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Abstract 

Studies have shown that inhibition of the Ca
v
3.1 T-type calcium channel can prevent 

or suppress neurological diseases, such as epileptic seizures and diabetic neurop-

athy. In this study, we aimed to use in silico simulations to identify a U.S. Food and 

Drug Administration (FDA)-approved drug that can bind to the Ca
v
3.1 T-type calcium 

channel. We used the automated docking suite GOLD v5.5 with the genetic algo-

rithm to simulate molecular docking and predict the protein-ligand binding modes, 

and the ChemPLP empirical scoring function to estimate the binding affinities of 

2,115 FDA-approved drugs to the human Ca
v
3.1 channel. Drugs with high binding 

affinity and appropriate pharmacodynamic and pharmacokinetic properties were 

selected for molecular mechanics Poisson–Boltzmann surface area (MMPBSA) and 

molecular mechanics generalised Born surface area (MMGBSA) binding free energy 

calculations, GROMACS molecular dynamics (MD) simulations and Monte Carlo 

Cell (MCell) simulations. The docking results indicated that the FDA-approved drug 

montelukast has a high binding affinity to Ca
v
3.1, and data from the literature sug-

gested that montelukast has the appropriate drug-like properties to cross the human 

blood-brain barrier and reach synapses in the central nervous system. MMPBSA, 

MMGBSA, and MD simulations showed the high stability of the montelukast-Ca
v
3.1 

complex. MCell simulations indicated that the blockage of Ca
v
3.1 by montelukast 

reduced the number of synaptic vesicles being released from the pre-synaptic region 

to the synaptic cleft, which may reduce the probability and amplitude of postsynaptic 

potentials.

Introduction

Calcium channels are located in the plasma membrane of excitable cells, including 
neurons, brain cells and heart muscle cells [1]. These channels allow the influx of 
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calcium ions into the cells and cause depolarisation and excitation, contributing to 
the biological functions of the cells [1]. Blocking the influx of calcium ions has been 
shown to have pharmacological effects. For example, ziconotide is a calcium channel 
blocker medication that inhibits the influx of calcium ions into neurons, consequently 
reducing neurotransmitter release and dampening neuronal excitability. This reduc-
tion in excitability leads to its analgesic effects and makes ziconotide a treatment for 
severe chronic pain [2,3].

Calcium channels can be categorised into voltage-gated and ligand-gated; the 
opening and closing of the former respond to a voltage difference, while the latter 
is governed by ligand binding. Voltage-gated calcium channels are subcategorised 
according to their response to voltage and temporal dynamics into L-type (long- 
lasting), N-type (neural), P-type (Purkinje), R-type (residual) and T-type (transient) 
[4]. Their distribution throughout the human body varies by type; for example, N-type 
channels are typically found in the brain, R-type channels in neurons, and L-type 
channels in muscles, bones, myocytes and dendrites. This study aims to find an 
inhibitor of the T-type channel, which is widely distributed across the central nervous 
system [4].

T-type calcium channels have three subcategories: Ca
v
3.1, Ca

v
3.2 and Ca

v
3.3, 

which are all associated with neurological diseases, such as epilepsy, neuralgia, dia-
betic neuropathy, nerve injury and sleep disorders [5]. Ca

v
3.1 is primarily expressed 

in the central nervous system and is involved in the generation of rhythmic activities 
such as sleep patterns and regulating neuronal firing patterns, and its over- 
activation may cause neurons to fire at an abnormally high frequency, leading to 
epileptic seizures [5]. A prior study provoked seizures in wild-type mice lacking Ca

v
3.1 

through intraperitoneal drug administration, revealing that the Ca
v
3.1 knockout mice 

have significantly less risk of absence seizures [4]. Ca
v
3.2 contributes to various 

physiological processes such as hormone secretion, neurotransmitter release, and 
regulation of cardiac pacemaker activity [6]. It is also associated with epilepsy, but 
its activation may not be strong enough to produce seizures [6]. Ca

v
3.3 channels are 

mainly found in the thalamus and play a crucial role in generating and modulating 
neuronal oscillations, sensory processing, and serving as the primary pacemaker 
for sleep spindles [7]. Thus, all three types of calcium channels are considered 
potential drug targets for neurological diseases [1]. Ca

v
3.1 is the most studied and 

is most associated with epileptic seizures. The objective of this study is to identify a 
U.S. Food and Drug Administration (FDA)-approved drug that can bind to the Ca

v
3.1 

T-type calcium channels using in silico simulations.
The first stage of most drug discovery projects is in silico simulations [8], which 

help to identify potential drug candidates for further experiments. In general, the 
process starts with the creation of a library containing a large number of molecules. 
This library can be obtained from a chemical compound database, such as the ZINC 
database [9]. ZINC classifies compounds into different categories; for example, 
herbal ingredients, human metabolites and FDA-approved drugs. After the selection 
and compilation of a compound library, screening is performed to identify potential 
molecules that can bind to the selected therapeutic target. The drug-like properties, 
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such as adsorption, distribution, metabolism, excretion and toxicity, of these compounds are then predicted using various 
in silico methods [10]. If required, the structures of these molecules can be modified to bind more tightly to the target or to 
have advanced drug-like properties, such as fewer side effects and higher bioavailability.

The in silico methods used in this study were molecular docking, molecular mechanics Poisson–Boltzmann/generalised 
Born surface area (MMPBSA/MMGBSA), molecular dynamics (MD) and Monte Carlo (MCell) simulations. The docking 
simulations were employed to identify an FDA-approved drug that has a high potential to bind with Ca

v
3.1. The MMPBSA/

MMGBSA and MD simulations were used to validate that the identified FDA-approved drug can bind to Ca
v
3.1 with high 

stability. A pre-synaptic MCell model was created to simulate the effect of the chosen FDA-approved drug on lowering 
neurotransmitter release and weakening the neural signal by competing with calcium ions for the Ca

v
3.1 channels.

Using these methods, we identified montelukast as a promising candidate to bind Ca
v
3.1 channels and reduce the 

hyperactivity of presynaptic neurons. Further experimental studies are necessary to establish the feasibility of repurposing 
montelukast for the treatment of epilepsy and related conditions.

