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Abstract

Multiple C2 Domains and Transmembrane region Proteins (MCTPs) in plants have
been identified as important functional and structural components of plasmodesmata
cytoplasmic bridges, which are vital for cell-cell communication. MCTPs are endoplas-
mic reticulum (ER)-associated proteins which contain three to four C2 domains and

two transmembrane regions. In this study, we created structural models of Arabidopsis
MCTP4 ER-anchor transmembrane region (TMR) domain using several prediction meth-
ods based on deep learning (DL). This region, critical for driving ER association, presents
a complex domain organization and remains largely unknown. Our study demonstrates
that using a single deep-learning method to predict the structure of membrane proteins
can be challenging. Our models presented three different conformations for the MCTP4
structure, provided by different deep learning methods, indicating the potential complex-
ity of the protein’s conformational landscape. We then used physics-based molecular
dynamics simulations to explore the behaviour of the TMR of MCTPs within the lipid
bilayer.We found that the TMR of MCTP4 is not rigid but can adopt multiple conforma-
tions. The membrane-embedded region contains two helical pairs: HP1 (TM1-TM2) and
HP2 (TM3-TM4). Deep learning predictions revealed three distinct types of inter-helical
contact interfaces: ESMFold, AlphaFold-Multimer, trRosetta, and RoseTTAFold consis-
tently predicted a TM2-TM3 contact; AlphaFold2 did not predict any contact between
these two helical pairs, while OmegaFold instead suggested a TM1-TM4 interface. Our
physics-based coarse-grained simulations not only confirmed the contacts predicted by
these models but also revealed a broader conformational landscape. In particular, struc-
tural clustering identified five distinct conformational clusters, with additional and more
extensive inter-helical contacts not captured by the deep learning predictions. These
findings underscore the complexity of predicting
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protein structures. We learned that combining different methods, such as deep learning
and simulations, enhances our understanding of complex proteins.

1 Introduction

Plasmodesmata (PD) are intercellular channels found in plants that allow for the communi-
cation and transport of molecules between adjacent cells [1]. PD have a unique membrane
organization characterized by tight membrane contact sites, consisting of two concentric
membranes - the plasma membrane (PM) and the endoplasmic reticulum (ER) [1]. The
regulation of intercellular trafficking through these channels is essential for plant growth,
development, and defense against biotic and abiotic stresses [2].

The ER-PM tethering machinery of membrane contact sites in plasmodesmata has been
hypothesised to play a crucial role in PD formation, reshaping, and proper function [1,2].
Members of the MCTP family are plasmodesmata-localised and act as ER-PM tethers [3].
MCTPs localize at plasmodesmata and function as tethering proteins, with their trans-
membrane region anchored in the endoplasmic reticulum and their C2 domains inter-
acting with the plasma membrane. They are thought to play a crucial role in regulating
intercellular signaling [2].

MCTP proteins consist of two transmembrane regions and three or four tandem C2
domains. The C2 domains act as PM docking sites through interaction with anionic sites,
while the transmembrane domain insert into the ER membrane. This structural organization
is essential for their function in PD. The cytosolic C2 domains were recently shown, through
both Martini simulations and experimental evidence, to interact with PI4P lipids. These inter-
actions support a role for MCTP4 in regulating intracellular trafficking via its C2 domains
[4]. In parallel, the transmembrane region (TMR) has been identified as critical for stabilizing
ER connections at plasmodesmata, with mutations in this region disrupting ER-PM conti-
nuity and leading to pore closure [5]. Despite this functional importance, the TMR remains
structurally unresolved, and its three-dimensional organization is poorly characterized.

MCTP proteins are expressed in various species. Invertebrate organisms such as
Caenorhabditis elegans and Drosophila melanogaster express a single MCTP gene, whereas
vertebrates express two MCTP genes (MCTP1 and MCTP2) [6]. In Arabidopsis thaliana, there
are 16 members of this family. However, no complete experimental structure of any MCTP is
currently available in the literature [7].

Recently, a variety of new protein structure prediction tools have emerged, namely
Alphafold and RosettaFold, as well as new strategies based on large language models,
including ESMFold and OmegaFold [8-11]. These tools are powerful and trained to recognize
evolutionary preserved structural motifs. However, they are also very recent, and we are just
beginning to understand their limitations. Unlike AlphaFold, which relies heavily on multiple
sequence alignments (MSA) and experimentally determined structures from the Protein Data
Bank (PDB), ESMFold and Omegafold leverages a large-scale language model trained on vast
and diverse sequence datasets, including metagenomic sequences for ESMFold. This approach
makes both models less dependent on the availability of experimentally solved structures,
such as those of membrane proteins. These methods employ the protein sequence, potentially
generating more accurate predictions for membrane proteins.

