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Abstract

Studies comparing emergency department (ED) patient prioritization rules often use
single averages, which can hide important clinical trade-offs. This paper presents
and demonstrates a three-part evaluation framework designed for clear, multi-faceted
comparisons of prioritization policies. The framework includes: (1) statistics that
account for extreme outcomes, (2) profiles showing how well time targets are met,
and (3) analysis based on stakeholder priorities. We illustrate the framework in a uni-
fied discrete-event simulation of a 30-bed mixed-acuity ED to show how conclusions
can change across tails, thresholds, and stakeholder preferences; the numerical
results are for illustration only and are not recommendations for any specific hospital.
Our main contribution is the method itself: a consistent and repeatable way to reveal
different but complementary information, helping decision-makers match policies to
their local goals, limits, and risk tolerance. Before implementation, future work should
apply this framework using data from specific hospitals and gathering input from their
stakeholders.

1. Introduction and literature review
1.1 Background and significance

Emergency department (ED) crowding is a persistent threat to timely, high-quality
care. As of 2016, over 90% of EDs reported regular crowding, and the COVID-19
pandemic has worsened the situation [1]. Prolonged length of stay (LOS), boarding,
and repeated “left-without-being-seen” (LWBS) events have each been linked to
excess mortality, lower patient satisfaction, and staff burnout [2,3]. Long wait times
not only delay time-sensitive interventions for high-acuity patients but also deteriorate
the overall quality of care [4—7]. Even low-acuity patients may experience prolonged
discomfort or clinical deterioration if neglected. Beyond clinical outcomes, crowding
constrains a hospital’s ability to respond to new emergencies and impairs operational
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efficiency, with downstream effects on financial performance [8]. While root causes
span hospital-wide capacity constraints, one tool ED managers can control is the
patient prioritization strategy—that is, the rule that determines which patient is served
next once a resource becomes available. Over the past two decades, researchers
have proposed a rich catalog of such rules, ranging from simple first-come-first-
served (FCFS) queues to dynamic algorithms that blend acuity, projected workload,
and downstream bed availability [9].

Despite this methodological progress, evidence on which strategy works best
is inconclusive. Primary studies differ widely in (i) the key-performance indicators
(KPIs) they report (e.g., average LOS versus 90th-percentile LOS), (ii) whether they
examine distribution tails, and (iii) the degree to which stakeholder preferences are
incorporated. Since evaluation methods are inconsistent, the same strategy can look
good in one study but bad in another. This makes it hard to apply findings broadly
and adopt new methods [10]. The absence of a systematic evaluation framework
therefore represents both a scientific gap and a practical barrier to evidence-based
ED operations.

This paper addresses that gap by introducing a unified framework built on three
complementary evaluation techniques. The first technique involves computing KPI
summary statistics with explicit tail analysis to detect hidden extremes in performance
distributions. The second constructs threshold-based performance curves that reveal
sensitivity to time-target selection, making it easier to interpret operational trade-offs.
The third incorporates stakeholder-informed utility functions that translate multidimen-
sional clinical objectives into a single, interpretable scalar score.

Using nine prioritization rules—including widely studied approaches (e.g., FCFS,
Accumulating Priority Queue [APQ]) and several novel strategies—we demonstrate
that each rule reveals distinct trade-offs that are obscured by average-only perfor-
mance metrics. We show that a strategy may appear optimal under one evaluation
criterion but perform poorly under another. Our aim is not to identify a single “best”
rule, but to equip ED decision-makers with a transparent framework for comparing
strategies within their specific operational contexts.

1.2 Literature review

1.2.1 Patient-flow challenges in crowded EDs. Systematic reviews consistently
find that crowding worsens clinical outcomes and elevates operational costs
[3,4,8]. Among the most frequently reported indicators are median LOS and time-
to-physician [3,10]. However, these studies also emphasize that serious incidents
like ambulance diversions are more often caused by the severe operational strains
measured by extreme tail events (e.g., 99th-percentile LOS) than by the typical
performance reflected in averages.

1.2.2 Patient-prioritization strategies. A wide array of interventions have been
proposed to alleviate ED crowding, including the use of telehealth solutions [4],
educational initiatives for patients, and process-improvement frameworks like Six
Sigma [11]. This review, however, centers on patient prioritization strategies—rules
that dictate the sequencing of patients when a treatment resource becomes available.
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The most basic of these is the first-come, first-served approach, while more advanced methods utilize algorithmic or
heuristic logic to improve performance metrics. As shown in Table 1, prior researchers have explored a diverse spectrum
of prioritization methods, spanning from static mechanisms such as structured priority queues [12—14] to adaptive systems
that make real-time decisions [15—17]. Some authors have pursued optimization-based formulations [18,19], although
these often struggle with the incorporation of uncertainty. Other researchers have turned to data-driven techniques like
machine learning to better model and respond to stochastic dynamics [20,21]. Additional investigations have examined
more traditional strategies, including revised triage procedures [9,22] and evaluations of heuristic decision-making by
frontline clinicians [23,24]. Comparative studies often use discrete-event simulation because it allows them to test ‘what-if’
scenarios for each patient without affecting actual hospital operations [25].

1.2.3 Existing evaluation practices. Although numerous studies investigate patient prioritization strategies, no
standard approach exists for evaluating their effectiveness. Instead, three methodological traditions have emerged in the
literature.

The first and most common approach involves reporting single-moment KPIs, such as mean or median LOS, wait time,
or throughput [25-28]. This practice is widespread in both simulation and empirical studies. However, because LOS distri-
butions usually have a long ‘tail’ of very long stays, focusing only on the average can hide rare but severe delays.

A second approach assesses target-achievement rates, often in alignment with regulatory benchmarks—such as the
proportion of patients discharged within a 4-hour window [29]. While such metrics are straightforward to interpret and align
with policy goals, they depend heavily on the chosen threshold, which may be arbitrary and insensitive to broader perfor-
mance variation.

The third approach, found in a smaller body of literature, employs utility-based multicriteria scoring to synthesize perfor-
mance across several KPIs. These studies use explicit utility functions—linear, exponential, or Chebyshev—to represent
stakeholder preferences [16,30]. Although this method enhances transparency, most implementations do not test the
robustness of results to changes in utility-parameter values, limiting their prescriptive reliability (Table 2).

1.2.4 Lack of generalizability. Early evidence suggested that simply introducing a structured triage scale
would shorten waits and lower mortality [31]. Yet subsequent observational work uncovered the opposite effect: Sax
et al. noted that widespread assignment to mid-acuity patients (i.e., ESI Level 3) created a “mid-acuity log-jam,”
lengthening throughput for all but the sickest patients because beds were occupied by patients whose severity had
been overestimated [32]. These conflicting findings highlight that the same triage rule can either alleviate or exacerbate
crowding.

Commentaries have questioned whether current validation methods transfer across jurisdictions. Twomey et al. argued
that techniques developed in well-resourced settings “may not be appropriate and repeatable in developing countries,”
and highlighted conceptual problems in declaring any single metric the gold standard for validity [33]. One hospital might

Table 1. Patient-prioritization strategy families in the literature: scope and gaps.

