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Abstract 

Background

A healthy lifestyle, including regular physical activity, prevents cognitive decline and 

dementia. Evaluating the influence of regular physical activity on the brain is essential 

for properly assessing patients’ conditions and designing effective therapeutic strat-

egies. We aimed to investigate whether and how electrophysiological brain activity 

reflects the influence of regular physical activity.

Methods and Findings

Clinical records from 327 patients who visited our outpatient department for dementia 

were analysed retrospectively. Patients were classified into two groups: ‘Active’ for 

those who engaged in regular physical activity and ‘Nonactive’ for patients who did 

not. Electrophysiological brain activity was recorded using magnetoencephalography 

and quantitatively evaluated using three spectral parameters: median frequency, 

individual alpha frequency, and Shannon’s spectral entropy. Cognitive state was 

assessed using three neuropsychological assessments: the Japanese version of 

Mini-Mental State Examination (MMSE-J), Frontal Assessment Battery (FAB-J), and 

Alzheimer’s Disease Assessment Scale-Cognitive section (ADAS-J cog). The effects 

of group (‘Active’ or ‘Nonactive’) on the spectral parameters were examined using an 

analysis of covariance with one of the neuropsychological assessments as a covari-

ate. The size of contribution was quantified in the unit of neuropsychological assess-

ments using a regression model. A main effect of group was observed for all three 

spectral parameters. The size of contribution was equivalent to approximate changes 

of 3–11 points in MMSE-J, 3–7 points in FAB-J, and 10–14 points in ADAS-J cog 

scores. The main limitations of our study are: (1) this study was conducted in a single 
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site; (2) possibility of reverse causality; and (3) some potential confounding factors, 

such as genetic factors, were not considered.

Conclusions

Electrophysiological brain activity reflects the influence of regular physical activity as 

well as current cognitive states. Such insights are valuable for physicians to design 

effective therapeutic strategies and provide clinical advice to patients with cognitive 

impairment and dementia.

Introduction

Dementia is a functionally defined ‘state’ where various brain diseases cause cog-
nitive impairments that interfere with daily activities, rather than ‘pathological condi-
tions’ such as neural death because of amyloid deposition or hippocampal atrophy. 
Cognition comprises a broad range of brain functions, including perceiving, thinking, 
knowing, reasoning, remembering, analysing, planning, paying attention, generating, 
synthesising ideas, creating, judging, being aware, and having insight [1]. This pro-
cess is referred to as the cognitive state [2] and can be impaired by various factors, 
such as diseases [3–5]. However, the severity of cognitive impairments does not 
always reflect the severity of causative pathologies [6] because lifestyle-associated 
factors, such as less education, head injury, physical inactivity, smoking, excessive 
alcohol consumption, hypertension, obesity, diabetes, hearing loss, depression, 
infrequent social contact, and air pollution, interfere with their relationships [7]. These 
factors and their modifications influence pathological conditions (e.g., neurodegener-
ation, inflammation, and vascular damages) and some drive physiological compensa-
tion mechanisms (e.g., axonogenesis, synaptogenesis, neural plasticity, flexibility, and 
efficiency) [7–11], which consequently contribute to preventing future cognitive decline 
as well as maintaining the current cognitive state. The state itself is a treatment target 
and patients’ interest; thus, its precise and detailed assessment is essential. In clinical 
practice, the cognitive state is assessed through careful interviews with physicians, 
supported by a battery of medical examinations and assessments, reflecting its 
multi-dimensionality. Neuropsychological assessments, such as the Mini-Mental State 
Examination (MMSE) [12], Frontal Assessment Battery (FAB) [13], and Alzheimer’s 
Disease Assessment Scale-Cognitive section (ADAS cog) [14], are the most essential 
and frequently used examinations to evaluate dementia-associated cognitive states. 
Although these assessments have been well established [15], they are not always reli-
able because various factors, such as practice effects [16,17], ceiling and floor effects 
[18], and physical disabilities [19], influence their scores.

