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Abstract 

Studies comparing emergency department (ED) patient prioritization rules often use 

single averages, which can hide important clinical trade-offs. This paper presents 

and demonstrates a three-part evaluation framework designed for clear, multi-faceted 

comparisons of prioritization policies. The framework includes: (1) statistics that 

account for extreme outcomes, (2) profiles showing how well time targets are met, 

and (3) analysis based on stakeholder priorities. We illustrate the framework in a uni-

fied discrete-event simulation of a 30-bed mixed-acuity ED to show how conclusions 

can change across tails, thresholds, and stakeholder preferences; the numerical 

results are for illustration only and are not recommendations for any specific hospital. 

Our main contribution is the method itself: a consistent and repeatable way to reveal 

different but complementary information, helping decision-makers match policies to 

their local goals, limits, and risk tolerance. Before implementation, future work should 

apply this framework using data from specific hospitals and gathering input from their 

stakeholders.

1.  Introduction and literature review

1.1  Background and significance

Emergency department (ED) crowding is a persistent threat to timely, high-quality 
care. As of 2016, over 90% of EDs reported regular crowding, and the COVID-19 
pandemic has worsened the situation [1]. Prolonged length of stay (LOS), boarding, 
and repeated “left-without-being-seen” (LWBS) events have each been linked to 
excess mortality, lower patient satisfaction, and staff burnout [2,3]. Long wait times 
not only delay time-sensitive interventions for high-acuity patients but also deteriorate 
the overall quality of care [4–7]. Even low-acuity patients may experience prolonged 
discomfort or clinical deterioration if neglected. Beyond clinical outcomes, crowding 
constrains a hospital’s ability to respond to new emergencies and impairs operational 
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efficiency, with downstream effects on financial performance [8]. While root causes 
span hospital-wide capacity constraints, one tool ED managers can control is the 
patient prioritization strategy—that is, the rule that determines which patient is served 
next once a resource becomes available. Over the past two decades, researchers 
have proposed a rich catalog of such rules, ranging from simple first-come-first-
served (FCFS) queues to dynamic algorithms that blend acuity, projected workload, 
and downstream bed availability [9].

Despite this methodological progress, evidence on which strategy works best 
is inconclusive. Primary studies differ widely in (i) the key-performance indicators 
(KPIs) they report (e.g., average LOS versus 90th-percentile LOS), (ii) whether they 
examine distribution tails, and (iii) the degree to which stakeholder preferences are 
incorporated. Since evaluation methods are inconsistent, the same strategy can look 
good in one study but bad in another. This makes it hard to apply findings broadly 
and adopt new methods [10]. The absence of a systematic evaluation framework 
therefore represents both a scientific gap and a practical barrier to evidence-based 
ED operations.

This paper addresses that gap by introducing a unified framework built on three 
complementary evaluation techniques. The first technique involves computing KPI 
summary statistics with explicit tail analysis to detect hidden extremes in performance 
distributions. The second constructs threshold-based performance curves that reveal 
sensitivity to time-target selection, making it easier to interpret operational trade-offs. 
The third incorporates stakeholder-informed utility functions that translate multidimen-
sional clinical objectives into a single, interpretable scalar score.

Using nine prioritization rules—including widely studied approaches (e.g., FCFS, 
Accumulating Priority Queue [APQ]) and several novel strategies—we demonstrate 
that each rule reveals distinct trade-offs that are obscured by average-only perfor-
mance metrics. We show that a strategy may appear optimal under one evaluation 
criterion but perform poorly under another. Our aim is not to identify a single “best” 
rule, but to equip ED decision-makers with a transparent framework for comparing 
strategies within their specific operational contexts.

1.2  Literature review

1.2.1  Patient-flow challenges in crowded EDs.  Systematic reviews consistently 
find that crowding worsens clinical outcomes and elevates operational costs 
[3,4,8]. Among the most frequently reported indicators are median LOS and time-
to-physician [3,10]. However, these studies also emphasize that serious incidents 
like ambulance diversions are more often caused by the severe operational strains 
measured by extreme tail events (e.g., 99th-percentile LOS) than by the typical 
performance reflected in averages.

1.2.2  Patient-prioritization strategies.  A wide array of interventions have been 
proposed to alleviate ED crowding, including the use of telehealth solutions [4], 
educational initiatives for patients, and process-improvement frameworks like Six 
Sigma [11]. This review, however, centers on patient prioritization strategies—rules 
that dictate the sequencing of patients when a treatment resource becomes available. 
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The most basic of these is the first-come, first-served approach, while more advanced methods utilize algorithmic or 
heuristic logic to improve performance metrics. As shown in Table 1, prior researchers have explored a diverse spectrum 
of prioritization methods, spanning from static mechanisms such as structured priority queues [12–14] to adaptive systems 
that make real-time decisions [15–17]. Some authors have pursued optimization-based formulations [18,19], although 
these often struggle with the incorporation of uncertainty. Other researchers have turned to data-driven techniques like 
machine learning to better model and respond to stochastic dynamics [20,21]. Additional investigations have examined 
more traditional strategies, including revised triage procedures [9,22] and evaluations of heuristic decision-making by 
frontline clinicians [23,24]. Comparative studies often use discrete-event simulation because it allows them to test ‘what-if’ 
scenarios for each patient without affecting actual hospital operations [25].

1.2.3  Existing evaluation practices.  Although numerous studies investigate patient prioritization strategies, no 
standard approach exists for evaluating their effectiveness. Instead, three methodological traditions have emerged in the 
literature.

The first and most common approach involves reporting single-moment KPIs, such as mean or median LOS, wait time, 
or throughput [25–28]. This practice is widespread in both simulation and empirical studies. However, because LOS distri-
butions usually have a long ‘tail’ of very long stays, focusing only on the average can hide rare but severe delays.

A second approach assesses target-achievement rates, often in alignment with regulatory benchmarks—such as the 
proportion of patients discharged within a 4-hour window [29]. While such metrics are straightforward to interpret and align 
with policy goals, they depend heavily on the chosen threshold, which may be arbitrary and insensitive to broader perfor-
mance variation.

The third approach, found in a smaller body of literature, employs utility-based multicriteria scoring to synthesize perfor-
mance across several KPIs. These studies use explicit utility functions—linear, exponential, or Chebyshev—to represent 
stakeholder preferences [16,30]. Although this method enhances transparency, most implementations do not test the 
robustness of results to changes in utility-parameter values, limiting their prescriptive reliability (Table 2).

1.2.4  Lack of generalizability.  Early evidence suggested that simply introducing a structured triage scale 
would shorten waits and lower mortality [31]. Yet subsequent observational work uncovered the opposite effect: Sax 
et al. noted that widespread assignment to mid-acuity patients (i.e., ESI Level 3) created a “mid-acuity log-jam,” 
lengthening throughput for all but the sickest patients because beds were occupied by patients whose severity had 
been overestimated [32]. These conflicting findings highlight that the same triage rule can either alleviate or exacerbate 
crowding.

Commentaries have questioned whether current validation methods transfer across jurisdictions. Twomey et al. argued 
that techniques developed in well-resourced settings “may not be appropriate and repeatable in developing countries,” 
and highlighted conceptual problems in declaring any single metric the gold standard for validity [33]. One hospital might 

Table 1.  Patient-prioritization strategy families in the literature: scope and gaps.