Strategy Family Canonical Examples Static vs. Adaptive Data/ ML Usage Notes

Queue order rules FCFS; Acuity-based FCFS Static (rule fixed) None Baselines in most comparisons; simple
but can underperform by cohort

Accumulating priority | APQ Static but time-evolving None Popular due to interpretability; weights

scores often ad-hoc
Optimization-based Priority selection via mathematical | Static/parametric Limited Struggle with uncertainty & online
programming (parameters) dynamics in ED settings

Learning/ data-driven | ML triage or dynamic policies Adaptive Yes Cross-site performance often degrades;
external validation frequently lacking

Process/ triage Revised triage scales; staff/ pro- | Static policies None Effects can conflict across settings;

adjustments cess changes generalizability issues noted

https://doi.org/10.1371/journal.pone.0326722.t001
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benchmark triage accuracy against ICU admission; another might use expert consensus. These differences make it diffi-
cult to compare hospitals and generalize findings.

The same pattern emerges in the rapidly growing Al/ML triage literature. El Arab and Al Moosa found that most
machine-learning studies were single-center and lacked external validation, with selection bias and overfitting as recurrent
threats [34]. When Ryu et al. trained a gradient-boosted triage score at one hospital and deployed it at sister sites, the AUC
for predicting admission ranged from 0.93 to 0.71 across locations served by the same health system [35]. Broader reviews
of data-driven admission predictors echo the call for “rigorous external evaluation before clinical use” [36]. Meanwhile,
Ingielewicz et al. surveyed traditional scales and concluded that “no existing triage system clearly outperforms others in
every aspect,” effectively dispelling the notion of a universal best-in-class tool [37]. From a resource-constrained perspective,
Siddiqui et al. stated that “the need and practical applicability of any triage is dictated by the hospital system and setting” [38].

Adding to these problems, most studies only compare a new rule to the current one, instead of to other advanced rules,
and they often use just one metric [20,22]. As we later demonstrate, the ranking of nine common prioritization strategies
changes when analysts shift from average LOS to tail-sensitive or utility-based criteria within the same 30-bed ED. If
evaluation choice alone can flip conclusions in one configuration, then extrapolating results across hospitals with different
capacity, acuity mix, or stakeholder priorities is doubly precarious.

1.2.5 Gaps in the literature. To our knowledge, no consensus exists on which KPIs constitute the minimal
reporting set when analyzing a patient prioritization strategy. Recent umbrella reviews explicitly call for “standardized,
multidimensional evaluation frameworks” to enable meta-analysis and real-world translation [10].

1.3 Contributions and organization

We synthesize and demonstrate a tripartite evaluation framework that (i) requires analysts to quantify tail behavior; (ii)
exposes threshold dependence; and (iii) embeds explicit stakeholder utilities. The main contribution is the framework itself,
not the specific numerical results. We illustrate its use in one unified DES setting to show how evaluation choice alone can
reverse apparent rankings across strategies and cohorts. We do not advocate any specific rule in this paper; real-world
selection requires site-specific validation and stakeholder preference elicitation, which we identify as future work.

The remainder of the study is organized as follows. Section 2 details the proposed methodology, including cohort-spe-
cific metrics, threshold-attainment curves, and utility analyses; Section 3 provides an illustrative application; Section 4
discusses managerial implications, limitations, and avenues for future research; and Section 5 concludes by summarizing
the key contributions, offering practical recommendations for aligning prioritization rules with clinical objectives, and high-
lighting the study’s broader significance. Supplementary details appear in the Appendices in S1 File: Appendix A describes
each prioritization strategy; Appendix B defines the stakeholder utility functions; Appendix C provides full simulation-model

Table 2. Evaluation practices for ED prioritization in the published literature.

Practice (what is reported) | Typical KPIs/ Artifacts Main Strengths Key Limitations
Single-moment summaries | Mean or median LOS; wait time; Simple to compute/interpret; widely Sensitive to skew; masks rare but critical
throughput comparable across papers long waits
Tail-aware summaries Upper percentiles (e.g., P90, P95, Surfaces risk-relevant extremes linked | Less frequently reported; choice of
P99) to operational failures percentile varies, making cross-study
synthesis difficult
Threshold-attainment (“target| Share <X hours (e.g., 4-hour Directly aligned with policy; intuitive for| Dependent on the chosen threshold;
compliance”) discharge) managers arbitrary cutoffs can change conclusions;
ignores performance away from the target
Utility-based multicriteria Scalar utility over multiple KPIs (linear, | Makes stakeholder trade-offs explicit; | Rare in ED work; parameters often set ad
scoring exponential, Chebysheyv, etc.) enables one-number comparisons hoc; robustness to parameter variation

seldom tested

https://doi.org/10.1371/journal.pone.0326722.t002
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parameters; and Appendix D presents the context-specific formulation of the area under the curve (AUC) that is used in
our threshold-attainment analysis in Section 2.3.

2. Materials and methods
2.1 Study design and objectives

The general objective of this study is to develop and demonstrate a multi-faceted framework for the comparative evalua-
tion of ED patient-prioritization strategies. The framework is designed to address the inconsistencies highlighted in Section
1.2.4 by providing a transparent and standardized approach to assessment.

Within this overarching aim, the specific objectives are fourfold. First, we implement a discrete-event simulation (DES)
of patient flow calibrated to a 30-bed, mixed-acuity ED to provide a model to illustrate the use of our evaluation framework.
Second, we apply this model to nine distinct prioritization policies, spanning established rules, novel strategies, and com-
posite approaches. Third, we evaluate each policy using three complementary techniques: distributional tail-risk statistics,
threshold-attainment profiles, and stakeholder-informed utility analysis. Finally, we illustrate how the apparent preference
among strategies shifts across these lenses, thereby motivating the need for standardized, multi-criteria reporting.

The numerical results presented are illustrative only; their purpose is to demonstrate the mechanics and insights
of the framework rather than to advocate any particular prioritization strategy. To maintain clarity, we restrict attention to
LOS—a KPI that is both widely reported in the literature and directly relevant to clinicians, administrators, and patients.
The framework itself can be used with any key performance indicator and can be replicated with other indicators such
as door-to-doctor time (DTDT), LWBS rates, or mortality. To illustrate this generality, Appendix E provides a brief DTDT
example, showing that the same evaluation techniques apply seamlessly to other ED metrics. Expanding the analysis to
multiple KPIs would significantly lengthen the manuscript without adding to its methodological contribution.

For similar reasons, we exclude the highest-acuity (i.e., ESI-1) arrivals from subsequent analyses, since these patients
always receive immediate treatment regardless of prioritization rules. Throughout the paper, the term ESI refers to the
Emergency Severity Index, a five-level triage system used to categorize patients in the emergency department based on
acuity and anticipated resource needs. This scale ranges from level 1 for patients requiring immediate life-saving interven-
tion to level 5 for stable patients who require no resources upon examination.

