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Abstract

A cardiac digital twin is a virtual replica of a patient’s heart for screening, diagnosis, prog-
nosis, risk assessment, and treatment planning of cardiovascular diseases. This requires
an anatomically accurate patient-specific 3D structural representation of the heart, suit-
able for electro-mechanical simulations or study of disease mechanisms. However, gen-
eration of cardiac digital twins at scale is demanding and there are no public repositories
of models across demographic groups. We describe an automatic open-source pipeline
for creating patient-specific left and right ventricular meshes from cardiovascular mag-
netic resonance images, its application to a large cohort of ~ 55k participants from UK
Biobank, and the construction of the most comprehensive cohort of adult heart models
to date, comprising 1423 representative meshes across sex (male, female), body mass
index (range: 16—42 kg/m?) and age (range: 49-80 years). Our code is available at https:
/[github.com/cdttk/biv-volumetric-meshing/tree/plos2025, and pre-trained networks, rep-
resentative volumetric meshes with fibers and UVCs are available at https://doi.org/10.
5281/zen0do.15649643.

Introduction

Approximately one-third of deaths globally are estimated to be caused by cardiovascular
diseases [1]. A Cardiac Digital Twin (CDT) aims to improve cardiac healthcare by creating
a virtual replica of a patient’s heart through an interdisciplinary approach in personalized
medicine. The CDT can, in principle, be used to improve risk assessment, screening, diag-
nosis, and treatment by providing more accurate personalised in silico monitoring and pre-
dictions compared to traditional methods [2-4]. A CDT is continuously updated with new
relevant data - these data can be periodically acquired in hospital visits, including imaging
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studies, or can be acquired real-time, e.g. with wearable devices. A CDT-based monitoring
and prediction system may involve a variety of components such as mechanistic simulation,
statistical prediction models, many types of data sources, and secure data storage and transfer
protocols [2-4].

In this context, CDTs based on recapitulating the anatomy and function of the ventricles
of the heart are being used to predict sudden cardiac death risks [5], guide the placements
of implanted devices [6], plan ablation procedures [7], better predict adverse cardiovascu-
lar events [8], and provide mechanistic insights in public health by inferring patient-specific
myocardial tissue properties [9], among others. A key requirement in all these applications is
the ability to personalise a bi-ventricular cardiac computational mesh to each patient.

Cardiovascular Magnetic Resonance (CMR) images are routinely acquired in clinical prac-
tice for calculating diagnostic metrics such as left and right ventricular (LV and RV) volumes
and ejection fraction (EF) [10,11]. CMR acquisitions typically consist of multiple 2D cine
steady state free precision scans, leading to a set of slices in heart’s short axis (SAX), usually 8-
12 slices with a thickness around 8-10 mm, and one to three circumferentially sampled long
axis (LAX) slices [12,13]. Due to the sparse and cross-sectional nature of the slices, and the
fact that the slices might be misaligned due to patient movement and differences in breath-
hold position during acquisition, it is not straightforward to reconstruct the 3D structure
from these 2D images [12,13]. Hence, this problem has been an active research area and a
variety of methods have been proposed.

One approach is to tackle the problem at the imaging protocol and reconstruction stage
and attempt to create an isotropic 3D cine image through faster undersampled scans and
smart image reconstruction using deep-learning models instead of classical reconstruction
algorithms [14-16]. While this approach shows promise for future applications, 2D cine is still
the clinical standard and most existing cine MR datasets are acquired using the 2D clinical
standard.

