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Abstract
Accurate prediction of Hand, Foot, and Mouth Disease (HFMD) is crucial for effective
epidemic prevention and control. Existing prediction models often overlook the cross-
regional transmission dynamics of HFMD, limiting their applicability to single regions.
Furthermore, their ability to perceive spatio-temporal features holistically remains lim-
ited, hindering the precise modeling of epidemic trends. To address these limitations, a
novel HFMD prediction model named Seq2Seq-HMF is proposed, which is based on the
Sequence-to-Sequence(Seq2Seq) framework. This model leverages hybrid perception of
multi-scale features. First, the model utilizes graph structure modeling for multi-regional
epidemic-related features. Secondly, a novel Spatio-Temporal Parallel Encoding(STPE)
Cell is designed; multiple STPE Cells constitute an encoder capable of hybrid percep-
tion across multi-scale spatio-temporal features. Within this encoder, graph-based fea-
ture representation and iterative convolution operations enable the capture of cumulative
influence of neighboring regions across temporal and spatial dimensions, facilitating effi-
cient extraction of spatio-temporal dependencies between multiple regions. Finally, the
decoder incorporates a frequency-enhanced channel attention mechanism(FECAM) to
improve the model’s comprehension of temporal correlations and periodic features, fur-
ther refining prediction accuracy and multi-step forecasting capabilities. Experimental
results, utilizing multi-regional data from Japan to predict HFMD cases one to four weeks
ahead, demonstrate that our proposed Seq2Seq-HMF model outperforms baseline mod-
els. Additionally, the model performs well on single-region data from a city in southern
China, confirming its strong generalization ability.

Introduction
Hand-foot-mouth disease (HFMD) is an infectious condition primarily caused by various
enteroviruses, primarily occurring in children under the age of 5 [1–4]. It has a rapid onset
and is prone to complications, which could be life-threatening in severe cases. The incidence
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of HFMD has been notably high in East Asia in recent years, imposing a significant economic(https://id-info.jihs.go.jp/surveillance/idwr), the
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burden and representing a major threat to public health. This is exemplified by China, which
has reported over one million cases annually for the past decade [5]. Furthermore, HFMD
surveillance data from Japan’s National Institute of Infectious Diseases (NIID) indicate that
the total reported cases in Japan over the past decade have also reached approximately two
million. Therefore, HFMD has become one of the significant public health threats in East
Asia. At present, no effective vaccine or specific therapy exists for HFMD [6]. Consequently,
the development of accurate and reliable HFMD epidemic prediction models is of paramount
importance. Such accurate forecasts enable public health authorities to make informed deci-
sions, allowing them to implement timely and effective prevention and control strategies in
line with the epidemic’s trajectory. This serves to protect public health and safety and mitigate
economic consequences.

The prediction of HFMD case numbers involves collecting historical data on HFMD cases
in each region, along with factors that influence the disease’s incidence. This process includes
analyzing and evaluating these factors to ultimately forecast future occurrences of HFMD.
Existing prediction methods could be divided into two categories: statistical methods and
machine learning methods.

The main statistical method for predicting the number of HFMD cases is to use the
Autoregressive Integral Moving Average model(ARIMA) and the Seasonal Autoregressive
Integral Moving Average model (SARIMA) to capture the seasonal trend in the time series
data [7,8]. At the same time, various linear regression models have also attracted the atten-
tion of researchers, such as the logarithmic regression model [9]. These models have positive
implications for capturing seasonal trends in time series.

However, the spread of HFMD is influenced by many factors. Recent studies have found
that the spread of HFMD is related to weather factors such as temperature, humidity, and
rainfall measurement. These meteorological variables have positive or negative cumulative
effects on the incidence of HFMD to varying degrees [10–13]. In addition, air pollution fac-
tors such as PM10, SO2, and NO2 have also been shown to have an impact on the transmis-
sion of HFMD [14–16]. The above factors should be considered comprehensively in the task
of predicting HFMD. As a linear model, statistical methods are limited in their ability to cap-
ture nonlinear relationships. Machine learning methods provide a more robust framework for
identifying complex interdependencies and latent patterns among features. Machine learning
models such as Random Forest Regression(RFR) and Extreme Gradient Boosting(XGBoost)
were applied to predict the monthly number of HFMD cases [17]. Also, the additive model,
RFR model, and Support Vector Regression(SVR) model were compared and analyzed for
their performance in predicting the daily incidence of HFMD [18].

As deep learning advances, various models capable of capturing intricate relationships
between features have yielded impressive results in HFMD prediction. Long short-term mem-
ory model [19], DA-RNNmodel [20] and Seq2Seq-attention model [21] were used to predict
HFMD cases. At the same time, some researchers attempted to integrate the statistical model
with the machine learning model to form a mixed model [22–24], in order to improve the
prediction accuracy of HFMD cases by combining the advantages of the two. It is worth not-
ing that a study employed the Spatio-Temporal Graph Convolution Network (STGCN) model
[25] for predicting the incidence of HFMD cases. This approach not only utilized the time
series data of the local city but also considered the influence of the epidemic in neighboring
cities.