2.1.1 Patient prioritization strategies. To demonstrate our evaluation framework, we apply it to nine distinct patient
prioritization strategies. A comprehensive technical description of each strategy is available in Appendix A; this section
provides a high-level summary. The strategies are grouped into three categories: established baselines from the literature,
novel rules developed for this study, and composite strategies that integrate the novel approaches.

» Established Baseline Strategies

> First-Come-First-Served (FCFS): patients are selected based strictly on their arrival order, irrespective of their acu-
ity level.

> Acuity-Based FCFS: prioritizes patients with higher acuity, using the FCFS rule to resolve ties within the same acu-
ity level.

- Accumulating Priority Queue (APQ): integrates both patient acuity and their current length of stay (LOS). A
patient’s priority score is calculated by multiplying their LOS by a predefined acuity weight.

* Novel Base and Add-on Strategies

- Additive Accumulating Priority Queue (AAPQ): a novel base rule. It defines a patient’s score as the sum of their
acuity weight and a small, scaled LOS term. This design primarily orders patients by acuity while using their current
LOS as a tiebreaker, which makes it intuitive and easy to implement.
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> Low Workload Physician (LWP): a conditional “add-on” rule designed to balance physician workload in real-time. If
a physician has significantly fewer active patients than their peers, this rule assigns them the highest-priority patient
from the queue, temporarily overriding the default prioritization logic.

- Partial Fast Track (PFT): another add-on that designates one physician to preferentially treat low-acuity patients
(i.e., ESI 4 and 5) on an FCFS basis whenever such patients are available in the queue. The other physicians con-
tinue to serve all patients according to the base rule, ensuring flexibility.

+ Composite Strategies
> AAPQ-LWP and AAPQ-PFT: layer the LWP and PFT add-on rules over the AAPQ base rule, respectively.

- AAPQ-LWP-PFT: sequentially applies the logic of PFT, then LWP, before defaulting to the AAPQ base rule if neither
of the add-on conditions is met.

2.1.2 Notation. Finally, Table 3 summarizes the notation we use throughout this manuscript.

2.2 Technique 1: KPlI summary statistics and tail analysis

This technique reflects standard practice by summarizing the distribution of each KPI. It is intentionally simple and

does not incorporate advanced methodological tools. We include it because many studies provide limited distributional
insight, typically reporting only the mean and occasionally the standard deviation. In contrast, our approach reports both
central-tendency and right-tail metrics, as the extreme upper tail of the distribution often represents the worst outcomes,
which pose the greatest risks to patients and hospital operations but are rarely discussed in the literature.

Assuming that lower KPI values indicate better performance, we recommend reporting a comprehensive set of statis-
tics for each strategy. These include the sample size, which ensures transparency about the number of observations and
supports the assessment of statistical power; the mean, which reflects the average outcome and facilitates comparison
of overall performance; and the median, which serves as a robust measure of central tendency that is not overly influ-
enced by outliers. Additionally, reporting the minimum and maximum values allows for identification of the best and worst
observed outcomes, respectively—offering insight into exceptional performance as well as potential failures.

To quantify tail risk explicitly, we also recommend including the 75th, 90th, 95th, and 99th percentiles of each KPI distribution.
These percentiles reveal how frequently patients experience extremely long waits or lengths of stay, offering a granular view of
performance in high-risk scenarios. This practice is consistent with prior guidelines in emergency department analytics [3].

Each of these metrics can—and should—be reported separately for relevant cohorts. In Section 3 (lllustrative Applica-
tion of the Framework), for example, we will present these statistics for all patients combined, as well as stratified by Low
and Mid acuity groups, which will reveal differing performance profiles when disaggregated. At a minimum, reports should

Table 3. Notation primer.

Symbol Meaning

P cohort under study (e.qg., all patients, low-acuity)
M; KPI value for patient i € P

Tp(t) proportion of cohort P with M; < t

max maximum threshold considered

tx time at which Tp(f) = X/100

u() stakeholder-informed utility score

Table 3 summarizes symbols that re-occur throughout Sections 2—3.

https://doi.org/10.1371/journal.pone.0326722.t003
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be stratified by acuity level; additional cohort definitions might include arrival-time window, required resource type, board-
ing status, or other clinically meaningful categories.

2.3 Technique 2: Threshold-based performance

While summary statistics and tail percentiles (Technique 1) reveal overall distributional properties, stakeholders often
specify explicit time targets—for example, the proportion of patients discharged within four hours. Technique 2 addresses
this by quantifying, for each strategy and cohort, the fraction of patients whose KPI falls below a clinically meaningful
threshold. By evaluating this performance over a range of thresholds, analysts can visualize and compare how sensitive
each prioritization rule is to the choice of time target.
We begin by defining the indicator function
1 ifxis True
104 = { 0 if xis False.

Let P denote a patient cohort (e.g., all patients or those in a given acuity group), and let M; be the KPI value for patient
i € P (e.g., length of stay, waiting time, door-to-doctor time, boarding indicator, or satisfaction score). For a specified
threshold t, we define the threshold-attainment function

Talt) = 157 3 1M, <

peP

which represents the proportion of patients in cohort P whose KPI does not exceed t.

In practice, we compute Tp(f) over a grid of thresholds t € {t;, f;,--- ,x}. Plotting Tp(t) against t yields a threshold-
attainment curve, with higher curves indicating faster achievement of the target. Separate curves are generated for each
strategy s and cohort P, enabling direct visual comparison. Confidence bands (e.g., bootstrap 95% intervals) may be over-
laid to assess statistical significance.

For our illustrative analysis, we compute T os 1 ow(f) and T os-miq(f) Wwhere P corresponds to the low- and mid-acuity
groups, respectively, and M; is each patient’s length of stay. By comparing these curves across the nine prioritization rules,
one can readily identify how many patients meet a four-hour discharge target and observe how performance changes
under more stringent (e.g., three-hour) or more lenient (e.g., five-hour) thresholds.

Threshold-attainment analysis offers several key advantages. First, plotting curves over a continuous range of t facili-
tates a sensitivity analysis, since intersections of curves reveal threshold ranges in which one strategy outperforms another.
Second, curves directly encode clinical relevance, allowing stakeholders to read off the proportion of patients meeting
an institution’s policy-driven time target without recomputing separate summary statistics. Third, when it is impractical to
display full curves—such as in print-constrained venues—selecting a few representative percentile targets (for instance, the
time to 75 percent, 90 percent, or 95 percent attainment) and tabulating those values can achieve space efficiency.

Besides looking at the curves, we can calculate summary metrics from Tp(t) to make comparisons easier. The AUC
over the interval [0, "] is defined by

tmax
Mmz/ﬁmnw
0

or more generally

f'nax tmax
/ w(t) To(t) dt,  with / w(t) dt = 1,
0 0
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where w(t) is a weight function (e.g., linear or exponential decay) emphasizing early, middle, or late thresholds and "
represents the upper bound of interest (such as 12 hours for LOS). To standardize comparisons across KPIs, we report
the standardized AUC as AUC/t"# which ranges from 0 to 1. Appendix D provides the full details of our AUC calcu-
lations. AUC is particularly beneficial because it consolidates performance across the entire range of clinically relevant
thresholds into a single measure, enabling straightforward quantitative comparison of different strategies across all
thresholds.