Results and discussion

Molecular docking

Docking simulations were performed between the selected ligand-bound Ca
v
3.1 structure (Fig 1, PDB code 6KZP) and 

2,115 FDA-approved drugs. The results show that 234 drugs obtained a higher binding score than the native ligand 

Fig 1.  Surface and cartoon view of the native ligand (Z944) in the human Ca
v
3.1 (PDB: 6KZP). The binding site is indicated by the red dotted line.

https://doi.org/10.1371/journal.pone.0327386.g001

https://doi.org/10.1371/journal.pone.0327386.g001
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embedded in the crystal structure of the Ca
v
3.1 (PDB: Z944), indicating that these compounds may inhibit the opening of 

the calcium channel and block the entry of calcium ions into the neurons. The FDA-approved drugs with the top 20 binding 
scores are shown in Table 1 [11]. Indocyanine green obtained the highest score. Its 2D chemical structure is larger than 
the Z944 structure and contains more flexible single bonds, which are located near the two highly polar bisulphite groups 
(Fig 2). These features may enable the indocyanine green to fit more naturally in the binding site of Ca

v
3.1. The second 

(cobicistat) and third (ritonavir) ranked drugs also have larger and more flexible structures than the native ligand (Fig 2).
Although indocyanine green obtained the highest score, we do not believe that it is suitable for the drug repurposing 

aim of this study. We aimed to find a Ca
v
3.1 inhibitor to treat neurological disorders, such as epileptic seizures, that gener-

ally require long-term regular use. However, indocyanine green is a diagnostic agent for angiography, and no studies can 
be found on the safety of its long-term regular use [12]. Thus, regular administration may not be appropriate. Cobicistat 
obtained the second highest binding score (Table 1); it is a CYP3A (cytochrome P450, family 3, subfamily A) inhibitor used 
to increase the systemic exposure and hence the effectiveness of the HIV drugs atazanavir or darunavir [13]. CYP3A is 
a group of enzymes involved in the metabolism of many drugs; thus, cobicistat can cause various drug-drug interactions 
[13], and we do not therefore believe it to be appropriate for regular use.

The third- and fourth-ranked drugs were ritonavir and saquinavir. They are HIV antiviral drugs, and using them regularly 
may significantly increase drug resistance and worsen the global problems of HIV drug effectiveness [14]. Glycerol phen-
ylbutyrate was the fifth-ranked drug; it is an oral medication for inborn urea cycle disorders. However, it has a poor side 
effect profile: 16% of patients had diarrhoea, 14% had flatulence, 14% had a headache, and 7% had abdominal pain [15]. 
The next ranked drug is carfilzomib, which is used as a treatment for myeloma. It only has parenteral administration and 

Table 1.  Clinical uses of the top 20 docking-scored FDA-approved drugs.

Drug name Score Clinical use [11]

Native (Z944) 62.90 No clinical usage can be found

Indocyanine green 110.68 Diagnostic agent uses in angiography

Cobicistat 110.63 CYP3A inhibitor uses to increase the efficiency of antivirus

Ritonavir 108.20 HIV protease inhibitors

Glycerol phenylbutyrate 107.56 Uses for Inborn urea cycle disorders

Carfilzomib 102.35 Proteasome inhibitors used in multiple myeloma

Saquinavir 101.96 HIV protease inhibitors

Dabigatran 101.49 Uses as anticoagulant

Montelukast 100.71 Leukotriene inhibitor use for asthma

Fosinopril 100.48 Angiotensin-converting enzyme inhibitor uses for hypertension

Dronedarone 100.44 Antiarrhythmic drug

Azilsartan 99.26 Angiotensin II receptor antagonist uses for hypertension

Gadofosveset 98.86 Gadolinium-based MRI contrast agent

Atorvastatin 98.84 Statin uses for hypercholesterolemia

Naloxegol 97.43 µ-opioid receptor antagonist uses for constipation

Indinavir 96.74 HIV protease inhibitor

Silodosin 96.64 α
1
-adrenoceptor antagonist uses for benign pro- static hyperplasia

Nonoxynol-9 96.42 Vaginal spermicide

Isavuconazonium 96.23 Triazole uses as antifungal agent

Lomitapide 95.40 Microsomal triglyceride transfer protein inhibitor uses for hypercholesterolemia.

https://doi.org/10.1371/journal.pone.0327386.t001

https://doi.org/10.1371/journal.pone.0327386.t001
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can cause serious side effects [16]. Dabigatran is the next-ranked drug; it is an anticoagulant with a high risk of bleeding 
as a side effect [17]. Thus, all the above-mentioned drugs may not be appropriate for regular use to treat neurological 
disorders, such as epileptic seizures.

Montelukast obtained the eighth highest ranking score of 100.7 (Table 1), which is higher than the value of 62.9 for 
Z944. The docking conformation analysis shows that there were 15 hydrophobic contacts between montelukast and the 
amino acid residues in the binding site (Figs 3A and B). In contrast, the native ligand had hydrophobic contact with only 
10 residues (Figs 3C and D). Most of these residues are different for montelukast and Z944; only three, Leu 872, Leu 920 
and Phe 956, possess hydrophobic contacts with both montelukast and Z944. The other contact residues for montelukast 
are Ile 351, Thr 352, Leu 353, Ser 383, Ile 387, Gln 922 and Tyr 953 for Z994, and Asn 388, Leu 391, Phe 917, Thr 921, 
Asn 952, Lys 1462, Val 1505, Leu 1506, Phe 1509, Gln 1816, Val 1820 and Val 1823.

Montelukast is a leukotriene receptor antagonist that has been approved by the FDA for the treatment of asthma and 
allergic rhinitis since 1998 [18]. Millions of asthmatic patients around the world have been taking it regularly, generally as 
10 mg once daily by mouth for the prophylaxis of asthma attacks [18]. The side effects of montelukast are minimal and 
can be tolerated by most patients [18]. The unique chemical structure of montelukast seems to have a low affinity to many 
other drug targets, and this causes very few known drug-drug interactions [18]. Another advantage of montelukast is its 
safety in pregnancy [19,20]. This study aims to identify a drug for neurological disorders, such as epileptic seizures, and 
most current anti-epileptic drugs carry the risk of congenital malformation and adverse prenatal outcomes [21]. Many stud-
ies have proven that montelukast does not increase the rate of congenital malformation and can be safely used during 
pregnancy [19,20].

Fig 2.  Chemical structures of (A) indocyanine green, (B) cobicistat, (C) ritonavir, (D) native ligand (PDB: 6KZP) and (E) montelukast.

https://doi.org/10.1371/journal.pone.0327386.g002

https://doi.org/10.1371/journal.pone.0327386.g002
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In addition, montelukast is known to have the ability to cross the blood-brain barrier and could produce neuroprotective 
effects [22,23]. An animal study showed that montelukast increased the number of neurons by 15% in mice with cranial 
irradiation [22]. In mice and rats, montelukast has been found to reduce neuron loss after a chronic brain injury caused 
by cerebral ischaemia [23]. Montelukast has also been found to inhibit the GPR17 receptor, which serves as a sensor for 
local damage to the myelin sheath and plays a role in the repair and regeneration of demyelinating plaques resulting from 
ongoing inflammation [24]. Inhibiting the GPR17 receptor in rats with Montelukast may reduce neuroinflammation, sug-
gesting its potential use in the treatment of dementia [24].

Despite the beneficial effects of montelukast, studies analysed from electronic health record databases globally 
have found that potential neuropsychiatric adverse effects may be associated with its use, including dementia, 
sleep disorders, and depression [25,26]. However, a meta-analysis of 59 studies found no association between 
montelukast and suicide or depression, although the elderly may be more prone to sleep disorders caused by mon-
telukast [27].