Strategy Family Canonical Examples Static vs. Adaptive Data/ ML Usage Notes

Queue order rules FCFS; Acuity-based FCFS Static (rule fixed) None Baselines in most comparisons; simple 
but can underperform by cohort

Accumulating priority APQ Static but time-evolving 
scores

None Popular due to interpretability; weights 
often ad-hoc

Optimization-based Priority selection via mathematical 
programming

Static/parametric Limited  
(parameters)

Struggle with uncertainty & online 
dynamics in ED settings

Learning/ data-driven ML triage or dynamic policies Adaptive Yes Cross-site performance often degrades; 
external validation frequently lacking

Process/ triage 
adjustments

Revised triage scales; staff/ pro-
cess changes

Static policies None Effects can conflict across settings; 
generalizability issues noted

https://doi.org/10.1371/journal.pone.0326722.t001

https://doi.org/10.1371/journal.pone.0326722.t001
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benchmark triage accuracy against ICU admission; another might use expert consensus. These differences make it diffi-
cult to compare hospitals and generalize findings.

The same pattern emerges in the rapidly growing AI/ML triage literature. El Arab and Al Moosa found that most 
machine-learning studies were single-center and lacked external validation, with selection bias and overfitting as recurrent 
threats [34]. When Ryu et al. trained a gradient-boosted triage score at one hospital and deployed it at sister sites, the AUC 
for predicting admission ranged from 0.93 to 0.71 across locations served by the same health system [35]. Broader reviews 
of data-driven admission predictors echo the call for “rigorous external evaluation before clinical use” [36]. Meanwhile, 
Ingielewicz et al. surveyed traditional scales and concluded that “no existing triage system clearly outperforms others in 
every aspect,” effectively dispelling the notion of a universal best-in-class tool [37]. From a resource-constrained perspective, 
Siddiqui et al. stated that “the need and practical applicability of any triage is dictated by the hospital system and setting” [38].

Adding to these problems, most studies only compare a new rule to the current one, instead of to other advanced rules, 
and they often use just one metric [20,22]. As we later demonstrate, the ranking of nine common prioritization strategies 
changes when analysts shift from average LOS to tail-sensitive or utility-based criteria within the same 30-bed ED. If 
evaluation choice alone can flip conclusions in one configuration, then extrapolating results across hospitals with different 
capacity, acuity mix, or stakeholder priorities is doubly precarious.

1.2.5  Gaps in the literature.  To our knowledge, no consensus exists on which KPIs constitute the minimal 
reporting set when analyzing a patient prioritization strategy. Recent umbrella reviews explicitly call for “standardized, 
multidimensional evaluation frameworks” to enable meta-analysis and real-world translation [10].

1.3  Contributions and organization

We synthesize and demonstrate a tripartite evaluation framework that (i) requires analysts to quantify tail behavior; (ii) 
exposes threshold dependence; and (iii) embeds explicit stakeholder utilities. The main contribution is the framework itself, 
not the specific numerical results. We illustrate its use in one unified DES setting to show how evaluation choice alone can 
reverse apparent rankings across strategies and cohorts. We do not advocate any specific rule in this paper; real-world 
selection requires site-specific validation and stakeholder preference elicitation, which we identify as future work.

The remainder of the study is organized as follows. Section 2 details the proposed methodology, including cohort‐spe-
cific metrics, threshold‐attainment curves, and utility analyses; Section 3 provides an illustrative application; Section 4 
discusses managerial implications, limitations, and avenues for future research; and Section 5 concludes by summarizing 
the key contributions, offering practical recommendations for aligning prioritization rules with clinical objectives, and high-
lighting the study’s broader significance. Supplementary details appear in the Appendices in S1 File: Appendix A describes 
each prioritization strategy; Appendix B defines the stakeholder utility functions; Appendix C provides full simulation‐model 

Table 2.  Evaluation practices for ED prioritization in the published literature.

Practice (what is reported) Typical KPIs/ Artifacts Main Strengths Key Limitations

Single-moment summaries Mean or median LOS; wait time; 
throughput

Simple to compute/interpret; widely 
comparable across papers

Sensitive to skew; masks rare but critical 
long waits

Tail-aware summaries Upper percentiles (e.g., P90, P95, 
P99)

Surfaces risk-relevant extremes linked 
to operational failures

Less frequently reported; choice of 
percentile varies, making cross-study 
synthesis difficult

Threshold-attainment (“target 
compliance”)

Share ≤ X hours (e.g., 4-hour 
discharge)

Directly aligned with policy; intuitive for 
managers

Dependent on the chosen threshold; 
arbitrary cutoffs can change conclusions; 
ignores performance away from the target

Utility-based multicriteria 
scoring

Scalar utility over multiple KPIs (linear, 
exponential, Chebyshev, etc.)

Makes stakeholder trade-offs explicit; 
enables one-number comparisons

Rare in ED work; parameters often set ad 
hoc; robustness to parameter variation 
seldom tested

https://doi.org/10.1371/journal.pone.0326722.t002
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parameters; and Appendix D presents the context-specific formulation of the area under the curve (AUC) that is used in 
our threshold‐attainment analysis in Section 2.3.

2.  Materials and methods

2.1  Study design and objectives

The general objective of this study is to develop and demonstrate a multi-faceted framework for the comparative evalua-
tion of ED patient-prioritization strategies. The framework is designed to address the inconsistencies highlighted in Section 
1.2.4 by providing a transparent and standardized approach to assessment.

Within this overarching aim, the specific objectives are fourfold. First, we implement a discrete-event simulation (DES) 
of patient flow calibrated to a 30-bed, mixed-acuity ED to provide a model to illustrate the use of our evaluation framework. 
Second, we apply this model to nine distinct prioritization policies, spanning established rules, novel strategies, and com-
posite approaches. Third, we evaluate each policy using three complementary techniques: distributional tail-risk statistics, 
threshold-attainment profiles, and stakeholder-informed utility analysis. Finally, we illustrate how the apparent preference 
among strategies shifts across these lenses, thereby motivating the need for standardized, multi-criteria reporting.

The numerical results presented are illustrative only; their purpose is to demonstrate the mechanics and insights 
of the framework rather than to advocate any particular prioritization strategy. To maintain clarity, we restrict attention to 
LOS—a KPI that is both widely reported in the literature and directly relevant to clinicians, administrators, and patients. 
The framework itself can be used with any key performance indicator and can be replicated with other indicators such 
as door-to-doctor time (DTDT), LWBS rates, or mortality. To illustrate this generality, Appendix E provides a brief DTDT 
example, showing that the same evaluation techniques apply seamlessly to other ED metrics. Expanding the analysis to 
multiple KPIs would significantly lengthen the manuscript without adding to its methodological contribution.

For similar reasons, we exclude the highest-acuity (i.e., ESI-1) arrivals from subsequent analyses, since these patients 
always receive immediate treatment regardless of prioritization rules. Throughout the paper, the term ESI refers to the 
Emergency Severity Index, a five-level triage system used to categorize patients in the emergency department based on 
acuity and anticipated resource needs. This scale ranges from level 1 for patients requiring immediate life-saving interven-
tion to level 5 for stable patients who require no resources upon examination.

2.1.1  Patient prioritization strategies.  To demonstrate our evaluation framework, we apply it to nine distinct patient 
prioritization strategies. A comprehensive technical description of each strategy is available in Appendix A; this section 
provides a high-level summary. The strategies are grouped into three categories: established baselines from the literature, 
novel rules developed for this study, and composite strategies that integrate the novel approaches.

•	 Established Baseline Strategies

◦	 First-Come-First-Served (FCFS): patients are selected based strictly on their arrival order, irrespective of their acu-
ity level.

◦	 Acuity-Based FCFS: prioritizes patients with higher acuity, using the FCFS rule to resolve ties within the same acu-
ity level.

◦	 Accumulating Priority Queue (APQ): integrates both patient acuity and their current length of stay (LOS). A 
patient’s priority score is calculated by multiplying their LOS by a predefined acuity weight.