The methods proposed for 3D heart mesh reconstruction from typical clinical cine MR
acquisitions have included three common approaches: deforming an initial/template mesh to
fit the CMR data, fitting to a statistical shape model (SSM), and deep-learning based recon-
struction. [17] warped a template mesh to fit the anatomy through registration of binary
images created from the template mesh and segmentation of the medical image. [18] and [13]
deformed an initial mesh to a point cloud obtained from contours of extracted relevant struc-
tures such as the LV endocardium and epicardium, and RV endocardium after segmentation.
In [19], a template biventricular heart mesh is deformed under diffeomorphic constraints to a
point cloud consisting of contours and landmarks extracted from CMR images. [20] proposed
a deep-learning approach where a point cloud completion network was trained to convert the
sparse point cloud extracted from CMR images to a dense point cloud. In [21], a multi-step
whole-heart mesh reconstruction method was proposed where the contours extracted from
CMR images were first used to reconstruct a biventricular mesh, which was then fitted to a
whole-heart SSM created from high-resolution CT by [22]. As a final step, the whole-heart
mesh was deformed using the method proposed in [18]. [23] proposed a heart shape recon-
struction method based on learning the principal component analysis parameters of a point
distribution model. The training set was created by registering the cardiac atlas mesh from
[24] to manual contours extracted from CMR. This method simultaneously used the SAX
view, 3 LAX views and patient metadata in the learning process. [25] directly created a volu-
metric mesh from CMR images using a graph convolution network. The training set was cre-
ated in the same way as [23]. [26,27] proposed two similar whole-heart mesh reconstruction
methods based on learning mesh deformations using graph convolution networks coupled
with a segmentation module. The methods were demonstrated to work with 3D CT, 3D MR
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and cine MR images. Although these methods are capable in principle of deriving digital twin
representative models at scale, none have done so. The existing methods have one or more of
the following limitations: either they did not explicitly model the locations of the aorta, mitral
and tricuspid valves from available long axis images, or they were not demonstrated to work
at scale (>50k cases), or source code is not publicly available.

Reconstructing the 3D heart shape from CMR images requires considerable effort and
expertise. Additionally, creating a full CDT system may be a complex interdisciplinary
endeavour, and researchers that work on one particular part of the system may not be familiar
with another part. Therefore, it is imperative that both open source tools and publicly avail-
able outputs are provided that can be readily used by researchers who work on other parts
of the CDT system. This paper aims to facilitate cardiac digital twinning with the following
contributions:

1. A fully open source automatic pipeline from raw cine MR images to biventricular
meshes. The method is validated on UKBB data and can both act as a baseline for
other researchers who are working on the same problem, or can be used to easily create
patient-specific meshes from cine MR images.

2. 1423 publicly available representative meshes created from different sex, BMI, and age
groupings. This diverse set of meshes can be readily used by other CDT researchers
who use biventricular meshes as input to their work, such as researchers working on
mechanistic simulation or statistical prediction models.

Materials and methods

An overview of the proposed pipeline is illustrated in Fig 1. Briefly, raw SAX and LAX images
were first automatically segmented. Using the segmentations, contours and landmarks were
extracted for each view. A biventricular surface mesh was then reconstructed using the con-
tours and landmarks. The surface mesh was then converted to a volumetric mesh and the vol-
umetric mesh was used to reconstruct cardiac fiber architecture and also mapped to universal
ventricular coordinates.

Legal and ethical approval for the study is covered by the UK Biobank’s Research Tis-
sue Bank approval (REC reference 11/NW/0382 for the initial approval and renewals with
REC references 16/NW/0274 and 21/NW/0157) obtained from the North West Multi-centre
Research Ethics Committee (MREC). Our research project was approved by the UK Biobank
in accordance with their application procedure.

Dataset

UK Biobank (UKBB) [28] is a large cohort study that includes CMR imaging and associ-

ated epidemiological and clinical data from >75,000 participants in the imaging substudy.
The CMR imaging protocol has been described previously [29]. Briefly, steady-state free-
precession CMR cine images were acquired in short and long axis locations, each with a sepa-
rate breath-hold. Typical spatial resolution was 1.8x1.8x8mm for short axis and 1.6x1.6x6mm
for long axis images. From this database, we utilized the following data for this study:

1. Long-axis (LAX) CMR images. These include images from three different views: 2-
chamber, 3-chamber, and 4-chamber. Each view is a 2D + t (time) image with fifty time
frames.

2. Short-axis (SAX) CMR images. Each SAX image is a 3D + t image with fifty time
frames.
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Fig 1. Overview. An overview of the proposed pipeline. Reproduced by kind permission of UK Biobank ©.
https://doi.org/10.1371/journal.pone.0327158.9001

3. Age, sex and body mass index (BMI) of participants.

4. Manual segmentations for the end-diastolic (ED) and end-systolic (ES) frames of the
SAX view of 4788 participants. These manual segmentations were created in a previous
study [29].

5. Various derived phenotypes such as ventricle volumes and ejection fractions reported in
two previous studies for validation and comparison [29,30].

CMR images and SAX manual segmentations were downloaded from UKBB on March 2023
and other data were downloaded from UKBB on March 2024. For more details on the dataset,
see S1 Table.
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Preprocessing

The only preprocessing we performed was the conversion of raw DICOM files from UKBB
corresponding to the LAX and SAX images, into NIFTI images. For each participant, four
NIFTI files were created that corresponded to the four different CMR views: LAX 2-chamber,
LAX 3-chamber, LAX 4-chamber, and SAX.