The aforementioned research has significantly advanced HFMD prediction and preven-
tion by providing theoretical frameworks and technical tools that enable regions to implement
effective prevention and control strategies informed by epidemic predictions. Nevertheless,
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the spread of HFMD is a dynamic spatial process, characterized by randomness, uncertainty,
and intricate spatio-temporal fluctuations. Traditional prediction methods often struggle to
accurately capture the characteristics of multi-regional HFMD epidemic transmission simul-
taneously. And these methods often overlook the extraction of frequency domain features.
Frequency domain features can unveil the periodicity, seasonality, and relative intensity of
various frequency components, which are challenging to directly observe in the time domain.
These features offer crucial information that enhances the prediction accuracy of HFMD
models. Therefore, it is crucial to develop a methodology that effectively captures nonlinear
associations and spatio-temporal dependencies to improve prediction accuracy. Specifically,
the core challenge is developing a model that effectively integrates multiple factors, enabling
it to capture spatio-temporal dependencies, perform spatio-temporal inference, and account
for key influencing variables concurrently. Moreover, simultaneous prediction of epidemic
trends across multiple regions, along with multi-step prediction(e.g. , short-, medium-, and
long-term), would better support the dynamic allocation of prevention and control resources
and the development of emergency plans.

To this end, this paper proposes the Seq2Seq-HMF model, which harnesses hybrid per-
ception of multi-scale features for multi-region HFMD prediction. By considering the three
dimensions of time, space, and frequency with multiple scale, historical HFMD cases and
meteorological conditions are utilized as features to predict future HFMD cases. The main
contributions of this paper are summarized as follows:

(1) The Seq2Seq-HMF model is proposed for the multi-region, multi-step prediction of
HFMD cases. It features an encoder equipped with spatial-temporal parallel encoding(STPE)
cells. This module functions as an encoder to simultaneously extract the time series data of
the target city and incorporate the cumulative spatial impact of neighboring cities, thereby
facilitating a more comprehensive prediction of HFMD.

(2) A frequency-enhanced Channel Attention mechanism (FECAM) for HFMD predic-
tion is introduced [26]. The FECAMmodule models the frequency correlation between chan-
nels based on discrete cosine transform, which improves the ability of the model to extract
frequency features, thus enhancing the accuracy of multi-step prediction.

(3) Comparative experiments using real-world data collection demonstrate that Seq2Seq-
HMF performs better in multi-region, multi-step prediction tasks. Ablation studies further
validate the effectiveness of each module.

Related work
Time series prediction
Time series prediction models have a long and rich research history, with applications span-
ning various domains such as finance, meteorology, and healthcare. Traditional statistical
models, such as ARIMA [27] and SARIMA [28], have been widely used for time series pre-
diction tasks, including the prediction of HFMD incidence. These models primarily focus on
modeling the temporal dependencies within a single time series, rather than explicitly captur-
ing complex relationships between multiple, potentially related, time series. To achieve better
predictive performance, machine learning methods such as SVR, RFR [29], and XGBoost [30]
have been employed to model the nonlinear correlations within the data.

Over the past decade, deep learning methods have been increasingly adopted for HFMD
prediction, with RNN-based models being prominent examples. Typically, RNN-based meth-
ods employ a recurrent architecture to model the transition of temporal states [31]. How-
ever, traditional RNN suffer from issues such as gradient vanishing and gradient explosion,
which limit their effectiveness in long-term prediction [32]. To address these issues, variants
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of RNNs, such as the Long Short-Term Memory (LSTM) model [33] and the Gated Recurrent
Unit (GRU) model [34], have been developed. These models utilize memory and forgetting
mechanisms to decide whether to retain or discard information, thereby mitigating the prob-
lems associated with traditional RNNs. The Bidirectional LSTM (BiLSTM) is an extension
of LSTM that processes the input sequence in both forward and backward directions. This
allows it to capture dependencies from both past and future context, effectively extracting fea-
tures from both directions, and achieves better performance than LSTM in general time series
prediction tasks [35].

Furthermore, the Seq2Seq [36] model, which consists of an encoder-decoder architecture,
has been applied to time series prediction tasks. The encoder processes the input sequence
and compresses the information into a context vector, which is then used by the decoder to
generate the output sequence. This architecture allows for the modeling of complex depen-
dencies and interactions within the data, facilitating the learning of long-term dependencies
and generally achieving competitive performance in HFMD prediction tasks. In addition
to these models, other advanced techniques such as attention mechanisms have also shown
promise in time series prediction. These mechanisms allow the model to focus on different
parts of the input sequence when generating the output, thereby improving the accuracy of
predictions.

In summary, while traditional statistical and machine learning methods have laid a strong
foundation for time series prediction, the advent of deep learning, particularly CNN-based
and RNN-based models and their variants, has significantly advanced the field. The applica-
tion of these models to HFMD prediction represents a crucial step in leveraging the broader
advancements in time series analysis to address specific public health challenges.

Graph convolution neural network
Graph Convolution Networks (GCN) were proposed as a solution to the expensive compu-
tational costs of GNN [37]. It extracts higher-level features of the target node by aggregating
information from neighboring nodes and the node itself, thereby capturing local structural
information in the graph. Meanwhile, the information of edges in the graph structure can also
be added as supplementary features to the node’s calculation. The new state of each node is
obtained by operating the input features and the adjacency matrix, and this operation can be
regarded as a local convolution on the graph [38–40]. The specific operation of GCN can be
expressed by the following formula:

Hn+1 = 𝜎(D̂– 1
2 Â D̂– 1

2HnWn)) (1)

where Hn represents the n-TH layer feature matrix, which gathers the information of n-hop
adjacent nodes. Stands for adjacency matrix. Represents the matrix with self-loops, I repre-
sents the identity matrix, D̂ is the degree matrix of Â, andWn represents the weight matrix of
the n-TH layer, 𝜎 is the Sigmoid activation function. In particular, when n = 0, represents the
input data X. The list of symbols used throughout this paper is provided in Table 1.