•	 Novel Base and Add-on Strategies

◦	 Additive Accumulating Priority Queue (AAPQ): a novel base rule. It defines a patient’s score as the sum of their 
acuity weight and a small, scaled LOS term. This design primarily orders patients by acuity while using their current 
LOS as a tiebreaker, which makes it intuitive and easy to implement.
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◦	 Low Workload Physician (LWP): a conditional “add-on” rule designed to balance physician workload in real-time. If 
a physician has significantly fewer active patients than their peers, this rule assigns them the highest-priority patient 
from the queue, temporarily overriding the default prioritization logic.

◦	 Partial Fast Track (PFT): another add-on that designates one physician to preferentially treat low-acuity patients 
(i.e., ESI 4 and 5) on an FCFS basis whenever such patients are available in the queue. The other physicians con-
tinue to serve all patients according to the base rule, ensuring flexibility.

•	 Composite Strategies

◦	 AAPQ-LWP and AAPQ-PFT: layer the LWP and PFT add-on rules over the AAPQ base rule, respectively.

◦	 AAPQ-LWP-PFT: sequentially applies the logic of PFT, then LWP, before defaulting to the AAPQ base rule if neither 
of the add-on conditions is met.

2.1.2  Notation.  Finally, Table 3 summarizes the notation we use throughout this manuscript.

2.2  Technique 1: KPI summary statistics and tail analysis

This technique reflects standard practice by summarizing the distribution of each KPI. It is intentionally simple and 
does not incorporate advanced methodological tools. We include it because many studies provide limited distributional 
insight, typically reporting only the mean and occasionally the standard deviation. In contrast, our approach reports both 
central-tendency and right-tail metrics, as the extreme upper tail of the distribution often represents the worst outcomes, 
which pose the greatest risks to patients and hospital operations but are rarely discussed in the literature.

Assuming that lower KPI values indicate better performance, we recommend reporting a comprehensive set of statis-
tics for each strategy. These include the sample size, which ensures transparency about the number of observations and 
supports the assessment of statistical power; the mean, which reflects the average outcome and facilitates comparison 
of overall performance; and the median, which serves as a robust measure of central tendency that is not overly influ-
enced by outliers. Additionally, reporting the minimum and maximum values allows for identification of the best and worst 
observed outcomes, respectively—offering insight into exceptional performance as well as potential failures.

To quantify tail risk explicitly, we also recommend including the 75th, 90th, 95th, and 99th percentiles of each KPI distribution. 
These percentiles reveal how frequently patients experience extremely long waits or lengths of stay, offering a granular view of 
performance in high-risk scenarios. This practice is consistent with prior guidelines in emergency department analytics [3].

Each of these metrics can—and should—be reported separately for relevant cohorts. In Section 3 (Illustrative Applica-
tion of the Framework), for example, we will present these statistics for all patients combined, as well as stratified by Low 
and Mid acuity groups, which will reveal differing performance profiles when disaggregated. At a minimum, reports should 

Table 3.  Notation primer.

Symbol Meaning

P cohort under study (e.g., all patients, low-acuity)

Mi KPI value for patient i ∈ P

TP(t) proportion of cohort P with Mi ≤ t

tmax maximum threshold considered

tX time at which TP(t) = X/100

U(·) stakeholder-informed utility score

Table 3 summarizes symbols that re-occur throughout Sections 2–3.

https://doi.org/10.1371/journal.pone.0326722.t003

https://doi.org/10.1371/journal.pone.0326722.t003
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be stratified by acuity level; additional cohort definitions might include arrival‐time window, required resource type, board-
ing status, or other clinically meaningful categories.

2.3  Technique 2: Threshold-based performance

While summary statistics and tail percentiles (Technique 1) reveal overall distributional properties, stakeholders often 
specify explicit time targets—for example, the proportion of patients discharged within four hours. Technique 2 addresses 
this by quantifying, for each strategy and cohort, the fraction of patients whose KPI falls below a clinically meaningful 
threshold. By evaluating this performance over a range of thresholds, analysts can visualize and compare how sensitive 
each prioritization rule is to the choice of time target.

We begin by defining the indicator function

	
1{x} =

{
1 if x is True
0 if x is False.	

Let P denote a patient cohort (e.g., all patients or those in a given acuity group), and let Mi be the KPI value for patient 
i ∈ P  (e.g., length of stay, waiting time, door-to-doctor time, boarding indicator, or satisfaction score). For a specified 
threshold t, we define the threshold-attainment function

	
TP(t) =

1
|P|

∑
p∈P

1{Mi < t},
	

which represents the proportion of patients in cohort P whose KPI does not exceed t.
In practice, we compute TP(t) over a grid of thresholds t ∈ {t1, t2, · · · , tK}. Plotting TP(t) against t yields a threshold-

attainment curve, with higher curves indicating faster achievement of the target. Separate curves are generated for each 
strategy s and cohort P, enabling direct visual comparison. Confidence bands (e.g., bootstrap 95% intervals) may be over-
laid to assess statistical significance.

For our illustrative analysis, we compute TLOS–Low(t) and TLOS–Mid(t) where P corresponds to the low- and mid-acuity 
groups, respectively, and Mi is each patient’s length of stay. By comparing these curves across the nine prioritization rules, 
one can readily identify how many patients meet a four‐hour discharge target and observe how performance changes 
under more stringent (e.g., three‐hour) or more lenient (e.g., five‐hour) thresholds.

Threshold‐attainment analysis offers several key advantages. First, plotting curves over a continuous range of t facili-
tates a sensitivity analysis, since intersections of curves reveal threshold ranges in which one strategy outperforms another. 
Second, curves directly encode clinical relevance, allowing stakeholders to read off the proportion of patients meeting 
an institution’s policy‐driven time target without recomputing separate summary statistics. Third, when it is impractical to 
display full curves—such as in print‐constrained venues—selecting a few representative percentile targets (for instance, the 
time to 75 percent, 90 percent, or 95 percent attainment) and tabulating those values can achieve space efficiency.

Besides looking at the curves, we can calculate summary metrics from TP(t) to make comparisons easier. The AUC 
over the interval [0, tmax] is defined by

	

AUC =

tmax∫

0

TP(t) dt,

	

or more generally

	

tmax∫

0

w(t) TP(t) dt, with

tmax∫

0

w(t) dt = 1,
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where w(t) is a weight function (e.g., linear or exponential decay) emphasizing early, middle, or late thresholds and tmax 
represents the upper bound of interest (such as 12 hours for LOS). To standardize comparisons across KPIs, we report 
the standardized AUC as AUC/tmax, which ranges from 0 to 1. Appendix D provides the full details of our AUC calcu-
lations. AUC is particularly beneficial because it consolidates performance across the entire range of clinically relevant 
thresholds into a single measure, enabling straightforward quantitative comparison of different strategies across all 
thresholds.

A second concise metric is the speed to X% attainment, defined by

	 tX = min{t : TP(t) ≥ X/100}.	

which answers the question, “How long until X% of patients meet the KPI target?” For example, one might report that 
“Strategy A reaches 90 percent discharge 25 minutes faster than Strategy B for mid‐acuity patients.” Because X  is a 
stakeholder‐defined parameter, it can be varied to reflect different operational goals.

Researchers can tabulate AUC or tX  values for key percentiles—such as 50 percent, 75 percent, 90 percent, and 95 
percent—to present succinct comparisons without plotting every curve. All threshold‐based metrics—full curves, AUC, and 
tX  —should be reported separately for each cohort of interest. In Section 3, we will present these metrics for low‐acuity 
and mid‐acuity groups, demonstrating how strategy rankings may shift when performance is disaggregated. At a mini-
mum, stratification by acuity level is required; additional analyses may consider other cohorts (for example, arrival‐time 
windows, required resource types, or boarding status) to uncover subgroup‐specific trade‐offs.