Segmentation

For each CMR view, a different set of heart structures were selected for segmentation as fol-
lows:

. LAX 2-chamber: LV cavity, LV myocardium, LA cavity.

. LAX 3-chamber: LV cavity, LV myocardium, RV cavity, RA cavity, Aorta

. LAX 4-chamber: LV cavity, LV myocardium, RV cavity, LA cavity, RA cavity
. SAX: LV cavity, LV myocardium, RV cavity

BN W N =

The structures to segment were selected based on how reliably they can be segmented from
each view. RV myocardium, for example, is typically excluded from cine MR segmentation
because it is too thin and usually gets lost to partial volume effect at typical cine MR resolu-
tion.

For the SAX view, we utilized manual segmentations that were previously created for
the ED and ES frames in a previous study [29]. The identifier of 4788 participants could be
matched between the manual segmentations and raw CMRs and these were used in this study.
For the LAX views, we manually segmented 150 participants at the ED and ES frames selected
in no particular order from the same set of 4788 participants. The segmentations were verified
and corrected under the guidance of a CMR level 3 clinical practitioner. 4000 of the partic-
ipants with manual SAX segmentations, and 100 of the participants with manual LAX seg-
mentations were used for supervised training of segmentation networks. The remaining par-
ticipants, 788 for SAX and 50 for LAX, were used as the test sets for evaluation. Training and
test subjects were selected randomly.

For automatic segmentation, there are a wide variety of methods proposed in literature
(see e.g. [31-35]). For this study, we picked the nnUNet [36] framework which implements
self-configuring UNet-based [37] networks for medical image segmentation, and is reported
to achieve state-of-the-art performance in various recent medical segmentation challenges
[38-40]. The recommended usage of training five folds from the training set, and using all of
them during inference was deployed separately for all views. Only 2D training was used for all
views. Since LAX views are 2D, that is the only option, and for SAX, we chose to use only 2D
because there was no clear evidence of 3D being better in a previous study that used nnUNet
for CMR segmentation [41]. The ED and ES frames were treated as independent images for
segmentation.

Automatic selection of ED and ES frames

The evaluation of segmentation accuracy, and subsequent meshing steps were performed for
only the ED and ES frames because manual segmentations and previously reported refer-
ence derived phenotypes based on manual segmentations were only available for ED and ES
frames, which makes validation and evaluation difficult for other frames. Hence, although
the proposed pipeline could be applied to all time frames in principle, ED and ES frames
were automatically selected after segmentation before subsequent steps. For the ED frame,
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we simply selected the first time frame since that is the first frame acquired after the R wave
detection in the UKBB CMR protocol, as done in [29]. For the ES frame, we picked the time
frame for which the sum of voxel counts labelled as “LV cavity” in the LAX views, and the five
mid-slices of the SAX view, was minimum. Automatic ES selection is illustrated for six exam-
ple participants in Fig 2. The reason we did not use a similar algorithm for picking the ED
frame as the frame with the maximum LV cavity volume is that, this algorithm is not perfect
and can pick the wrong frame if the automatic segmentation fails in some of the time frames.
For the UKBB dataset specifically, we think picking the first frame as the ED is more robust
due to the UKBB imaging protocol. On other datasets where this is not the case however,
picking the maximum LV cavity volume is a good alternative.

Extraction of contours and landmarks from the segmentation masks

After the ED and ES frames are selected, we then extracted the following contours and land-
marks from each of the four CMR views using their segmentation masks:

1. LAX 2 chamber: Contours: LV endocardial, LV epicardial. Landmarks: Two points on
the mitral valve plane, and the apex point, which is defined as the furthest point on
the LV epicardial contour, from the mid-point between the two selected points on the
mitral valve plane.

2. LAX 3 chamber: Contours: LV endocardial, LV epicardial, RV septum, RV free wall.
Landmarks: Two points on the aorta-LV intersection, and two points on the mitral valve
plane.
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Fig 2. Picking the ES frame. The LV volume transients (LV voxel count on each time frame divided by the maximum LV voxel count across time frames) of six example
participants for all the views separately, and their sum across the views. For the SAX view, only the five mid-slices were used for the calculation. The ES frame was picked
as the time frame that minimizes the sum across all views.

https://doi.org/10.1371/journal.pone.0327158.g002
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3. LAX 4 chamber: Contours: LV endocardial, LV epicardial, RV septum, RV free wall.
Landmarks: Two points on the mitral valve plane, and two points on the tricuspid valve
plane.