To improve the accuracy and validity of clinical diagnoses, other assessments 
of the cognitive state have been proposed, which can be used complementarily to 
the neuropsychological assessments. Electrophysiological assessments, including 
magnetoencephalography (MEG) and electroencephalography, are candidate modal-
ities. Both are non-invasive clinical tools to evaluate neurological states in terms of 
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electrophysiological brain activity, whose changes reflect brain functions that are indicative of dementia-associated cog-
nitive states [20–23]. The characteristics of electrophysiological activities can be summarised in various ways [20–23]. In 
this study, we focused on spectral parameters, such as the median frequency (MF), individual alpha frequency (IAF), and 
Shannon’s spectral entropy (SSE), which are sensitive to cognitive decline. They capture spectral changes in electrophysio-
logical brain activities, which are known indicators of cognitive impairments; for example, (1) enhanced low-frequency oscil-
latory activity accompanied by attenuated high-frequency oscillatory activity, (2) slowing down of the alpha peak frequency, 
(3) less prominent alpha oscillations, and (4) loss of diversity of neural oscillatory components [24–27]. The MF, IAF, and 
SSE can represent these changes concisely [28–30]. Lower values of these parameters are associated with lower cogni-
tive states [20,23,25,29–38] and a higher plausibility of dementia, consistent with clinical impressions [34]. Since 2019, we 
have routinely used these three MEG spectral parameters in our outpatient dementia department. These values are used 
during medical interviews and consultations with neuropsychological assessment scores to provide better treatments and 
care [25,34]. We have previously shown that they are well-correlated with neuropsychological assessment scores, namely 
current cognitive states [25]. Furthermore, they also carry information regarding pathological states, which are usually mea-
sured using positron emission tomography, single photon emission tomography, and ultrasonography, and are considered 
drivers of cognitive impairments [35,39–42]. These findings suggest that MEG spectral parameters capture broad informa-
tion about neurological states, including physiological, neuropsychological (i.e., current cognitive states), and pathological 
conditions (Fig 1). Lifestyle-associated factors modify the potential risk of cognitive decline and current cognitive state by 
changing the neurological state in two ways: via anti-pathological and physiological compensation pathways [7–9]. There-
fore, the MEG spectral parameters should also capture the neurological changes which do not influence the current cogni-
tive state (i.e., neuropsychological assessment scores) but withstand potential neurologically-accumulated risks of cognitive 
decline (Fig 1). We hypothesise that the MEG spectral parameters would be indicative of neurological changes triggered 
by lifestyle-associated factors; thus, they should differ between patients with different lifestyles and correlate with neuro-
psychological assessment scores (i.e., current cognitive states). If the hypothesise is correct, objective evaluation of the 
lifestyle-associated factors using MEG assist physicians in designing therapeutic strategies and promoting lifestyle changes 
to prevent cognitive decline. To examine the hypotheses, we assessed the effects of lifestyle-associated factors on MEG 
spectral parameters while controlling for the effects of neuropsychological assessment scores.

In the present study, we focused on regular physical activity as a representative index of lifestyle-associated factors, 
without excluding influences from other lifestyle-related factors. We chose regular physical activity because of its clinical 
importance. As one of the few prospectively modifiable factors (e.g., by encouraging patients during medical consultation), 
it is worth addressing. In contrast, other factors, such as education and air pollution, are not easily modifiable for current 
patients; thus, the benefits of discussing those are limited for the clinical practice. We retrospectively analysed clinical 
data from 327 patients and compared the MEG spectral parameters between patients with and without regular physical 
activity, while controlling for neuropsychological scores to extract additional information associated with regular physical 
activity.