2.4  Stakeholder-informed utility functions

Techniques 1 and 2 show what each rule achieves in terms of KPI distributions and threshold attainment, but they don’t 
show how much stakeholders value those outcomes. Technique 3 remedies this by mapping multi-dimensional perfor-
mance into a single, stakeholder-aligned score, U(·), constructed to increase as outcomes improve. While the precise 
functional form—whether linear, quadratic, exponential, Chebyshev, or otherwise—is specified in Appendix B, the follow-
ing paragraphs describe how utility-based visualizations enhance decision support and how we apply them in our illustra-
tive application of the framwork. The numerical utility parameters used in our analysis are illustrative placeholders; they 
were not elicited from ED stakeholders and serve only to demonstrate Technique 3.

First, one can plot

	 U(TP1(t), TP2(t)) versus t	

for each strategy where P1 and P2 are two cohorts. In our illustrative analysis, we use U(TLOS–Low(t), TLOS–Mid(t)). By track-
ing utility across the same grid of LOS thresholds used in Technique 2, these curves reveal trade-offs in a single view: a 
rule that underperforms at short thresholds may nonetheless deliver high stakeholder value at longer thresholds, indicat-
ing favorable tail performance despite mediocre central metrics.

Second, for any fixed threshold t∗, a scatter plot for a specific threshold is an easy-to-understand visual. We plot

	 (TLOS–Low (t
∗) , TLOS–Mid (t

∗))	

on the horizontal and vertical axes, respectively, and overlay utility contours U(·) = c. Each strategy appears as a point 
colored by its utility level (e.g., green for high, red for low). Note that both axes remain raw KPI percentages; utility influ-
ences only the contour lines and point colors. This visualization combines the interpretability of familiar KPI percentages 
with a direct encoding of stakeholder preferences.
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Finally, when multiple utility formulations or hyperparameter settings are under consideration, a cross-utility comparison 
can be performed by plotting U1 against U2 for each strategy at selected thresholds. Near-linear alignment along a posi-
tively sloped line indicates that strategic ordering is robust to the choice of utility specification; divergence suggests that 
different stakeholder weighting induces materially different recommendations, warranting closer examination.

These utility‐driven plots enrich our evaluation framework by embedding explicit stakeholder trade‐offs into familiar 
performance metrics, highlighting threshold dependence—since the utility curves mirror LOS threshold curves while sum-
marizing value rather than raw attainment—and testing robustness through cross‐utility comparisons that guard against 
overconfidence in any single preference model.

3.  Illustrative application of the framework

All results in this section are illustrative—they reflect a single discrete-event-simulation calibration for a 30-bed 
mixed-acuity ED and utility parameters chosen for demonstration only. They should not be interpreted as prescriptive 
guidance for any specific hospital.

3.1  KPI summary statistics and tail analysis

Table 4 presents LOS summary statistics for the combined low- and mid-acuity cohort. Across the nine prioritization strat-
egies, the average LOS is very similar—ranging from 193 to 200 minutes. However, the longest stays (the right-hand tail) 
vary a lot, with the 99th percentile spanning 59 minutes.

When stratified by acuity level, sharper contrasts emerge. For low-acuity patients, the mean LOS range triples to 22 
minutes (170–192 min) and the 99th-percentile spread widens to 102 minutes. In contrast, mid-acuity patients exhibit a 
mean range of 74 minutes (189–263 min) and a 99th-percentile spread of 116 minutes.

Acuity stratification also reverses strategy rankings. For low-acuity patients, FCFS outperforms all other rules on mean, 
median, and percentile metrics, whereas AAPQ-LWP-PFT yields the highest mean LOS. In the mid-acuity cohort, FCFS 
performs worst in mean, median, and upper-tail percentiles, while AAPQ-LWP-PFT ranks best on those metrics.

However, rankings vary by KPI. Among low-acuity patients, AAPQ-LWP-PFT produces the worst mean (albeit by a 
narrow margin) yet its right-tail performance remains near average. For mid-acuity patients, AAPQ-LWP excels on mean, 
median, and 75th-percentile metrics but performs poorly in more extreme tail measures, such as the 95th and 99th 
percentiles.

These findings highlight two key points: (1) averaging across different patient groups hides important differences, and 
(2) metrics focused on extreme outcomes often tell a different story than metrics based on the average.

3.2  Threshold-based performance

Fig 1 plots the percentage of low-acuity patients discharged within t minutes, denoted T̂LOS–Low(t). Several patterns 
emerge. For short thresholds (t < 120 minutes), Acuity-Based FCFS outperforms other strategies by approximately 10 
percentage points; however, its relative performance deteriorates at higher thresholds (t > 200 minutes). Beyond this, the 
choice of threshold does not meaningfully affect the relative ordering of most strategies.

Analogous trends appear for mid-acuity patients in Fig 2, where the curves similarly suggest minimal divergence 
between strategies across thresholds. In this case, these illustrative results suggest that the choice of time target is 
unlikely to change the final decision. Notably, Fig 2 also reinforces the pattern observed in Section 3.1: FCFS underper-
forms during the initial 5 hours but surpasses other strategies at later thresholds.

We now present the AUC metrics, formally defined in Appendix D, in Table 5. In addition to the standard AUC computed 
over a 12-hour window, we introduce three complementary variants: (1) a half-range AUC limited to the first 6 hours, 
(2) a weighted AUC emphasizing earlier thresholds via a linearly decreasing weight function, and (3) a weighted AUC 
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emphasizing later thresholds via a linearly increasing weight function. These variants enable us to evaluate whether the 
choice of AUC definition alters performance conclusions.

Overall, the conclusions remain stable across AUC definitions. One exception is Acuity-Based FCFS, which appears 
more favorable under the variant emphasizing early thresholds—consistent with Fig 1, where it dominates in the initial 
portion of the curve.

Next, we sort strategies from best to worst based on each metric. This confirms earlier trends: FCFS ranks highest for 
low-acuity patients but lowest for mid-acuity patients, whereas AAPQ-LWP-PFT achieves the opposite pattern, performing 
best in the mid-acuity group but worst in the low-acuity group.

Table 4.  Length-of-stay summary statistics by prioritization strategy and acuity cohort.

Strategy Count Mean Median P75 P90 P95 P99 STD Min Max

Overall

AAPQ-LWP-PFT 12377 195 191 234 280 326 459 81 32 968

AAPQ-LWP 12602 195 193 231 277 325 481 82 32 956

AAPQ-PFT 12671 197 189 237 293 349 473 86 32 1050

AAPQ 12484 195 190 235 287 335 450 81 32 1127

Acuity-Based FCFS 12578 200 203 260 308 350 469 95 32 845

APQ 12649 197 186 233 295 351 484 86 32 1185

FCFS 12108 195 181 229 305 351 425 79 32 1148

LWP 12502 193 187 227 269 306 442 76 32 1247

PFT 12008 198 193 239 286 329 442 78 32 1531

Low Acuity

AAPQ-LWP-PFT 9266 192 190 230 270 301 374 70 32 948

AAPQ-LWP 9443 192 192 228 266 301 404 72 32 956

AAPQ-PFT 9501 188 184 226 268 310 407 74 32 737

AAPQ 9381 188 187 227 270 306 393 71 32 831

Acuity-Based FCFS 9424 190 198 253 294 320 385 87 32 707

APQ 9489 184 179 216 262 310 427 75 32 1185

FCFS 9134 170 168 197 232 258 325 55 32 834

LWP 9372 187 185 220 259 287 370 66 32 1105

PFT 9003 190 187 230 270 305 387 71 32 732

Mid-Acuity

AAPQ-LWP-PFT 2668 189 173 232 301 371 534 100 42 930

AAPQ-LWP 2694 196 176 238 321 397 599 108 41 882

AAPQ-PFT 2710 213 199 267 349 411 546 109 40 1050

AAPQ 2648 203 191 254 331 392 497 101 37 1127

Acuity-Based FCFS 2693 218 206 272 358 419 573 109 42 845

APQ 2694 227 216 278 355 407 554 102 45 911

FCFS 2523 263 257 318 367 395 483 87 45 1148

LWP 2668 205 187 250 305 364 538 99 45 1247

PFT 2565 214 201 264 328 375 492 94 43 1531

This table presents key descriptive and tail-focused metrics for patient length of stay (LOS) under nine prioritization rules in a simulated 30-bed 
mixed-acuity emergency department. Columns report the number of observations, mean, median, 75th, 90th, 95th, and 99th percentiles, standard 
deviation, and observed minimum and maximum. Results are shown first for the combined low- and mid-acuity cohort (“Overall”), then separately for 
low-acuity and mid-acuity patients. The narrow range of grand means (193–200 min) contrasts sharply with the 99th-percentile spreads—59 min overall, 
102 min for low acuity, and 116 min for mid acuity—highlighting how tail behavior diverges across strategies and cohorts.