Another recently published review article suggested the neuroprotective property of montelukast and its potential 
use as an anti-epileptic drug, as it reduced the incidence and severity of seizures in epidemiological studies [28]. 
However, the pharmacological mechanism of these properties is not known. Our docking results show that montelu-
kast may have a high binding affinity to Ca

v
3.1, which could be the reason for its neurological effects. Because of all 

the above-mentioned characteristics of montelukast, we selected it for further simulations to investigate its binding 
with Ca

v
3.1.

Fig 3.  2D and 3D illustration of the docked structures between human Ca
v
3.1 (PDB: 6KZP) and native ligand and montelukast, generated by 

Pymol and LigPlot + . The annotated yellow dotted lines indicate the distance between the atoms, measured in angstroms. The green dotted lines rep-
resent hydrogen bonding. The red spoked arcs indicate the residues making hydrophobic contacts with the ligand.

https://doi.org/10.1371/journal.pone.0327386.g003

https://doi.org/10.1371/journal.pone.0327386.g003
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Molecular dynamics (MD)

MD simulations were conducted on both the crystal structure of the native ligand (Z944) and the best-docked conforma-
tion of montelukast with Ca

v
3.1 to investigate their dynamic interactions. For the montelukast complex, three separate 100 

ns MD simulations were performed to ensure more reliable results. Their root mean square deviations (RMSD), root mean 
square fluctuation (RMSF), radius of gyration (Rg), solvent accessible surface area (SASA), number of hydrogen bonds 
and interaction energies were calculated.

The RMSD shows the stabilities of the 6KZP-native and 6KZP-montelukast complexes (Fig 4A). The conformations of 
the 6KZP-native were stabilised by about 2 ns. For the montelukast complex, three separate 100 ns MD simulations were 
performed to ensure more reliable results. The results from the first two MD simulations were very similar, with the com-
plex structures stabilising around 17 ns (Fig 4A). In contrast, the third MD simulation showed stabilisation from about 17 
ns to 70 ns with a different conformation compared to the first two MDs, after which it resembled the conformations of the 
first and second simulations. Therefore, the first two MD runs achieved the most stable conformations much earlier than 
the third. The 6KZP-native complex was stabilised at an RMSD of about 0.4 nm, whereas that of the 6KZP-montelukast 
was 0.75 nm. A small RMSD value indicates that there were small differences in the conformation between the docked and 
MD-stabilised structures. In general, an RMSD value of less than 1.0 nm indicates that the docking approach can predict 
the binding mode of protein-ligand interactions to an acceptable standard [29]. Here, both the stabilised RMSD values of 
6KZP-native and 6KZP-montelukast are below 1.0 nm.

The RMSF results show the fluctuation behaviour of individual residues of the protein (Fig 4B). 6KZP has about 
1,200 amino acid residues. The RMSF plots of 6KZP-native and 6KZP-montelukast were similar, indicating that the 
conformations of both structures have a similar overall variation in stability. The 6KZP-montelukast complex has 
higher RMSF values than the 6KZP-native complex at residue 85 (Gln 172), 116 (Leu 205), 174 (Asn 263), 593–598 
(Ser 1334 to Leu 1339), 934–935 (Glu 1749 to Thr 1750) and 978 (Asn 1800). These higher RMSF values indicate 
that these residues are important for the interactions between montelukast and 6KZP, but not for the native ligand. 
The important interaction residues for the binding between the native ligand and 6KZP are 378 (Val 823), 517 (Arg 
1248), 673–691 (Cys 1418 to Ser 1436), 735–737 (Gln1480 to Pro1482), 741 (His 1486), 777 (Leu 1592) and 860 
(Asn 1675).

Rg evaluates the compactness of the complexes (Fig 4C). Throughout the simulation, the Rg values of the 6KZP- 
montelukast complex range from 3.17 nm to 3.29 nm, and those of the 6KZP-native range from 3.22 nm to 3.32 nm, 
suggesting that there may be a small difference in the complexes between the complexes. As shown in Fig 4C, there is a 
slight increase in the 6KZP-native complex Rg curve and a slight decrease in the 6KZP-montelukast complex after 80 ns 
of MD simulations. The higher Rg values of the 6KZP-native complex may indicate slightly less compactness, i.e., more 
flexible structures, than the 6KZP-montelukast complex. The protein of the montelukast complex may be folded slightly 
more tightly than that of the native.

Hydrogen bonds are one of the strongest types of bonds that are responsible for maintaining the protein struc-
ture and provide attractive interaction forces between protein and ligand. In general, hydrogen bonds are stronger 
than hydrophobic contacts and are considered another important facilitator for protein-ligand interactions. Fig 
5 shows the number of intra- and inter-hydrogen bonds of the 6KZP-montelukast and 6KZP-native complexes. 
The intra-protein hydrogen bonds are those within the protein, and the intermolecular hydrogen bonds are those 
between the ligand and the protein. The number of intra-protein hydrogen bonds was similar for 6KZP-native and 
6KZP-montelukast, mainly varying between 720 and 770 (Fig 5A). This level of hydrogen bonds maintains the 
stabilised structure of the protein. Looking at the intermolecular hydrogen bonds, the 6KZP-native complex tends 
to have more conformations with two hydrogen bonds than the 6KZP-montelukast (Figs 5B, C and D). This may 
indicate that the higher binding affinity of 6KZP-montelukast may be caused by other intermolecular forces, such 
as hydrophobic contact.
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Fig 4.  (A) RMSD, (B) RMSF, and (C) Rg of the 6KZP-native complex (in orange) and the 6KZP-montelukast complex (in blue, grey, and orange). 
Three 100 ns MD simulations were conducted on the 6KZP-montelukast complex, with labels 1, 2, and 3 indicating the 1st, 2nd, and 3rd simulations, 
respectively. The black dotted lines mark the regions with differing RMSF values between the 6KZP-native and 6KZP-montelukast complexes.

https://doi.org/10.1371/journal.pone.0327386.g004

https://doi.org/10.1371/journal.pone.0327386.g004
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The 6KZP-montelukast complex has lower solvent accessible surface area (SASA) values than the 6KZP- 
native complex over the 100 ns MD simulation (Fig 6A). The final SASA values of the 6KZP-montelukast and 
the 6KZP-native complexes are about 610 nm2 and 520 nm2, respectively. A high SASA value indicates that a 
high proportion of the complex is surrounded by solvent molecules, whereas a low SASA value indicates that a 
large number of solvent molecules are buried inside the complex. Thus, the structure of the 6KZP-montelukast 
complex has less area covered by solvent molecules and is more compact and probably more stable than the 
6KZP-native complex.