In the absence of an experimentally determined structure for MCTP4, we employed
a prospective approach by comparing predictions from multiple deep learning-based
tools (Alphafold(AF), Alphafold multimer(AFM), RosettaFold(RF), Tr-RosettaFold(TR),
ESMFold(ESM), and OmegaFold(OF) [8-13] ) to explore its conformational landscape.
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Convergence across these models, combined with MD simulations, was used to mitigate this
risk. Finally, we employed a two-tiered molecular dynamics (MD) simulation strategy: (1)
Martini 3 coarse-grained simulations for extensive conformational sampling of the trans-
membrane domain, and (2) nine independent Charmm36 all-atom simulations (three starting
structures with three replicas each) to verify structural stability and evaluate potential helix
extrusion events. This complementary approach was coupled with principal component anal-
ysis to characterize the conformational landscape. We examine the structure and temporal
flexibility of the TMR, as well as its behavior within a lipid bilayer. We find that MD explores
the conformational space sampled by DL tools and beyond.

2 Material and methods
2.1 Predicted models

The three-dimensional structure of the full-length Arabidopsis thaliana MCTP4 also called
FT-interacting protein 4 (Uniprot: Q9C8TM3) was obtained using deep-learning prediction
tools. We used Alphafold (version 2.2) [8], Alphafold multimer (version 2.2) [12], Omegafold
(version 1.1.0) [10], and ESMfold (version 1.0.3) [14], which were run on a local cluster. For
Rosettafold, we used the public webserver (https://robetta.bakerlab.org/submit.php) [9], and
for Tr-rosetta, we used the webserver (https://yanglab.nankai.edu.cn/trRosetta) [13]. We used
the AF3 web server (https://alphafoldserver.com/) to generate additional predictions, while
Boltz-1 and Chai-1 models were run on a local server [15,16].

2.2 Computational detail

All simulations, both Coarse-Grained (CG) and All-Atom (AA), were performed with
GROMACS 2021.5 simulation package, with system setup facilitated by the CHARMM-GUI
webserver [17]. For each simulation type, we initiated the process with an energy minimiza-
tion phase, followed by a series of equilibration steps, before proceeding to the production
simulations.

2.3 System preparation

We utilised the Martini maker from the CHARMM-GUI web server for the construction of
the system and the mapping of atomistic structures to the CG Martini 3 models [18]. Our
simulations targeted residues 550 to 776, encompassing 50 residues preceding the trans-
membrane domain, the transmembrane (TM) helix domains (600 to 750), and extending to
the end of the protein. The precise lipid composition of the ER at plasmodesmata remains
unknown, but the ER membrane in plants is well-characterized as primarily PLPC/PLPE
[19]. To investigate the stability of the TMR helix, we therefore performed simulations in
PLPC/PLPE (80:20) bilayer membranes for AA-MD and PIPC/PIPE environments for
CG-MD [5], as a reasonable approximation of the ER lipid environment anchoring

MCTP4. Each model was oriented using the PPM server by incorporating the topology of the
N-terminus of the first chain from the PDB file. Subsequently, each system was solvated in
water, neutralized, and supplemented with 0.15 M NaCl. Additionally, we created all-atom
systems using the membrane builder from CHARMM-GUI [20], following the same process
with the CHARMM36 force field, and constructed the membranes with equivalent lipids.

2.4 CG-MD simulations

In all simulations, GROMACS 2021.5 simulation package was used with the Martini 3 force
field [21,22]. The protocol consisted of an initial energy minimization phase, followed by a
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multi-stage equilibration process, and concluded with a production simulation. Energy min-
imization was carried out for two iterations of 5,000 steps each using the steepest descent
method. The simulations were subsequently equilibrated through five stages, employing
time steps of 2, 5, 10, 15, and 20 fs. A target temperature of 300 K was maintained with the
v-rescale thermostat, with a coupling constant of 1 ps. An semiisotropic pressure of 1 bar
was maintained using the Parrinello-Rahman barostat [23], with a compressibility of

4.5 x 10-5 bar-1 and a relaxation time constant of 12 ps. Long-range interactions were
treated with a cutoff radius of 1.1 nm for both van der Waals and Coulombic interactions,
using a switching function from 1.0 nm for van der Waals. The production simulations were
performed using an NPT ensemble with a time step of 20 fs for a total simulation time of

3 microseconds. Multiple replicates were conducted for the system, and the final phase of the
simulation was executed with no restraints.

2.5 AA-MD simulations

In our AA-MD (All-Atom Molecular Dynamics) simulations, we constructed three dis-
tinct transmembrane systems (AE, ESM, OF) using the CHARMM36m force field via
CHARMM-GUL. To mimic the environment of plant endoplasmic reticulum, we opted for
a lipid composition of 20% PLPE and 80% PLPC. A Verlet cutoft scheme was employed for
interaction handling. Van der Waals interactions were addressed with a cutoff and force-
switch at 1.0 nm, while electrostatic interactions were managed via the Particle Mesh Ewald
method, both set to a cutoff of 1.2 nm. Pressure coupling was achieved using the Parrinello-
Rahman method with a semiisotropic type.

