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Abstract 

Cancer remains one of the leading causes of death globally, presenting significant 

challenges to healthcare systems due to its complexity and the limitations of cur-

rent therapeutic strategies. Despite advancements in anticancer drug development, 

monotherapies often fail to provide long-term efficacy due to the emergence of drug 

resistance. This resistance is primarily due to the activation of compensatory path-

ways in cancer cells, which allows them to bypass the effects of single-target thera-

pies. To overcome this, targeting multiple key proteins simultaneously has emerged 

as a promising strategy to enhance therapeutic outcomes and address resistance 

mechanisms. In this study, 2-Phenylindole derivatives were explored as MCF7 

breast cancer cell line inhibitors using 3D-QSAR modeling to design more effective 

compounds. The CoMSIA/ SEHDA model demonstrated high reliability (R² = 0.967) 

and a strong Leave-One-Out cross-validation coefficient (Q² = 0.814), further vali-

dated by external testing (R²
Pred

 = 0.722). Six new compounds with potent inhibitory 

activity were designed, and their favorable ADMET profiles were confirmed. Molec-

ular docking studies revealed that the newly designed compounds exhibited better 

binding affinities (−7.2 to −9.8 kcal/mol) to key cancer-related targets (CDK2, EGFR, 

and Tubulin) compared to the reference drug and the most active molecule (molecule 

39) in the dataset. Additionally, 100 ns molecular dynamics simulations confirmed 

the stability of the best-docked complexes, highlighting their potential as promising 

candidates for anticancer drug development.
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1.  Introduction

Cancer remains one of the leading causes of death worldwide, posing a significant 
challenge to healthcare systems due to its complexity and the limitations of current 
therapeutic strategies [1]. This challenge is further compounded by the fact that, 
despite advancements in anticancer drug development, monotherapy often fails to 
achieve long-term efficacy due to the emergence of drug resistance [2]. This resis-
tance arises because a major limitation of single-target therapies is their susceptibility 
to compensatory pathway activation, which allows cancer cells to bypass drug effects 
and reduce treatment effectiveness [3]. To address these challenges, targeting mul-
tiple key proteins simultaneously has emerged as a promising approach to enhance 
therapeutic outcomes and overcome resistance mechanisms [4]. Among the most 
critical molecular targets in cancer therapy are Cyclin-Dependent Kinase 2 (CDK2), 
Epidermal Growth Factor Receptor (EGFR), and Tubulin, each of which plays a piv-
otal role in tumor progression and development of drug resistance.

CDK2, a key cell cycle regulator, controls the transition from the G1 to the S 
phase. Its overactivation leads to unchecked cell division, facilitating rapid tumor 
growth and contributing to tumor aggressiveness and resistance to apoptosis [5]. 
EGFR, a receptor tyrosine kinase, is frequently overexpressed or mutated in cancers, 
activating downstream signaling pathways that promote uncontrolled proliferation, 
survival, and migration. This dysregulation drives tumor growth, angiogenesis, and 
metastasis [6]. Tubulin, a structural component of microtubules, is essential for cell 
division and mitosis. Disruptions in tubulin dynamics can cause chromosomal insta-
bility, a hallmark of cancer, and contribute to resistance against microtubule-targeting 
agents [7]. However, resistance to inhibitors of these proteins often arises due to the 
development of mutation or activation of alternative survival pathways.

By simultaneously targeting CDK2, EGFR, and Tubulin, this multi-targeted ther-
apy addresses multiple pathways involved in cancer cell survival, proliferation, and 
metastasis. This approach can potentially prevent or overcome resistance mecha-
nisms that develop with single-target therapies. Moreover, it may enhance treatment 
efficacy by more effectively controlling tumor growth, reducing the risk of recurrence, 
and improving patient outcomes. Combining these targets could lead to more durable 
and potent treatment regimens, particularly for patients with resistant cancers.

The indole nucleus has emerged as a highly versatile scaffold in developing com-
pounds with promising antiproliferative activity, particularly in cancer treatment [8]. 
A range of 2-phenylindoles has been identified for their ability to inhibit the growth of 
human breast cancer cells, with the specific mechanisms of action varying depend-
ing on the type and position of the substituents on the phenyl ring [9,10]. Notably, 
recent studies on 2-phenylindole-3-carboxaldehydes have demonstrated their potent 
antimitotic activity by inhibiting tubulin polymerization, which is crucial for cell division 
[11]. To address the in-vivo instability of the aldehyde functional group, several mod-
ifications, such as the formation of oximes, hydrazones, and other derivatives, were 
introduced, resulting in compounds with improved stability and continued antimitotic 
activity [12]. Furthermore, using 3D-QSAR and docking studies, structural optimi-
zation of these compounds has provided valuable insights into their interaction with 
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tubulin, EGFR [13], CDK2 [14] particularly at the inhibitor binding site. These advances have motivated further explora-
tion of novel anticancer agents based on the 2-phenylindole scaffold, focusing on synthesizing stable derivatives with 
enhanced potency.