Materials and methods

Patients and ethics

This retrospective observational study used a large clinical dataset of 327 patients (188 women and 139 men; mean 
age ± standard deviation, 77.9 ± 7.1 years [range 49–93 years]) who visited our outpatient department for dementia. The 
inclusion criteria were patients visiting the department for the first time between 5 June 2019 and 11 April 2024. The 
exclusion criteria were as follows: (1) lack of documentation of regular physical activity, (2) refusal to consent for data 
reuse, and (3) not undergoing MEG. According to the clinical records, 32 were diagnosed with healthy ageing, 60 with 
mild cognitive impairment, and 220 with dementia. Thirteen were diagnosed with other medical conditions such as depres-
sion or disuse syndrome. Two patients did not present on the day of diagnosis. We included all patients who met the 
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aforementioned criteria, regardless of their diagnosis, because we would like to apply our findings to all patients who seek 
lifestyle intervention. This study was approved by the Ethics Committee of Kumagaya General Hospital (#34) and adhered 
to relevant Japanese guidelines and regulations. All data used for the present study were anonymised at the first stage. 
Only two of the authors (KF and YS) had the ability to identify individual patients using comparative tables, if necessary. 
Data were accessed for research purposes between 31 May and 5 July 2024. All participants provided written informed 
consent to participate in this study if they were cognitively healthy. Otherwise, their legal guardians (i.e., family members) 
provided informed consent on their behalf. Because all patients visited the outpatient department for dementia and any 
clinical problems were suspected to be cognition-related, we obtained written informed consent from both the patients 
and their legal guardians, except for special circumstances. The procedure was performed in accordance with the Ethical 
Guidelines for Medical and Health Research Involving Human Subjects, published by the Japanese Ministry of Education, 
Culture, Sports, Science, and Technology.

Classification of active and nonactive groups

Documentation of regular physical activity was obtained from clinical records written by the attending physician (Author 
YH) during medical interviews. Patients were classified as ‘Active’ if their records indicated any regular exercise routine, 

Fig 1.  A Model of the Effects of Lifestyle-Associated Factors on Cognitive States. Lifestyle-associated factors, such as regular physical activity, 
modulate the pathological state and drive physiological compensation mechanisms, which jointly influence the current cognitive state. While neuropsy-
chological assessments capture cognitive states and pathological measurements (e.g., positron emission tomography [PET], single photon emission 
tomography [SPECT], and ultrasonography [US]) capture the pathological state, magnetoencephalography (MEG) (i.e., electrophysiological measure-
ments) captures broad neurological conditions. Therefore, we expected that it would capture the comprehensive effects of lifestyle-associated factors on 
neurological conditions.

https://doi.org/10.1371/journal.pone.0326163.g001

https://doi.org/10.1371/journal.pone.0326163.g001
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such as daily walking or participation in a gymnastics club, whose amount, duration, and frequency were at a reasonable 
level considering each patient’s background judged by the physician. Those without such a routine were classified as 
‘Nonactive’. Patients whose records did not describe regular exercise routines were excluded. We intentionally did not set 
thresholds for the classification of ‘Active’ and ‘Nonactive’ across participants, such as types of activities (e.g., walking, 
swimming, playing golf, and trekking), duration (e.g., two hours per day), and frequency (e.g., every two days), because 
the definition of ‘Active’ varies depending on patients’ backgrounds. As described in a guideline by the World Health 
Organisation for preventing cognitive impairment and dementia, even small amounts of physical activity can be consid-
ered as an exercise for some [43]. Smaller than recommended amounts of physical activity can still benefit cognition [44]. 
Old individuals often suffer from physical disabilities such as dizziness or pain in their hip or knee. Even 2,000–3,000 
steps of walking every two days represents a significant effort for them. While we may deem this a small amount of exer-
cise for us, it is significant for them and improves their physical/mental condition and cognition. Due to the diversity in the 
clinical population, it was neither practical nor fair to apply uniform thresholds for the classification of ‘Active’ and ‘Nonac-
tive’ groups. Instead, despite being subjective, the patients were classified by a physician, considering their daily activity 
status and their clinical background.

Neuropsychological assessments

Regarding the cognitive state, we employed three neuropsychological assessment scores that are routinely used in our 
department: the total scores of the Japanese versions of the MMSE (MMSE-J) [45,46], Frontal Assessment Battery (FAB-
J) [13,47], and Alzheimer’s Disease Assessment Scale-Cognitive section (ADAS-J cog) [48]. MMSE-J and FAB-J scores 
range from 0–30 and 0–18, respectively, with lower scores indicating more severe impairment. ADAS-J cog scores range 
from 0–70, with higher scores indicating more severe impairment. MMSE-J scores were missing for one patient, FAB-J 
scores for five patients, and ADAS-J cog scores for 65 patients because of clinical limitations.