https://doi.org/10.1371/journal.pone.0326722.t004

https://doi.org/10.1371/journal.pone.0326722.t004
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Finally, we quantify each strategy’s responsiveness in Table 6 by reporting the minimum LOS threshold required to serve 
50%, 75%, 90%, and 95% of patients. These metrics respectively correspond to the time needed to reach the median, 
upper-quartile, near-complete, and very-high service-level benchmarks. Together, they provide a granular view of how 
quickly each strategy meets increasingly stringent performance goals. We find that the choice of threshold meaningfully 
affects the relative ranking of some strategies but not others. For instance, in the low-acuity cohort, AAPQ-PFT reaches 50% 
of patients within 185 minutes—midway between FCFS (170 min) and Acuity-Based FCFS (200 min). However, to reach 
95%, AAPQ-PFT requires 315 minutes, which is far closer to the worst-performing Acuity-Based FCFS (325 min) than to the 
best-performing FCFS (260 min). In contrast, strategies like AAPQ-LWP-PFT in the mid-acuity cohort demonstrate consis-
tently strong performance across all thresholds, making them less sensitive to the choice of benchmark.

3.3  Stakeholder-informed utility analysis

We evaluate two utility functions—an elliptical form, U1, and a linear form, U2 (definitions in Appendix B)—by first 
plotting their values against the LOS threshold t. Figs 3 and 4 display the curves U1(TLOS–Low(t), TLOS–Mid(t)) and 
U2(TLOS–Low(t), TLOS–Mid(t)), respectively, allowing us to observe how strategy rankings evolve as t increases. Because 
both curves preserve the same ordering up to approximately five hours, the choice of threshold has minimal impact on 
the relative performance of the rules—whereas frequent crossings would mandate consideration of multiple thresholds to 
capture divergent conclusions.

We then fix a threshold t∗ and generate scatter plots of (TLOS–Low (t∗) , TLOS–Mid (t∗)) overlaid with utility contours 
U(·) = c, using color to encode utility level. In Figs 5 and 6, which employ the elliptical utility U1, we set t∗ = 5hand 7h. At 
five hours, FCFS achieves the highest low-acuity discharge rate but ranks poorly overall because its mid-acuity rate trails 

Fig 1.  Cumulative discharge profiles for low-acuity patients. This figure plots T̂LOS–Low(t), the percentage of low-acuity patients discharged within t 
minutes, for each prioritization strategy over a 12-hour window. The early-time advantage of Acuity-Based FCFS is evident for t < 120 min—outperform-
ing alternatives by roughly 10 percentage points—while its performance converges or declines relative to other rules at longer thresholds.

https://doi.org/10.1371/journal.pone.0326722.g001

https://doi.org/10.1371/journal.pone.0326722.g001
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Fig 2.  Cumulative discharge profiles for mid-acuity patients. This figure presents T̂LOS–Mid(t), the share of mid-acuity patients discharged by time t
, across all nine rules. Although curves remain tightly clustered overall, FCFS underperforms during the first five hours yet surpasses many strategies at 
later thresholds, mirroring the tail-behavior patterns identified in Section 3.1.

https://doi.org/10.1371/journal.pone.0326722.g002

Table 5.  Area-Under-Curve (AUC) metrics for threshold-based discharge curves.

Group Strategy AUC (12h) AUC (6h) AUC (low emphasis) AUC (high emphasis)

Low FCFS 76% 53% 59% 94%

Low APQ 74% 49% 57% 93%

Low LWP 74% 49% 56% 93%

Low AAPQ-PFT 74% 48% 56% 92%

Low AAPQ 74% 48% 56% 92%

Low Acuity-Based FCFS 74% 48% 56% 92%

Low PFT 74% 47% 55% 92%

Low AAPQ-LWP 73% 47% 55% 92%

Low AAPQ-LWP-PFT 73% 47% 55% 92%

Mid AAPQ-LWP-PFT 74% 49% 57% 92%

Mid AAPQ-LWP 73% 48% 56% 91%

Mid AAPQ 72% 45% 54% 90%

Mid LWP 72% 45% 53% 91%

Mid AAPQ-PFT 70% 43% 52% 89%

Mid PFT 70% 42% 51% 90%

Mid Acuity-Based FCFS 70% 42% 51% 89%

Mid APQ 68% 39% 49% 88%

Mid FCFS 63% 29% 42% 86%

This table reports four AUC variants—standard (0–12 h), half-range (0–6 h), early-emphasis (linearly decreasing weights), and late-emphasis (linearly 
increasing weights)—for low- and mid-acuity cohorts under each strategy. Despite different weighting schemes, rankings remain largely consistent; 
Acuity-Based FCFS appears more favorable under early-emphasis, reflecting its strong initial discharge rates.

https://doi.org/10.1371/journal.pone.0326722.t005

https://doi.org/10.1371/journal.pone.0326722.g002
https://doi.org/10.1371/journal.pone.0326722.t005
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the next-worst strategy (APQ) by roughly 12 percentage points, resulting in low utility. The other strategies differ only mar-
ginally on low-acuity performance, with mid-acuity rates spanning about nine points between APQ and AAPQ-LWP-PFT. 
At seven hours, FCFS’s utility improves dramatically—rising from worst to second best—illustrating how deeper tail perfor-
mance can overturn short-threshold conclusions. Figs 7 and 8 repeat this analysis with the linear utility U2, confirming that 
FCFS’s strong long-threshold performance persists despite its weaker results at shorter thresholds.

Finally, Fig 9 compares U1 and U2 at t∗ = 3h by plotting each strategy’s pair of utility values. Since the points fall almost 
perfectly along the line, the choice of utility function and its parameters has little effect on the strategy rankings; a more 
scattered pattern would have revealed sensitivity to the utility specification.

3.4  Strategy strengths and weaknesses

Table 7 synthesizes each strategy’s principal strengths and weaknesses, with supporting tables or figures indicated in 
parentheses. We reiterate that the aim of this analysis is to demonstrate our evaluation framework and to illustrate how it 
can uncover strategy‐specific trade-offs—not to endorse any particular rule. These findings should not be used as imple-
mentation guidance, since they are based on a single simulation scenario and on illustrative utility parameters rather than 
stakeholder-calibrated values.

4.  Discussion

4.1  Synthesis of principal findings

This section interprets the illustrative outputs to show how the framework reveals complementary insights across tails, 
thresholds, and utilities. The goal is not to prescribe a specific strategy but to show how a standardized, multi-lens evalua-
tion changes what appears “best” depending on risk tolerance and targets.

Table 6.  Minimum LOS thresholds to achieve service-level benchmarks.