Given this background, the present study explores the potential of 2-Phenylindole derivatives as multitarget inhibitors 
against CDK2, EGFR, and Tubulin. Through an integrated computational approach, including 3D-QSAR modeling, molec-
ular docking, and molecular dynamics simulations, we aim to identify novel compounds with strong and stable binding 
affinities to all three targets. The proposed compounds may exert a synergistic effect by simultaneously inhibiting these 
key proteins, disrupting different pathways involved in tumor progression and resistance.

2.  Materials and methods

2.1.  Data set

A database of thirty-three compounds was compiled from literature sources [12,15], consisting of novel 2-Phenylindole 
derivatives, which are being investigated as potential anti-breast cancer agents. The dataset was divided into two groups: 
twenty-eight compounds constituted the training set, while five compounds, randomly selected, formed the test set to eval-
uate the model’s effectiveness. The chemical structures of the compounds in both the training and test sets are presented 
in Fig 1 and Table 1. This data was used to develop a 3D-QSAR model and analyze the physicochemical properties of 
the compounds. For the QSAR analysis, the in vitro biological activity values (IC

50
, in µM) were converted to the corre-

sponding pIC
50

 values (pIC
50

 is the negative logarithm of IC
50

, i.e., pIC
50

 = 6 − log10 (IC
50

)). The 3D structure building and all 
modeling activities were conducted using the Sybyl 2.0 program package.

2.2.  Molecular alignment

Molecular structures were first sketched using the sketch module in the SYBYL program and then optimized with the 
standard Tripos molecular mechanics force field [16] and Gasteiger-Hückel charges [17], using the conjugate gradient 
method and a gradient convergence criterion of 0.01 kcal/mol. The next crucial step, molecular alignment, was performed 
to develop an effective 3D-QSAR model. Fig 2 presents the 3D structure of the core and the superimposed aligned struc-
tures of the dataset. The dataset alignment was done using the distill alignment technique in SYBYL [18], with the most 
active compound 5n, as the template.

2.3.  CoMSIA analysis

The descriptor fields of the CoMSIA method were computed within a 3D cubic grid with 2 Å dimensions, extending 
from the edges of the aligned structures in all directions. At each grid point, the steric, electrostatic, hydrophobic, 

Fig 1.  (a) 3D-QSAR structure superposition of training set (b) compound 5n as a template.

https://doi.org/10.1371/journal.pone.0326245.g001

https://doi.org/10.1371/journal.pone.0326245.g001
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hydrogen-bond donor, and hydrogen-bond acceptor properties were determined. To quantify these five fields, a probe 
atom—a charged sp3 hybridized carbon atom with a 1.0 Å radius and a net charge of +1.0—was used at each grid 
point. The probe atom’s slope parameter, which defines the slope of the Gaussian function, was set to its default value 
of 0.3 [19].

2.4.  Partial least squares (PLS) analysis

To evaluate the linear correlation between the CoMFA and CoMSIA descriptors and biological activity values, the PLS 
method [20] was employed. The leave-one-out (LOO) cross-validation method was used in PLS analysis to determine the 
optimal number of components (N), based on the highest cross-validation correlation coefficient (Q²) and the lowest stan-
dard error of estimation (SEE). After identifying the optimal N, non-cross-validated methods were applied to assess the 
overall significance of the models, using statistical parameters like the coefficient of determination (R²), the F-value (Fisher 

Table 1.  pIC50 values of the reported 2-Phenylindole derivatives against EGFR, CDK2 and Tubulin.

Compound R1 R2 R3 pIC50 Compound R1 R2 pIC50

6a H H H 6.721 5a OMe H 6.745

6b H H OMe 6.114 5b H OMe 6.796

6c OMe H OMe 6.469 5c H F 7.367

6d H OMe OMe 6.523 5d F H 6.620

6e F H OMe 6.509 5e H Cl 7.187

6f H F OMe 6.658 5f Me Cl 7.208

6g H OMe Me 6.602 5g Me H 6.854

6h Me H OMe 6.699 5h Pr H 7.268

6i Me Cl OMe 6.699 5i i-Pr H 7.013

6j n-Pr H OMe 6.721 5j n-Bu H 7.658

6k iPr H OMe 6.509 5k sec-Bu H 6.745

6l n-Bu H OMe 7.886 5l t-Bu H 6.237

6m n-Pentyl H OMe 7.119 5m n-Pentyl H 7.699

6n n-Hexyl H OMe 7.602 5n n-Hexyl H 8.222

6o n-Bu H Me 7.000

6p n-Bu H Et 6.699

6q n-Bu H CF3 6.824

6r n-Pentyl H CF3 7.000

6s n-Hexyl H CF3 7.167

https://doi.org/10.1371/journal.pone.0326245.t001

https://doi.org/10.1371/journal.pone.0326245.t001
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test), and the standard error of estimation (SEE). Additionally, several external validation strategies were utilized to further 
evaluate the robustness and statistical validity of the established models [21]. The equation for SEE is presented below:

	
SEE =

√
PRESS
n – c – 1 	

Where n represents the number of compounds, c represents the number of components, and PRESS is the sum of 
squared deviations between the predicted and actual activity values for each molecule in the test set.