2.6 Contact analysis

To quantify contacts between transmembrane (TM) helices among the different models
predicted by the algorithms, we used the MDAnalysis library to calculate distances between
the centers of mass of the residues [24,25]. During the simulations, a distance map from 0 to
12 angstrom was used to analyze distance between the membrane-embedded region contain-
ing two helical pairs: HP1 (TM1-TM2) and HP2 (TM3-TM4). This threshold was selected
to account for the resolution of coarse-grained Martini models, where inter-residue contact
typically span longer distances than in all-atom representations, and to ensure that relevant
helix-helix interactions were not missed.

2.7 Principal component analysis and clustering

To reveal the most important motions in the TM helices, we employed principal components
analysis (PCA) using the tools provided in the GROMACS software package [21]. For all
models, we first fitted the trajectories where the transmembrane (TM) helix part was stable
within the membrane for 3 microseconds to ensure that the phosphates of the membrane
remained in the same position. We then concatenated these adjusted trajectories. The con-
catenated trajectories were further supplemented with three additional models derived from
AF3, Boltz-1, and Chai-1. The covariance matrix was calculated on the backbone atoms of
the residues located in the membrane (HP1 and HP2). The first two principal components
were then plotted using the matplotlib library for visualization [26]. The results of the PCA
were clustered using the K-Medoids method. Utilizing the KMedoids class from the scikit-
learn-extra library [27], we specified five clusters for categorization. We determined this
optimal number of clusters using the elbow method. After fitting the model to the PCA data,
the coordinates of the cluster centroids were determined.
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2.8 Data analysis and visualisation

All of the analysis and data used in this study have been documented and made available for
reference and reuse. These scripts are hosted in Jupyter Notebooks, a popular open-source
web application that allows for the creation and sharing of documents. The notebooks can be
accessed from the associated GitHub repository at https://github.com/Jouffluu/Molecular-
modelling-MCTP.

Some basic analysis tasks, such as the calculation of the root mean square deviation
(RMSD) or the distances between the centres of the geometry of the two helices, were per-
formed using the tools provided in the GROMACS 2021.5 software package [21]. For visual-
isation purposes, we constructed a density graph to provide a view of the distribution of data
points within the first two main components (PC1 and PC2). VMD [28] was used to visualise
trajectories and ChimeraX was used to analyse alphafold output [29].

3 Results
3.1 Models of MCTP4 ER-TMR domain

We generated six models of MCTP4 ER TMR domain using six different prediction methods
(S4 Fig), in addition to a partial model of MCTP4 TMR domain previously constructed by
Modeller and used as a reference [7]. This later work utilized bioinformatic tools, hydropho-
bic clusters analysis and molecular dynamics, to delineate transmembrane helices within

the MCTP4 protein [7]. We decided to use the resulting definition of membrane domains.
Therefore, we extracted the 550-776 region from each model. We previously identified five
putative subdomains within the approximately 200-residue sequence of MCTP4 TMR.
These subdomains include an N-term amphipathic helix (APH1), a putative transmembrane
domain (TMDO), a hairpin transmembrane domain (HP1) composed of two transmembrane
helices (TM1 and TM2), a second, longer amphipathic helix (APH2), and another hairpin
transmembrane domain (HP2) which is also composed of two transmembrane helices (TM3
and TM4) [7]. These subdomains are illustrated in Fig 1.

Subsequently, an alignment and Root Mean Square Deviation (RMSD) calculation were
performed on the extracted regions and on the whole model. The results of this analysis are
shown in Table 1 and Fig 3g to 3i.

The PLDDT score was used to assess the confidence of the 3D structure prediction
algorithms. A low PLDDT score indicates low confidence in the 3D structure, while a high
score indicates higher confidence. Confidence scores varied among the models, particularly in
the membrane region, as illustrated in S3 Fig. Among the prediction methods, ESM appeared
to be the most confident in its predictions for both TM domains, while AlphaFold (AF2)
seemed to be less confident in the HP2 domain compared to the other methods, see Fig 2. The
other methods showed relatively high confidence in their predictions.

When comparing the contact maps, which are two-dimensional representations of three-
dimensional structures [31,32], of the models predicted by each method, we observed that
ESM, TR, RE and AFM predictions showed a similar pattern, see Fig 3a to 3b and Fig 3d to
3e. In these conformations, the TM2 and TM3 helices (615-635, 715:735) were found to be
in close proximity. On the other hand, the models made by AF2 and OF displayed different
conformations in the membrane domain. In AF2’s model, the TM2-TM3 helices were
separated by more than 8 angstroms with almost no contact see Fig 3e and 3i. Furthermore,
it’s root mean square deviation (RMSD) was high, over 13 angstrom, compared to other
models see Table 1. This shows that AF2’s model was quite different in terms of structure.
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Table 1. RMSD values for the transmembrane domain (550-776) (upper half) and for the alpha carbon of entire
models (lower half). For each pair of models, the RMSD value is indicated for each measurement.