Materials and methods
Definition of problem
In this paper, the city node graph is conceptualized as G =(V, E), where V consists of N city
nodes and E is the set of connections between nodes. For each node, The dynamic HFMD
multi-feature set, X = {x1, x2, ..., xt}, represents the state of the multi-feature set across t time
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Table 1. A summary of symbols and descriptions.
Symbol Description
G A graph structure composed of all nodes
V Node set
E Edge set
N Number of nodes
F The number of features per node
X Initial input for each module
S The length of the entire input time series
L The length of the prediction
R Representational reality feature
M Test set time series length
W The weight matrix to be learned
w The size of the time window
b Bias matrix to be learned
Y A matrix of predicted values
h The state vector representing the output in the formula
y The true number of HFMD cases
̂y The predicted number of HFMD cases
K The number of parameters of the model
⊙ Element-wise multiplication

https://doi.org/10.1371/journal.pone.0326206.t001

points. In this paper, the multi-variable multi-step prediction method is used. The multi-
feature set includes not only the number of HFMD cases but also the meteorological condi-
tions that affect the transmission of HFMD.The final input sequence is X∈ RS×F, where S rep-
resents the total length of the entire input sequence and F represents the number of features.
In the prediction work, a sliding window is used to continuously sample the input sequence.

Specifically, given input data X, it is divided into S–w
L sub-sequences using a sliding win-

dow of size w and considering a historical length of t. For each sub-sequence X(t–w+1∶t), the
number of HFMD cases over the next L time points is taken as the ground truth. The model is
expected to learn a parameterized mapping function f during the training process to perform
the multi-region multi-step prediction task of HFMD:

Yt+1, Yt+2, ⋯, Yt+L = f(G; (xt–n, ..., xt–1, xt)) (2)

Model architecture
Accurate prediction the number of HFMD cases necessitates comprehensive analysis of both
temporal dynamics and spatial interdependencies, particularly in modern urban networks
with intensive population mobility. While existing prediction models predominantly focus
on single-location temporal patterns, they often neglect the critical spatial correlations aris-
ing from inter-city connectivity. This study proposes Seq2Seq-HMF, a novel Seq2Seq-based
framework that addresses the spatiotemporal heterogeneity in multi-regional HFMD trans-
mission through hybrid perception mechanisms. Model integrates multi-scale weather fea-
tures with urban interaction patterns to model the complex epidemiological relationships
across geographical nodes, thereby overcoming the spatial-temporal fragmentation limita-
tions in current prediction methodologies.

The overall architecture of the Seq2Seq-HMF model is shown in Fig 1. It uses the Seq2Seq
model as the baseline, which is based on an encoder-decoder architecture to convert the input
sequence into the output sequence. The Seq2Seq-HMF consists of the following two parts: 1)
an encoder with STPE cells; and 2)a decoder containing FECAM.
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Fig 1. The overall structure of Seq2Seq-HMF. It comprises an encoder and a decoder. The encoder performs multi-scale hybrid perception on input time series data
from multiple regions to extract features, which the decoder then processes to generate predictive time series data for those regions.

https://doi.org/10.1371/journal.pone.0326206.g001

Firstly, the input data consists of two parts. The first part is the input features: the multidi-
mensional data is classified by city nodes, and each node contains its multidimensional data
features; The second is the adjacency matrix of the graph, which together with the input fea-
tures of all nodes forms a complete graph structure. The graph structure of t time makes up
the final input. That is, the X shape of the input model is B × N × F × t, where B is the batch
size, N is the number of nodes, F is the number of features, and t is the point of time.

Subsequently, the data corresponding to each time is passed into the corresponding STPE
Cell to extract the spatial and temporal correlation between the data. Secondly, two state vec-
tors output by each STPE Cell are connected by residuals to obtain the space-time-dependent
state vector. To obtain a more fine-grained, multi-scale representation of space-time fea-
tures, the state vectors corresponding to the first to t – 1 time are stacked and passed into the
multi-layer perception(MLP) layer to learn a weight state vector. After multiplying the result
with the state vector corresponding to the t time, the Final state vector containing multi-scale
information is obtained.

The Final state is then passed into the decoder module. After each decoder has finished
decoding, the state vector is transformed by a multi-layer MLP into a predicted value y that
encompasses all nodes. Next, the predicted value y is concatenated with the updated state
vector from the current decoder and then passed to the subsequent decoder. When the pre-
dicted values of Lmoments are obtained, they are stacked to form Y′. Finally, Y′ is processed
through the FECAMmodule for frequency enhancement, yielding the final predicted value
Y. Here, Y represents the number of HFMD cases over a continuous span of L future time
points, encompassing N nodes.

Encoder with spatial-temporal parallel encoding cells
As shown in Fig 2, each STPE Cell contains a temporal graph convolutional network
[41](TGCN) and a bidirectional long short-term memory network (BiLSTM).

The TGCN (Fig 2(A)) module is used to encode spatial dimensions, which can simulta-
neously capture dynamic transformations of topological spatial correlation and time series
data to obtain persistent shadows between different nodes. BiLSTM (Fig 2(B)) encodes from
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Fig 2. Structure of STPE Cell. It is contains TGCN (A) and BiLSTM (B). Both modules receive the output of the previous STPE Cell in addition to the data features.

https://doi.org/10.1371/journal.pone.0326206.g002

the time dimension, captures the time correlation between each node’s data, enriches the time
autocorrelation of nodes, and operates in parallel.