The interaction energy calculated by GROMACS is defined as the potential energy of the complex minus the sum of the poten-
tial energies of the protein and ligand. A negative interaction energy means that energy is released upon binding; thus, the complex 
is more stable than the individual protein and ligand. Here, the interaction energy of the 6KZP-montelukast complex stabilised at 
around −300 kJmol−1 after about 20 ns simulation, whereas that of the 6KZP-native complex stabilised at around −200 kJmol−1 
after about 2 ns (Fig 6B). The lower interaction energy of 6KZP-montelukast indicates a higher binding affinity and stability than the 
6KZP-native.

The results of the Principal Component Analysis (PCA) show that the first two principal components (PCs) of the 6KZP- 
montelukast complex capture 61.2% of its total motion, requiring 8 PCs to account for 80.9%. In contrast, the first two PCs of the 
6KZP-native complex capture 55.8% of its aggregate motion and require 12 PCs to explain 80.6%, indicating a more complex 
dynamic behaviour. This suggests that the 6KZP-montelukast complex has a more efficient representation of its dynamics, while 
the 6KZP-native complex exhibits greater complexity, necessitating more components for a comparable level of explanation.

In the 2D projections of trajectories (Fig 7A), the clustered points correspond to similar conformations or states 
of the system, indicating shared structural features or dynamics. The 6KZP-native complex exhibits a greater 

Fig 5.  (A) Number of intra-hydrogen bonds for the 6KZP-native complex (orange colour) and 6KZP-montelukast complex (blue). (B) The 
frequency of the number of inter-hydrogen bonds of the 6KZP-montelukast complex (blue) and 6KZP-native complex (orange colour). (C) Number of 
inter-hydrogen bonds for the 6KZP-montelukast complex. (D) Number of inter-hydrogen bonds for the 6KZP-native complex.

https://doi.org/10.1371/journal.pone.0327386.g005

https://doi.org/10.1371/journal.pone.0327386.g005
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number of smaller clusters, while the 6KZP-montelukast complex displays fewer but larger clusters, which 
may represent more stable states. Additionally, isolated points between these clusters may signify transient 
conformations.

The Gibbs Free Energy landscape for both the 6KZP-native complex and the 6KZP-montelukast complex was analysed 
during the 100 ns MD simulations, utilising the first and last principal components that account for approximately 80% of 
the data variations (Figs 7B and C). These landscapes illustrate the directional fluctuations of the C-alpha atoms, reveal-
ing a large region of low energy in both complexes, indicating high stability. Notably, the 6KZP-native complex displayed 
multiple low-energy minima (shown in blue), suggesting it may exist in several states. In contrast, the deep blue low- 
energy region of the 6KZP-montelukast complex is more concentrated in a single region, indicating fewer low-energy 
stable states.

In summary, both the docking and MD simulations indicate a high binding affinity between montelukast and Ca
v
3.1. This 

supports further study on the use of montelukast as a Ca
v
3.1 inhibitor for the treatment of neurological diseases, such as 

epileptic seizures.

Fig 6.  (A) SASA and (B) interaction energies of the 6KZP-native complex (orange colour) and 6KZP-montelukast complex (blue).

https://doi.org/10.1371/journal.pone.0327386.g006

https://doi.org/10.1371/journal.pone.0327386.g006
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Binding free energy calculations

MMPBSA and MMGBSA binding free energy calculations were performed on the conformations of both Z944 and mon-
telukast at the 100 ns MD simulations. The results from both approaches indicate that montelukast binds with a higher 
affinity than Z944, as evidenced by its lower binding free energies (Table 2). This suggests that the binding complex of 
montelukast with Ca

v
3.1 is more stable than that of Z944. The increased stability primarily results from the van der Waals 

(ΔEvdW) and electrostatic interaction energies (ΔEelec), with differences of approximately 23.5 kcal/mol for van der Waals 
energy and 0.86 kcal/mol for electrostatic energy between montelukast and Z944. The total change in solvation free 
energy (ΔGsolv) for the montelukast complex is more positive than that of Z944, indicating that solvation is less favourable 
in the montelukast complex, which detracts from its binding affinity.

Monte carlo cell (MCell) modelling

A model utilising MCell and CellBlender was constructed to simulate the interaction between montelukast, calcium ions, 
Ca

v
3.1, synaptic active membrane, and synaptic vesicles in and around the pre-synapse. It incorporates the opening 

Fig 7.  (A) Principal component analysis of the 2D projections of trajectories for the 6KZP-native complex and the 6KZP-montelukast com-
plex. Two-dimensional contour map of the Gibbs Free Energy Landscape (FEL) during 100 ns MD simulations for (B) the 6KZP-native complex and (C) 
the 6KZP-montelukast complex. The first and last principal components (PCs) indicate the components used to capture approximately 80% of the total 
dynamic motion. The 6KZP-montelukast complex requires 8 PCs, while the 6KZP-native complex requires 12 PCs.

https://doi.org/10.1371/journal.pone.0327386.g007

Table 2.   Binding free energy calculations between Cav3.1 and its native ligand (Z944) or montelukast by MMPBSA and MMGBSA. ΔEvdW 
represents the van der Waals energy, ΔEelec denotes the electrostatic energy, ΔEpolar indicates the polar solvation energy, and ΔGsolv reflects the 
total change in solvation free energy. The “Binding” column presents the binding free energies. All energy values are expressed in kcal mol ⁻ ¹.

Ligand ∆EvdW ∆Eelec ∆Epolar ∆Gsolv Binding

MMPBSA
Native (Z944)

−44.15 −9.37 24.46 19.95 −33.57

Montelukast −67.67 −10.23 34.27 25.27 −52.62

MMGBSA
Native (Z944)

−44.15 −9.37 28.47 22.73 −30.79

Montelukast −67.67 −10.23 39.30 32.83 −45.06

https://doi.org/10.1371/journal.pone.0327386.t002

https://doi.org/10.1371/journal.pone.0327386.g007
https://doi.org/10.1371/journal.pone.0327386.t002


PLOS One | https://doi.org/10.1371/journal.pone.0327386  August 8, 2025 12 / 24

of Ca
v
3.1 channels near the pre-synaptic bouton, enabling the flow of calcium ions from the extracellular space into the 

pre-synapse. The influx of calcium ions can trigger the release of neurotransmitter molecules into the synaptic cleft, where 
they diffuse and initiate signal transmission in the postsynaptic cell. Excessive calcium influx can result in neurological 
disorders such as epileptic seizures. Conversely, if montelukast blocks the Ca

v
3.1 channels, it can reduce calcium entry 

and neurotransmitter release, potentially preventing such disorders.
In total, eight 0.2s MCell simulations were performed using different concentrations of montelukast and different rates of 

reaction (k2) between montelukast and the calcium channel (Table 3). The simulations demonstrated that the calcium ions 
and montelukast competed with the calcium channels. Once the montelukast molecules bound to the calcium channels, 
they blocked the movement of the calcium ions from the extra-synaptic region to the pre-synapse. This reduced the forma-
tion of the complex of calcium ions and synaptic vesicles in the pre-synapse, and thus reduced the amount of neurotrans-
mitter released to the extra-synaptic region.