2.5.  Molecular docking studies

The three-dimensional structures of 3 protein targets, were retrieved from the Protein Data Bank (RCSB) via https://
www.rcsb.org/ (Table 2). These structures were visualized using UCSF Chimera [22] and prepared with MGLtools (ver-
sion 1.5.6, The Scripps Research Institute, La Jolla, CA, USA) [22]. Preprocessing involved removing water molecules, 
heteroatoms (hetatm), and co-crystallized ligands. Subsequently, polar hydrogen atoms were added, Gasteiger charges 
were assigned, and the structures were converted to pdbqt format for further analysis [23]. The grid box spacing was set 
to 0.375 Å, centered on the regions where co-crystallized ligands interact with active site residues. Docking simulations 
were conducted for all 3 protein targets, generating nine poses per protein-ligand complex based on docking affinity. The 

Fig 2.  CoMSIA contour maps: (A) Steric, (B) Electrostatic, (C) Hydrophobic, (D) Hydrogen bond donor, and (E) Hydrogen bond acceptor fields, 
displayed with a grid spacing of 2.0 Å and combined with compound 5n.

https://doi.org/10.1371/journal.pone.0326245.g002

https://www.rcsb.org/
https://www.rcsb.org/
https://doi.org/10.1371/journal.pone.0326245.g002
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docking outcomes were visualized and analyzed using Discovery Studio Viewer to identify critical interactions between 
ligands and protein binding sites [24]. For each protein target, the conformation with the lowest binding affinity (as indi-
cated by docking scores) and the highest number of bonds was chosen as the initial binding mode for subsequent molec-
ular dynamics simulations.

2.6.  Molecular dynamics simulations (MDs)

Molecular dynamics (MD) simulations were performed using GROMACS 2019.3 [25] to evaluate the stability and bind-
ing mechanisms of protein-ligand complexes involving the designed and active compounds. The CHARMM27 force field 
was used to construct protein topologies, while ligand topologies were generated using the SwissParam server [26]. 
Each complex was positioned within a dodecahedral box (1.0 nm) filled with TIP3P water molecules and neutralized with 
counter ions [27]. Energy minimization was conducted using the steepest descent algorithm with a maximum force thresh-
old of 1000 kJ/mol/nm [28]. To equilibrate the systems, two consecutive 1 ns simulations were performed under NVT and 
NPT ensembles at 300 K and 1 bar, regulated by the Berendsen thermostat and Parrinello–Rahman barostat, respectively. 
Periodic boundary conditions (PBC) were applied throughout the simulations, and long-range electrostatics were calcu-
lated using the particle mesh Ewald (PME) method. High-frequency bonds involving hydrogen were constrained using the 
LINCS algorithm, allowing the use of a 2-fs integration time step [29]. The MD simulations were conducted over 100 ns, 
totaling 50,000,000 steps, with coordinates recorded every 2 fs. The output trajectories were generated, and the corre-
sponding data files were analyzed to gain a deeper understanding of the protein’s behavior.

3.  Results and discussion

3.1.  CoMSIA results

To construct a robust 3D-QSAR model, molecule 5n, which exhibits the highest inhibitory activity, was chosen as a refer-
ence for data alignment. This alignment was crucial for generating contour maps in both CoMFA and CoMSIA analyses, 
as illustrated in Fig 1.

The primary objective of this phase is to develop reliable CoMFA and CoMSIA models by correlating the observed and 
predicted pIC

50
 values for the training and test sets. In the CoMFA model, steric and electrostatic fields were integrated. 

On the other hand, the CoMSIA model was developed using thirty-one different combinations of steric, electrostatic, 
hydrophobic, hydrogen-bond donor, and hydrogen-bond acceptor fields. The most effective model was identified by evalu-
ating the highest coefficient of determination values for both non-cross-validation (R²) and cross-validation (Q²), alongside 
the lowest standard error of estimate (SEE), the minimal number of principal components (N), and the most significant 
F-test value (F). Among the tested models, the SEHDA CoMSIA model provided the most accurate predictions of bio-
logical activity, demonstrating the most favorable statistical metrics Table 3. This model achieved an R² of 0.814, utilized 
six optimal principal components, and had a reliable Standard Error of Estimate (SEE) of 0.091 and an F-test value of 

Table 2.  The selected targets and the coordinates of the grid box.

Protein PDBID Grid box center (Å) Grid box size(Å)

Tubulin 1SA0 center_x = 117.219
center_y = 90.179
center_z = 6.289

size_x = 20
size_y = 18
size_z = 40

Epidermal growth factor Receptor (EGFR) 1M17 center_x = 21.697
center_y = 0.303
center_z = 52.093

size_x = 42
size_y = 18
size_z = 22

Cyclin-dependent kinase (CDK2) 2A4L center_x = 100.865
center_y = 101.746
center_z = 79.893

size_x = 40
size_y = 40
size_z = 40

https://doi.org/10.1371/journal.pone.0326245.t002

https://doi.org/10.1371/journal.pone.0326245.t002
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102.992. Additionally, Table 4 summarizes the predicted pIC
50

 values and CoMSIA/SEHDA descriptors for the compounds 
analyzed.