Spatial encoding. The operation of the SPTE Cell proceeds as follows: Given the input
X∈ RS×F and the adjacency matrix A of its nodes. The encoder has w STPE cells, and each
STPE cell has an independent state parameter. Assume that at time t, Xt is the multi-feature
set of all current nodes, and ht–1 is the input state vector encoded at the previous time. Xt is
input into a one-dimensional Convolution Layer, and the feature channels of each node are
convolved separately to map to a higher-dimensional space to generate a state vector Vt of
size D. If the previous STPE Cell outputs Spatial state vector and Temporal state vector, Vt is
spliced with them respectively to form a new state vector Vt:

Vt =
⎧⎪⎪⎨⎪⎪⎩

Conv1D(Xt), i = 1
Concat(ht–1, Conv1D(Xt)), 1 < i <w

(3)

Then enter the state vector Vt into TGCN and BiLSTMmodules respectively. Let f(Xt,A)
represent the process of graph convolution as shown in Eq (1), TGCN state transformation
equation is as follows:

g1t = f([Vt,ht–1],A)
ut = 𝜎 (Wu

t [g1t,Vt] + bu)
rt = 𝜎 (Wr

t [g1t,Vt] + br)
g2t = f([Vt, (rt ⊙ ht–1)],A)
ct = tanh (Wc

tg2t + bc)
ht = ut ⊙ ht–1 + (1 – ut)⊙ ct

(4)
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Where g1t, g2t represent the output result of the graph convolution at time t. ut is the
update gate, rt is the reset gate, is the candidate hidden state vector, ht is the output Spatial
state vector at time t, and tanh is the activation function. For each GCN operation, various
features of the target node and neighbor node are aggregated to update the incoming state
vector. With the goal of capturing the persistent influence from neighboring nodes, after
extracting spatial correlation information through graph convolution operations, the state
vector g1t and g2t is fed into the GRU to model temporal dependencies.

Temporal encoding. While TGCN obtains the long-term dependence of the target node
on the neighbor node, the time autocorrelation of the target node is obtained by the BiLSTM
module. Based on the LSTMmodel, further strengthens the ability to capture the information
before and after the sequence data by introducing the forward and backward mechanism.

Specifically, the operation process of the LSTMmodule at time t can be expressed as:

it = 𝜎 (Wi
t [ht–1,Xt] + bi)

ft = 𝜎 (Wf
t [ht–1,Xt] + bf)

c̃t = tanh (Wc
t [ht–1,Xt] + bc)

ot = 𝜎 (Wo
t [ht–1,Xt] + bo)

ct = ft ⊙ ct–1 + it ⊙ c̃t
ht = ot ⊙ tanh(ct)

(5)

Where it is the input gate, ft is the forgetting gate, and ot is the output gate. BiLSTM con-
sists of bidirectional LSTM layers, as shown in Fig 2(B), X1, X2, ... Xt represents the corre-
sponding input data at each moment, and is passed into two LSTM layers, the hidden state
will be merged into h0, h2, …, ht as the corresponding output data.

Let LSTM(ht–1, Xt) represent the operation process of equality group (5), then the opera-
tion process of BiLSTM can be expressed as:

ht = Concat(LSTM(ht–1,forward,Xt),LSTM(ht+1,backward,Xt)) (6)

Where ht, ht–1, and ht+1 indicate the output Temporal state vector at the corresponding
time respectively, Xt indicates the input state vector at time t, and forward and backward
indicate the transmission direction of the state vector.

Decoder containing FECAM
Time series decoder. Seq2Seq-HMF uses BiLSTM as the decoder to decode the Final

state. The number of decoders corresponds one-to-one with the predicted length. Let BiL-
STM(h) represent decoding the input state vector according to formula group (6). Then the
decoding process at a certain prediction time can be expressed as:

hl+1 = BiLSTM([hl, yl])
yl+1 = ReLU(Dropout(Wl+1hl+1))

(7)

Where hl represents the state vector obtained by decoder decoding, and yl represents the
frequency enhancement vector at a certain predicted time. The composition of the MLP is
as follows:Wl+1 represents the weight matrix of the fully connected layer, Dropout repre-
sents the neurons that have lost a certain percentage, and RuLu is the activation function. In
particular, when l = 0 indicates the Final output state of the encoder.
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Frequency enhanced channel attention mechanism. The structure of FECAM is shown
in Fig 3. Firstly, the input Y′ is divided into a one-dimensional vector v according to the node
dimension, and then the frequency features are extracted by DCT operation for each one-
dimensional vector in turn. After that, the frequency vectors are stacked by node dimension
to form the entire frequency tensor Freq, and the MLP is passed to learn the frequency depen-
dence between different nodes. Finally, the resulting attention matrix Fatt is multiplied ele-
ment by element with the original eigenvector to obtain the frequency-enhanced predicted
value Y.

Among them, the process of DCT transformation of one-dimensional vector v is as fol-
lows:

f 1dk = 𝛼k
L–1
∑
i=0

v1di cos(𝜋
L
(i + 1

2
)k) , 𝛼k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

√
1
L if k = 0√
2
L if k > 0

vDCT = stack(f 1dk )

(8)

Where v1di is the I-th element of the original sequence v, f 1dk is the spectral coefficient of
the K-th element after the transformation, L is the length of the sequence, i, k = 0, 1, ...,L–1.
𝛼k is the normalization factor, ensuring that the transformation is orthogonal, cos is the
cosine function, and vDCT represents the result of the transformation of the one-dimensional
sequence v.