MEG data acquisition

To quantify electrophysiological brain activity, three spectral parameters—MF, IAF, and SSE—were retrieved from clin-
ical records [30,36]. They had been computed from five minutes of resting-state brain activity (i.e., spontaneous neural 
oscillatory activity). The activities were recorded using a 160-channel whole-head magnetoencephalography system 
(RICOH160−1; RICOH, Tokyo, Japan) in a magnetically shielded room as part of clinical practice. Patients were asked to 
remain calm in the supine position with their eyes closed during the scan. The sampling frequency was 2000 Hz with 500 
Hz low-pass filtering during the recording.

MEG analysis

The three spectral parameters—MF, IAF, and SSE— had been computed using the same sensor-level analysis protocol 
used in our previous studies and those of other groups [25,29–31,34,36–38,40,49–51] during daily clinical practice at 
Kumagaya General Hospital. MEG data are sometimes contaminated by artefacts such as signal fluctuation caused by 
dental works, which can deteriorate the quality of analysis. Before starting the analyses, artefacts were manually removed 
using principal component analysis, if necessary, by experienced physicians or clinical laboratory technicians (Authors 
FK, SI, and YS). The artifact removal was conducted using RICOH MEG Analysis software (RICOH, Tokyo, Japan), an 
analysis software provided by the MEG manufacturer. The technique was applied to 125 of 207 MEG datasets as part of 
clinical practice. The number of removed components were adjusted for each dataset and limited to as few as necessary. 
Subsequent MEG analyses were performed offline using MATLAB (MathWorks, Natick, MA, USA). The time-series signals 
were band-pass (1–70 Hz) and band-stop filtered at 50 Hz to remove the power line noise. The power spectral density 
(PSD) was computed using the Blackman-Tukey approach [52] with non-overlapping 5-s segments of the filtered signals. 
In the Blackman-Tukey method, PSD is computed as a discrete Fourier transform of the autocorrelation function of the 
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filtered time-series signals, which has better precision than other approaches [53] and is commonly used for computing 
MEG spectral parameters [25,30,31,34–37,50]. The original PSD was divided by the total power in the frequency range of 
interest (1–70 Hz) and the normalised PSD (PSDn) was obtained.

Three spectral parameters (i.e., MF, IAF, and SSE) were calculated to summarise different characteristics of the PSDn 
[20,23,25,29–32,34–38,40,49,50]. The MF quantifies the frequency at which the spectral power is balanced between low 
and high frequencies. It divides the PSDn into two equal halves between 1 and 70 Hz. The IAF represents the dominant 
frequency corresponding to the peak of the PSDn in the alpha band. It is defined similarly to MF, but with an adjusted 
frequency range between 4 and 15 Hz (i.e., extended alpha band) instead of 1–70 Hz, to obtain a robust estimator of the 
dominant alpha oscillations. SSE is computed as the normalised Shannon’s entropy to the PSDn, which can be calculated 
as a probability density function:

	
SSE = –

1

log(N)
·
∑70Hz

f=1Hz
PSDn(f) log[PSDn(f)]

	 (1)

where N is the number of frequency bins of the PSDn. SSE represents an irregularity measure closely related to the 
concept of order in information theory, which quantifies the homogeneity in the distribution of the oscillatory components of 
the PSDn. Sensor- and epoch-wise MF, IAF, and SSE were computed. Then, they were averaged across all sensors and 
epochs. These parameters have been used in clinical practice at some hospitals [25,34], with lower values indicating a 
lower cognitive state, and are associated with neuropsychological assessment scores [20,23,25,29–38].