4. SAX: Contours: LV endocardial, LV epicardial, RV septum, RV free wall.

The contours and landmarks automatically extracted from the ED frame of a random
participant are illustrated in Fig 3.

The extraction algorithm is based on simple heuristics, and the reader is referred to the
source code and documentation for details.

Finite element mesh construction

We used an established Atlas-based pipeline [19] to construct the biventricular surface
meshes. As the RV myocardium was not captured in the segmentation, during the surface
mesh generation, the RV epicardium was estimated by extending the RV endocardium points

4 Chamber 3 Chamber

)

2 Chamber

Fig 3. Contour and landmark extraction from segmentations. Illustration of contours and landmarks automati-

cally extracted from the ED frame of a randomly selected participant. Contours: Red: LV endocardium, Green: LV
epicardium, Brown: RV septum, Blue: RV free wall. Landmarks: Yellow: Points on the mitral valve, Pink: Points on
the tricuspid valve, Teal: Points on the aorta-LV intersection, Purple: Apex. Reproduced by kind permission of UK
Biobank ©.

https://doi.org/10.1371/journal.pone.0327158.g003
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normal to the surfaces by 3 mm consistent with experimental measurements [42,43]. The
resultant surface meshes were then used to construct tetrahedral finite element meshes using
Meshtool [44] including six distinct regions of LV myocardium, RV myocardium, aortic,
tricuspid, pulmonary and mitral valves.

All volumetric meshes were then incorporated with a morphological coordinate system,
which describes the positions within ventricles based on the apical-basal (Z), transmural (p)
(from endocardium to epicardium), rotational (®) (anterior, anteroseptal, inferior, inferolat-
eral, anterolateral) and chamber-wise (left ventricle and right ventricle) coordinates [45]. For
each mesh, it also includes a realistic biventricular myocardial fibre structure implemented
using a rule-based approach with a transmural variation of angle o as from 60° to -60° in lon-
gitudinal fibre directions and angle 8 as from -65° to 25° in transverse fibre directions from
endocardium to epicardium [46].

Representative mesh generation for different sex, age and BMI groups

Before constructing representative meshes, we employed a mesh quality control step to
remove meshes that showed a large difference between surface-derived and segmentation-
derived phenotypes from the SAX view. Specifically, LV and RV volumes, and LV
myocardium mass were derived directly from nnUNet segmentations of the SAX view, and
from surface meshes. The LV mass was computed from the end-diastolic LV myocardial vol-
ume using a density of 1.05 g/mL. The relative differences were then calculated between the
phenotype derived directly from SAX segmentations and derived from surface meshes for
each phenotype for the whole cohort. Finally, the participants for which the relative difference
for at least one phenotype was greater than 75th percentile plus 1.5 times the interquartile
range were not included in the construction of representative meshes.

Participants with viable surface meshes were categorized based on their demograph-
ics of sex, age and BMI. The age bins start with 44 with incremental of 1 year for each bin
(i.e. 44, 45, 46...85) while the BMI bins start with 15 kg/m?* with incremental of 1 kg/m? for
each bin (i.e. 15,16,17,...,50). For each unique sex, age, BMI group with at least three par-
ticipants, the ‘average’ surface mesh was constructed. Before averaging, all surface meshes
were first registered to a common reference space to remove the inter-participant variabil-
ity in orientations and positions using a Procrustes-based method. Specifically, we first ran-
domly selected a participant’s surface mesh as the reference and then superimposed all other
surface meshes to this reference. To avoid the bias towards this reference, we computed the
mean mesh of the set of superimposed meshes. Then the Procrustes distances between the
mean mesh and the reference mesh were computed and if higher than le-6, the reference
was updated as the mean mesh until the optimal reference mesh is found. In this way, we
found the optimal reference mesh which represents the average heart position and orienta-
tion. Finally, all surface meshes were aligned with the optimal reference mesh and the average
volumetric meshes for different bins were constructed along with their UVCs and ventricular
fibres.