In this paper, the spatio-temporal dependent state vector obtained by the decoder is
divided into N channels according to city nodes to get the channel vector vi, i∈ (1,N). Let
DCT(v) represent the transformation process of equation group (8), then the overall opera-
tion flow of FECAM is as follows:

v1, v2,… , vN = Split(Y′1∶N)
vDCTi =DCT(vi)
Freq = stack(vDCTi )
Fatt = 𝜎(W2𝛿W1Freq)
Y = Y′⊙ Fatt

(9)

Fig 3. structure of FECAM. It is consists of operations such as DCT, stack, MLP, and multiplication.

https://doi.org/10.1371/journal.pone.0326206.g003
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After each frequency channel vector is obtained, it is stacked to obtain the tensor Freq,
and then the frequency dependence between different channels is established using the full
connection layer learning channel attention Fatt. Ultimately, the input vector is element-wise
multiplied by the channel attention weights, yielding a weighted representation that yields the
final predicted value Y. This process ensures that the network layer’s output aligns with the
frequency domain characteristics of the input data.

The above operations finely extract frequency domain information from each channel,
allowing the frequency features of each channel to interact with one another. This process
yields more comprehensive frequency domain information, further enhancing the model’s
feature extraction and characterization capabilities, and thereby improving the accuracy of
predictions.

Loss function
To minimize the error between the real value and the predicted value of the number of
HFMD cases in the training process, the loss function used in this paper is as follows:

Loss = 1
L

N
∑
n=1

L
∑
l=1
(yn,l – ̂yn,l)2 + 𝜆

K
∑
k=1

𝜔2
m (10)

The first term on the right-hand side of the equation is the mean squared error (MSE), and
the second term is the L2 regularization term, which can effectively prevent overfitting. yn,l
represents the actual value, ̂yn,l represents the predicted value. This paper predicts the num-
ber of HFMD cases for N urban nodes, and when calculating Loss, the loss value is computed
for all nodes across all predicted time points. The 𝜆 coefficient is used to control the strength
of the regularization, 𝜔 represents the weight parameters of the model, and K is the number of
model parameters.

Evaluation metrics
To fairly evaluate the performance of the model, this paper uses the Root Mean Square Error
(RMSE), Mean Absolute Error (MAE), and Coefficient of Determination (R2) to measure the
discrepancy between the true values and the predicted values. The three metrics are defined as
follows:

RMSE =

¿
ÁÁÀ 1

NM

N
∑
n=1

M
∑
m=1
(yn,m – ̂yn,m)2 (11)

MAE = 1
NM

N
∑
n=1

M
∑
m=1
∣yn,m – ̂yn,m∣ (12)

R2 = 1 –
∑N

n=1∑
M
m=1(yn,m – ̂yn,m)2

∑N
n=1∑

M
m=1(yn,m – ̄y)2

(13)

Where ̄y represents the average of all true values, y represents the actual value, ̂y represents
the predicted value, N is the number of nodes, andM is the length of the test set time series.
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Experimental results
Data collection
TheHFMD data for the multi-region prediction were obtained from the NIID of Japan, and
the corresponding meteorological data is provided by the Japan Meteorological Agency,
encompassing temperature, relative humidity, atmospheric pressure, wind speed, and rain-
fall data. This multi-region dataset consists of weekly figures from December 2013 to Decem-
ber 2023 for Japan’s 47 prefectures. Additionally, to evaluate the model from different per-
spectives, a single-region dataset was utilized. This dataset includes daily HFMD cases and
meteorological variables for a southern China city from January 2014 to December 2019. It
was publicly released by the China National Center for Disease Control and Prevention [42].
To capture the influence of the pronounced seasonality of HFMD, the week number will be
incorporated as a temporal variable. The data are divided into training and test sets at an 8:2
ratio. A a linear interpolation method is applied to the missing values. Min-Max Normaliza-
tion is applied to normalize the data before it is fed into the model. The data are statistically
described in Table 2.

Experimental setup
The experimental environment consists of a Windows 11 system, with a computer mem-
ory of 16GB, and is equipped with an NVIDIA GeForce RTX 4060 Laptop GPU.The model
was built using the PyTorch (GPU) framework with Python version 3.11.5, PyTorch version
2.3.1, and CUDA version 12.1. During the training process, the Adam optimizer is employed
with an initial learning rate of 0. 001. The training consisted of 500 epochs. Given the model
architecture wherein each layer consists of D=128 neurons, it is imperative to adjust the state
vector accordingly to ensure compatibility with the specified neural network structure. The
length of historical data, t, is set to 4, and the prediction length, L, varies from 1 to 4 time
steps. In the comparison experiment section below, to fairly compare the performance of
different models, this paper uses the model’s corresponding prediction paper settings.

Comparative experiments are conducted respectively on multi-region and single-region
datasets. In the multi-region dataset, 47 counties were ranked based on official data from
Japan. The goal of these experiments was to compare the prediction effects of the RFR,
XGBoost, TGCN, STGCN, LSTM, Seq2Seq-Shil, Seq2Seq-HMF, and DA-RNNmodels and to
verify the validity of the Seq2Seq-HMF model. Otherwise, to clarify the impact of each com-
ponent on Seq2Seq-HMF performance, the ablation study section systematically evaluates the