Changes in the three spectral parameters (i.e., MF, IAF, and SSE) reflect changes in patients’ cognitive states [34] and 
neurophysiological conditions in the brain, such as changes in excitation/inhibition ratios and neuromodulator release. 
Regarding cognitive states, IAF and SSE are associated with MMSE and FAB scores, respectively, while MF is well 
associated with both MMSE and FAB scores [25]. This discrepancy suggests that three MEG spectral parameters are 
associated with distinct cognitive functions. Regarding neurophysiological conditions, low-frequency oscillatory activity 
(e.g., delta and theta) is associated with ascending cholinergic input to cortices from subcortical regions, such as the 
nucleus basalis of Meynert [54,55]. Amyloid deposit in the cortex also enhances the low-frequency oscillatory activity [39]. 
Stroke also enhances low frequency oscillatory activity [56]. Clinically, pathological structural changes often influence on 
its amplitude. Alpha oscillatory activity, which is considered an intermediate frequency, is produced by the thalamocortical 
network [57] and plays a key role in cognition [58]. Although its frequency is distributed from 8 to 12 Hz, it slows down in 
patients with mild cognitive impairment [59] and Alzheimer’s disease [60]. Its power attenuates in patients with Alzheimer’s 
disease [61] and dementia due to Lewy body [62]. High-frequency oscillatory activity (e.g., beta and gamma) is associ-
ated with gamma-aminobutyric acid level [63] which is a inhibitory neurotransmitter [64]. It is related to synaptic activities 
[65], network activities [66], and neuroplasticity [67]. In the predictive cording theory [68], low-frequency oscillatory activity 
is associated with top down processing in the brain, while high-frequency oscillatory activity is associated with top down 
processing bottom-up processing [69]. MF represents the power balance between wide frequency range from delta to 
gamma, while IAF just focus on frequency balance around alpha which is sensitive to frequency change in peak alpha 
frequency. SSE covers the same frequency range but evaluates different aspects of PSD: entropy rather than a simple 
power balance between high- and low-frequency oscillatory activities.

Statistical analysis

Statistical analyses were performed using MATLAB (MathWorks, Natick, MA, USA). Given the large number of samples 
(N = 327), we used parametric statistical tests for all analyses. First, to examine the effect of regular physical activity on 
cognitive states and electrophysiological activities, we examined group-level differences in each neuropsychological 
score, MEG spectral parameter, and age between the two groups (‘Active’ and ‘Nonactive’) using two-sample t-tests.
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Next, to explore the relationships within/between cognitive states and electrophysiological activities, Pearson’s 
correlation coefficients were calculated to investigate the intra- and intercorrelations within/between the age, neuro-
psychological scores, and MEG spectral parameters for each group. The correlation coefficients were tested with the 
null-hypothesis of no-correlation against the alternative hypothesis of a nonzero correlation. For the t-tests and correla-
tion analyses, p-values were adjusted for false discovery rate (FDR) using the Benjamini–Hochberg method [70], with 
significance set at less than 0.05. Next, we assessed the effect of regular physical activity on MEG spectral parameters 
while accounting for cognitive state using analysis of covariance (ANCOVA). Each MEG spectral parameter (MF, IAF, 
and SSE) was considered as a dependent variable, while regular physical activities (‘Active’ and ‘Nonactive’) was used 
as the independent variable and age or one of the neuropsychological assessment scores (MMSE-J, FAB-J, or ADAS-J 
cog) was used as a covariate.

Finally, the impact of regular physical activity on MEG spectral parameters was quantified in the unit of neuropsy-
chological assessment scores using size of contribution (SOC) computed with the following method. We estimated the 
intercept of the group (‘Active’ and ‘Nonactive’) and slope of the neuropsychological assessment scores for subjecting the 
MEG spectral parameters using the linear regression models which were equivalent to the ANOCOVA model;

	 y = (β0 + β0i) + (β1 + β1i) x+ ε	 (2)

where y is one of the MEG spectral parameters (i.e., MF, IAF, or SSE; dependent variable), β
0
/ β

1
 represent the global 

intercept/ slope across all groups, and β
0i/ β1i represent the intercept/ slope for group i (1 = ‘Active’ or −1 = ‘Nonactive’; inde-

pendent variable). x represents the covariance in the ANCOVA model, which was age or one of the neuropsychological 
assessment scores (i.e., MMSE-J, FAB-J, or ADAS-J cog). ɛ represents a residual of the measurement. For each pair of 
MEG spectral parameter and covariate (i.e., age, MMSE-J, FAB-J, or ADAS-J cog), the parameters were estimated using 
the least square method. To enhance the comprehensibility of the results, each covariate was centred (i.e., the mean was 
subtracted) before model estimation, so that the intercepts represent the estimated y (i.e., MEG spectral parameters; 
dependent variable) at an average covariate. We defined the SOC as the size of group intercept (β