Results
Segmentation validation

The segmentation networks were validated in two ways: Comparison to manual segmenta-
tions using Dice scores, and comparison to previously reported derived phenotypes in litera-
ture such as volumes and ejection fraction. The participants in the test sets, 788 for SAX and
50 for LAX, were utilized for both of these comparisons.
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Mean Dice scores for the test sets of each view for each segmented structure are given in
Table 1. The automatic segmentations have high volumetric overlap with manual segmenta-
tions for every view and segmented structure.

Derived phenotypes

LV and RV volumes, and LV myocardium mass derived directly from manual, nnUNet-based
and UNet-based (reported in [47]) SAX segmentations, and from surface meshes are com-
pared to each other in Table 2. The number of participants used for this table was 731, which
is smaller than the SAX test set size of 788 because it is also required that a UNet-based result
exists for all the phenotypes and the surface reconstruction succeeds.

LA and RA volumes derived from from manual, nnUNet-based and UNet-based (reported
in [47]) LAX segmentations are reported in Table 3. Since the meshes are biventricular, and
hence do not include the atria, these cannot be derived from the meshes. The number of par-
ticipants used for this table was 48, which is smaller than the LAX test set size of 50 because it
is also required that a UNet-based result exists for all the phenotypes.

Application: Representative meshes

Surface meshes for the whole cohort were constructed from the end diastolic frames and used
to build a cohort of representative meshes for specific gender, age and BMI bins. Fig 4(A)
shows the number of females and males in the whole cohort, categorising into specific age (44
to 85 years old) and BMI (15 to 50 kg/m?) bins. The bins that contained three or more par-
ticipants were used to construct a representative mesh for that bin, resulting in a total num-
ber of 1423 representative meshes computed from 46917 individual meshes. Some example
representative meshes are illustrated in Fig 5.

For details on the number of participants and meshes utilized at each step of the pipeline,
see S2 Table.

We investigated the changes of cardiac structures with sex, BMI and age in the cohort of
representative meshes. We computed three phenotypes: LVEDV, RVEDV and LV mass, and
fitted a linear regression model for females and males with different age and BMI as shown in
Fig 4(B) and 4(C). We found that all three phenotypes are greater for males than for females
(LV mass: 133.6 + 14.8vs 97.2 + 11.3 g; LVEDV: 154.5 + 12.9vs 121.0 + 12.5 mL; RVEDV:

Table 1. Dice scores: Manual vs. nnUNet segmentations.

2Ch 3Ch 4Ch SAX

LV ED 0.97 (0.01) 0.98 (0.01) 0.97 (0.01) 0.97 (0.02)
LVES 0.88 (0.10) 0.94 (0.06) 0.89 (0.09) 0.93 (0.04)
RV ED 0.95 (0.03) 0.95 (0.02) 0.93 (0.04)
RV ES 0.88 (0.08) 0.86 (0.10) 0.88 (0.05)
Myo ED 0.88 (0.02) 0.91 (0.03) 0.89 (0.03) 0.88 (0.03)
Myo ES 0.86 (0.09) 0.93 (0.07) 0.86 (0.09) 0.90 (0.03)
LA ED 0.90 (0.06) 0.96 (0.06) 0.89 (0.06)

LAES 0.95 (0.03) 0.98 (0.03) 0.95 (0.03)

RA ED 0.92 (0.06)

RA ES 0.96 (0.04)

Ao ED 0.97 (0.02)

Ao ES 0.96 (0.05)

Mean and standard deviations of Dice scores between manual and nnUNet-produced segmentations. Empty cells
mean that the structure is not segmented from the corresponding view.

https://doi.org/10.1371/journal.pone.0327158.t1001
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Table 2. Phenotypes derived from the SAX view.

(a) Value Manual nnUNet UNet (Bai) Mesh (Ours)
LVEDV (mL) 150.6 (34.2) 149.8 (33.4) 150.9 (33.3) 139.3 (30.8)
LVESV (mL) 63.1(19.1) 62.3 (18.5) 62.4(18.6) 59.6 (17.3)
LVM at ED (gram) 92.4 (24.4) 94.1 (23.2) 86.9 (21.8) 112.8 (25.4)
RVEDV (mL) 157.6 (38.7) 157.0 (37.6) 158.6 (38.0) 145.5 (34.9)
RVESV (mL) 70.4 (23.0) 68.9 (21.1) 69.4 (21.9) 64.0 (19.6)
LV EF (%) 58.4 (6.1) 58.7 (5.8) 59.0 (5.7) 57.6 (5.3)
RV EF (%) 55.9 (6.2) 56.5 (5.7) 56.7 (5.9) 56.5 (5.6)