Table 2. Statistical description of variables.
Var Dataset Minimum P25 Median P75 Maximum Mean
HFMD cases Multi-region 0 5 20 67 4833 82.7
Temperature (°C) -7.7 8.8 16.5 23.2 32.2 16.1
Relative humidity (%) 31 64 71 77 97 70.2
Pressure (hPa) 953.6 1004.8 1010 1015 1027.1 1008.4
Wind speed (m/s) 0.8 2.2 2.7 3.3 14 2.9
Precipitation (mm) 0 4.5 18.5 43 876 33.3
HFMD cases Singel region 1 32 60 110 473 85.8
Temperature -4.5 10.3 18.4 24.3 32.9 17.6
Relative humidity 23 72 81 88 100 79.6
Pressure 983 1008.4 1015.9 1023 1039.7 1015.8
Wind speed 0.1 1.3 1.8 2.4 12 1.97
Precipitation 0 0 0 3.4 276.2 4.9

https://doi.org/10.1371/journal.pone.0326206.t002

PLOS One https://doi.org/10.1371/journal.pone.0326206 June 27, 2025 11/ 21

https://doi.org/10.1371/journal.pone.0326206.t002
https://doi.org/10.1371/journal.pone.0326206


ID: pone.0326206 — 2025/6/21 — page 12 — #12

PLOS One Hand-foot-mouth disease multi-region prediction

key components of the model through ablation experiments and analyzes the experimental
results on multi-region dataset.

Comparison results and analysis
From Table 3 and Fig 4, it is observed that as the prediction step L increases, the performance
of all models in predicting the number of HFMD cases in both datasets gradually deterio-
rates across the three metrics. Compared to other models, the Seq2Seq-HMF model’s perfor-
mance decline is slower, enabling it to provide more accurate predictions over an extended
period. Besides, TGCN and STGCN network models are lower than other models in short -
and long-term predictions in a large range and multiple regions. This is because predicting
infectious diseases differs from other tasks, such as traffic flow forecasting, in that it places
greater emphasis on the autocorrelation of nodes. In single-region prediction tasks, GCN-
based models operate solely on the target region’s data. As a result, they are unaffected by the
previously mentioned limitations, exhibiting adequate performance.

Table 3. Comparison of different model predictions.
Model Dataset MAE RMSE R2

L=1 L=2 L=3 L=4 L=1 L=2 L=3 L=4 L=1 L=2 L=3 L=4
RFR Multiple 18.56 23.32 27.69 35.11 51.62 63.01 68.49 88.56 0.796 0.69 0.646 0.411
XGBoost 18.32 23.59 27.77 34.74 49.14 61.59 68.28 86.89 0.815 0.71 0.65 0.432
TGCN 36.46 36.3 38.82 45.31 68.85 71.4 74.32 84.17 0.57 0.54 0.506 0.479
STGCN 32.78 36.99 34.66 42.75 60.82 65.46 74.15 82.4 0.718 0.678 0.58 0.497
LSTM 17.28 23.62 31.08 34.21 35.01 48.65 57.21 67.29 0.907 0.819 0.778 0.656
Seq2Seq-Shil 16.58 21.92 26.03 28.13 34.13 44.78 53.92 61.67 0.911 0.847 0.778 0.711
DA-RNN 14.35 21.19 25.35 28.37 33.29 44.42 53.73 61.87 0.92 0.851 0.774 0.712
Seq2Seq-HMF 15.42 18.96 22.23 24.90 30.35 39.08 47.38 56.27 0.93 0.883 0.831 0.76
RFR Single 9.42 10.05 10.7 11.17 13.09 13.78 14.46 15.18 0.837 0.82 0.802 0.782
XGBoost 10.49 11.58 11.18 12.42 14.22 15.83 15.36 16.88 0.808 0.763 0.776 0.73
TGCN 9.84 11.81 12.22 13.34 13.48 15.35 15.58 17.3 0.83 0.786 0.773 0.74
STGCN 8.95 10.29 12.73 19.65 12.35 13.76 15.78 23.41 0.85 0.821 0.77 0.56
LSTM 9.07 9.86 11.08 11.21 12.51 13.68 14.64 15.03 0.852 0.823 0.798 0.786
Seq2Seq-Shil 9.87 10.02 10.67 11.67 13.41 13.68 14.52 15.0 0.832 0.82 0.80 0.788
DA-RNN 10.54 18.16 20.1 21.48 13.66 20.75 23.08 24.85 0.83 0.65 0.58 0.531
Seq2Seq-HMF 7.96 9.26 9.92 10.2 10.95 12.53 13.39 13.82 0.887 0.852 0.829 0.818

https://doi.org/10.1371/journal.pone.0326206.t003

Fig 4. Bar Chart of Performance Indicators for Model Comparison Tests in multi-region data set.

https://doi.org/10.1371/journal.pone.0326206.g004
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Among the RNN-based models LSTM, Seq2Seq-shil, and DA-RNN, DA-RNN demon-
strates superior performance in multi-region predictions. It employs an attention mechanism
to identify the impact of weather factors on HFMD, achieving an MAE index of 14.35 for
L = 1 predictions. Its R2 is 0.92, slightly lower than Seq2Seq-HMF’s 0.93. This is due to the fact
that the DA-RNNmodel is more precise in predicting nodes with fewer cases compared to the
Seq2Seq-HMF model. Conversely, the Seq2Seq-HMF model effectively captures the influence
of adjacent nodes when predicting nodes with a high number of cases, resulting in more accu-
rate predictions than DA-RNN in these instances. Overall, at the same prediction length L,
the performance metrics of the Seq2Seq-HMF model surpass those of the other comparative
models in both datasets. These findings indicate that the Seq2Seq-HMF model enhances the
accuracy of HFMD prediction.