0i) relative to the global 
slope (β

1
); therefore, the SOC was computed by dividing (β

0 Active - β0 Nonactive) by β
1
 for each model, indicating the differ-

ence in MEG spectral parameters between groups (‘Active’ and ‘Nonactive’) expressed by the unit of neuropsychological 
assessment scores. The SOC was computed for the pairs of MEG spectral parameters and neuropsychological assess-
ment scores for which the corresponding ANCOVA showed a significant main effect of group (i.e., ‘Active’ and ‘Nonactive’) 
and covariate (i.e., MMSE-J, FAB-J, or ADAS-J cog). A schematic description of our statistical model and SOC is shown in 
Fig 2. Of note, we did not evaluate nor compare the performances of the regression models. They were designed equiv-
alently to the ANCOVA models in which the terms for group and neuropsychological assessment scores were significant, 
and the coefficients were solely estimated to supplement the results with SOCs. Therefore, we did not aim to explore the 
best models or predictors in the present study.

Results

Group-level differences and correlations

One hundred forty-seven (79 women and 68 men) and 180 patients (109 women and 71) belonged to the Active and 
Nonactive groups, respectively. Descriptive statistics and the results of group-level comparison are shown in Table 1. The 
t-tests did not reveal any significant differences in age [p (FDR) = 0.465]. However, the MMSE-J and FAB-J scores were 
significantly lower [p (FDR) < 0.001], and the ADAS-J cog score was significantly higher [p (FDR) < 0.001] in the Non-
active group than in the Active group. All MEG spectral parameters (MF, IAF, and SSE) were significantly lower [p (FDR) 
<= 0.001] in the Nonactive group than in the Active group. The results of exploratory correlation analyses are shown in 
S1 and S2 Tables. Age was negatively correlated with MMSE-J and FAB-J scores in both groups, whereas it was only 
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correlated negatively with ADAS-J cog scores in the Nonactive group and not correlated with MEG spectral parameters 
in either group. All pairs within neuropsychological assessment scores (i.e., MMSE-J × FAB-J, MMSE-J × ADAS-J cog, 
and FAB-J × ADAS-J cog) and MEG spectral parameters (i.e., MF × IAF, MF × SSE, and IAF × SSE) were significantly 
correlated. All pairs between neuropsychological assessment scores and MEG spectral parameters (i.e., MMSE-J × MF, 
MMSE-J × IAF, MMSE-J × SSE, FAB-J × MF, FAB-J × IAF, FAB-J × SSE, ADAS-J cog × MF, ADAS-J cog × IAF, and 
ADAS-J cog × SSE) were significantly correlated in both groups, except for the pairs including SSE (i.e., MMSE-J × SSE, 
FAB-J × SSE, and ADAS-J cog × SSE) for the Active group.

Fig 2.  Schematic Description of the Statistical Model and SOC. The red dashed and blue solid lines represent the least square lines for the Active 
and Nonactive groups, respectively. The black vertical line indicates the mean of the neuropsychological assessment score (i.e., MMSE-J) across all 
patients, whose intersections with the least square lines corresponded to the group intercepts (β

0
 + β

0 Active and β
0
 + β

0 Nonactive). The intercepts are con-
verted to the unit of neuropsychological assessment score by horizontally projecting them on the global least square line with a global slope of β

1
, whose 

gaps between groups are considered as the SOC, representing the effect of group on MF in the unit of MMSE-J at their mean. MF: Median Frequency, 
MMSE-J, Japanese version of Mini-Mental State Examination; SOC, Size of contribution.

https://doi.org/10.1371/journal.pone.0326163.g002

Table 1.  Profile of the dataset and results of group-level comparisons.