AF AFM Rose Tr-rose Esmfold Omegafold
AF 0 13.23 14.29 13.55 14.28 15.63
AFM 8.03 0 6.18 3.07 5.57 15.67
Rose 18.04 16.58 0 6.56 8.13 16.17
Tr-rose 8.75 443 17.16 0 4.95 15.37
Esmfold 16.11 15.13 19.28 13.35 0 16.13
Omegafold  |26.40 27.00 27.00 27.37 31.33 0

https://doi.org/10.1371/journal.pone.0326993.t001

When looking at the conformation obtained by OF, the close connection was between helices
TM1 and TM4 (residues 600:615, 735:750), as seen in Fig 3f and 3h. OF’s model also had a
high RMSD, around 15, compared to the other models (Table 1). These large RMSD values
and different helix arrangements highlight the range of protein conformations predicted by

different methods.

PLOS One | https://doi.org/10.1371/journal.pone.0326993 July 15, 2025

6/ 19


https://doi.org/10.1371/journal.pone.0326993.g001
https://doi.org/10.1371/journal.pone.0326993.t001
https://doi.org/10.1371/journal.pone.0326993

Prediction of A. thaliana’s MCTP4 structure

PLOS One
— OF
ESM —-
....... TR o J”—‘\dl, "’\\\’-‘
\A
I . "\.xw

80 -
FOON
Noa
v

95 A

90 1
70 A
D

85 A
80 A
1
n
60 - I
.
1
'
1
725 730 735 740 745 750

50 T T
715 720

75 1
70 1 on ".
6i5 6é0 6é5 650 655
Fig 2. Evaluation of model predictions using the pLDDT score as a function of residues in the HP1 (left) and HP2 (right) regions. The curves of different colors
represent models predicted by various prediction methods: AlphaFold (AF, red), OmegaFold (OF, blue), TR (green), ESM (yellow), and AlphaFold Multimer (AFM,

65 -
610

600 605

Dimers. Because other MCTP have been proposed to dimerize [33], we wanted to deter-
mine whether the ER-domain of MCTP4 has the potential to form dimers. The analysis of the
dimer produced by Alphafold multimer revealed that intra-subunits contacts were similar

to those found in the ESM, RF, and TR models, between TM2 and TM3. In terms of inter-

magenta).
https://doi.org/10.1371/journal.pone.0326993.9002
subunits contacts, the TM1 helix of one monomer and the TM4 helix of the other one were

found to interact Fig 4a and 4c). Furthermore, the algorithm exhibits high confidence in the
intra-domain but also in the inter-subunits-interactions Fig 4b and 4d.

In every model, the MCTP4 TMR incorporates two hairpins predicted to be in the bilayer

membrane. While four of the models converge on similar arrangements and distances
between the hairpins, two models provide notably different configurations. To investigate the

stability of each model and whether they would interconvert, we studied them using molecu-

lar dynamics simulations.
3.2 Molecular dynamics simulations
We performed coarse-grained molecular dynamics simulations with the Martini 3 force field,
to investigate the behaviour of the TMR domains of each model, produced by the deep learn-
ing methods, included in a lipid bilayer that mimics the composition of the ER, as detailed in
the materials and methods section. Ten replicates were conducted for each model, each lasting
3 microseconds. During the initial simulations, we observed that certain TM domains (HP1
or HP2 or both) exited the membrane, which could potentially introduce variability in our
analyses. For examples of HP1 and HP2 domain emergence from the membrane and related
variability, see S7 and S9-S14 Figs. To ensure consistency, we decided to exclude these sim-
ulations from our analysis. We then repeated the simulations until we obtained four simula-
tions for each starting model whose TM domains remained inside the membrane throughout
the entire simulation. For RMSD data of these CG simulations, see S15 Fig. This approach

allowed us to obtain a consistent dataset for further analysis.
Interestingly, out of the four simulations conducted for each of the AF2 and ESM mod-
els, one simulation from each model exhibited significant variations in the distances between

the TM2 (HP1) and TM3 (HP2) helices during the simulation, with both proximity and
7/19
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separation observed. Despite these movements, these particular simulations demonstrated
stability within the membrane, indicating that the helices were not confined to a single
conformation (See S8 Fig for distance measurements between HP1 and HP2 domains in
AlphaFold CG simulations). This also indicates that the system did not exhibit ballistic
motion, but rather stochastic dynamics consistent with thermal fluctuations, suggesting that
the simulations may have reached equilibrium.

To gain a deeper understanding of the dynamic behaviour of these helices within the
membrane, we conducted further characterization using principal component analysis, to get
insights into the conformational dynamics of TM domains in lipid bilayer membranes.

3.3 Principal component analysis and clustering

We employed principal component analysis (PCA) as a statistical method to elucidate the
most significant motions of the TM helices within the lipid bilayer. In PCA, the Cartesian
coordinates (X, Y, Z) of each atom were used as descriptors to capture the accessible degrees
of freedom of the protein. Specifically, we selected the residues of the TM helices located in
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the membrane to perform the PCA. The resulting conformations from the simulations were
projected onto the first two principal components, which accounted for 49% of the variability
observed in our simulations (see Fig 5a). For detailed frequency and projection analyses, see
S5 and S6 Figs.