A second concise metric is the speed to X% attainment, defined by

tx = min{t : Tp(t) > X/100}.

which answers the question, “How long until X% of patients meet the KPI target?” For example, one might report that
“Strategy A reaches 90 percent discharge 25 minutes faster than Strategy B for mid-acuity patients.” Because X is a
stakeholder-defined parameter, it can be varied to reflect different operational goals.

Researchers can tabulate AUC or tx values for key percentiles—such as 50 percent, 75 percent, 90 percent, and 95
percent—to present succinct comparisons without plotting every curve. All threshold-based metrics—full curves, AUC, and
tx —should be reported separately for each cohort of interest. In Section 3, we will present these metrics for low-acuity
and mid-acuity groups, demonstrating how strategy rankings may shift when performance is disaggregated. At a mini-
mum, stratification by acuity level is required; additional analyses may consider other cohorts (for example, arrival-time
windows, required resource types, or boarding status) to uncover subgroup-specific trade-offs.

2.4 Stakeholder-informed utility functions

Techniques 1 and 2 show what each rule achieves in terms of KPI distributions and threshold attainment, but they don’t
show how much stakeholders value those outcomes. Technique 3 remedies this by mapping multi-dimensional perfor-
mance into a single, stakeholder-aligned score, U(-), constructed to increase as outcomes improve. While the precise
functional form—whether linear, quadratic, exponential, Chebyshev, or otherwise—is specified in Appendix B, the follow-
ing paragraphs describe how utility-based visualizations enhance decision support and how we apply them in our illustra-
tive application of the framwork. The numerical utility parameters used in our analysis are illustrative placeholders; they
were not elicited from ED stakeholders and serve only to demonstrate Technique 3.

First, one can plot

U(Tp,(t), Tp,(t)) versus t

for each strategy where Py and P, are two cohorts. In our illustrative analysis, we use U(T os-Low(t), TLos-mida(f)). By track-
ing utility across the same grid of LOS thresholds used in Technique 2, these curves reveal trade-offs in a single view: a
rule that underperforms at short thresholds may nonetheless deliver high stakeholder value at longer thresholds, indicat-
ing favorable tail performance despite mediocre central metrics.

Second, for any fixed threshold t*, a scatter plot for a specific threshold is an easy-to-understand visual. We plot

(TLos-Low (t*), TLos-mid (1))

on the horizontal and vertical axes, respectively, and overlay utility contours U(-) = c¢. Each strategy appears as a point
colored by its utility level (e.g., green for high, red for low). Note that both axes remain raw KPI percentages; utility influ-
ences only the contour lines and point colors. This visualization combines the interpretability of familiar KPI percentages
with a direct encoding of stakeholder preferences.
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Finally, when multiple utility formulations or hyperparameter settings are under consideration, a cross-utility comparison
can be performed by plotting U; against U, for each strategy at selected thresholds. Near-linear alignment along a posi-
tively sloped line indicates that strategic ordering is robust to the choice of utility specification; divergence suggests that
different stakeholder weighting induces materially different recommendations, warranting closer examination.

These utility-driven plots enrich our evaluation framework by embedding explicit stakeholder trade-offs into familiar
performance metrics, highlighting threshold dependence—since the utility curves mirror LOS threshold curves while sum-
marizing value rather than raw attainment—and testing robustness through cross-utility comparisons that guard against
overconfidence in any single preference model.

3. lllustrative application of the framework

All results in this section are illustrative—they reflect a single discrete-event-simulation calibration for a 30-bed
mixed-acuity ED and utility parameters chosen for demonstration only. They should not be interpreted as prescriptive
guidance for any specific hospital.

3.1 KPI summary statistics and tail analysis

Table 4 presents LOS summary statistics for the combined low- and mid-acuity cohort. Across the nine prioritization strat-
egies, the average LOS is very similar—ranging from 193 to 200 minutes. However, the longest stays (the right-hand tail)
vary a lot, with the 99th percentile spanning 59 minutes.

When stratified by acuity level, sharper contrasts emerge. For low-acuity patients, the mean LOS range triples to 22
minutes (170—-192min) and the 99th-percentile spread widens to 102 minutes. In contrast, mid-acuity patients exhibit a
mean range of 74 minutes (189-263 min) and a 99th-percentile spread of 116 minutes.

Acuity stratification also reverses strategy rankings. For low-acuity patients, FCFS outperforms all other rules on mean,
median, and percentile metrics, whereas AAPQ-LWP-PFT yields the highest mean LOS. In the mid-acuity cohort, FCFS
performs worst in mean, median, and upper-tail percentiles, while AAPQ-LWP-PFT ranks best on those metrics.

However, rankings vary by KPI. Among low-acuity patients, AAPQ-LWP-PFT produces the worst mean (albeit by a
narrow margin) yet its right-tail performance remains near average. For mid-acuity patients, AAPQ-LWP excels on mean,
median, and 75th-percentile metrics but performs poorly in more extreme tail measures, such as the 95th and 99th
percentiles.

These findings highlight two key points: (1) averaging across different patient groups hides important differences, and
(2) metrics focused on extreme outcomes often tell a different story than metrics based on the average.

3.2 Threshold-based performance

Fig 1 plots the percentage of low-acuity patients discharged within f minutes, denoted 7'|_os_|_ow(l‘)- Several patterns
emerge. For short thresholds (f < 120 minutes), Acuity-Based FCFS outperforms other strategies by approximately 10
percentage points; however, its relative performance deteriorates at higher thresholds (t > 200 minutes). Beyond this, the
choice of threshold does not meaningfully affect the relative ordering of most strategies.

Analogous trends appear for mid-acuity patients in Fig 2, where the curves similarly suggest minimal divergence
between strategies across thresholds. In this case, these illustrative results suggest that the choice of time target is
unlikely to change the final decision. Notably, Fig 2 also reinforces the pattern observed in Section 3.1: FCFS underper-
forms during the initial 5 hours but surpasses other strategies at later thresholds.

We now present the AUC metrics, formally defined in Appendix D, in Table 5. In addition to the standard AUC computed
over a 12-hour window, we introduce three complementary variants: (1) a half-range AUC limited to the first 6 hours,

(2) a weighted AUC emphasizing earlier thresholds via a linearly decreasing weight function, and (3) a weighted AUC
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Table 4. Length-of-stay summary statistics by prioritization strategy and acuity cohort.