The results in Table 5 show that the CoMSIA/SEHDA model has met all evaluation criteria and aligns with the stan-
dards set by Golbraikh, and Tropsha [30–32]. This model offers a deeper understanding of activity compared to the 
CoMFA model, with enhanced predictive capabilities for new compounds and adherence to all required validation proto-
cols. Consequently, we used the CoMSIA/SEHDA contour maps to elucidate the structural elements that enhance activity 
and to aid in the discovery of new active compounds.

3.2.  Graphical Analysis of the CoMSIA Model

The CoMSIA contour map visualizes data from the selected 3D-QSAR model, with compound 5n as the reference. Fig 2 
presents the SEHDA model’s contour map for steric, electrostatic, hydrophobic, hydrogen bond donor, and hydrogen bond 
acceptor fields. In the steric contour maps depicted in Fig 2A, green contours (80% contribution) indicate areas where 
bulkier substitutions enhance biological activity, whereas yellow contours (20% contribution) identify areas where such 
substitutions diminish activity. The electrostatic maps in Fig 2B show blue contours (80% contribution) highlighting regions 
where positive electrostatic groups are beneficial, and red contours (20% contribution) where negatively charged groups 
are favored. In the hydrophobic maps, illustrated in Fig 2C, yellow contours (80% contribution) point out favorable hydro-
phobic regions, while white contours (20% contribution) indicate advantageous hydrophilic areas. The hydrogen bond 
donor maps in Fig 2D feature cyan contours (80% contribution), suggesting that hydrogen bond donor groups boost activ-
ity, and purple contours (20% contribution) indicate less favorable regions. Lastly, in the hydrogen bond acceptor maps 
shown in Fig 2E, magenta contours (80% contribution) mark areas where hydrogen bond acceptor substitutions enhance 
activity, and red contours (20% contribution) show where they hinder activity.

3.3.  Design of new drug candidates

The contour map analysis of the CoMSIA models provided a foundation for designing novel inhibitors. Using this analysis, 
we identified key structural features essential for activity, which guided the optimization process. A summary of the design 

Table 3.  Statistical results of CoMSIA models with different combinations of molecular fields.

Generated
model

Q2 N SEE R2 F R2
pred Fractions

S E H D A

CoMSIA/S 0.568 2 0.185 0.864 22.325 0.642 1

CoMSIA/H 0.703 3 0.134 0.929 45.762 0.597 1

CoMSIA/SE 0.788 5 0.111 0.951 68.498 0.601 0.520 0.480

CoMSIA/SHA 0.702 4 0.106 0.956 75.466 0.566 0.245 0.471 0.284

CoMSIA/HDA 0.698 4 0.140 0.922 26.32 0.693 0.664 0 0.336

CoMSIA/SEDA 0.781 5 0.100 0.960 84.796 0.602 0.430 0.388 0 0.182

CoMSIA/SHDA 0.702 4 0.107 0.955 73.679 0.670 0.342 0.408 0.001 0.249

CoMSIA/SEHDA 0.814 6 0.091 0.967 102.992 0.722 0.183 0.343 0.337 0.001 0.136

R² represents the square of the non-cross-validated coefficient.

Q² is the square of the leave-one-out (LOO) cross-validation coefficient.

R²pred denotes the square of the prediction coefficient.

N refers to the optimal number of components.

SEE stands for the standard error of estimation in non-cross-validated analysis.

F is the value obtained from the F-test.

S, E, H, D, and A correspond to the steric, electrostatic, hydrophobic, hydrogen-bond donor, and hydrogen-bond acceptor contributions, respectively.

https://doi.org/10.1371/journal.pone.0326245.t003

https://doi.org/10.1371/journal.pone.0326245.t003
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process is illustrated in Fig 3, with compound 5n, the most active compound in the dataset, selected as the template for 
further modifications (Fig 3). The CoMSIA/SEHDA model, which demonstrated superior external validation, was then 
employed to predict the pIC

50
 values of the newly designed compounds. This approach successfully identified six candidate 

compounds with predicted activity values exceeding the reference molecule, compound 5n (pIC
50

 = 8.222). The structures 
and predicted activity values of these compounds are detailed in Fig 4, underscoring their potential as promising inhibitors.

3.5.  ADME and toxicity profiling

The failure of many drug candidates during clinical development is often attributed to poor blood-brain barrier permeability, 
toxicity, or insufficient efficacy [33]. Therefore, predicting and optimizing the ADMET (Absorption, Distribution, Metabo-
lism, Excretion, and Toxicity) properties of new chemical compounds is critical to avoid complications in the later stages of 

Table 4.  Predicted pIC50 values and corresponding CoMSIA descriptors for the compounds in this study (*: test set).