Active Nonactive Two-sample t-test

N M SD N M SD T df p (FDR) d

Age 147 77.58 0.56 180 78.16 0.55 −0.73 325 0.465 −0.08

MMSE-J 146 24.56 0.37 180 21.54 0.40 5.41 324 < 0.001* 0.60

FAB-J 144 11.24 0.25 179 9.73 0.25 4.22 321 < 0.001* 0.47

ADAS-J cog 127 12.95 0.61 136 16.20 0.76 −3.32 261 < 0.001* −0.41

MF 147 11.54 0.18 180 10.39 0.19 4.33 325 < 0.001* 0.48

IAF 147 8.85 0.06 180 8.44 0.07 4.06 325 < 0.001* 0.45

SSE 147 0.798 0.003 180 0.785 0.003 3.54 325 0.001* 0.39

MMSE-J, Japanese version of Mini-Mental State Examination; FAB-J, Japanese version of Frontal Assessment Battery; ADAS-J cog, Japanese version 
of Alzheimer’s Disease Assessment Scale-Cognitive section; MF, Median Frequency; IAF, Individual Alpha Frequency; SSE, Shannon’s Spectral En-
tropy; N, number of patients; M, mean; SD, standard deviation; T, t-value; df, degree of freedom; p (FDR), p-value corrected for false discovery rate; d, 
Cohen’s d.

https://doi.org/10.1371/journal.pone.0326163.t001

https://doi.org/10.1371/journal.pone.0326163.g002
https://doi.org/10.1371/journal.pone.0326163.t001
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Effect of groups on MEG spectral parameters

Table 2 summarises the results of the ANCOVA, in which the effect of groups on MEG spectral parameters was investi-
gated while considering the effects of neuropsychological assessment scores. When age was considered as a covariate, 
the main effect of group (i.e., Active vs. Nonactive) was significant but the covariate and their interaction was not signif-
icant for all MEG spectral parameters [Table 2 (A)]. When each neuropsychological assessment (MMSE-J, FAB-J, or 
ADAS-J cog) was used as a covariate, both the main effects of the group (i.e., Active vs. Nonactive) and covariate were 
significant for all MEG spectral parameters, while their interactions were not [Table 2 (B)-(D)]. The impact of regular phys-
ical activity (i.e., effect of group) on the MEG spectral parameters was quantified as SOC. The SOCs were computed for 
the MMSE-J, FAB-J, and ADAS-J cog but not for age because the ANCOVA results indicated that age did not contribute to 
the regression model for any MEG spectral parameters. In the unit of MMSE-J, the SOCs of the groups were 4.14, 3.25, 
and 11.14 on MF, IAF, and SSE, respectively, indicating that regular physical activity affected the MEG spectral param-
eters by 3.25–11.14 in terms of MMSE-J scores. Similarly, the SOCs on MF, IAF, and SSE were 3.67, 2.99, and 6.85 in 
terms of FAB-J, and −10.16, −8.88, and −14.05 in terms of ADAS-J cog scores. The relationships between MEG spectral 
parameters, neuropsychological assessment scores, and groups are visualised in Fig 3.

Discussion

This study revealed that MEG spectral parameters (i.e., electrophysiological brain activity) are influenced by regular 
physical activity as well as neuropsychological assessment scores (i.e., current cognitive states) (Tables 1 and 2). The 
influence of regular physical activity on MEG spectral parameters was significant even when controlling for the neuropsy-
chological scores (Fig 2 and Table 2).

Recent studies have revealed that the prevalence of dementia is declining, at least in some countries [71,72]. It is 
considered that this decline is related to changes in lifestyle. Several factors associated with a ‘healthy lifestyle’ con-
tribute to reducing the risk of cognitive impairment [7] and these factors interfere with each other. In the present study, 
we focused on regular physical activity as a representative index of lifestyle-associated factors. It reduces the risk of 

Table 2.  Assessing the effects of regular physical activity on MEG spectral parameters.