The results of this study are as expected in our hypothesis. A high concentration of montelukast molecules and high 
k2 values reduced the number of vesicles docking with the presynaptic membrane and releasing neurotransmitter to the 
extra-synaptic region. There were about 26% fewer vesicles docking when 1,500 montelukast molecules were presented 
with a k2 value of 1.0 × 108 M-1s-1 in the system compared to the absence of montelukast. In contrast, there was almost no 
change in the number of vesicles docking when comparing the simulation of 500 montelukast molecules with a k2 value 
of 0.5 × 106 M-1s-1 and the absence of montelukast (Table 3). When the amount of montelukast was set at 500 and the 
value of k2 increased from 0.5 × 106 M-1s-1 to 1.0 × 108 M-1s-1, there was only a 4% increase in the number of vesicles being 
released. For the simulations with 1,500 montelukast, the number of vesicles being released increased by 24% when k2 
increased from 0.5 × 106 M-1s-1 to 1.0 × 108 M-1s-1. Thus, both the concentration of the montelukast and the k2 reaction rate 
are important factors in these simulations.

Figs 8A and B show the MCell simulation results with the standard parameters, a k2 rate constant of 1.0 × 108 M-1s-1, 
with 1,500 montelukast molecules and with no montelukast molecules. The figures indicate that the calcium ions and mon-
telukast compete with each other to bind to the calcium channel located in the extra-synaptic region. After 0.2 s of the sim-
ulation, the system was almost equilibrated, and about 700 montelukast molecules were bound to the calcium channels. 
This reduced the number of calcium ions that could bind to the channels, and thus the number of vesicles being released 
to the extra-synaptic region.

Figs 8C and D show the simulations with the standard parameters, a k2 rate constant of 1.0 × 107 M-1s-1 and with 500 and 1,500 
montelukast molecules. Again, the systems seem to be almost equilibrated after 0.2 s. The number of calcium channels blocked 
by the montelukast increased gradually with time, leading to a reduction in the vesicles being released in the extra-synaptic region. 

Table 3.  The number of calcium ion and vesicle complexes located in the extra-synaptic region at 0.1 and 0.2 seconds in the MCell simula-
tions under different k2 rate constants and initial number of montelukast.

Number of mon-
telukast molecules

Rate k2
(M-1s-1)

Number of the calcium ion and 
vesicle complex at 0.1 second

Number of the calcium ion and 
vesicle complex at 0.2 seconds

0 NA 2312 2665

500 0.5 x 106 2313 2654

500 1.0 x 107 2289 2671

500 5.0 x 107 2271 2588

500 1.0 x 108 2164 2539

1500 0.5 x 106 2252 2612

1500 1.0 x 107 2239 2582

1500 5.0 x 107 1971 2262

1500 1.0 x 108 1750 1969

https://doi.org/10.1371/journal.pone.0327386.t003

https://doi.org/10.1371/journal.pone.0327386.t003
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Figs 8E and F illustrate that an increase of k2 rate constant from 0.5 × 106 M-1s-1 to 1.0 × 108 M-1s-1 for the system, with a small num-
ber of montelukast molecules (500), has a minimal effect on the number of vesicles being released. This may simply be because 
the lower reaction rate causes the montelukast to be less competitive than the calcium ions in binding to the channels.

Limitations

Our results indicate that montelukast binding to Ca
v
3.1 is more stable than its native ligand Z944. Montelukast may have 

the ability to decrease the number of neurotransmitters released from the pre-synapse and potentially has therapeutic 
effects on neurological disorders, such as epileptic seizures. However, there are several limitations to this study.

The docking simulations in this study were conducted using the GOLD genetic docking algorithms and ChemPLP scor-
ing functions, without employing multiple docking software for cross-validation. However, our successful ROC analysis, 
along with support from previous studies [30,31], indicates the high reliability of our docking results.

Fig 8.  Quantities of the items in the MCell simulations with standard parameters and: (A) 1,500 montelukast molecules and k2 = 1.0 × 108 M-1s-1; 
(B) no montelukast molecules and k2 = 1.0 × 108 M-1s-1; (C) 500 montelukast molecules and k2 = 1.0 × 107 M-1s-1; (D) 1,500 montelukast molecules 
and k2 = 1.0 × 107 M-1s-1; (E) 500 montelukast molecules and k2 = 0.5 × 106 M-1s-1; (F) 500 montelukast molecules and k2 = 1.0 × 108 M-1s-1. CA_CYT 
and CA_Pre are the calcium ions located in the extra-synaptic region and the pre-synapse, respectively. E_World is the complex of montelukast and cal-
cium channels. Mont_World is the montelukast in the whole system, VesC_CYT and VesC_Pre are the complexes of calcium ions and vesicles located 
in the extra-synaptic region and the pre-synapse, respectively.

https://doi.org/10.1371/journal.pone.0327386.g008

https://doi.org/10.1371/journal.pone.0327386.g008
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The selection of binding sites for ligands can influence docking scores. In this study, the binding pore domain of the 
native ligand, Z944, was used as the binding pocket for all docking simulations. While this is a standard practice, it does 
neglect the possibility that montelukast may have alternative binding sites in vivo or that allosteric sites may exist where 
multiple molecules of Montelukast can bind to different locations on Ca

v
3.1 simultaneously.

This study conducted 100 ns MD simulations, which have demonstrated that the protein-ligand complexes reached 
a stable state. Additionally, the 100 ns timescale is consistent with other studies of Ca

v
3.1 using the PDB code 6KZP 

[32–34]. However, there remains a possibility for the system to become unstable after a prolonged period of stability due 
to a sudden conformational change.

The use of Berendsen temperature coupling and Parrinello-Rahman barostat pressure coupling during NVT and NPT 
equilibration steps is primarily due to their simplicity and efficiency. The Berendsen thermostat is straightforward to imple-
ment in GROMACS and computationally efficient, making it suitable for initial equilibration steps. It also allows for rapid 
adjustments to the system’s temperature without introducing significant artifacts [35]. However, other approaches, such as 
the Nose-Hoover thermostat and Velocity Rescaling thermostat, generate a proper ensemble and provide more accurate 
temperature control [35]. Similarly, the Monte Carlo barostat and Martyna-Tuckerman-Tobias-Klein barostat offer accurate 
pressure control and are less prone to instability [35].

Docking and MD can only suggest that montelukast has a high binding affinity to Ca
v
3.1, but cannot indicate whether 

it is an inhibitor or an inducer. An inhibitor of Ca
v
3.1 may produce the therapeutic effects mentioned in this study. In con-

trast, an inducer of Ca
v
3.1 may increase the amount of calcium ion flux into the pre-synapse and increase signal trans-

mission between neurons, thus worsening the condition of patients with neurological disorders, such as epileptic  
seizures. This indistinguishable property is the common drawback of docking and MD. However, most ligands are inhib-
itors, because induction requires activation of an enzyme, which generally requires conformational changes after bind-
ing, and only a very specific ligand structure can achieve this [36]. Thus, there is a high chance that montelukast is an 
inhibitor of Ca

v
3.1.