Compounds pIC50 pIC50 pred S E H D A

5a 6.745 6.696 7.92 1.20 4.45 1.42 2.34

5b 6.796 6.901 7.92 1.19 4.50 1.42 2.34

5d 6.620 6.633 7.48 1.08 5.21 1.42 2.34

5e 7.187 7.184 7.50 1.06 6.11 1.42 2.96

5g 6.854 6.998 7.83 1.10 5.48 1.42 2.34

5h 7.268 7.272 8.51 1.11 6.11 1.42 2.33

5i 7.013 6.931 8.58 1.09 6.12 1.43 2.33

5j 7.658 7.569 8.84 1.10 6.44 1.42 2.34

5k 6.745 6.816 8.92 1.10 6.42 1.42 2.34

5l 6.237 6.262 8.99 1.24 6.55 1.42 2.34

5m 7.699 7.704 9.13 1.11 6.72 1.42 2.34

5n 8.222 8.067 9.42 1.10 7.02 1.42 2.34

6a 6.721 6.720 7.60 1.45 5.91 1.42 2.78

6c 6.469 6.474 8.44 1.61 4.94 1.42 2.8

6d 6.523 6.558 8.43 1.60 4.97 1.42 2.79

6e 6.509 6.417 8.03 1.55 5.64 1.42 2.77

6f 6.658 6.651 8.03 1.55 5.63 1.42 2.77

6g 6.602 6.475 8.34 1.53 5.93 1.42 2.77

6h 6.699 6.681 8.35 1.53 5.89 1.42 2.77

6i 6.699 6.668 8.36 1.53 6.95 1.42 2.74

6j 6.721 6.792 9.00 1.54 6.47 1.43 2.74

6k 6.509 6.493 9.06 1.53 6.46 1.42 2.76

6m 7.119 7.163 9.59 1.53 7.07 1.42 2.78

6n 7.602 7.668 9.88 1.53 7.36 1.42 2.77

6o 7.000 7.158 9.23 1.44 7.54 1.42 2.78

6q 6.824 6.697 9.26 1.70 8.42 1.42 2.77

6r 7.000 7.010 9.55 1.71 8.65 1.42 2.77

6s 7.167 7.208 9.83 1.71 8.88 1.42 2.76

5c* 7.367 7.029 7.50 1.08 5.32 1.42 2.34

5f* 7.208 7.049 7.83 1.08 6.65 1.43 2.33

6b* 6.114 6.677 8.02 1.54 5.58 1.42 2.77

6l* 7.886 7.181 9.30 1.53 6.95 1.42 2.78

6p* 6.699 7.085 9.54 1.44 7.95 1.42 2.78

https://doi.org/10.1371/journal.pone.0326245.t004

https://doi.org/10.1371/journal.pone.0326245.t004
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Table 5.  Statistical parameters for validating the CoMSIA/SEHDA model.

Statistical parameter Score Threshold Comment

R2
pred

0.722 More than 0.600 Passed

R
0

2: Determination coefficient for the plot of predicted against observed at zero intercept 0.882 More than 0.600 Passed

R
0

’2: Determination coefficient of the plot of observed versus predicted at zero intercept. 0.978 More than 0.600 Passed∣∣∣R2
0 – R

′2
0

∣∣∣ 0.096 Less than 0.300 Passed

R2–R2
0

R2
-0.221 Less than 0.100 Passed

R2–R
′2
0

R2

-0.354 Less than 0.100 Passed

K: Zero intercept slope of predicted against observed activity for the test set 1.008 0.85 ≤ K ≤ 1.15 Passed

K’: Zero intercept slope of observed against predicted activity for the test set 0.987 0.85 ≤ K′ ≤ 1.15 Passed

https://doi.org/10.1371/journal.pone.0326245.t005

Fig 3.  Structure-activity relationship derived from CoMSIA- SEHDA.

https://doi.org/10.1371/journal.pone.0326245.g003

Fig 4.  Structures and Predicted pIC
50

 Activities (Pred) According to the 3D-QSAR Model for Predicted Compounds.

https://doi.org/10.1371/journal.pone.0326245.g004

https://doi.org/10.1371/journal.pone.0326245.t005
https://doi.org/10.1371/journal.pone.0326245.g003
https://doi.org/10.1371/journal.pone.0326245.g004
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drug development [34]. This study evaluated the ADMET pharmacokinetic parameters of fifty-nine newly designed com-
pounds using the pkCSM platform (Table 6). The results revealed high intestinal absorption rates for the newly designed 
compounds, ranging from 88.42% to 95.48%, with Pred17 exhibiting the highest absorption rate suggesting excellent 
bioavailability.

Building on these absorption findings, the distribution properties of the compounds were analyzed, particularly their 
ability to penetrate the central nervous system (CNS) [35]. CNS penetration was evaluated using log PS values, where 
compounds with a LogPS value greater than −2 are considered effective in crossing the blood-brain barrier [36], while 
those with a LogPS less than −3 face significant challenges [37]. Among the tested compounds, Pred16 (−2.179) showed 
minimal CNS penetration, indicating it is less likely to affect the CNS. In contrast, 5n (−0.748) exhibited relatively higher 
permeability, suggesting better potential for CNS penetration.