Each data point in the figure represents a conformation from the trajectory of an MCTP
TMR model obtained through different methods, with the respective starting points of each
model also displayed. Despite distinct starting points for each model, the conformations gen-
erated by the simulations appear to convergence towards two distinct basins (see Fig 5¢). The
main basin regroups the 6 similar models (ESM, RF, TR, AFM, Boltz and Chai) and most of
the structures including some coming from simulations started from AF2 and OF The second
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Fig 5. Principal Component Analysis (PCA) plots, clustering and density representation. a) The plot shows a projection based on a PCASs first two principal
components (PCs). Large points represent the starting points of each simulation for each model, and small points are conformations generated by the simulation in
each model. Each model is represented by its own colour: AlphaFold (AF, red), OmegaFold (OF, blue), TR-rosetta (TR, green), ESMFold (ESM, yellow), AlphaFold
Multimer (AFM, magenta), AlphaFold v3 (AF3, dark red) , Boltz-1 (Boltz, light purple) and Chai-1 (Chai, light pink). b) The centroids of each basin have been
determined using the K-medoid clustering method. ¢) A density plot showing the projection of the two PCs, where each point corresponds to the starting point of
each model. d) The representative structure of each cluster is shown with a contact map corresponding to contacts between transmembrane domains.

https://doi.org/10.1371/journal.pone.0326993.9005

basin does not include any of the starting structures but is formed by structures extracted
from the simulations started from various models (AF2, ESM, RF and TR). To complement
and validate the PCA results, we also performed Time-lagged Independent Component
Analysis (TICA), which captures the slowest modes of motion over time. TICA confirmed
the separation into two major groups, consistent with the PCA projection. Additionally,
TICA revealed that the AF models explore three distinct directions in conformational space,
suggesting heterogeneous dynamic behavior not fully resolved by PCA alone (see S18 and
S19 Figs).

To complement our analysis, we included three additional models (AF3, Boltz-1, and
Chai-1) in the PCA without performing MD simulations on these structures. Principal
Component Analysis (PCA) revealed that each all-atom replica was firmly anchored in its
own conformational space, without significant overlap between different spaces.

To identify the centers of these basins, we performed clustering using the k-meloids algo-
rithm on the two principal components extracted from PCA. This allowed us to identify five
distinct clusters within the conformational space see Fig 5b. From each cluster, we extracted
representative structures that best represented the characteristics of that particular cluster.
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For the first cluster (Cluster A), we obtained a representative structure that closely resem-
bled the initial “consensus” starting point of the simulation. This cluster is part of the main
basin, suggesting that the simulation explored a conformational space similar to the initial
structure throughout most of the simulation time.

In the second cluster (Cluster B), we obtained a representative structure that exhibited
significant structural changes compared to the initial starting points. In this structure, helices
TM2 are in contact with both TM3 and TM4 helices, which is novel and not captured by
deep learning methods (see Fig 5d). This suggests that the simulation explored a different
conformational space and underwent substantial structural rearrangements.

In the third cluster (Cluster C), which is also part of the main basin, the representa-
tive structure shows contacts corresponding to the TM1-TM4 and TM2-TM3 helices. This
indicates a unique conformation not present in the initial models, further highlighting the
simulation’s ability to explore alternative conformations.

In the fourth cluster, (Cluster D), the representative structure illustrates contacts between
TM1-TM3 and TM1-TM4 helices. This suggests a distinct conformation, emphasizing the
diversity of conformations accessible to the system.

Finally, in the fifth cluster (Cluster E), the representative structure corresponds to a con-
formation where the TM domains are separated (Fig 5d). This suggests that this simulation
explored a wider range of conformational space, further highlighting the dynamic nature
of the system under study. The PCA and clustering analysis have provided deeper insights
into the structure and dynamics of the MCTP4 TMR. Our findings indicate that the MCTP4
TMR is not rigid, but displays substantial potential for structural rearrangement within the
bilayer. There’s a prominent convergence towards two main conformational basins, signi-
tying two key structural states that the TMR can adopt. Furthermore, we identified certain
novel helical contacts, implying that the MCTP4 TMR can explore a broad conformational
space. This underscores the dynamic and versatile nature of the MCTP4 TMR in its biological
context.

3.3.1 Atomistic simulations for enhanced analysis. To complement and reinforce our
analyses based on coarse-grained simulations, we also carried out atomistic simulations of
the TMR domains. These simulations were performed on the three forms of TMR domains
(ESM, AF and OF) obtained through deep learning methods, aiming to test the stability and
reliability of the predicted conformations. For each conformation, three replicas were run,
each lasting 250 nanoseconds and Root Mean Square Deviation (RMSD) analyses were
performed (see S2 Fig). These analyses showed that the RMSD remained below 0.5 nm for
the simulations started from models obtained with OmegaFold and ESMFold. Taken together
with the coarse-grained simulation this observation confirms their relative stability. These
analyses showed that the RMSD remained below 0.5 nm for the simulations initiated from
models obtained with OmegaFold and ESMFold, indicating their relative structural stabil-
ity. This observation is consistent with the coarse-grained simulations, which also suggested
stable behavior for these models. In contrast, the simulations started from the AlphaFold2-
derived model exhibited higher RMSD values, reaching approximately 0.8 nm in the all-atom
simulations. This increased deviation supports the coarse-grained results and suggests that
this conformation is less stable, potentially due to a reduced number of contacts between HP1
and HP2 (see Fig 3).