(b) Absolute diff. nnUNet-Manual UNet-Manual nnUNet-UNet nnUNet-Mesh
LVEDV (mL) 6.0 (4.7) 5.9 (4.5) 2.5(2.6) 11.1(6.9)
LVESV (mL) 5.4 (4.8) 5.1 (4.6) 2.3(2.9) 4.9 (3.9)
LVM at ED (gram) 7.1 (5.5) 8.2(6.2) 72(2.9) 188 (5.2)
RVEDV (mL) 7.9 (7.4) 8.2(7.4) 44 (4.1) 12.0 (7.3)
RVESV (mL) 6.9 (6.8) 6.6 (6.4) 2.8 (2.6) 5.6 (4.1)

LV EF (%) 3.1(2.8) 3.0 (2.8) 1.5 (2.0) 3.1(2.7)

RV EF (%) 3.9(3.3) 39(3.1) 1.9 (1.8) 2.3(2.2)

(c) Relative diff. nnUNet-Manual UNet-Manual nnUNet-UNet nnUNet-Mesh
LVEDV (%) 4.0 (3.0) 4.0 (2.9) 1.7 (1.8) 7.7 (4.7)
LVESV (%) 8.8(7.5) 8.3(7.3) 3.7 (4.6) 8.0 (5.7)
LVM at ED (%) 7.9 (6.3) 9.1 (6.5) 8.0 (2.7) 18.6 (4.8)
RVEDV (%) 5.0 (4.2) 5.1(4.2) 2.7 (2.5) 8.0 (4.7)
RVESV (%) 9.9(8.7) 9.6 (8.5) 4.1(3.7) 8.6 (5.6)

Mean and standard deviations of the phenotypes derived from the SAX view with different methods, and their
absolute and relative differences (n=731).

https://doi.org/10.1371/journal.pone.0327158.t002

Table 3. Phenotypes derived from the LAX views.

(a) Value Manual (Petersen) nnUNet UNet(Bai)
LAMinV (mL) 29.0 (11.1) 31.0 (11.0) 30.5 (11.4)
LAMaxV (mL) 70.9 (21.3) 77.3 (22.1) 76.5 (21.8)
RAMinV (mL) 48.3 (20.8) 47.2 (17.2) 47.8 (18.8)
RAMaxV (mL) 79.7 (24.8) 84.9 (24.2) 86.9 (27.5)

(b) Absolute diff. nnUNet-Manual UNet-Manual nnUNet-UNet
LAMinV (mL) 3.5(2.7) 3.0(2.4) 2.5(2.2)
LAMaxV (mL) 8.1(5.4) 6.6 (3.8) 4.4 (4.0)
RAMinV (mL) 47 (3.7) 3.9 (3.4) 2.9(2.4)
RAMaxV (mL) 7.2 (5.0) 7.8 (6.3) 4.5 (4.6)

(c) Relative diff. nnUNet-Manual UNet-Manual nnUNet-UNet
LAMinV (%) 12.5(8.7) 10.9 (8.0) 9.0 (7.9)
LAMaxV (%) 11.3(7.9) 9.2 (5.1) 5.8(5.4)
RAMinV (%) 10.1 (6.9) 8.4 (6.7) 6.5 (6.0)
RAMaxV (%) 9.0 (6.5) 9.4 (5.8) 4.9 (3.8)

Mean and standard deviations of the phenotypes derived from the LAX views with different methods, and their
absolute and relative differences (n=48).

https://doi.org/10.1371/journal.pone.0327158.t003

167.2+13.5vs 125.5+12.8 mL, all P < 0.0001 from Mann-Whitney U test). Aging was asso-
ciated with a reduction in both LV and RV diastolic volumes and LV mass (0.8 and -0.7
mL/year and -0.3 g/year, 8 = 184,188 and 130.5, P=5 X 107%,4.6 X 10> and 4.6 X 107°). In
contrast, increased BMI leads to an increase in LV and RV diastolic volumes and LV mass (1.1
and 1.2 mL/(kg/m?) and 1.8 g/(kg/m?), 8 =105.5, 110.1 and 64.5, P=9.1x 10%, 2.8 x 107

and 7.9 X 107%?).
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Fig 4. Demographic bins and associations with derived phenotypes. (A) The number of female and male participants in this cohort in specific age and BMI bins. The

bins that contain more than three participants are marked with a * and a representative mesh is created for each of these bins. The colour bar represents the absolute
value of the number of participants. (B),(C) Associations of derived phenotypes of all representative hearts with sex, age and BMI. The derived phenotypes LVEDV,

1423).