Group Strategy 50% 75% 90% 95%

Low FCFS 170 200 235 260

Low LWP 190 220 260 290

Low APQ 180 220 265 315

Low AAPQ-LWP 195 230 270 305

Low AAPQ-LWP-PFT 195 230 270 305

Low AAPQ-PFT 185 230 270 315

Low PFT 190 230 270 310

Low AAPQ 190 230 275 310

Low Acuity-Based FCFS 200 255 295 325

Mid AAPQ-LWP-PFT 175 235 305 375

Mid LWP 190 250 310 365

Mid AAPQ-LWP 180 240 325 400

Mid PFT 205 265 330 380

Mid AAPQ 195 255 335 395

Mid AAPQ-PFT 200 270 350 415

Mid APQ 220 280 360 410

Mid Acuity-Based FCFS 210 275 360 420

Mid FCFS 260 320 370 395

This table lists, for each strategy and cohort, the minimum length-of-stay threshold required to discharge 50%, 75%, 90%, and 95% of patients. These 
responsiveness metrics reveal how quickly each rule meets progressively stringent performance targets, highlighting strategy sensitivity to the chosen 
benchmark.

https://doi.org/10.1371/journal.pone.0326722.t006

https://doi.org/10.1371/journal.pone.0326722.t006
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Fig 3.  Elliptical utility U1 across thresholds. This plot shows the elliptical utility U1(TLOS–Low(t), TLOS–Mid(t)) for each strategy as a function of the 
discharge-time threshold t. The mid-acuity weighting hyperparameter is λ = 1.5 and the overshooting value is δ = 0.3. Consistent vertical ordering up to 
approximately five hours indicates that strategy rankings under U1 are robust to the choice of t within this range. Utility parameters are placeholders used 
solely to demonstrate visualization and interpretation; no prescriptive conclusion should be drawn from these settings without stakeholder elicitation.

https://doi.org/10.1371/journal.pone.0326722.g003

Fig 4.  Linear utility U2 across thresholds. This figure depicts the linear utility U2 (TLOS–Low(t),TLOS–Mid(t)) plotted against t. The low-acuity downweigh-
ing parameter is set to α = 0.6. The near–parallel curves for most rules confirm that, under U2, conclusions about relative strategy performance remain 
largely unaffected by threshold selection. Utility parameters are placeholders used solely to demonstrate visualization and interpretation; no prescriptive 
conclusion should be drawn from these settings without stakeholder elicitation.

https://doi.org/10.1371/journal.pone.0326722.g004

https://doi.org/10.1371/journal.pone.0326722.g003
https://doi.org/10.1371/journal.pone.0326722.g004
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The illustrative example presented in Section 3 demonstrates that the choice of evaluation lens—summary 
statistics, threshold-attainment curves, or stakeholder-weighted utilities—can shape how ED prioritization strat-
egies are ranked. Even within a single 30-bed simulated ED, a rule that looks benign under a LOS comparison 
can exhibit sizeable right-tail liabilities, while another rule that excels on extreme percentiles may fall behind 
when stakeholder utilities emphasize shorter thresholds. These differences highlight our main argument: no sin-
gle metric can fully capture the effects of prioritization policies, and conclusions should never be based on just 
one number.

4.2  Why separating patient groups is essential

Averaging performance across different patient urgency levels hides the very differences that clinicians and managers 
need to see. When low- and mid-acuity LOS are pooled, the observed spread between strategies narrows to just 7 min-
utes, suggesting no meaningful distinction. However, when evaluated separately, the spread expands to 22 minutes for 
low-acuity patients and 74 minutes for mid-acuity patients—highlighting substantial and actionable differences in strategy 
performance.

By diluting the average LOS in this fashion, an analyst might incorrectly infer that any of the nine rules is “good 
enough,” missing the variation for each group of patients. Operationally, such masking can divert resources toward the 
wrong bottleneck or delay recognition of inequitable wait times among patient groups.

Fig 5.  Elliptical utility contours at t∗= 5 hours. The mid-acuity weighting hyperparameter is λ = 1.5, the overshooting value is δ = 0.3, and LOS goals 
are 100% of low-acuity patients and 90% of mid-acuity patients. Scatter plot of (TLOS–Low(5h),TLOS–Mid(5h)) for each strategy, overlaid with elliptical-utility 
contours U1 = c. At this threshold, FCFS maximizes low-acuity discharges but scores low overall due to substantially poorer mid-acuity performance, 
illustrating the trade-off captured by U1. Utility parameters are placeholders used solely to demonstrate visualization and interpretation; no prescriptive 
conclusion should be drawn from these settings without stakeholder elicitation.

https://doi.org/10.1371/journal.pone.0326722.g005

https://doi.org/10.1371/journal.pone.0326722.g005
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4.3  Strategic trade-offs across patient groups

Ideal policies would compress the entire KPI distributions for every cohort, yet the data reveal persistent trade-offs. FCFS 
and AAPQ-LWP-PFT epitomize this tension: the former minimizes low-acuity mean and upper-tail LOS, whereas the latter 
delivers the best mid-acuity central and tail performance at the expense of longer waits for low-acuity cases.

These findings reinforce the need for hospitals to state explicit priorities—whether reducing crowding for mid-acuity 
patients, accelerating flow for discharged fast-track patients, or balancing both objectives through mixed strategies or 
dynamic rules.

4.4  Statistical significance versus clinical relevance

Table 2 shows that the worst low-acuity mean LOS (192 min) is twenty-two minutes longer than the best (170 min). While 
statistically significant, administrators must decide whether a twenty-minute average difference is operationally meaningful 
when the clinically acceptable window for discharge may span several hours. Hence, statistical tests alone cannot substi-
tute for clinical judgment; practical significance must be interpreted in context.

4.5  Actionability of threshold-attainment metrics

Decision makers consistently ask, “How quickly can we reach a given service target?” Table 6 answers this in language 
executives and frontline clinicians immediately understand. For instance, APQ discharges half of low-acuity patients 

Fig 6.  Elliptical utility contours at t∗= 7 hours. The mid-acuity weighting hyperparameter is λ = 1.5, the overshooting value is δ = 0.3, and LOS goal 
is set to 100% for both low and mid-acuity patients. Scatter plot of (TLOS–Low(7h),TLOS–Mid(7h)) with U1 contours. At seven hours, FCFS moves from the 
worst to the second-best position, demonstrating how right-tail evaluation alters strategy rankings under the elliptical utility. Utility parameters are place-
holders used solely to demonstrate visualization and interpretation; no prescriptive conclusion should be drawn from these settings without stakeholder 
elicitation.

https://doi.org/10.1371/journal.pone.0326722.g006

https://doi.org/10.1371/journal.pone.0326722.g006
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twenty minutes sooner than Acuity-Based FCFS, and it reaches the 90 percent benchmark thirty minutes earlier. Such 
statements translate directly into staffing discussions, fast-track lane designs, and patient-communication scripts.

4.6  Insights from strengths–weaknesses mapping

The qualitative synthesis in Table 7 distills dozens of numerical comparisons into a concise narrative of strategic profiles. 
Strikingly, all identified strengths and weaknesses stem from a single KPI—LOS—in one virtual ED. If this level of het-
erogeneity arises from one performance dimension, the variation across additional KPIs such as left-without-being-seen 
rates, bed-blocking time, or door-to-doctor-time is likely far greater. The implication is sobering: past studies that bench-
marked policies on a single mean LOS or four-hour target may have drawn overly general conclusions, exacerbating 
translation gaps when rules are transplanted to new hospitals.