In addition to distribution, the metabolic profiles of the compounds were assessed, focusing on their interactions with 
cytochrome P450 (CYP) enzymes. Among the 17 CYP families, 57 CYP genes have been identified in humans, with CYP 
enzymes playing a crucial role in the biotransformation of approximately 70–80% of clinically used drugs [38]. For this 
study, the analysis focused on CYP1A2, 2C19, 2D6, 3A4, and 2C9 enzymes. All proposed ligands were identified as sub-
strates for CYP3A4 (Table 6), indicating their potential for metabolic processing by this key enzyme.

Following metabolism, the excretion properties of the compounds were evaluated through total clearance values (log 
ml/min/kg), which ranged from −0.105 (Pred10) to 0.55 (5n). Ligand 5n, with the highest clearance value, may have a 
shorter half-life and could require more frequent dosing. Conversely, Pred10, with slower clearance, may provide pro-
longed therapeutic effects due to its extended presence in the system.

The toxicity profiles of the compounds were assessed to ensure their safety and efficacy. Each compound was evalu-
ated using the AMES test, a widely recognized method for genotoxicity due to its simplicity, cost-effectiveness, and rapid 
results [39]. As shown in Table 6, most of the designed ligands were non-toxic. However, Pred1 exhibited some toxicity, 
raising concerns for its further development. These findings suggest that while most compounds are promising, certain 
modifications are needed to improve their non-toxicity, making them strong candidates for clinical evaluation.

3.6.  Molecular docking study

Molecular docking is central to the design and screening of new bioactive molecules [40–42]. In this study, molecular dock-
ing of the three protein targets (CDK2, EGFR, and Tubulin) with all newly designed molecules was performed to identify 

Table 6.  ADMET properties of selected molecules including the most active compound.

Ligands Properties

Absorption Distri-
bution

Metabolism Excretion Toxicity

Human
intestinal absorption

CNS Cytochrome P450 (CYP450) Total
Clearance

AMES toxicity

Substrate Inhibitor

2D6 3A4 1A2 2C19 2C9 2D6 3A4

(%Absorbed) log PS Categorical (Yes/No) log ml/min/k Categorical (Yes/No)

Pred1 93.16 −1.725 Yes Yes No Yes Yes No No 0.275 Yes

Pred9 90.917 −1.787 No Yes No Yes No No No 0.198 No

Pred10 88.42 −0.882 Yes Yes Yes Yes Yes Yes No −0.105 No

Pred15 92.796 −1.787 No Yes No No No No No 0.299 No

Pred16 94.066 −2.179 No Yes Yes Yes Yes No Yes 0.347 No

Pred17 95.486 −0.810 No Yes No Yes Yes No Yes 0.268 No

5n 93.287 −0.748 Yes Yes Yes Yes Yes No Yes 0.55 No

https://doi.org/10.1371/journal.pone.0326245.t006

https://doi.org/10.1371/journal.pone.0326245.t006
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optimal binding modes that facilitate the inhibition of these targets. Virtual screening was employed to select molecules 
with the highest binding affinity scores. The docking procedures were validated as outlined in the methodology section, 
with Root Mean Square Deviation (RMSD) scores ranging from 1.08 to 1.83 Å. An RMSD value below 2.0 Å indicates a 
reliable predictive protocol for assessing protein-ligand interactions, confirming the docking protocols’ appropriateness [43]. 
Additionally, parameters such as binding affinity, specific amino acid residues, and grid box dimensions were analyzed 
during validation. Lower binding affinity values signify stronger interactions between the ligand and the target [54]. Table 7 
presents the binding affinity values for the most favorable interaction poses of all designed molecules with CDK2, EGFR, 
and Tubulin, using molecule 5n and FDA-approved drugs as controls for comparison. All the designed molecules demon-
strate superior binding affinity compared to the reference drug and molecule 5n across all selected targets, with Pred9 and 
Pred10 exhibiting the better binding affinity among the six designed compounds. This suggests that the newly designed 
compounds could offer enhanced efficacy and stronger target interactions, highlighting their promising therapeutic potential.

Furthermore, the two-dimensional binding interaction of the compounds (Pred9, Pred10, Pred15, Pred16 and and 
Pred17), most active molecule 5n, and the reference drug for each protein target showed a similar interaction in the bind-
ing pocket of all the targets. This is due to several amino acids participating in the same interactions compared to the FDA 
drugs and molecule 5n.

In the context of CDK2, Pred9 demonstrates strong binding stability through hydrogen bonds with Asn132 and Thr14, 
a pi-cation interaction with Lys129, and hydrophobic interactions with Ala31, Val18, and Lys33 (Fig 5A). Similarly, Pred10 
forms hydrogen bonds with Glu12 and Thr14, halogen interactions with Gln131, Asp145, and Asn132, and hydrophobic 
contacts with Ala31, Val64, and Phe80 (Fig 5B). For comparison, Roscovitine, a known CDK2 inhibitor, exhibits stabi-
lizing interactions such as a pi-cation bond with Lys89, hydrogen bonds with Leu83, and hydrophobic contacts with Ile10 
and Val18 (Fig 5C)