RVEDYV and LV mass are plotted as kernel density plots along with linear-regression lines for the whole cohort (black), for female (blue) and for male (red) (n:

https://doi.org/10.1371/journal.pone.0327158.9004
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A
female, age 49-50, bmi 20-21 female, age 49-50, bmi 23-24 female, age 49-50, bmi 27-28 female, age 49-50, bmi 30-31 female, age 49-50, bmi 35-36

female, age 64-65, bmi 18-19 female, age 64-65, bmi 23-24 female, age 64-65, bmi 27-28 female, age 64-65, bmi 30-31 female, age 64-65, bmi 38-39

female, age 80-81, bmi 20-21 female, age 80-81, bmi 23-24 female, age 80-81, bmi 27-28 female, age 80-81, bmi 30-31 female, age 80-81, bmi 33-34

B

male, age 49-50, bmi 20-21 male, age 49-50, bmi 23-24 male, age 49-50, bmi 27-28 male, age 49-50, bmi 30-31 male, age 49-50, bmi 35-36

male, age 64-65, bmi 18-19 male, age 64-65, bmi 23-24 male, age 64-65, bmi 27-28 male, age 64-65, bmi 30-31 male, age 64-65, bmi 38-39

male, age 80-81, bmi 20-21 male, age 80-81, bmi 23-24 male, age 80-81, bmi 27-28 male, age 80-81, bmi 30-31 male, age 80-81, bmi 33-34

Fig 5. Examples of representative meshes for different demographic bins.

https://doi.org/10.1371/journal.pone.0327158.g005
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Discussion

In this paper, we presented an automatic pipeline for CDT construction from raw cine MR
images to biventricular meshes and validated it on the CMR data of 54926 participants from
the UKBB. We also computed 1423 representative meshes and their corresponding fibers
and UVCs from different sex, BMI, and age groupings from the UKBB. All the code used

in the study, the trained segmentation networks, the representative meshes, and their cor-
responding fibers and UVCs are made publicly available. This will facilitate cardiac dig-

ital twinning from CMR images by providing an easily reproducible baseline for other
researchers and readily usable meshes for mechanistic simulations and statistical prediction
models.

Segmentation

The accuracy of the trained segmentation networks were validated using Dice scores and
derived phenotypes. The Dice scores showed very good agreement between manual and auto-
matic segmentations for all CMR views and structures. Due to the large time cost of manual
segmentation, an inter-observer variability study was not conducted. In literature, [47] pre-
viously reported inter-observer variability on a set of SAX images of 50 subjects using three
observers. Mean inter-observer Dice scores were 0.93 for LV, 0.88 for LV myocardium, and
0.88 for RV. The ED and ES scores were not reported separately, but it can be seen that our
nnUNet-manual Dice scores are slightly higher if we average the ED and ES dice scores in
Table 1 (0.95 for LV, 0.89 for LV myocardium, and 0.91 for RV).

It is worth noting that structures that are larger in the ED frame compared to the ES frame,
such as the left and right ventricle cavities, tend to have a higher Dice score in the ED frame,
and similarly, the atria which are smaller in the ED frame have a higher Dice score in the
ES frame. This is not surprising since a volumetric overlap measure like Dice score tends to
give higher scores for large connected structures due to the non-overlapping regions occur-
ring only near the edges of the structure. For the LV myocardium, this effect is not clearly
observed, which is likely due to the greater inherent ambiguity in the LV myocardium seg-
mentation on the ES frame that causes a Dice score-reducing effect.

Derived phenotypes

The phenotypes derived from automatic vs. manual segmentations of the short-axis view
showed similar agreement to the method presented in [47], which was reported to be com-
parable to inter-observer differences. This is not surprising since both methods are based on
the U-Net architecture and trained using the manual segmentations from [29]. For the phe-
notypes derived from the long-axis, our method showed slightly higher difference to man-
ual segmentations from [29] compared to the method from [47], but this is likely due to the
fact that we trained our LAX networks using our own manual segmentations whereas [47]’s
method was trained on [29]’s LAX segmentations.