4.7  Central role of sensitivity analysis

Throughout Section 3, sensitivity analysis served as a safeguard against misleading conclusions. For instance, Figs 5 
and 6 displayed the Elliptical utility function evaluated at five- and seven-hour thresholds, respectively. Despite the mod-
est two-hour difference, the resulting strategy rankings shifted noticeably. FCFS, which appeared to perform worst under 
the five-hour threshold, ranked among the best when evaluated at seven hours. Relying on a single threshold would 
have given an interpretation that depended on that specific threshold and could have been misleading. In contrast, other 
metrics, such as AUC-to-time-to-threshold, demonstrated robustness to parameter choices, producing consistent results 

Fig 7.  Linear utility contours at t∗= 5 hours. The low-acuity downweighing parameter is set to α = 0.6 and LOS goals are 100% of low-acuity patients 
and 90% of mid-acuity patients. Scatter of (TLOS–Low(5h),TLOS–Mid(5h)) with linear-utility contours U2 = c, the linear utility penalizes strategies with imbal-
anced performance, reaffirming FCFS’s disadvantage at shorter thresholds. Utility parameters are placeholders used solely to demonstrate visualization 
and interpretation; no prescriptive conclusion should be drawn from these settings without stakeholder elicitation.

https://doi.org/10.1371/journal.pone.0326722.g007

https://doi.org/10.1371/journal.pone.0326722.g007
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across variations. Nonetheless, systematically conducting sensitivity analyses remains helpful to guard against occasional 
but consequential parameter-driven artifacts. Recognizing these dependencies discourages overconfidence in model gen-
eralizability and helps ensure that operational insights remain valid when applied to alternate settings.

4.8  Recommended steps for strategy evaluation

To ensure that patient‐prioritization studies are both rigorous and transparent, we offer the following guidelines for 
researchers. These principles will help one apply each evaluation technique consistently, highlight strategy trade‐offs, and 
guard against overconfident claims of “best” performance.

Technique 1 should be employed across all KPIs and cohorts by reporting sample size, mean, median, minimum, max-
imum, and key upper‐tail percentiles (75th, 90th, 95th, 99th) for each clinically relevant subgroup (e.g., acuity level, arrival 
window, resource requirement, boarding status). Technique 2 (threshold‐attainment) ought to accompany every KPI, with 
concise tabular summaries of the time required to reach a stakeholder‐defined attainment level (such as 90 percent) for 
each cohort, thus providing both clinical relevance and ease of interpretation. Technique 3 (stakeholder‐informed utility) 
should then translate the most critical KPI(s) into a single utility score that incorporates stakeholder preferences—thereby 
facilitating equitable, real‐world comparisons. Throughout, results should be presented as context‐dependent trade‐offs 
rather than absolute winners, with each strategy’s strengths and weaknesses clearly articulated across techniques and 
cohorts; universal superiority should be asserted only when an exhaustive range of KPIs, cohorts, evaluation methods, 
and operational scenarios has been rigorously tested and validated.

We conclude by reflecting on how often each evaluation technique was cited in our analysis summary in Section 3.4 
(Table 7). We counted the number of times Techniques 1–3 were referenced when comparing each strategy’s strengths 

Fig 8.  Linear utility contours at t∗= 7 hours. The low-acuity downweighing parameter is set to α = 0.6 and LOS goal is set to 100% for both low and 
mid-acuity patients. Scatter of (TLOS–Low(7h),TLOS–Mid(7h)) with U2 contours. The shift in FCFS’s relative position—from low to high utility—mirrors the 
pattern seen under the elliptical utility, underscoring consistency across utility forms.

https://doi.org/10.1371/journal.pone.0326722.g008

https://doi.org/10.1371/journal.pone.0326722.g008
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and limitations. Technique 1 (detailed summary statistics) accounted for only 26% of all citations—yet most researchers 
report only a less‐detailed subset of these metrics, implying much information about upper‐tail behavior and cohort‐spe-
cific performance is routinely omitted. Technique 2 (threshold attainment) and Technique 3 (stakeholder‐informed utility) 
comprised roughly 29% and 45% of references, respectively. While citation frequency does not directly imply importance, 
it offers a useful proxy for how readily each approach reveals key trade‐offs—underscoring the need to apply all three in 
concert rather than relying on any single method.

4.9  Limitations and directions for future research

We reiterate that the purpose of this study is to introduce and demonstrate a suite of evaluation techniques—not to 
endorse any particular prioritization strategy. There are several limitations, so the example results should be interpreted 
with caution. The simulation was calibrated to a single ED with 30 beds and moderate patient volume. As such, different 
acuity distributions, arrival patterns, boarding durations, or staffing constraints in other settings may yield materially differ-
ent rankings. Moreover, our analysis centered on LOS, supplemented only by a brief DTDT example in Appendix E, and 
did not extend to other outcomes such as LWBS, patient safety, or staff workload. The utility parameters used in this study 
were intended for illustrative purposes only; they were not elicited from stakeholders or validated through multicenter 
analysis.

This paper introduces three evaluation techniques designed to promote more rigorous and transparent comparisons 
of patient prioritization strategies. While these techniques provide a structured foundation, they are not comprehensive. 

Fig 9.  Comparison of elliptical and linear utilities at t∗= 3 hours. Bivariate plot of each strategy’s utility values (U1,U2) at t∗= 3h, with a fitted regres-
sion line. The mid-acuity weighting hyperparameter is λ = 1.5, the overshooting value is δ = 0.3, the low-acuity downweighing parameter is set to α = 0.6, 
and LOS goals are 50% of low-acuity patients and 50% of mid-acuity patients. The near-monotonic alignment indicates minimal sensitivity of strategy 
rankings to the choice of utility function or its hyperparameters. Utility parameters are placeholders used solely to demonstrate visualization and interpre-
tation; no prescriptive conclusion should be drawn from these settings without stakeholder elicitation.

https://doi.org/10.1371/journal.pone.0326722.g009

https://doi.org/10.1371/journal.pone.0326722.g009
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Future work should aim to develop additional methods that illuminate distinct strengths and weaknesses of each strategy. 
Although quantitative tools such as AUC can be useful, their benefits are limited if they lack interpretability or practical 
relevance. When mathematical measures are employed, visualizations should be designed to clearly convey real-world 
implications—as exemplified by the utility function plots in Figs 5–8.

Table 7.  Summary of strategy performance profiles in the illustrative scenario.

Strategy Strengths Weaknesses Recommendation (Illustrative)

FCFS • �Fastest low-acuity mean, median, and 
upper tail (T4)

• Best mid-acuity 99th percentile (T4)
• �Outstanding low-acuity discharge rates 

and AUC (F1; T5)

• Slow early tail and central metrics for mid-acuity (T4)
• Poor mid-acuity discharge rates and AUC (F2; T5)
• Very low stakeholder utility until late thresholds (F3–F9)

Avoid. Prioritizes minor cases 
at the expense of higher-acuity 
patients, yielding substandard 
performance for mid-acuity 
despite strong low-acuity results.

Acuity-Based 
FCFS

• Lowest absolute maximum LOS (T4)
• �Highest low-acuity discharge rate in first 

2 h (F1)

• Worst low-acuity median and upper percentiles (T4)
• Worst mid-acuity 95th percentile (T4)
• Mediocre on most LOS metrics (T4)
• Low utility across thresholds (F3–F9)

Eliminate. Although intuitively 
fair, it underperforms for both 
acuity groups across nearly all 
metrics.

APQ • �Strong low-acuity central tendencies and 
75th percentile (T4)

• Solid overall AUC (T5)

• �Worst low-acuity 99th percentile and poor 95th percen-
tile (T4)

• Weak mid-acuity LOS and discharge times (T4; T6)
• Lower utility relative to alternatives (F5–F9)

Avoid. Limited benefits for 
low-acuity do not justify its 
significant mid-acuity and tail 
drawbacks.

PFT • �Excellent mid-acuity tail performance 
(95th, 99th, STD) (T4)

• �Fast time to 95% mid-acuity discharge 
(T6)

• Top utility at 7 h thresholds (F6; F8)

• Below-average low-acuity mean (T4)
• Subpar overall AUC (T5)

Acceptable. Mid-acuity 
strengths and strong late-
threshold utility offset mod-
est low-acuity and AUC 
weaknesses.