Strategy Count Mean Median P75 P90 P95 P99 STD Min Max
Overall

AAPQ-LWP-PFT 12377 195 191 234 81 32 968
AAPQ-LWP 12602 195 193 231 82 32 956
AAPQ-PFT 12671 197 189 237 86 32 1050
AAPQ 12484 195 190 450 81 32 127
Acuity-Based FCFS 12578 95 32 845
APQ 12649 86 32 1185
FCFS 12108 79 32 1148
LWP 12502 76 32 1247
PFT 12008 78 32 1531
Low Acuity

AAPQ-LWP-PFT 9266 190 230 270 301 374 70 32 948
AAPQ-LWP 9443 192 228 266 301 404 72 32 956
AAPQ-PFT 9501 188 184 226 268 310 407 74 32 737
AAPQ 9381 188 187 227 270 306 393 71 32 831
Acuity-Based FCFS 9424 190 385 87 32 707
APQ 9489 184 179 216 262 310 75 32 1185
FCFS 9134 55 32 834
LWP 9372 187 185 220 259 287 370 66 32 1105
PFT 9003 190 187 230 270 305 387 71 32 732
Mid-Acuity

AAPQ-LWP-PFT 2668 534 100 42 930
AAPQ-LWP 2694 321 397 108 41 882
AAPQ-PFT 2710 213 199 267 349 546 109 40 1050
AAPQ 2648 203 191 254 331 392 101 37 1127
Acuity-Based FCFS 2693 218 206 29 573 109 42 845
APQ 2694 227 216 278 407 554 102 45 911
FCFS 2523 395 87 45 1148
LWP 2668 205 187 250 538 99 45 1247
PFT 2565 214 201 264 328 94 43 1531

This table presents key descriptive and tail-focused metrics for patient length of stay (LOS) under nine prioritization rules in a simulated 30-bed
mixed-acuity emergency department. Columns report the number of observations, mean, median, 75th, 90th, 95th, and 99th percentiles, standard
deviation, and observed minimum and maximum. Results are shown first for the combined low- and mid-acuity cohort (“Overall”), then separately for
low-acuity and mid-acuity patients. The narrow range of grand means (193—-200 min) contrasts sharply with the 99th-percentile spreads—59 min overall,
102 min for low acuity, and 116 min for mid acuity—highlighting how tail behavior diverges across strategies and cohorts.

https://doi.org/10.1371/journal.pone.0326722.t004

emphasizing later thresholds via a linearly increasing weight function. These variants enable us to evaluate whether the
choice of AUC definition alters performance conclusions.

Overall, the conclusions remain stable across AUC definitions. One exception is Acuity-Based FCFS, which appears
more favorable under the variant emphasizing early thresholds—consistent with Fig 1, where it dominates in the initial
portion of the curve.

Next, we sort strategies from best to worst based on each metric. This confirms earlier trends: FCFS ranks highest for
low-acuity patients but lowest for mid-acuity patients, whereas AAPQ-LWP-PFT achieves the opposite pattern, performing
best in the mid-acuity group but worst in the low-acuity group.
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Fig 1. Cumulative discharge profiles for low-acuity patients. This figure plots ?—LOS—Low(t)y the percentage of low-acuity patients discharged within ¢

minutes, for each prioritization strategy over a 12-hour window. The early-time advantage of Acuity-Based FCFS is evident for t < 120 min—outperform-
ing alternatives by roughly 10 percentage points—while its performance converges or declines relative to other rules at longer thresholds.

https://doi.org/10.1371/journal.pone.0326722.9001

Finally, we quantify each strategy’s responsiveness in Table 6 by reporting the minimum LOS threshold required to serve
50%, 75%, 90%, and 95% of patients. These metrics respectively correspond to the time needed to reach the median,
upper-quartile, near-complete, and very-high service-level benchmarks. Together, they provide a granular view of how
quickly each strategy meets increasingly stringent performance goals. We find that the choice of threshold meaningfully
affects the relative ranking of some strategies but not others. For instance, in the low-acuity cohort, AAPQ-PFT reaches 50%
of patients within 185 minutes—midway between FCFS (170min) and Acuity-Based FCFS (200 min). However, to reach
95%, AAPQ-PFT requires 315 minutes, which is far closer to the worst-performing Acuity-Based FCFS (325min) than to the
best-performing FCFS (260 min). In contrast, strategies like AAPQ-LWP-PFT in the mid-acuity cohort demonstrate consis-
tently strong performance across all thresholds, making them less sensitive to the choice of benchmark.

3.3 Stakeholder-informed utility analysis

We evaluate two utility functions—an elliptical form, U4, and a linear form, U, (definitions in Appendix B)—by first
plotting their values against the LOS threshold t. Figs 3 and 4 display the curves U (T os-Low(f), TLos-mid(t)) and
Uz (TLos—Low(t), TLos—mid(f)), respectively, allowing us to observe how strategy rankings evolve as t increases. Because
both curves preserve the same ordering up to approximately five hours, the choice of threshold has minimal impact on
the relative performance of the rules—whereas frequent crossings would mandate consideration of multiple thresholds to
capture divergent conclusions.

We then fix a threshold t* and generate scatter plots of (T os-Low (f*), TLos-mid (t*)) overlaid with utility contours
U(-) = ¢, using color to encode utility level. In Figs 5 and 6, which employ the elliptical utility U;, we set t* = 5hand 7h. At
five hours, FCFS achieves the highest low-acuity discharge rate but ranks poorly overall because its mid-acuity rate trails
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Fig 2. Cumulative discharge profiles for mid-acuity patients. This figure presents ?’LOS_M,-d(t), the share of mid-acuity patients discharged by time ¢
, across all nine rules. Although curves remain tightly clustered overall, FCFS underperforms during the first five hours yet surpasses many strategies at
later thresholds, mirroring the tail-behavior patterns identified in Section 3.1.

https://doi.org/10.1371/journal.pone.0326722.9002

Table 5. Area-Under-Curve (AUC) metrics for threshold-based discharge curves.

Group Strategy AUC (12h) AUC (6h) AUC (low emphasis) AUC (high emphasis)
Low FCFS

Low APQ 74% 49% 57% 93%

Low LWP 74% 49% 56% 93%

Low AAPQ-PFT 74% 48% 56% 92%

Low AAPQ 74% 48% 56% 92%

Low Acuity-Based FCFS 74% 48% 56%

Low PFT 74% 47%

Low AAPQ-LWP

Low AAPQ-LWP-PFT

Mid AAPQ-LWP-PFT

Mid AAPQ-LWP

Mid AAPQ 72% 45% 54% 90%

Mid LWP 72% 45% 53% 91%

Mid AAPQ-PFT 70% 43% 52% 89%

Mid PFT 70% 42% 51% 90%

Mid Acuity-Based FCFS 70% 42% 51% 89%

Mid APQ 68% 39% 49% 88%

id FCFS % 2% 4% %

This table reports four AUC variants—standard (0-12h), half-range (0-6h), early-emphasis (linearly decreasing weights), and late-emphasis (linearly
increasing weights)—for low- and mid-acuity cohorts under each strategy. Despite different weighting schemes, rankings remain largely consistent;
Acuity-Based FCFS appears more favorable under early-emphasis, reflecting its strong initial discharge rates.

https://doi.org/10.137 1/journal.pone.0326722.t005
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Table 6. Minimum LOS thresholds to achieve service-level benchmarks.