Other limitations that may affect the interpretation of the results of this study are the result of uncertain reaction rates 
and the simplification of the MCell model. The reaction rates of montelukast binding and blocking the calcium channel 
could not be found in the literature; thus, several different values were explored in this study. Although these rates were 
based on those of another calcium channel blocker, nifedipine [37], they may not be precisely appropriate for montelu-
kast. Another limitation is that the exchange of ions and neurotransmitters within the synapse requires many different 
types of channels and diffusion mechanisms, and these are far more complicated than our model. There are also many 
organelles in the human pre-synapse region, and they may affect the diffusion of calcium ions, synaptic vesicles and 
neurotransmitters. Nevertheless, our MCell results successfully simulated the interaction of montelukast molecules 
with all other components in the synapse model and showed that montelukast molecules reduced the number of ves-
icle complexes released from the pre-synapse. Thus, we believe the negative effect of this limitation on the result is 
minimal.

Conclusions

Montelukast is an FDA-approved drug that has been used for decades. It has the appropriate pharmacodynamics, 
pharmacokinetics and pharmacovigilance profile for long-term oral administration [19,21]. Montelukast is considered safe 
for use in pregnancy, while all other anti-epileptic drugs carry the risk of congenital malformation and adverse prenatal 
outcomes [21]. This study used molecular docking, MD and MCell simulations to illustrate the potential of montelukast in 
binding to the Ca

v
3.1 and reducing signal transmission between neurons. The results of this study support further in vitro 

investigations of montelukast as a safe and effective treatment for neurological diseases, such as epileptic seizures. The 
next step of this study is to perform an in vitro inhibition assay on Ca

v
3.1 and confirm the inhibition property of montelu-

kast [38].
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Materials and methods

Molecular docking

Molecular docking simulations were employed to calculate the binding affinities between Ca
v
3.1 and the 2,115 FDA- 

approved drugs of the ZINC database subset [9], aiming to identify a currently used drug that may inhibit the calcium 
channel. The 3-dimensional (3D) atomic coordinates of the sole Ca

v
3.1 structure derived from Homo sapiens in the Pro-

tein Data Bank, a ligand-bound Ca
v
3.1 (PDB code 6KZP), was retrieved [39]. This structure was previously determined by 

single particle cryogenic electron microscopy with 3.10 Å resolution [39]. The ligand bound to the structure was a Ca
v
3.1 

selective antagonist, Z944, which was located in the central cavity of the pore domain (Fig 1) [40]. This site is considered 
the binding pocket for all the docking simulations in this study. This structure has been used in several studies for Ca

v
3.1 

channel simulations, including one that discovered a novel cyclic peptide as a Ca
v
3.1 channel inhibitor [34,41].

Many docking programs have been developed, each of which has its own set of docking algorithms, scoring functions, 
and optimisation methods, resulting in varying degrees of accuracy when applied to different protein-ligand systems [29]. 
The docking algorithm is used to search all the potential orientations and conformations of the ligand located in the bind-
ing site of the protein. The scoring function is used to calculate the binding energies or binding scores of all the potential 
orientations and conformations [42].

The automated docking suite GOLD v5.5 [43] was used for all docking simulations in this study. GOLD contains several 
docking algorithms and scoring functions for users to select. According to a previous study [43,44], the genetic algorithm 
of GOLD achieved an 80–90% success rate in finding the experimental binding modes of a dataset with 85 complexes, 
depending on the protocols used. ChemPLP achieved the highest success rate among 20 different scoring functions in 
a docking power test using a dataset of 195 protein-ligand complexes [31]. This combination of docking algorithm and 
scoring function has also been used for calcium channel docking simulations [30]. Therefore, in this study, the genetic 
algorithms with 100% search efficiency and the ChemPLP scoring function [45] of GOLD v5.5 were used for all docking 
simulations. The docking protocols were set with no early termination, and the ‘slow’ option with high accuracy and the 
default parameters were used. Atoms within an area of 6 Å of the cognate ligands (Z944) in the X-ray crystallographic 
structures were set as the binding sites (PDB code 6KZP).

To validate the accuracy of our docking protocols in simulating Ca
v
3.1 complexes, we performed a receiver operating 

characteristic (ROC) analysis. It has been used in various studies to evaluate the performance of docking simulations, 
mainly focusing on their ability to distinguish between the ‘true’ hits and the ‘negatives’ [46–48]. In the receiver operating 
characteristic analysis, the docking scores were used to plot the true positive rate against the false positive rate at various 
threshold settings. The true positive rate was calculated using the experimentally determined binding affinities from the 
Zinc-in-vivo (ZIV) database [9]. The area under the curve (AUC) was calculated to indicate the capability of the docking 
procedure in classifying the true hits from the whole dataset. An AUC value of 1.0 indicates a perfect classification model, 
and a value of 0.5 indicates a random model with no predictive power. In general, an AUC value of 0.7 or above means 
that the docking scores have acceptable predictive power in distinguishing between binders and non-binders to the pro-
tein [49].

The receiver operating characteristic analysis of this study used the docking scores between Ca
v
3.1 and 14,066 com-

pounds in the ZIV database [9] as the ‘negatives’. These compounds are considered negative since they lack specific 
information indicating their status as T-type calcium channel inhibitors. Nonetheless, there is a possibility that a small 
subset of them retains the ability to bind to T-type calcium channels. Additionally, 548 T-type calcium channel inhibitors 
were obtained from the ZINC database as the ‘true’ hits. Thus, the total number of complexes used in this analysis was 
14,614. All the compounds of the ZIV database have reported bioactivities in animals, including humans. The result of our 
analysis, shown in Fig 9, indicates the satisfactory predictive power of our docking method. The high AUC value (0.865) 
indicates that the method has high sensitivity and specificity.
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Molecular dynamics (MD)

The aim of performing MD was to validate the docking results and to investigate protein-ligand dynamic interactions. 
MD simulates the motions and flexibility of a protein-ligand complex over a period of time, rather than a set of conforma-
tions as in the docking simulation. Thus, MD is more computationally demanding than docking and generally requires a 
high-performance computer. In this study, the ECDF Linux Compute Cluster (Eddie) of the University of Edinburgh with 
GPU acceleration was used to perform 100 ns MD simulations with a 2 ps time step between the Ca

v
3.1 channel (PDB 

code 6KZP) and Z944 or the selected FDA-approved drug.
In this study, utilities from the GROMACS suite [50] were used for all MD simulations and analyses. We used ‘gmx 

mdrun’ for MD simulations [50], ‘gmx rms’ to calculate the root mean square deviations (RMSD) of the Ca
v
3.1 backbone 

associated with ligand-Ca
v
3.1 complex, ‘gmx rmsf’ to calculate the root mean square fluctuation (RMSF) of the protein 

amino acid residues, ‘gmx gyrate’ for the radius of gyration (Rg), ‘gmx sasa’ to estimate the solvent accessible surface 
area (SASA) [51], ‘gmx hbond’ to count the number of hydrogen bonds, and ‘gmx energy’ to calculate the interaction ener-
gies between the protein and ligands.

