15 79.9 — — 5.34 79.1 0 0

5.16 96.8 58.6 0 5.35 100 100 71.2

5.17 0 — — 5.36 100 100 95.7

5.18 0 — —

a“—” refers to “not tested”.

https://doi.org/10.1371/journal.pone.0327587.t003

https://doi.org/10.1371/journal.pone.0327587.t002
https://doi.org/10.1371/journal.pone.0327587.g003
https://doi.org/10.1371/journal.pone.0327587.t003
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At 100 mg/L, the compound 5.32 showed both higher aphicidal activity (mortality rate: 100%, Table 3) and higher acar-
icidal activity (mortality rate: 97%, Table 1). Considering its cost-effective advantage, the compound 5.32 was chosen for 
further crop safety study.

Safety on cowpea seedlings

The recommended field application dosage for the commercial acaricide propargite is approximately 500 mg/L. Over the 
past decade, occasional crop injuries have been reported, particularly when applied at high temperatures [34–37].

The compound 5.16 with higher acaricidal activity, and compound 5.32 with higher acaricidal activity and higher aphi-
cidal activity, were carried out for safety evaluation on cowpea seedlings.

The test results, as is shown in Fig 4 and 5, indicated that compound 5.32 damaged cowpea seedlings slightly at 
1000 mg/L. However, at a higher dosage of 2000 mg/L, significant damage to the cowpea seedlings was observed. 
Compared with CK (photo 2D), the leaf blades treated with compound 5.32 wrinkled seriously (photo 2C). The safety of 
compound 5.32 and propargite on cowpea seedlings were found to be equivalent.

It was an encouraging finding in that compound 5.16 is safe to cowpea seedlings (photos 1B and 2B). Even at a high 
concentration of 2000 mg/L, compound 5.16 did not cause significant damage to the cowpea seedlings compared with CK, 
indicated that 2-fluoroethyl may have a positive effect on decreasing phytotoxicity of this type of compound. The com-
pound 5.16 exhibits superior biological efficacy compared to the commercial acaricide propargite because of its higher 
acaricidal activity and better crop safety.

The original photos were provided in S2 File.

Conclusion

A series of sulfite compounds were designed by combining the molecular structures of propargite and flupentiofenox. 
Thirty-six novel halogenated sulfite compounds were synthesized and characterized using 1H NMR, 13C NMR spectros-
copy, and HRMS.

Structure-activity relationship (SAR) studies of the halogenated sulfite compounds revealed that replacing the tert-butyl 
group on the benzene ring (R1 part) of propargite with chlorine or trifluoromethoxy, as well as introducing 2-fluoroethyl 
groups in place of the propargyl group (R2 part), significantly enhanced both acaricidal and aphicidal activity.

Among the synthesized compounds, compound 5.16 exhibited superior acaricidal activity and demonstrated good crop 
safety on cowpea seedlings. Although compound 5.32 did not show improved safety on cowpea seedlings, it displayed 
both acaricidal and aphicidal activity, which is unusual in this chemical class.

Fig 3.  The aphicidal SAR of synthesized halogenated propargite analogues.

https://doi.org/10.1371/journal.pone.0327587.g004

https://doi.org/10.1371/journal.pone.0327587.g004
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In conclusion, compounds 5.16 and 5.32 could be used as promising leads for the discovery of novel acaricides or 
insecticides.

Supporting information

S1 File.  The 1H NMR, 13C NMR spectra, and HRMS of compounds 5.01–5.36. 
(DOCX)

Fig 4.  Safety of compounds on cowpea seedlings at mass concentrations of 1000 mg/L. 1A: propargite; 1B: compound 5.16; 1C: compound 5.32; 
1D: CK.

https://doi.org/10.1371/journal.pone.0327587.g005

Fig 5.  Safety of compounds on cowpea seedlings at mass concentrations of 2000 mg/L. 2A: propargite; 2B: compound 5.16; 2C: compound 5.32; 
2D: CK.

https://doi.org/10.1371/journal.pone.0327587.g006
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S2 File.  The original photos of cowpea seedlings treated with compounds and CK. 
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S3 File.  Structure file for each compound. 
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S4 File.  The primary NMR data files. 
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