As seen in Table 2, the phenotypes computed from the surface meshes showed a system-
atic bias in volumes and LV myocardial mass compared to segmentation-derived pheno-
types from the nnUNet segmentations that were used to create the surface meshes. The mean
of the LV-ED, LV-ES, RV-ED and RV-ES volumes computed from the meshes were respec-
tively 7.0%, 4.3%, 7.3% and 7.1% smaller than the volumes computed from the nnUNet seg-
mentations, and the mean of the LV myocardial mass was 19.9% larger. An underestima-
tion of volumes and overestimation of the LV myocardial mass derived from meshes was
previously reported in [48] with a smaller difference (4.1% smaller LV-ED volume and 6.6%
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larger LV myocardial mass). One explanation of the difference is in the volume integration
technique: the addition of disks from a short axis stack is different than the actual integra-
tion of volume from a 3D computational mesh. We would expect differences to be greater

at the basal region of the anatomy. It is unclear at this stage how different meshing meth-

ods might affect this discrepancy and whether segmentation-derived or mesh-derived phe-
notypes should be preferred for a certain clinical application. Further study is required to
address these questions. Interestingly, since the proportional volume underestimation is sim-
ilar in the ED and ES frames, the difference in the LV and RV ejection fractions (important
measures in clinical cardiology) remain comparable to the inter-observer variability reported
in [47].

Representative meshes

The cohort of representative meshes was constructed by averaging the hearts of partic-
ipants falling into same age, sex and BMI bins. The LV and RV end-diastolic volumes

and LV mass derived from the representative meshes were found to decrease with aging
and increase with larger BMI, which is consistent with previous studies measured from
the general population of the UK Biobank [19,30] as well as other independent datasets
[49]. Compared to the previously published virtual heart cohorts [6,24,50], this presented
cohort (n=1423) is, to the best of our best knowledge, the largest heart cohort in the world
which is additionally augmented with detailed demographics information such as sex,

age and BMI, that can enable next generation population-specific studies. This cohort of
anatomical-detailed representative models offers enriched heart shape information which
provides a normative reference framework that can complement and strengthen the pre-
vious studies on biological age estimation [51-53], by enabling precise estimation of heart
age deviation, supporting biological age acceleration analysis, improving prediction pre-
cision beyond radiomic approaches, and improving individualized cardiovascular risk
profiling.

Limitations

Since the proposed method relies on segmentation networks trained with supervised learning,
domain shift issues could negatively affect segmentation performance on different datasets.
While the UKBB is a large dataset, all the participants are volunteers, and hence are likely

to be healthier than patient cohorts from hospitals. Further, all UKBB CMR images are
obtained using the same imaging protocol and scanner model. Therefore, when using a differ-
ent dataset, domain shift is likely with respect to pathology composition of the cohort, imag-
ing protocol, and scanner model. Possible domain shift issues are not addressed in this paper
and will require further detailed studies.

As the RV wall thickness is difficult to estimate from only CMR images, we assumed a
fixed 3 mm as the RV wall thickness, that can lead to inaccurate RV function estimation. We
set the RV wall thickness as a variable in our pipeline which can be easily adjusted to allow
flexible usage for any new studies if a personalized estimation of RV wall thickness is avail-
able.

The meshing method can produce intersections between the RV septum and the RV free
wall surfaces, which causes failures in conversion from surface to volume meshes. Thus, some
meshes may require post-processing before being used in simulations.

The proposed pipeline processes each time frame separately and temporal smoothness is
not guaranteed or analysed. Hence, the method may not be readily suitable for functional
twinning of the heart motion.
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Conclusion

We presented an automatic pipeline from raw cine MR images to biventricular meshes and
made publicly available all the code, trained segmentation networks and 1423 representative
meshes and their corresponding fibers and UVCs from different sex, BMI, and age groupings
from the UKBB. Future work is to create new representative cohorts for specific patient popu-
lations using the proposed pipeline, based on available individual data of summary diagnosis
in the UKBB, enabling disease-specific studies. We anticipate this to be a valuable resource for
other researchers working on cardiac digital twinning.

Supporting information

S1 Table. The dataset utilized from the UKBB.
(PDF)

$2 Table. Number of participants or meshes utilized at different steps of the pipeline. A
number of participants or meshes were removed at certain steps of the pipeline due to reasons
such as missing views, failing automatic quality-control checks, failing to produce an out-

put etc. This table details the reasons for removal and the number of participants or meshes
remaining after these removals.

(PDF)

S1 Fig. Bland-Altman plots for phenotypes derived from the SAX view.
(PDF)
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