In the case of the Tubulin receptor, Pred9 forms hydrogen bonds with Lys254 and Asn249, a pi-cation interaction with 
Lys254, and hydrophobic interactions with Leu248 and Cys241 (Fig 6A). Similarly, Pred10 demonstrates significant 
binding through hydrogen bonds with Ser140 and Asn101, halogen interactions with Ser178 and Thr179, and hydrophobic 
contacts with Leu248 and Lys352 (Fig 6B). For comparison, Colchicine, a well-known Tubulin inhibitor, stabilizes through 
hydrogen bonds with Asn249 and Thr353, a pi-sigma interaction with Ser178, and hydrophobic contacts with Leu248 and 
Ala180 (Fig 6C)

For the EGFR receptor, Pred9 exhibits stabilizing interactions, including a hydrogen bond and pi-anion interaction with 
Asp831, pi-sigma interactions with Val702, and hydrophobic contacts with Leu694 and Lys721 (Fig 7A). Pred10 also 

Table 7.  Docking score of the identified compounds against Cyclin-Dependent Kinase 2 (PDB ID: 2A4L), Tubulin (PDB ID: 1AS0), and Epider-
mal Growth Factor Receptor tyrosine kinase (PDB ID: 1M17) for anti-cancer activity.

Compounds Binding affinity (kcal/mol)

CDK2 (2A4L) Tubulin (1AS0) EGFR (1M17)

Pred1 −8.7 −8.3 −8.3

Pred9 −9.8 −8.9 −8.2

Pred10 −9.6 −8.5 −8.6

Pred15 −9 −8.2 −8.2

Pred16 −9.2 −8.5 −7.6

Pred17 −9 −8.1 −8.5

5n −8.5 −7.3 −8.1

Roscovitine −8.2

Colchicine −7.2

Erlotinib −7.5

https://doi.org/10.1371/journal.pone.0326245.t007

https://doi.org/10.1371/journal.pone.0326245.t007
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strongly binds through a halogen bond with Asp831, hydrogen bonds with Glu738 and Met742, and hydrophobic interac-
tions with Val702 and Leu820 (Fig 7B). For comparison, Erlotinib, an FDA-approved EGFR inhibitor, stabilizes through 
hydrogen bonds with Met769 and Cys773, a pi-cation interaction with Lys721, and hydrophobic contacts with Val702 
and Leu764 (Fig 7C). These results emphasize the strong potential of the proposed compounds as multi-target drugs. 
Research indicates that multi-target compounds are particularly effective in treating complex diseases.

3.7.  Molecular dynamics (MD)

Molecular dynamics (MD) simulations were conducted to evaluate the stability and dynamic interactions of protein-ligand 
complexes over time. These simulations modeled interatomic forces and generated trajectories to capture molecular 
fluctuations, providing detailed insights into interaction dynamics [44]. Specifically, MD simulations were performed for 100 
ns on CDK2, EGFR, and Tubulin proteins complexed with Pred9, Pred10, and the most active compound. The result-
ing trajectories were analyzed to assess system stability and structural properties, including root mean square deviation 
(RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), and hydrogen bonding [23].

Fig 5.  Docking simulation of the interaction between (A) Ligand Pred9, (B) Ligand Pred10 and  (C) Roscovitine (reference drug) with CDK2 
protein.

https://doi.org/10.1371/journal.pone.0326245.g005

https://doi.org/10.1371/journal.pone.0326245.g005
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RMSD analysis.  RMSD measures the displacement of a protein’s backbone atoms from their initial positions, 
providing insights into conformational stability. Lower RMSD values indicate greater stability, reflecting smaller deviations 
from the starting structure [45].

For the CDK2 complexes, the CDK2/Pred9 and CDK2/Pred10 complexes-maintained equilibrium with RMSD val-
ues ranging from 0.12 to 0.25 nm over the 100 ns MD simulation period (Fig 8). In contrast, the CDK2/Active molecule 
complex showed higher fluctuations. Similarly, the EGFR/Active molecule, EGFR/Pred9, and EGFR/Pred10 complexes 
exhibited comparable trajectories up to 80 ns. Beyond this point, the RMSD values for Pred9 and Pred10 stabilized and 
converged, demonstrating greater structural stability than the EGFR/Active molecule complex. For Tubulin, the Tubulin/
Pred9 and Tubulin/Pred10 complexes achieved stability after 80 ns, while the Tubulin/Active molecule complex remained 
unstable throughout the simulation.

These results indicate that Pred9 and Pred10 exhibit the least RMSD fluctuations compared to the active compounds, 
suggesting that these designed compounds enhance target stability by minimizing protein backbone movement. This 
observation aligns with docking results, which showed better binding affinities for Pred9 and Pred10. However, RMSD 
alone cannot fully assess system stability, as it does not capture localized fluctuations. To address this limitation, RMSF 
analysis was performed to evaluate residue-specific variations throughout the trajectory.