The atom types and parameters of the Ca
v
3.1 channel were generated using the CHARMM36 force field [52]. 

The parameterisation of the selected drug molecule (montelukast) was conducted using the CGenFF [53,54], which 
is accessible through the official CHARMM General Force Field server (https://cgenff.com/). The TIP3P water model 
was introduced to the system in a cubic unit cell shape [55]. Anions (Cl–) were also added to neutralise the over-
all charge of the system. This ensures proper representation of electrostatic interactions and satisfactory system 
stability, preventing artificial polarisation, water distribution imbalance, and long-range interactions. This is a con-
ventional practice in MD for more realistic and reliable simulations of protein-ligand complexes.Energy minimisa-
tion was performed on the system, to determine a molecular arrangement of all atoms that avoids steric clashes, 
using the steepest descent minimisation with 5 × 104 steps. After minimisation of the solvated and electroneutral 
system, equilibration was performed to ensure that the solvent and ions around the protein-ligand system have 

Fig 9.  Receiver operating characteristic curves of our docking simulations between Ca
v
3.1 (PDB code 6KZP) and the 14,614 compounds 

obtained from the ZIV database and the ZINC database. The red line is a reference line, which indicates no predictive power, and the blue line is the 
resulting curve with an AUC value of 0.865.

https://doi.org/10.1371/journal.pone.0327386.g009

https://cgenff.com/
https://doi.org/10.1371/journal.pone.0327386.g009
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the appropriate molecular geometry at a suitable pressure, volume and temperature [56]. In general, equilibration 
contains two phases: the constant number of particles, volume and temperature (NVT) equilibration and the con-
stant number of particles, pressure and temperature (NPT) equilibration. In this study, both NVT and NPT were 
performed for 5 ns with a 0.2 ps time step, while the protein and ligand were positionally restrained. The Berendsen 
temperature coupling method and Parrinello-Rahman barostat pressure coupling method were used to maintain 
the system at 300K and 1 bar [50]. These techniques approximate the physiological temperature and atmospheric 
pressure for realistic conditions for the simulation [50]. The Lennard-Jones potential was used to estimate the short-
range interaction with a cut-off value of 12 Å. The long-range interactions were calculated by the Particle Mesh 
Ewald (PME) method, which has been shown to have an appropriate balance between computational cost and 
scientific reliability [57].

Previous studies have successfully utilised both the AMBER ff19SB force field and the CHARMM36m force field to 
simulate Ca

v
3.1 with the same protein structure (PDB code 6KZP) as in this study [32,33]. There is currently no literature 

comparing the accuracies or efficiencies of these two force fields for this specific protein. Therefore, we employed both 
in this study: AMBER for the Binding Free Energy calculations and CHARMM36 for the MD simulations. This approach 
enhances our confidence that if both force fields indicate that montelukast is more stable than the native inhibitor (Z944), 
we are likely to achieve accurate results.

After the MD simulations, Principal Component Analysis (PCA) and Free Energy Landscape (FEL) analyses were 
performed on both the Cav3.1 complexes of montelukast and the native (Z944) using the GROMACS functions ‘covar,’ 
‘anaeig,’ and ‘sham’ [58]. These analyses capture crucial dynamic information from the simulation trajectories by simplify-
ing the data’s complexity and highlighting the primary motion patterns in the system [58]. They are particularly beneficial 
for investigations focused on large-scale motions and conformational changes.

Binding free energy calculations

The docking and molecular dynamics simulations may not accurately simulate solvation energy, which reflects the energy 
associated with interactions between the protein-ligand complex and water molecules. This limitation arises due to the 
high computational demands of such simulations, making it impractical to calculate solvation energies during large data-
base screenings in docking or over extended MD simulations. Nevertheless, solvation energies can significantly influence 
the rate and magnitude of binding between a protein and a ligand [48]. Therefore, we employed molecular mechanics 
energies combined with the Poisson–Boltzmann (MMPBSA) and generalised Born and surface area continuum solvation 
(MMGBSA) approaches to calculate the binding free energies of the protein-ligand complex conformations at the 100 ns 
MD simulations, with the aim of assessing their stability [59].

A study by Sun et al. compared the performance of MMPBSA and MMGBSA in estimating binding free energies in 
1,800 protein-ligand systems [60]. Both approaches had similar performance: the authors judged that MMGBSA was 
more useful in ranking individual ligands on multiple proteins, while MMPBSA was more appropriate for ranking multiple 
ligands on the same protein [60]. It is difficult to select which method is more appropriate for this study, which includes 
only two ligands (the native and the selected FDA-approved drug) and one protein (Ca

v
3.1). Thus, both methods were 

used here.
The gmx_MMPBSA function in GROMACS was utilised to calculate the binding free energy between Ca

v
3.1 and 

its native ligand (Z944) or montelukast [61]. The molecular mechanics (MM) component evaluated various inter-
atomic interactions, including van der Waals and electrostatic forces. Solvation energy was determined by combin-
ing polar and non-polar contributions from the PBSA or GBSA models [61]. The binding free energy was derived 
from the difference between the energy of the complex and the sum of the energies of the unbound ligand and 
protein [61]. A more negative value indicates that more energy is released during binding, suggesting a more stable 
complex.
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Monte carlo cell (MCell) modelling

After performing docking and MD to determine the potential Ca
v
3.1 inhibitor from the 2,115 FDA-approved drugs, MCell 

modelling was conducted to simulate the interactions between the selected drug, calcium ions, Ca
v
3.1, synaptic active 

membrane and synaptic vesicles in and around the pre-synapse. In the human nervous system, when an action potential 
propagates into an axon, the Ca

v
3.1 channels close to the pre-synaptic bouton open and calcium ions from the extra-

cellular space flow into the pre-synapse down the concentration gradient of calcium from the extra- to intra-presynapse. 
The calcium ions in the pre-synapse then trigger the synaptic vesicle to fuse with the pre-synaptic active membrane, 
and the neurotransmitter molecules in the synaptic vesicle are released into the synaptic cleft, where they diffuse, with 
some reaching postsynaptic receptors, initiating various forms of signal transmission in the postsynaptic cell. In particu-
lar, binding to ionotropic receptors such as AMPA or NMDA receptors leads to the influx of charge carried by ions into the 
postsynaptic cell. If the magnitude of this influx is too high, neurological disorders, such as epileptic seizures, may occur 
[1]. Blocking the Ca

v
3.1 channel with inhibitors may reduce the amount of calcium influx into the pre-synaptic region and 

decrease the number of neurotransmitter molecules being released. The resultant reduction in excitation may alleviate the 
severity of symptoms associated with neurological disorders.