LWP • �Above-average LOS statistics for both 
cohorts (T4)

• �Good mid-acuity AUC and discharge 
times (T5; T6)

• Best 5 h utility (F5; F7)

• Average low-acuity AUC and median discharge (T5; T6)
• Mid-acuity 99th percentile only moderate (T4)

Strong contender. Consistently 
solid performance with few 
notable weaknesses.

AAPQ • �Balanced central tendencies and moder-
ate tails for both cohorts (T4)

• Good low-acuity AUC (T5)
• Utility at or above average (F5–F9)

• Below-average mid-acuity AUC (T5)
• Slower low-acuity threshold attainment (T6)

Acceptable. Not the top per-
former but offers a good balance 
between low- and mid-acuity 
outcomes.

AAPQ-PFT • �Above-average low-acuity 50% discharge 
time (T6)

• Below-average low-acuity 95th/99th percentiles (T4)
• Weak mid-acuity 90th/95th percentiles (T4)
• Low utility at common thresholds (F5–F8)

Avoid. Combines two moderate 
strategies but underperforms 
each individually.

AAPQ-LWP • �Top mid-acuity central tendencies and 
75th percentile (T4)

• High mid-acuity AUC (T5)
• �Excellent mid-acuity 50%/75% discharge 

rates (T6)
• Strong utility at 3 h and 5 h (F5; F7; F9)

• Worst low-acuity mean and 99th percentile (T4)
• Low low-acuity AUC (T5)
• Worst mid-acuity 99th percentile (T4)

Conditional. Best for improving 
mid-acuity LOS but imposes 
substantial low-acuity and tail 
trade-offs. Stakeholder priorities 
must guide its use.

AAPQ-LWP-
PFT

• �Best mid-acuity central, 75th/90th per-
centiles, AUC, and discharge times (T4; 
T5; T6)

• �Among highest utility values across 
thresholds (F5–F9)

• Worst low-acuity mean and AUC (T4; T5)
• Slow low-acuity 50% discharge (T6)

Acceptable. Excels for 
mid-acuity and overall utility; 
low-acuity delays may be 
acceptable if stakeholders focus 
on higher-acuity patient flow.

This table summarizes each prioritization rule’s principal performance advantages and drawbacks—citing relevant analysis panels (T2–T4 refer to Tables 
2–4; F1–F9 refer to Figs 1–9)—and provides a high‐level recommendation for use. Strengths highlight metrics or utility benchmarks where a strategy 
excels, while weaknesses identify its shortcomings. Recommendations classify each rule as “Strong contender,” “Acceptable,” “Conditional,” or “Avoid,” 
based on the balance of benefits and implementation trade-offs under the illustrative simulation scenario. These recommendations are purely illustrative 
based on our specific scenario and should not be regarded as a general recommendation.

https://doi.org/10.1371/journal.pone.0326722.t007

https://doi.org/10.1371/journal.pone.0326722.t007
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Our evaluation framework was applied to a single ED configuration, making it well suited for guiding local implemen-
tation decisions. However, many researchers aim to develop strategies that generalize across multiple ED settings. The 
most direct approach to support such generalization is to apply the evaluation techniques across a diverse set of simu-
lated ED environments—ideally spanning 4–8 configurations that vary by bed count, staffing model, and arrival volume. 
While this approach provides valuable insights, it is resource-intensive: even a single-configuration analysis across mul-
tiple KPIs can span dozens of pages. A promising direction for future research is to identify principled methods for aggre-
gating results across configurations. One such approach, based on covariance ovals, is introduced in Appendix B.5. Care 
must be taken to preserve between-scenario variability, as aggregation can obscure meaningful differences. For example, 
in Section 3.1, combining low- and mid-acuity cohorts reduced the mean LOS difference across strategies from 22 and 74 
minutes, respectively, to only 7 minutes—thereby masking clinically relevant distinctions.

Although the proposed techniques allow rigorous numerical comparisons of patient-prioritization strategies, implemen-
tation feasibility must be assessed before any analysis begins. A reinforcement-learning (RL) policy (e.g., see Lee and Lee 
[27]), for example, may offer superior theoretical performance, yet its practical requirements can be prohibitive. Many RL 
formulations presume real-time knowledge of each patient’s location, resource needs, and even uncertain variables such 
as future arrivals and service times. Collecting this information in simulation is straightforward; acquiring it in a working 
ED would demand either extensive manual data entry—adding workload for clinical staff—or continuous computer-vision 
monitoring, which entails new infrastructure, software, and privacy concerns. A strategy that looks good in a simulation but 
creates major operational or ethical problems in a real hospital is not truly beneficial. Researchers should therefore verify 
that any recommended policy can be deployed with existing data streams and minimal additional burden on personnel; 
otherwise, theoretical optimality will remain purely academic.

Finally, we briefly reflect on the performance of our novel strategies—PFT, LWP, AAPQ, and their combinations—within 
the illustrative analysis. While we emphasize that these illustrative results are not intended as definitive endorsements, it 
is noteworthy that our proposed strategies consistently outperformed traditional benchmarks such as Acuity-Based FCFS 
and APQ across multiple evaluation criteria. As such, these strategies represent a secondary contribution to this work: 
they appear promising and merit further investigation. In addition to their favorable quantitative performance, they were 
deliberately designed for ease of implementation and interpretability, making them attractive candidates for real-world 
adoption.

5.  Conclusion

This study improves the study of ED operations by presenting and demonstrating a three-part evaluation framework—
tail-sensitive summary statistics, threshold-attainment profiles, and stakeholder-informed utility analysis—for transpar-
ent comparison of patient-prioritization strategies. Applying the framework to nine rules within a common discrete-event 
simulation revealed that strategic rankings are highly sensitive to the chosen evaluative lens and to cohort aggregation: 
analyses confined to overall means understated clinically meaningful differences that emerged once low- and mid-acuity 
patients were considered separately, and strategies that appeared dominant under central-tendency metrics were often 
eclipsed when extreme percentiles or utility-weighted outcomes were examined. These findings confirm that no single 
KPI, time target, or composite score adequately captures the multidimensional consequences of queue-management 
decisions, and they underscore the practical necessity of reporting a minimum set of distributional, threshold-based, and 
preference-aligned measures.

By framing results as trade-offs rather than pronouncing universal “winners,” the proposed framework equips hospital 
leaders to align prioritization rules with explicit local objectives—whether accelerating flow for mid-acuity patients, protect-
ing low-acuity throughput, or balancing both via mixed or adaptive policies. Because the three techniques use common 
statistics and simple graphs, the method is easy for different stakeholders to understand while still being rigorous enough 
for researchers and quality-improvement teams. Moreover, the framework is KPI-agnostic and extensible to additional 
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outcomes such as door-to-doctor time, boarding duration, patient safety indicators, or staff workload, inviting comprehen-
sive performance audits without presupposing any specific metric hierarchy.

Several limitations temper the generalizability of the illustrative results. The simulation reflected a single, moderately 
busy, 30-bed ED; different capacity profiles, arrival patterns, or boarding pressures may yield alternative strategic order-
ings. Only length of stay was modeled, utility parameters were illustrative rather than elicited, and no external validation 
across multiple health systems was undertaken. Future research should therefore replicate the framework across diverse 
ED configurations, incorporate a broader KPI portfolio, elicit context-specific utilities, and test whether adaptive or hybrid 
strategies can dominate static rules when assessed under the full triad of metrics. Methodological work is also needed to 
synthesize results across multiple scenarios without obscuring cross-site heterogeneity—an aggregation challenge analo-
gous to cohort masking within a single ED.

Notwithstanding these caveats, the present contribution provides a framework that reconciles statistical robustness with 
managerial interpretability, furnishing researchers and practitioners with a common language for evidence-based policy 
design. Widespread adoption of this evaluation standard promises to accelerate meta-analysis, clarify when and where 
novel prioritization algorithms add value, and ultimately promote safer, timelier, and more equitable emergency care.
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