4 Discussion

Our study revealed that the MCTP4 TMR domain, located within the ER, consists of two
hairpin, each containing two helices. These hairpin are deeply embedded within the lipid
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bilayer of the ER. The arrangement of these hairpins and their proximity to each other
varied, reflecting the complexity and dynamism of the MCTP4 TMR structure within an
ER-mimicking bilayer.

4.1 Exploration of the conformational landscape by deep learning models

In this study, we generated six distinct models of MCTP4 TMR using various prediction
methods, which allowed us to explore the conformational landscape of the protein. Notably,
PLDDT scores revealed varied confidence levels in the predictions of MCTP4’s TMR 3D
structure, with ESM showing the highest confidence in its predictions for both TM domains.
It is interesting to note that four of the prediction methods (ESM, TR, RE, and AFM) con-
verged on a similar MCTP’s transmembrane domain, where helices TM2 and TM3 are in
close proximity. This suggests that this particular conformation might be a reliable repre-
sentation of the protein’s actual structure. However, AF2 and OF produced distinct models
with different helical arrangements. Additional predictions from AF3 showed similarities
with the OF model, while Boltz-1 and Chai-1 aligned more closely with the consensus group
(ESM, TR, RE, and AFM), further supporting the existence of these two main conformational
patterns. These divergences could indicate the flexibility of MCTP4 TMR and the presence
of alternative conformations. These findings highlight the value of using multiple structure
prediction methods in parallel to explore a protein’s conformational landscape. Combining
predictions leverages the complementary strengths of different tools, reduces the impact of
individual errors, and provides a more reliable view of the likely structural states [35].

4.2 Molecular dynamics simulations

4.2.1 Simulations behavior with martini 3. During our simulations, we investigated the
dynamic behaviors of the TM helices of MCTP4 within a lipid bilayer membrane designed
to mimic the composition of the endoplasmic reticulum. With Martini 3, we were able to
observe TM Helices that show spatial flexibility. Nevertheless, among the initial 10 replicas
for each model, we observed a diverse range of helix behaviors within the membrane. Some
helices were coming out of the membrane (S9-S14 Figs). Consequently, we repeated the sim-
ulations multiple times to obtain a consistent and stable set of results within the membrane.
In order to ensure the reliability of our analysis, we excluded simulations in which the TM
domains exited the membrane. The Martini 3 force field has been developed in part to solve
the issue identified with martini2, that tends to overestimate protein-protein interactions [22]
However, Martini3 is conversely associated with too hydrophilic alpha-helices. Recent stud-
ies have shown that Martini 3 tends to favor adsorbed states over transmembrane (TM) states
for short peptides, due to overly strong protein—water interactions. This leads to membrane
ejection events that are not observed in higher-resolution simulations. Umbrella sampling
confirms that Martini 3 lowers the energy barrier for TM-to-adsorbed transitions and stabi-
lizes the adsorbed state by 20 kJ/mol. Notably, once a helix exits the membrane, it does not
reinsert, consistent with our observations [36]. A similar issue was also reported in recent
work, where the shorter version of a TM helix (PEPT1-29) exited the membrane, preventing
dimerization, while a longer variant (PEPT1-41) showed improved TM stability [37]. In our
case, we observed such exits occurring at different times (early, mid, or late in the trajectory)
and across different models, including those initially inserted correctly. To assess whether this
instability was a true feature of the protein or a force field artifact, we ran nine independent
all-atom simulations (three different models x three replicas each), none of which showed
TM helix ejection. This strongly supports the interpretation that the ejections observed in
Martini 3 are not meaningful, but rather artifacts of the force field. We therefore excluded

PLOS One | https://doi.org/10.1371/journal.pone.0326993 July 15, 2025 12/19



https://doi.org/10.1371/journal.pone.0326993

PLOS One Prediction of A. thaliana’s MCTP4 structure

those Martini simulations from our analysis, not to suppress variability, but to avoid draw-
ing conclusions from nonphysical behavior. Importantly, we retained and analyzed several
stable Martini simulations (i.e., those in which all TM helices remained embedded), which
consistently sampled conformational diversity within the membrane environment, without
restraints or bias. In summary, our exclusion of membrane ejection cases is justified by phys-
ical consistency with higher-resolution models and recent literature identifying limitations in
Martini 3’s treatment of TM peptide stability.

4.2.2 Combining all-atom and coarse-grained MD. Principal Component Analysis
(PCA) revealed that each all-atom replica was firmly anchored in its own conformational
space, without significant overlap between different spaces. This observation underlines that
the replicas did not explore other conformational regions, indicating a clear segregation and
distinction between the conformations of each TMR domain form (see S1 Fig).

These atomistic results complement our coarse-grained simulations by demonstrating
that the TMR domain forms, while being stable and distinct within their respective confor-
mational spaces (see S1 Fig), do not visit other potential conformations. This highlights the
advantage of coarse-grained simulations in exploring a wide array of conformations, thus
offering a broader perspective on the conformational dynamics of proteins in membrane
environments, complemented by the precision of atomistic simulations to validate and deepen
our understanding of specific molecular dynamics.