This study employed an open-source 3D graphical software, CellBlender bundle version 4.0.5 with Blender 2.93, to 
create and visualise the synapse model. Blender is a software toolset that has been used to generate animated films, 
video editing, fluid dynamic simulations and more [62]. Thousands of add-ons have been developed for different pur-
poses, including CellBlender, which is embedded with MCell (version 4.0.5) [63–65]. MCell is a comprehensive modelling 
environment that uses Monte Carlo Cell simulations to investigate the characteristics and geometries of particles and their 
reactions, including synaptic plasticity in dendritic spines [66–68].

The synapse model created in this study contains three parts: the pre-synapse, post-synapse and extracellular regions 
(Fig 10). The volume and surface area of the pre-synapse region were 0.21 µm3 and 2.27 µm2, respectively; those of the 
post-synapse region were 0.15 µm3 and 2.13 µm2, and those of the extracellular region were 4.63 µm3 and 16.04 µm2, 
respectively [69]. Calcium channels were placed on the upper surface of the pre-synapse, with a density of 104 per µm2 
(Fig 10C) [69]. The bottom surface of the pre-synapse was assigned as an active membrane for the release of synaptic 

Fig 10.  Model of synapse. (A) The pre-synapse (top) and post-synapse (bottom); (B) The synapse model with calcium ions (green), montelukast (red), 
calcium channels (blue) and calcium pump (black); (C) The pre-synapse region (orange) where the calcium channels were located; (D) The pre-synapse 
region (orange) of the active membrane where the vesicle and calcium ion complexes were released.

https://doi.org/10.1371/journal.pone.0327386.g010

https://doi.org/10.1371/journal.pone.0327386.g010
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vesicles (Fig 10D). These values were adopted from a recent study [69], which used MCell simulations to investigate the 
inhibition effects of gadolinium ions on calcium channels located on the pre-synapse.

Four reactions were used to describe the interactions between the selected FDA-approved drug, calcium ions and the 
synaptic vesicles in different compartments:

	 Ca2+out + A
k1→ Ca2+in 	 (1)

	 M+ A
k2→ E	 (2)

	 Ca2+in + V
k3→ D	 (3)

	 Ca2+in + P
k4→ Ca2+out	 (4)

where Ca2+out  and Ca2+in  indicate the calcium ions located outside and inside the pre-synapse, respectively. The calcium 
channel (A) allows calcium ions to travel into the pre-synapse. Thus, equation 1 indicates the diffusion of calcium ions 
from the extracellular region into the pre-synapse through the calcium channels. Equation 2 indicates the selected 
FDA-approved drug M blocking the calcium channel (A) and forming a complex of the drug and calcium channel (E). V 
and D in equation 3 are the vesicles located inside the pre-synapse and the calcium ion and vesicle complex, respectively. 
In human pre-synapse, calcium ions are pumped out of the neurons by several mechanisms, such as ATP-driven pumps 
and Na+/Ca2+ exchangers [70]. This study collectively calls all mechanisms that remove calcium ions ‘calcium pumps’. The 
P of equation 4 is the calcium pump that moves calcium ions out of the pre-synapse to the extracellular region.

The rate of calcium flux into the pre-synapse after binding to the calcium channel is denoted k1. The rate at which 
the selected drug molecules bind and block the calcium channels is denoted k2. The rate at which calcium ions bind to 
the vesicles inside the pre-synapse is denoted k3. The rate of the calcium ions being pumped out of the pre-synapse is 
denoted k4. The values of these rate constants (except k2) were adopted from the study by Sutresno et al. [69] and are 
listed in Table 4. As the rate constant k2 could not be found in the literature, we used four different values to explore the 
effects of the selected drug. According to the study by Mery et al. [37], the reaction rate constant of the calcium channel 

Table 4.  Standard value of parameters in the MCell simulations.

Parameter Standard Value

Rate k1 1.0 × 108 M-1s-1

Rate k2 0.5 × 106, 1.0 × 107, 5.0 × 107, 1.0 × 108 M-1s-1

Rate k3 1.0 × 107 M-1s-1

Rate k4 1.0 × 107 M-1s-1

Diffusion coefficient of calcium ions outside and 
inside the presynaptic

6.0 × 10 − 6 cm-1s-1

Diffusion coefficient of montelukast 1.0 × 10 − 6 cm-1s-1

Diffusion coefficient of vesicles 1.2 × 10 − 6 cm-1s-1

Diffusion coefficient of the calcium ion and the 
vesicle complex

1.0 × 10 − 6 cm-1s-1

Calcium channel density 1.0 × 104 µm2

Calcium pump density 1.0 × 104 µm2

https://doi.org/10.1371/journal.pone.0327386.t004

https://doi.org/10.1371/journal.pone.0327386.t004
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inhibitor nifedipine ranges from 1 × 106 to 4.47 × 106 M-1s-1. The docking results of this study (Table 1) show that the dock-
ing scores of the selected drug and nifedipine were 100.71 and 47.78, respectively. Thus, we believe the reaction rate of 
the drug is higher than that of nifedipine, i.e., at least 4.47 × 106 M-1s-1. We explored the effects of four different k2 values: 
5 × 106 M-1s-1, 1 × 107 M-1s-1, 5 × 107 M-1s-1 and 1 × 108 M-1s-1 (Table 4).

In addition to the rate constant, the diffusion coefficient is also an important factor in our simulations. The diffusion coeffi-
cient indicates the distance that a molecule diffuses in the medium per unit of time. The diffusion coefficient values used in this 
study (Table 4) were adopted from a previous study [69], which simulated the interaction between calcium ions and gadolinium 
ions within calcium channels that regulate entry into the pre-synapse. Two different ratios of the number of calcium ions and 
the selected drug were used: 6:1 (N = 3000 and 500) and 2:1 (N = 3000 and 1500). Again, these ratios were adopted from the 
study by Sutresno et al. [69]. These ratios are a rough estimation because no such data can be found in the literature.

The simulation protocol of this study is also similar to that of Sutresno et al. [69]: all the calcium channels were in their 
open states, and they were ready for binding to either the calcium ion or the FDA-approved drug molecule. As no infor-
mation can be found in the literature with regard to how long the drug molecule could bind to the calcium channel, we 
simulated that neither the calcium ion nor the drug molecule would unbind from the calcium channel once binding occurs. 
We initialised the system with a specified number of calcium ions and drug molecules evenly distributed throughout the 
extra-synaptic region. The drug molecules competed for the calcium channels until they were all occupied.

In summary, this MCell model illustrates the effect of the selected drug on the inhibition of calcium channels. Its effect 
on the number of calcium ions in different compartments and the number of vesicles being released into the synaptic cleft 
under different reaction rate constants, diffusion constants and number of drug molecules was also demonstrated. The 
overall research process is summarised in Fig 11.

Fig 11.  Overview of the research process.

https://doi.org/10.1371/journal.pone.0327386.g011
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