Group Strategy 50% 75% 90% 95%
Low FCFS

Low LWP 190 220 260 290
Low APQ 180 220 265 SIS
Low AAPQ-LWP 195 230 270 305
Low AAPQ-LWP-PFT 195 230 270 305
Low AAPQ-PFT 185 230 270 8il5
Low PFT 190 230 270 310
Low AAPQ 190 230 275 310
Low Acuity-Based FCFS

Mid AAPQ-LWP-PFT

Mid LWpP 190 250

Mid AAPQ-LWP 325 400
Mid PFT 205 265 330 380
Mid AAPQ 195 255 335 395
Mid AAPQ-PFT

Mid APQ

Mid Acuity-Based FCFS

Mid FCFS

This table lists, for each strategy and cohort, the minimum length-of-stay threshold required to discharge 50%, 75%, 90%, and 95% of patients. These
responsiveness metrics reveal how quickly each rule meets progressively stringent performance targets, highlighting strategy sensitivity to the chosen
benchmark.

https://doi.org/10.1371/journal.pone.0326722.t006

the next-worst strategy (APQ) by roughly 12 percentage points, resulting in low utility. The other strategies differ only mar-
ginally on low-acuity performance, with mid-acuity rates spanning about nine points between APQ and AAPQ-LWP-PFT.
At seven hours, FCFS’s utility improves dramatically—rising from worst to second best—illustrating how deeper tail perfor-
mance can overturn short-threshold conclusions. Figs 7 and 8 repeat this analysis with the linear utility U,, confirming that
FCFS'’s strong long-threshold performance persists despite its weaker results at shorter thresholds.

Finally, Fig 9 compares U and U, at t* = 3h by plotting each strategy’s pair of utility values. Since the points fall almost
perfectly along the line, the choice of utility function and its parameters has little effect on the strategy rankings; a more
scattered pattern would have revealed sensitivity to the utility specification.

3.4 Strategy strengths and weaknesses

Table 7 synthesizes each strategy’s principal strengths and weaknesses, with supporting tables or figures indicated in
parentheses. We reiterate that the aim of this analysis is to demonstrate our evaluation framework and to illustrate how it
can uncover strategy-specific trade-offs—not to endorse any patrticular rule. These findings should not be used as imple-
mentation guidance, since they are based on a single simulation scenario and on illustrative utility parameters rather than
stakeholder-calibrated values.

4. Discussion
4.1 Synthesis of principal findings

This section interprets the illustrative outputs to show how the framework reveals complementary insights across tails,
thresholds, and utilities. The goal is not to prescribe a specific strategy but to show how a standardized, multi-lens evalua-
tion changes what appears “best” depending on risk tolerance and targets.
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approximately five hours indicates that strategy rankings under U, are robust to the choice of t within this range. Utility parameters are placeholders used
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Fig 5. Elliptical utility contours at "= 5 hours. The mid-acuity weighting hyperparameter is A\=1.5, the overshooting value is 6=0.3, and LOS goals
are 100% of low-acuity patients and 90% of mid-acuity patients. Scatter plot of (T,0s-Low(5h), Tros-mia(5h)) for each strategy, overlaid with elliptical-utility
contours Uy = c. At this threshold, FCFS maximizes low-acuity discharges but scores low overall due to substantially poorer mid-acuity performance,
illustrating the trade-off captured by U,. Utility parameters are placeholders used solely to demonstrate visualization and interpretation; no prescriptive
conclusion should be drawn from these settings without stakeholder elicitation.

https://doi.org/10.1371/journal.pone.0326722.9005

The illustrative example presented in Section 3 demonstrates that the choice of evaluation lens—summary
statistics, threshold-attainment curves, or stakeholder-weighted utilities—can shape how ED prioritization strat-
egies are ranked. Even within a single 30-bed simulated ED, a rule that looks benign under a LOS comparison
can exhibit sizeable right-tail liabilities, while another rule that excels on extreme percentiles may fall behind
when stakeholder utilities emphasize shorter thresholds. These differences highlight our main argument: no sin-

gle metric can fully capture the effects of prioritization policies, and conclusions should never be based on just
one number.

4.2 Why separating patient groups is essential

Averaging performance across different patient urgency levels hides the very differences that clinicians and managers
need to see. When low- and mid-acuity LOS are pooled, the observed spread between strategies narrows to just 7 min-
utes, suggesting no meaningful distinction. However, when evaluated separately, the spread expands to 22 minutes for
low-acuity patients and 74 minutes for mid-acuity patients—highlighting substantial and actionable differences in strategy
performance.

By diluting the average LOS in this fashion, an analyst might incorrectly infer that any of the nine rules is “good
enough,” missing the variation for each group of patients. Operationally, such masking can divert resources toward the
wrong bottleneck or delay recognition of inequitable wait times among patient groups.
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Fig 6. Elliptical utility contours at "= 7 hours. The mid-acuity weighting hyperparameter is A=1.5, the overshooting value is 6=0.3, and LOS goal
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holders used solely to demonstrate visualization and interpretation; no prescriptive conclusion should be drawn from these settings without stakeholder
elicitation.

https://doi.org/10.1371/journal.pone.0326722.9006

4.3 Strategic trade-offs across patient groups

Ideal policies would compress the entire KPI distributions for every cohort, yet the data reveal persistent trade-offs. FCFS
and AAPQ-LWP-PFT epitomize this tension: the former minimizes low-acuity mean and upper-tail LOS, whereas the latter
delivers the best mid-acuity central and tail performance at the expense of longer waits for low-acuity cases.

These findings reinforce the need for hospitals to state explicit priorities—whether reducing crowding for mid-acuity
patients, accelerating flow for discharged fast-track patients, or balancing both objectives through mixed strategies or
dynamic rules.

4.4 Statistical significance versus clinical relevance

Table 2 shows that the worst low-acuity mean LOS (192 min) is twenty-two minutes longer than the best (170 min). While
statistically significant, administrators must decide whether a twenty-minute average difference is operationally meaningful
when the clinically acceptable window for discharge may span several hours. Hence, statistical tests alone cannot substi-
tute for clinical judgment; practical significance must be interpreted in context.

4.5 Actionability of threshold-attainment metrics

Decision makers consistently ask, “How quickly can we reach a given service target?” Table 6 answers this in language
executives and frontline clinicians immediately understand. For instance, APQ discharges half of low-acuity patients
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Fig 7. Linear utility contours at "= 5 hours. The low-acuity downweighing parameter is set to a=0.6 and LOS goals are 100% of low-acuity patients

and 90% of mid-acuity patients. Scatter of (T os-Low(5h), TLos-mig(5h)) with linear-utility contours U, = c, the linear utility penalizes strategies with imbal-
anced performance, reaffirming FCFS’s disadvantage at shorter thresholds. Utility parameters are placeholders used solely to demonstrate visualization
and interpretation; no prescriptive conclusion should be drawn from these settings without stakeholder elicitation.

https://doi.org/10.1371/journal.pone.0326722.9007

twenty minutes sooner than Acuity-Based FCFS, and it reaches the 90 percent benchmark thirty minutes earlier. Such
statements translate directly into staffing discussions, fast-track lane designs, and patient-communication scripts.