Combined, these approaches provide a comprehensive and detailed view of the dynamics
and stability of TMR domains within the membrane, thereby enriching our understanding of
the underlying mechanisms governing the behaviour of MCTP4 protein in a biomembrane
context.

4.2.3 The plus of molecular dynamics run on top of deep-learning models. Three start-
ing points were generated by deep learning methods and for each model, 4 times 3 us simu-
lations were launched. This allowed the exploration of a conformational landscape with two
basins. The center of the first basin is very close to the conformation majorly found by deep
learning algorithms. However, the other clusters present representative structures with con-
tacts that are not found in deep learning methods, suggesting that with MD simulation, we
were able to explore new conformations which are not found by deep learning methods. This
is coherent with the observation that even the most recent diffusion-based methods do not
manage to explore the full conformational space in all cases [38]. It’s also interesting to see
that the AF2 and OF models start right at the edge of the consensus basin and then move into
it. This highlights the value of combining physics-based MD simulations with deep learning
models, allowing us to leverage their complementary strengths for more robust structural
insights.

4.3 Monomer versus dimer contacts

Analyzing the predictions of deep learning models, we have observed significant differences
between the TMR models of AF2, OF, and those that have converged, namely RE, AFM, TR,
and ESM.

In the TMR model of AF2, the two helices of each transmembrane hairpin do not come
into contact. This feature stands in stark contrast with those observed in other models. In the
TMR model from OF it’s noteworthy that helices TM1 and TM4 are in contact. Similarly,
the converged models exhibit a distinct contact between helices TM2 and TM3. This analysis
thus reveals a variety of structural configurations predicted by different deep learning models,
underscoring the complexity of transmembrane interactions of MCTPA4.
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Through the use of coarse-grained molecular dynamics simulations, we found that the
interaction between TM2 and TM3 tended to be more stable. This observation is supported by
our density map, which reveals two distinct basins. Models that display these interactions are
predominantly found in the larger of the two basins.

In contrast, the models produced by AlphaFold (AF) and OpenFold (OF) are positioned
away from these basins. This positioning suggests that these models may represent an inter-
mediate state. Further insights can be gleaned from studying the dimeric form of the protein.

Interestingly AF2 and AFM provided different results. This prompted us to explore further
the difference. Noteworthy, AF2 showed significant deviations and obtained a low PLDDT
score, particularly in the TM regions. This implies that AlphaFold’s monomeric predictions
are not always reliable or accurate for certain protein domains. The variation observed
between monomeric and multimeric predictions could indicate that the formation of the
dimeric structure involves additional interactions or structural rearrangements not captured
in the monomeric prediction. A key capability of AF2 is to allow the prediction of contacts
from sequence alignments [39,40]. The relationship between sequences and contacts is how-
ever partially ambiguous, which has been shown in the case of conformational changes. This
in turn triggered the creation of strategies to explore the conformational landscape with AF2
and RoseTTAFold [41-46]. It is therefore tempting to speculate that evolutionary signals are
not necessarily captured by AlphaFold’s monomeric models for membrane proteins that form
homo-oligomers. In the case of AF2, the model might be subject to conflicting constraints
corresponding to intra-subunit and inter-subunit contacts. We further predicted oligomeric
assemblies of MCTP4 to investigate whether the structural features observed in monomeric
models were maintained or reorganized upon oligomerization. Notably, the TM2-TM3 con-
tacts identified in the consensus monomeric models (ESM, TR, RE, AFM) were preserved as
intra-subunit interactions in the predicted dimers. In addition, AlphaFold-Multimer (dimer
and trimer) revealed a simultaneous inter-subunit interface involving TM1 from one sub-
unit and TM4 from the adjacent subunit. In contrast, the alternative TM1-TM4 interface
observed in the OmegaFold monomer model was recovered in the oligomeric prediction as an
inter-chain contact only, with no corresponding intra-subunit TM2-TM3 interaction. This
supports the idea that the consensus monomeric conformation captures both intra- and inter-
subunit constraints relevant to oligomeric assembly, whereas OmegaFold may reflect only
partial features of the full oligomeric interface see Fig 4.

The model produced by OF shows contacts between TM1 and TM4 helices that rather
appear to be inter-subunit contacts with AFM. This is coherent with the notion that there
are conflicting constraints, based on coevolution, corresponding to intra-subunit and inter-
subunit contacts in homo-oligomers, in particular using a monomeric prediction tool such as
OF. Interestingly, the exploration of this model with a physics-based method like molecular
dynamics could help resolve these conflicting constraints.