RMSF analysis.  RMSF is a crucial parameter in MD simulations used to assess protein flexibility and identify regions 
with significant structural variations [46]. By calculating RMSF values for each complex, it is possible to determine which 

Fig 6.  Docking simulation of the interaction between (A) Ligand Pred9, (B) Ligand Pred10 and  (C) Colchicine (reference drug) with Tubulin 
protein.

https://doi.org/10.1371/journal.pone.0326245.g006

https://doi.org/10.1371/journal.pone.0326245.g006
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Fig 7.  Docking simulation of the interaction between (A) Ligand Pred9, (B) Ligand Pred10 and  (C) Erlotinib (reference drug) with EGFR 
protein.

https://doi.org/10.1371/journal.pone.0326245.g007

Fig 8.  RMSD Analysis of Active Molecules Pred9 and Pred10 in Complex with A: Tubulin, B: CDK2, and C: EGFR.

https://doi.org/10.1371/journal.pone.0326245.g008

https://doi.org/10.1371/journal.pone.0326245.g007
https://doi.org/10.1371/journal.pone.0326245.g008
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residues experience the most pronounced fluctuations during the 100 ns MD simulation (Fig 9). Higher RMSF values 
indicate greater mobility of the protein’s alpha carbon atoms, whereas lower values suggest more stable regions within the 
protein structure [47].

The designed compounds, Pred9 and Pred10, exhibited lower RMSF values compared to the active compounds when 
bound to EGFR, CDK2, and Tubulin. This reduced RMSF indicates that individual residues in these proteins experienced 
fewer atomic variations when complexed with Pred9 and Pred10, resulting in enhanced structural stability. The improved 
stability suggests that Pred9 and Pred10 form stronger and more consistent interactions with the protein targets, which 
may translate to more effective inhibition and therapeutic outcomes. These findings align with the RMSD results, where 
Pred9 and Pred10 also demonstrated lower deviations, indicating minimal backbone movement. The small fluctuations 
observed for Pred9 and Pred10 further highlight their ability to stabilize residual flexibility, resulting in fewer structural vari-
ations compared to the control compounds.

Radius of gyration.  The radius of gyration (Rg) measures the compactness of a molecular structure by quantifying 
the average distance of its atoms from its center of mass [48]. Fig 10 presents the radius of gyration for all the 
selected compounds. Compounds 9 and 10 exhibit a lower radius of gyration compared to the most active compounds 
when interacting with EGFR, CDK2, and Tubulin. This lower radius of gyration indicates a more compact and stable 
conformation of the protein-ligand complexes, suggesting that compounds 9 and 10 promote tighter binding and a more 
ordered arrangement within the binding sites. This enhanced compactness is consistent across all three protein targets, 
reflecting improved stabilization and potentially more effective inhibition

Fig 9.  RMSF Analysis of Active Molecule, Pred9, and Pred10 in Complex with A: Tubulin, B: CDK2, and C: EGFR.

https://doi.org/10.1371/journal.pone.0326245.g009

Fig 10.  Radius of gyration Analysis of Active Molecule, Pred9, and Pred10 in Complex with A: Tubulin, B: CDK2, and C: EGFR.

https://doi.org/10.1371/journal.pone.0326245.g010

https://doi.org/10.1371/journal.pone.0326245.g009
https://doi.org/10.1371/journal.pone.0326245.g010
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Hbond analysis.  Hydrogen bonds play a critical role in molecular recognition by determining the directionality and 
specificity of interactions between proteins and chemicals [23]. To evaluate the stability of the docked complexes, we 
analyzed the hydrogen bonds formed by the designed compounds 9 and 10 (Fig 11), the most active compound and their 
target proteins (EGFR, CDK2, and Tubulin) during molecular dynamics (MD) simulations in a solvent environment.

Our calculations reveal that compounds 9 and 10 form a greater number of hydrogen bonds with these proteins com-
pared to the most active compound, indicating more stable interactions. This observation is supported by the RMSD and 
RMSF plots shown in Figs 8 and 9, demonstrating that the designed compounds exhibit tighter binding than the most 
active compound. These results highlight the potential of compounds 9 and 10 as highly effective inhibitors of EGFR, 
CDK2, and Tubulin, crucial targets in cancer therapy. By enhancing the binding stability through increased hydrogen bond 
formation, these compounds could offer a more potent to disrupt tumor cell proliferation.

4.  Conclusion

In this study, a 3D-QSAR analysis was performed using CoMFA and CoMSIA methods to develop a QSAR model correlat-
ing the biological activity of 2-Phenylindole derivatives against the MCF7 breast cancer cell line. The optimized CoMSIA/ 
SEHDA model demonstrated strong reliability and predictive accuracy, as evidenced by validation metrics (Q² = 0.814, 
R² = 0.967, R²

pred
 = 0.722). This model’s contour maps designed six novel and enhanced anticancer inhibitors, with ADMET 

screening confirming their favorable pharmacokinetic profiles. Molecular docking studies revealed that the newly designed 
compounds exhibited better binding affinities, ranging from −7.2 to −9.8 kcal/mol, to key cancer-related targets (CDK2, 
EGFR, and Tubulin). Additionally, 100 ns molecular dynamics simulations confirmed the stability of the best-docked 
complexes within the binding pockets of these targets, highlighting their potential as promising candidates for anticancer 
drug development. However, it is important to emphasize that the clinical viability and safety of these compounds require 
further validation through in vitro and in vivo studies.
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