4.6 Insights from strengths—weaknesses mapping

The qualitative synthesis in Table 7 distills dozens of numerical comparisons into a concise narrative of strategic profiles.
Strikingly, all identified strengths and weaknesses stem from a single KPI—LOS—in one virtual ED. If this level of het-
erogeneity arises from one performance dimension, the variation across additional KPlIs such as left-without-being-seen
rates, bed-blocking time, or door-to-doctor-time is likely far greater. The implication is sobering: past studies that bench-
marked policies on a single mean LOS or four-hour target may have drawn overly general conclusions, exacerbating
translation gaps when rules are transplanted to new hospitals.

4.7 Central role of sensitivity analysis

Throughout Section 3, sensitivity analysis served as a safeguard against misleading conclusions. For instance, Figs 5
and 6 displayed the Elliptical utility function evaluated at five- and seven-hour thresholds, respectively. Despite the mod-
est two-hour difference, the resulting strategy rankings shifted noticeably. FCFS, which appeared to perform worst under
the five-hour threshold, ranked among the best when evaluated at seven hours. Relying on a single threshold would
have given an interpretation that depended on that specific threshold and could have been misleading. In contrast, other
metrics, such as AUC-to-time-to-threshold, demonstrated robustness to parameter choices, producing consistent results
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https://doi.org/10.1371/journal.pone.0326722.9g008

across variations. Nonetheless, systematically conducting sensitivity analyses remains helpful to guard against occasional
but consequential parameter-driven artifacts. Recognizing these dependencies discourages overconfidence in model gen-
eralizability and helps ensure that operational insights remain valid when applied to alternate settings.

4.8 Recommended steps for strategy evaluation

To ensure that patient-prioritization studies are both rigorous and transparent, we offer the following guidelines for
researchers. These principles will help one apply each evaluation technique consistently, highlight strategy trade-offs, and
guard against overconfident claims of “best” performance.

Technique 1 should be employed across all KPIs and cohorts by reporting sample size, mean, median, minimum, max-
imum, and key upper-tail percentiles (75th, 90th, 95th, 99th) for each clinically relevant subgroup (e.g., acuity level, arrival
window, resource requirement, boarding status). Technique 2 (threshold-attainment) ought to accompany every KPI, with
concise tabular summaries of the time required to reach a stakeholder-defined attainment level (such as 90 percent) for
each cohort, thus providing both clinical relevance and ease of interpretation. Technique 3 (stakeholder-informed utility)
should then translate the most critical KPI(s) into a single utility score that incorporates stakeholder preferences—thereby
facilitating equitable, real-world comparisons. Throughout, results should be presented as context-dependent trade-offs
rather than absolute winners, with each strategy’s strengths and weaknesses clearly articulated across techniques and
cohorts; universal superiority should be asserted only when an exhaustive range of KPIs, cohorts, evaluation methods,
and operational scenarios has been rigorously tested and validated.

We conclude by reflecting on how often each evaluation technique was cited in our analysis summary in Section 3.4
(Table 7). We counted the number of times Techniques 1-3 were referenced when comparing each strategy’s strengths
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and limitations. Technique 1 (detailed summary statistics) accounted for only 26% of all citations—yet most researchers
report only a less-detailed subset of these metrics, implying much information about upper-tail behavior and cohort-spe-
cific performance is routinely omitted. Technique 2 (threshold attainment) and Technique 3 (stakeholder-informed utility)
comprised roughly 29% and 45% of references, respectively. While citation frequency does not directly imply importance,
it offers a useful proxy for how readily each approach reveals key trade-offs—underscoring the need to apply all three in
concert rather than relying on any single method.

4.9 Limitations and directions for future research

We reiterate that the purpose of this study is to introduce and demonstrate a suite of evaluation techniques—not to
endorse any particular prioritization strategy. There are several limitations, so the example results should be interpreted
with caution. The simulation was calibrated to a single ED with 30 beds and moderate patient volume. As such, different
acuity distributions, arrival patterns, boarding durations, or staffing constraints in other settings may yield materially differ-
ent rankings. Moreover, our analysis centered on LOS, supplemented only by a brief DTDT example in Appendix E, and
did not extend to other outcomes such as LWBS, patient safety, or staff workload. The utility parameters used in this study
were intended for illustrative purposes only; they were not elicited from stakeholders or validated through multicenter
analysis.

This paper introduces three evaluation techniques designed to promote more rigorous and transparent comparisons
of patient prioritization strategies. While these techniques provide a structured foundation, they are not comprehensive.
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Table 7. Summary of strategy performance profiles in the illustrative scenario.

Strategy

Strengths

Weaknesses

Recommendation (lllustrative)

FCFS

» Fastest low-acuity mean, median, and
upper tail (T4)

 Best mid-acuity 99th percentile (T4)

» Outstanding low-acuity discharge rates
and AUC (F1; T5)

* Slow early tail and central metrics for mid-acuity (T4)
* Poor mid-acuity discharge rates and AUC (F2; T5)
* Very low stakeholder utility until late thresholds (F3-F9)

Avoid. Prioritizes minor cases
at the expense of higher-acuity
patients, yielding substandard
performance for mid-acuity
despite strong low-acuity results.

Acuity-Based
FCFS

» Lowest absolute maximum LOS (T4)
 Highest low-acuity discharge rate in first
2h (F1)

» Worst low-acuity median and upper percentiles (T4)
» Worst mid-acuity 95th percentile (T4)

» Mediocre on most LOS metrics (T4)

* Low utility across thresholds (F3—F9)

Eliminate. Although intuitively
fair, it underperforms for both
acuity groups across nearly all
metrics.

APQ « Strong low-acuity central tendencies and | « Worst low-acuity 99th percentile and poor 95th percen- | Avoid. Limited benefits for
75" percentile (T4) tile (T4) low-acuity do not justify its
« Solid overall AUC (T5) » Weak mid-acuity LOS and discharge times (T4; T6) significant mid-acuity and tail
« Lower utility relative to alternatives (F5—F9) drawbacks.
PFT » Excellent mid-acuity tail performance * Below-average low-acuity mean (T4) Acceptable. Mid-acuity
(95th, 99th, STD) (T4) » Subpar overall AUC (T5) strengths and strong late-
« Fast time to 95% mid-acuity discharge threshold utility offset mod-
(T6) est low-acuity and AUC
« Top utility at 7 h thresholds (F6; F8) weaknesses.
LWP » Above-average LOS statistics for both * Average low-acuity AUC and median discharge (T5; T6) | Strong contender. Consistently
cohorts (T4) » Mid-acuity 99th percentile only moderate (T4) solid performance with few
» Good mid-acuity AUC and discharge notable weaknesses.
times (T5; T6)
« Best 5h utility (F5; F7)
AAPQ + Balanced central tendencies and moder- | + Below-average mid-acuity AUC (T5) Acceptable. Not the top per-
ate tails for both cohorts (T4) « Slower low-acuity threshold attainment (T6) former but offers a good balance
» Good low-acuity AUC (T5) between low- and mid-acuity
« Utility at or above average (F5-F9) outcomes.
AAPQ-PFT » Above-average low-acuity 50% discharge | « Below-average low-acuity 95th/99th percentiles (T4) Avoid. Combines two moderate
time (T6) » Weak mid-acuity 90th/95th percentiles (T4) strategies but underperforms
* Low utility at common thresholds (F5-F8) each individually.
AAPQ-LWP « Top mid-acuity central tendencies and » Worst low-acuity mean and 99th percentile (T4) Conditional. Best for improving
75th percentile (T4) * Low low-acuity AUC (T5) mid-acuity LOS but imposes
» High mid-acuity AUC (T5) » Worst mid-acuity 99th percentile (T4) substantial low-acuity and tail
« Excellent mid-acuity 50%/75% discharge trade-offs. Stakeholder priorities
rates (T6) must guide its use.
« Strong utility at 3h and 5h (F5; F7; F9)
AAPQ-LWP- |« Best mid-acuity central, 75th/90th per- » Worst low-acuity mean and AUC (T4; T5) Acceptable. Excels for
PFT centiles, AUC, and discharge times (T4; |+ Slow low-acuity 50% discharge (T6) mid-acuity and overall utility;