Predicting the structure of multimers is particularly challenging, as it involves assessing
inter-subunit interfaces, which adds complexity compared to monomeric predictions. This
has sparked discussion on whether protein interfaces should be modeled independently, as
proposed by Zhu and colleagues [47], who suggest that dedicated treatment of interfaces
could improve prediction accuracy. More broadly, this raises the question of whether mul-
timeric proteins should be modeled directly as oligomers rather than as isolated monomers,
since evolutionary constraints and structural signals may be embedded within their inter-
face regions. Furthermore, this leads to the question of whether multimeric proteins should
be modeled as monomers or oligomers. Oligomeric proteins could benefit from more precise
treatment as oligomers rather than monomers, as part of the evolutionary pressure or signal
might be associated with interfaces.
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Our study demonstrates that the TMR of MCTP4 is structurally flexible and capable of
adopting multiple conformations. By comparing several state-of-the-art deep learning struc-
ture prediction tools, we identified distinct inter-helical contact patterns, with a consensus
around TM2-TM3 interactions in several models, and alternative TM1-TM4 contacts in
others. Through physics-based coarse-grained simulations, we confirmed the stability of these
predicted interfaces and uncovered additional conformational states not captured by static
models alone. Structural clustering revealed five distinct conformational clusters, under-
scoring the dynamic nature of the TMR. These findings highlight the value of combining
deep learning and molecular dynamics approaches to better understand the conformational
landscape of membrane proteins, particularly for those involved in oligomerization and
membrane tethering functions, such as MCTP4.

Supporting information

S1 Table. Statistical information on each model from OPM server.
(PDF)

S1 Fig. Projection of the first principal components (PC1 against PC2) from all atom sim-
ulation. Each point represents an observation. Colors represent different models: Red for
AF2, Navy Blue for OMEGA, and Gold for ESM.

(TIF)

S2 Fig. RSMD from all-atom simulation. Red for AF2, Navy Blue for OMEGA, and Gold for
ESM.
(TIF)

S3 Fig. Evaluation of model predictions using the pLDDT score. The curves of different
colors represent models predicted by various prediction methods: AlphaFold (AF, red),
OmegaFold (OF, blue), TR (green), ESM (orange), and AlphaFold Multimer (AFM, purple).
(TIF)

S4 Fig. Panels A to F (AF, AFM, OF, ESM, TR): Structures are colored according to
pLDDT scores; blue signifies areas with high confidence (reliable structural prediction),
while red depicts areas with low confidence (uncertain structural prediction). Panel G dis-
plays the prediction made by RosettaFold, colored on the error estimate in the A (RMSD)
metric. This metric categorizes structural predictions into three levels of confidence: blue for
very confident, red for less confident, and white for areas lacking confidence.

(TIF)

S5 Fig. Models from AF3 (dark red), Boltz-1 (light purple) and Chai-1 (light pink). The
AF3 model shows structural TMR similarities with the Omegafold model, while Boltz-1
and Chai-1 align with the consensus conformations observed in ESM, AFM, TR, and RF
models.

(TIF)

S6 Fig. Variance explained by each Principal Component (PC) on CG simulations.
(TIF)

S7 Fig. Projection of the first principal components (PC1 against PC2, PC3 and PC4).
Each point represents an observation. Colors represent different models: Aqua for Rose, Lime
Green for TR, Violet for AFM, Gold for ESM, Navy Blue for OMEGA, and Red for AF2.
(TIF)
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S8 Fig. Left: HP2 domain emerging from the membrane. Center: HP1 domain emerging
from the membrane. Right: Both HP1 and HP2 domains emerging from the membrane. These
emergences from the membrane are observed in some replicas, regardless of the system in

CG simulations. For our analysis, we chose not to consider these instances. Other predictive
tools, such as PSIPRED [48] or DREAMM [49], indicate that this domain remains inside the
membrane. When one or both domains emerge, they never re-enter the membrane during the
simulation.

(TIF)

S9 Fig. Distance between HP1 and HP2 domains throughout an AlphaFold CG simula-
tion.
(TIF)

$10 Fig. Distance of the center of mass along the Z-axis for the HP1 and HP2 domains of
the AF model.
(TIF)

S11 Fig. Distance of the center of mass along the Z-axis for the HP1 and HP2 domains of
the AFM model.
(TIF)

$12 Fig. Distance of the center of mass along the Z-axis for the HP1 and HP2 domains of
the RF model.
(TIF)

$13 Fig. Distance of the center of mass along the Z-axis for the HP1 and HP2 domains of
the TR model.
(TIF)

S14 Fig. Distance of the center of mass along the Z-axis for the HP1 and HP2 domains of
the OF model.
(TIF)

S15 Fig. Distance of the center of mass along the Z-axis for the HP1 and HP2 domains of
the ESM model.
(TIF)

$16 Fig. RMSD for CG simulations.
(TIF)

$17 Fig. Dynamical cross-correlation analysis of TM helices in the concatenated trajec-
tory. The analysis reveals that the two helices within each transmembrane hairpin (HP1 and
HP2) move as coherent units, showing positive correlation within each hairpin. Between HP1
and HP2, a weaker positive correlation is observed, consistent with the formation of cluster D
identified in the PCA analysis.

(TIF)

S18 Fig. TICA and PCA analysis.
(TTF)

$19 Fig. TICA with different lagtime and dimension.
(TIF)
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