To directly compare model performance, this paper presents the prediction outcomes for
four representative models at L=1. Fig 5 respectively shows the comparison between the pre-
dicted value and the measured value of different network models when the prediction step
size L = 1, where the abscess Node number represents the number of city nodes, the ordi-
nate Week represents the time series from week 1 to week 110 of the test set, and the verti-
cal coordinate represents the value of HFMD cases. It indicates that the prediction outcomes
of STGCNmodels is less than optimal. Specifically, during the peak period of HFMD inci-
dence, STGCN tend to overemphasize the influence of neighboring nodes. This leads to low-
incidence nodes being inappropriately affected by adjacent high-incidence nodes, resulting in
a notably reduced prediction accuracy. In contrast, the DA-RNNmodel, all based on RNNs,
have achieved higher accuracy in predicting HFMD. Particularly, the Seq2Seq-HMF model
demonstrates the closest alignment between predicted results and actual values during peak
incidence periods.

Moreover, several representative regions are selected, and the predicted values of HFMD
for different L in these regions are depicted in line charts for comparative analysis. Fig 6
and Fig 7 shows a comparison of the predicted values by each model with the actual val-
ues for a representative city in each of the eight Japanese regions: Hokkaido, Tohoku, Kanto,
Chubu, Chugoku, Kinki, Shikoku, and Kyushu, based on the official regional classification. It
is observed that when L is greater than 1, the broken lines representing STGCN oscillate to
varying degrees, and the predicted values of the XGBoost model often exhibit abnormal pre-
diction peaks. Notably, the predicted values by STGCN tend to be higher than the ground
truth, which is consistent with the aforementioned analysis. Fig 8 depicts a geospatial map
representing the error ratio between the observed values and the Seq2Seq-HMF’s predictions
values during the HFMD epidemic peaks at weeks 43 and 96.

Ablation Study
Impact of spatial weight matrix. In graph convolution operations, the choice of spatial

weight matrix significantly impacts model performance. This section presents a comparative
analysis of two typical spatial weight matrices—the adjacency-based spatial weight matrix and
the inverse distance spatial weight matrix—focusing on their differences in model prediction
accuracy.

The distance-based spatial weight matrix is employed to quantify the spatial relationships
between geographical entities, among which the inverse distance spatial weight matrix is a
commonly utilized approach. This matrix calculates weights based on the proximity of enti-
ties, assigning higher weights to closer entities and lower weights to more distant ones. The
adjacency-based spatial weight matrix primarily considers the immediate neighborhood
relationships between regions.
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Fig 5. 3D Spatiotemporal Distribution of HFMD Cases. For the predicted performance of each model when L=1, the test set starts at week 46 in 2021 as the Y-axis and
ends at week 51 in 2023, for a total of 110 weeks.

https://doi.org/10.1371/journal.pone.0326206.g005

Table 4 shows the results indicating that the proximity-based spatial weight matrix outper-
forms the distance-based one in terms of prediction accuracy for HFMD propagation. This
may be because disease spread prediction tasks are more sensitive to the characteristics of
neighboring regions, and the distance-based weight matrix may not effectively capture this
local dependency. The distance-based spatial weight matrix is less effective, possibly because
it fails to fully utilize the strong correlation between neighboring regions and introduces noise
from distant units. In contrast, the adjacency-based spatial weight matrix can better capture
local dependencies, thus performing better in spatio-temporal feature extraction.

Impact of sampled neighbor hop. In the graph convolution operation, the number of
hops for sampling neighbor nodes is a key hyperparameter that significantly influences the
model’s performance. Table 5 details the final performance of the model across various sam-
pling hop configurations. As the number of hops for sampling neighbor nodes increases, the
model’s performance exhibits a nonlinear trend. The model achieves the most comprehensive
optimal performance when the number of sampling hops is set to 2.
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Fig 6. Line chart of predicted values(part A). Comparison of observed and predicted values for each representative administrative area.

https://doi.org/10.1371/journal.pone.0326206.g006

Impact of regularization parameter. Table 6 indicates that when 𝜆 is on the order of
10–4, setting L to 1 significantly enhances the model’s performance. However, when L is
increased to 4, the model’s predictive performance deteriorates. When 𝜆 is on the order of
10–3, the model achieves optimal performance. Furthermore, when 𝜆 reaches the orders of
10–2 and 10–1, the model exhibits signs of underfitting.

Impact of STPE cell and FECAM. To validate the effectiveness and rationality of the
STPE cell and FECAMmodules, the following experiments have been designed in this study,
as outlined in Table 7.The experimental results are shown in Table 8. EXP-1, which utilized
the base model Seq2Seq, yielded slightly lower results compared to the other RNN-based
models in the comparative experiment. In EXP-2, the STPE cell is employed as the encoder in
the basic Seq2Seq model to extract not only the autocorrelation of features but also the per-
sistent influence of neighboring nodes. The results indicate that all metrics are higher com-
pared to those obtained in Experiment 1. Besides the situation at L = 1, significant improve-
ments were observed in the performance of MAE, RMSE, and R2. At L = 2, MAE decreased
by 30.5% and RMSE by 8.7%, with R2 increasing by 3%. At L = 3, MAE decreased by 28.3%
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Fig 7. Line chart of predicted values(part B). Comparison of observed and predicted values for each representative administrative area.