T5; T6)
» Among highest utility values across
thresholds (F5-F9)

low-acuity delays may be
acceptable if stakeholders focus
on higher-acuity patient flow.

This table summarizes each prioritization rule’s principal performance advantages and drawbacks—citing relevant analysis panels (T2—-T4 refer to Tables
2—4; F1-F9 refer to Figs 1-9)—and provides a high-level recommendation for use. Strengths highlight metrics or utility benchmarks where a strategy
excels, while weaknesses identify its shortcomings. Recommendations classify each rule as “Strong contender,” “Acceptable,” “Conditional,” or “Avoid,”
based on the balance of benefits and implementation trade-offs under the illustrative simulation scenario. These recommendations are purely illustrative
based on our specific scenario and should not be regarded as a general recommendation.

https://doi.org/10.1371/journal.pone.0326722.t007

Future work should aim to develop additional methods that illuminate distinct strengths and weaknesses of each strategy.
Although quantitative tools such as AUC can be useful, their benefits are limited if they lack interpretability or practical
relevance. When mathematical measures are employed, visualizations should be designed to clearly convey real-world
implications—as exemplified by the utility function plots in Figs 5-8.
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Our evaluation framework was applied to a single ED configuration, making it well suited for guiding local implemen-
tation decisions. However, many researchers aim to develop strategies that generalize across multiple ED settings. The
most direct approach to support such generalization is to apply the evaluation techniques across a diverse set of simu-
lated ED environments—ideally spanning 4—8 configurations that vary by bed count, staffing model, and arrival volume.
While this approach provides valuable insights, it is resource-intensive: even a single-configuration analysis across mul-
tiple KPIs can span dozens of pages. A promising direction for future research is to identify principled methods for aggre-
gating results across configurations. One such approach, based on covariance ovals, is introduced in Appendix B.5. Care
must be taken to preserve between-scenario variability, as aggregation can obscure meaningful differences. For example,
in Section 3.1, combining low- and mid-acuity cohorts reduced the mean LOS difference across strategies from 22 and 74
minutes, respectively, to only 7 minutes—thereby masking clinically relevant distinctions.

Although the proposed techniques allow rigorous numerical comparisons of patient-prioritization strategies, implemen-
tation feasibility must be assessed before any analysis begins. A reinforcement-learning (RL) policy (e.g., see Lee and Lee
[27]), for example, may offer superior theoretical performance, yet its practical requirements can be prohibitive. Many RL
formulations presume real-time knowledge of each patient’s location, resource needs, and even uncertain variables such
as future arrivals and service times. Collecting this information in simulation is straightforward; acquiring it in a working
ED would demand either extensive manual data entry—adding workload for clinical staff—or continuous computer-vision
monitoring, which entails new infrastructure, software, and privacy concerns. A strategy that looks good in a simulation but
creates major operational or ethical problems in a real hospital is not truly beneficial. Researchers should therefore verify
that any recommended policy can be deployed with existing data streams and minimal additional burden on personnel;
otherwise, theoretical optimality will remain purely academic.

Finally, we briefly reflect on the performance of our novel strategies—PFT, LWP, AAPQ, and their combinations—within
the illustrative analysis. While we emphasize that these illustrative results are not intended as definitive endorsements, it
is noteworthy that our proposed strategies consistently outperformed traditional benchmarks such as Acuity-Based FCFS
and APQ across multiple evaluation criteria. As such, these strategies represent a secondary contribution to this work:
they appear promising and merit further investigation. In addition to their favorable quantitative performance, they were
deliberately designed for ease of implementation and interpretability, making them attractive candidates for real-world
adoption.

5. Conclusion

This study improves the study of ED operations by presenting and demonstrating a three-part evaluation framework—
tail-sensitive summary statistics, threshold-attainment profiles, and stakeholder-informed utility analysis—for transpar-
ent comparison of patient-prioritization strategies. Applying the framework to nine rules within a common discrete-event
simulation revealed that strategic rankings are highly sensitive to the chosen evaluative lens and to cohort aggregation:
analyses confined to overall means understated clinically meaningful differences that emerged once low- and mid-acuity
patients were considered separately, and strategies that appeared dominant under central-tendency metrics were often
eclipsed when extreme percentiles or utility-weighted outcomes were examined. These findings confirm that no single
KPI, time target, or composite score adequately captures the multidimensional consequences of queue-management
decisions, and they underscore the practical necessity of reporting a minimum set of distributional, threshold-based, and
preference-aligned measures.

By framing results as trade-offs rather than pronouncing universal “winners,” the proposed framework equips hospital
leaders to align prioritization rules with explicit local objectives—whether accelerating flow for mid-acuity patients, protect-
ing low-acuity throughput, or balancing both via mixed or adaptive policies. Because the three techniques use common
statistics and simple graphs, the method is easy for different stakeholders to understand while still being rigorous enough
for researchers and quality-improvement teams. Moreover, the framework is KPl-agnostic and extensible to additional
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outcomes such as door-to-doctor time, boarding duration, patient safety indicators, or staff workload, inviting comprehen-
sive performance audits without presupposing any specific metric hierarchy.

Several limitations temper the generalizability of the illustrative results. The simulation reflected a single, moderately
busy, 30-bed ED; different capacity profiles, arrival patterns, or boarding pressures may yield alternative strategic order-
ings. Only length of stay was modeled, utility parameters were illustrative rather than elicited, and no external validation
across multiple health systems was undertaken. Future research should therefore replicate the framework across diverse
ED configurations, incorporate a broader KPI portfolio, elicit context-specific utilities, and test whether adaptive or hybrid
strategies can dominate static rules when assessed under the full triad of metrics. Methodological work is also needed to
synthesize results across multiple scenarios without obscuring cross-site heterogeneity—an aggregation challenge analo-
gous to cohort masking within a single ED.

Notwithstanding these caveats, the present contribution provides a framework that reconciles statistical robustness with
managerial interpretability, furnishing researchers and practitioners with a common language for evidence-based policy
design. Widespread adoption of this evaluation standard promises to accelerate meta-analysis, clarify when and where
novel prioritization algorithms add value, and ultimately promote safer, timelier, and more equitable emergency care.
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