https://doi.org/10.1371/journal.pone.0326206.g007

and RMSE by 8.7%, while R2 increased by 4.7%. Notably, at L = 4, R2 saw the most signifi-
cant increase, rising to 6.6%. The results showed that STPE cell improved the prediction per-
formance of the model for HFMD. In EXP-3, the FECAMmodule was added to the basic
Seq2Seq model. All metrics are also superior to those in EXP-1, particularly at L = 3 and L = 4,
where the R2 value increases by 6% and 7.9%, respectively, indicating that the FECAMmod-
ule enhances the model’s long-term prediction capability. In EXP-4, FECAM was added on
top of the setup from EXP-2, leading to further improvements in the results compared to
EXP-2. The R2 value increased by 1.4%, 1.7%, 2.7%, and 2.3% respectively, demonstrating
that FECAM enhances the accuracy of HFMD prediction and brings the model’s predicted
values closer to the actual ones. To visually demonstrate the impact of each submodule, a
radar chart is employed to compare the evaluation metrics across different improved mod-
ules. Fig 9 indicate that Seq2Seq-HMF outperforms all other improved modules in terms of
all indicators.
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Fig 8. Error Ratio: A geospatial map comparing the observed values with the predictions from the Seq2Seq-HMF during the HFMD epidemic peaks.

https://doi.org/10.1371/journal.pone.0326206.g008

Table 4. Performance sensitivity to spatial weight matrix.
Spatial weight matix MAE RMSE R2

L=1 L=2 L=3 L=4 L=1 L=2 L=3 L=4 L=1 L=2 L=3 L=4
Distance-based 15.61 19.76 25.59 27.08 34.45 45.52 48.84 58.16 0.909 0.842 0.82 0.74
Adjacency-based 15.42 18.96 22.23 24.9 30.35 39.08 47.38 56.27 0.93 0.883 0.831 0.76

https://doi.org/10.1371/journal.pone.0326206.t004

Table 5. Performance sensitivity to sampling hop.
hop MAE RMSE R2

L=1 L=2 L=3 L=4 L=1 L=2 L=3 L=4 L=1 L=2 L=3 L=4
hop=1 15.97 19.51 23.30 26.54 30.66 40.88 46.66 60.64 0.928 0.872 0.836 0.749
hop=2 15.42 18.96 22.23 24.9 30.35 39.08 47.38 56.27 0.93 0.883 0.831 0.76
hop=3 16.8 19.93 23.75 28.11 30.78 41.30 47.56 59.83 0.927 0.87 0.83 0.731
hop=4 15.73 23.01 23.23 29.11 30.65 43.27 47.27 60.04 0.928 0.857 0.832 0.729
hop=5 16.81 19.06 22.98 29.43 31.66 40.74 47.20 60.75 0.923 0.873 0.833 0.723

https://doi.org/10.1371/journal.pone.0326206.t005

Table 6. Performance sensitivity to regularization coefficient.
𝜆 Mean Loss MAE RMSE R2

L=1 L=4 L=1 L=4 L=1 L=4 L=1 L=4
0 0.0374 0.3044 19.44 28.46 35.42 60.33 0.904 0.727
1 × 10–4 0.0357 0.3364 19.58 32.59 31.78 64.29 0.923 0.689
1.5 × 10–3 0.0265 0.0866 15.42 24.9 30.35 56.27 0.93 0.76
3 × 10–2 0.5965 1.996 48.02 74.45 118.54 118.34 0.06 -0.54
1 × 10–1 0.9564 2.541 60.18 74.06 114.29 118.21 0.002 0.0002

https://doi.org/10.1371/journal.pone.0326206.t006
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Table 7. Experimental design to verify the effects of STPE cell and FECAM.
Experiment(EXP) Seq2Seq STPE cell FECAM
EXP-1 ✓ × ×
EXP-2 ✓ ✓ ×
EXP-3 ✓ × ✓
EXP-4 ✓ ✓ ✓

https://doi.org/10.1371/journal.pone.0326206.t007

Table 8. Effect of Seq2Seq-HMF component.
Experiment(EXP) MAE RMSE R2

L=1 L=2 L=3 L=4 L=1 L=2 L=3 L=4 L=1 L=2 L=3 L=4
EXP-1 19.7 27.88 31.1 33.57 34.57 45.6 54.84 63.39 0.909 0.843 0.773 0.697
EXP-2 18.65 19.37 22.3 26.00 32.96 41.51 50.08 58.24 0.917 0.868 0.809 0.743
EXP-3 16.30 20.20 22.71 25.45 30.38 41.23 48.68 57.11 0.92 0.87 0.819 0.752
EXP-4 15.42 18.96 22.23 24.90 30.35 39.08 47.38 56.27 0.93 0.883 0.831 0.76

https://doi.org/10.1371/journal.pone.0326206.t008

Fig 9. Radar chart illustrating the performance metrics of the Effect of Seq2Seq-HMF component.

https://doi.org/10.1371/journal.pone.0326206.g009

Conclusion
This study proposed a prediction model of HFMD, Seq2Seq-HMF, which performs a multi-
region multi-step prediction task. The model consists of an encoder based on STPE cell and
a decoder that incorporates FECAM. In the experimental section, the performance of eight
HFMD prediction models was evaluated in multi-region and multi-step prediction tasks,
using Japan’s 47 prefectures and a Chinese city as a case study. Among these models, the
Seq2Seq-HMF model demonstrated higher accuracy in predicting the number of HFMD
cases for the upcoming weeks and exhibited greater precision and stability in both short- and
long-term predictions.

This model offers a novel approach for HFMD prediction, aiding public health depart-
ments in accurately forecasting cases. This facilitates timely preventive measures, rational allo-
cation of medical resources, and minimizes the impact on infants and young children. Fur-
thermore, understanding the factors driving the model’s predictions is crucial for epidemio-
logical insights and public health decision-making. Future research could not only extend the
model’s application to other regions and incorporate additional social factors such as popu-
lation size, mobility, and vaccine coverage rates, but also focus on developing or integrating
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interpretability techniques to shed light on the spatio-temporal dependencies and key drivers
identified. This would enhance both the predictive accuracy and the practical utility of the
model.
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