Dependent variable

MF IAF SSE

Independent variable F p η2 F p η2 F p η2

(A) Age 0.98 0.323 0.003 1.94 0.165 0.006 0.52 0.471 0.002

RPA 18.38 < 0.001* 0.054 15.99 < 0.001* 0.047 12.26 0.001* 0.036

Age × RPA 0.45 0.505 0.001 0.03 0.860 0.000 1.01 0.317 0.003

(B) MMSE-J 45.99 < 0.001* 0.123 52.15 < 0.001* 0.138 6.87 0.009* 0.020

RPA 6.07 0.014* 0.016 4.39 0.037* 0.012 6.82 0.009* 0.020

MMSE-J × RPA 0.79 0.375 0.002 0.44 0.510 0.001 0.16 0.694 < 0.001

(C) FAB-J 39.29 < 0.001* 0.106 44.15 < 0.001* 0.119 10.10 0.002* 0.030

RPA 9.56 0.002* 0.026 7.76 0.006* 0.021 7.52 0.006* 0.022

FAB-J × RPA 3.12 0.078 0.008 1.33 0.250 0.004 2.66 0.104 0.008

(D) ADAS-J cog 35.85 < 0.001* 0.116 38.44 < 0.001* 0.125 7.62 0.006* 0.028

RPA 13.43 < 0.001* 0.044 10.99 0.001* 0.036 5.74 0.017* 0.021

ADAS-J cog: × RPA 0.20 0.659 0.001 0.21 0.650 0.001 < 0.01 0.973 < 0.001

RPA, regular physical activity; MMSE-J, Japanese version of Mini-Mental State Examination; FAB-J, Japanese version of Frontal Assessment Battery; 
ADAS-J cog, Japanese version of Alzheimer’s Disease Assessment Scale-Cognitive section; RPA, regular physical activity; MF, Median Frequency; IAF, 
Individual Alpha Frequency; SSE, Shannon’s Spectral Entropy; F, F-statistic; p, p-value.

https://doi.org/10.1371/journal.pone.0326163.t002

https://doi.org/10.1371/journal.pone.0326163.t002
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cognitive impairment both directly and indirectly [7,73]. As direct pathways, physical activity improves blood flow, reduces 
inflammation, induces the synthesis and release of neurotrophins, and modulates of amyloid β turnover, which improve 
cognition [74]. As indirect pathways, regular physical activity reduces other risk factors such as hypertension [75], obesity 
[76], diabetes [77]. Lifestyle-associated factors synergically reduce the risk of cognitive impairment and it is impractical to 
identify individual beneficial effects of regular physical activity. From a clinical perspective, it is not clear whether regular 
physical activity reduces the risk of cognitive decline and maintains the current cognitive state directly or indirectly. Thus, 
we considered these factors as a group and focused on the comprehensive effects of regular physical activity, which are 
of interest in clinical practice.

This study showed that MEG spectral parameters were associated with regular physical activity and correlated with 
neuropsychological assessment scores at the group-level (Fig 3, Table 1 and S1 and S2 Tables), which supported our 
hypothesis. These results suggest that MEG spectral parameters reflect two independent aspects: (1) current cognitive 
states (i.e., neuropsychological assessment scores) and (2) additional changes in electrophysiological brain activity 

Fig 3.  Scatterplots of the Relationships between MEG Spectral Parameters and Age/ neuropsychological Assessment Scores. Open dots and 
filled dots represent Active and Nonactive groups, respectively. Dashed and solid lines represent least square lines for Active and Nonactive groups, 
respectively. MF, median frequency; IAF, Individual alpha frequency; SSE, Shannon’s spectral entropy; MMSE-J, Japanese version of Mini-Mental 
State Examination; FAB-J, Japanese version of Frontal Assessment Battery; ADAS-J cog, Japanese version of Alzheimer’s Disease Assessment 
Scale-Cognitive.

https://doi.org/10.1371/journal.pone.0326163.g003

https://doi.org/10.1371/journal.pone.0326163.g003
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associated with physical activity. To quantify the additional changes, we introduced SOC which indicated that the addi-
tional increases in MEG spectral parameters driven by the group (i.e., influence of regular physical activity) are equivalent 
to the neuropsychological scores of 3.25–11.14 in MMSE-J, 2.99–6.85 in FAB-J, and 8.88–14.55 in ADAS-J cog. Accord-
ing to the current cognitive state, correlation analyses showed that relationships between MEG spectral parameters and 
neuropsychological scores are differently modulated by the groups (Active and Nonactive) (S1 and S2 Tables). In the Non-
active group, all MEG parameters (i.e., MF, IAF, and SSE) were correlated with all neuropsychological parameters (i.e., 
MMSE-J, FAB-J, and ADAS-J cog), while in the Active group, only MF and IAF were correlated with all neuropsychological 
parameters, and SSE was correlated with none of the three neuropsychological parameters (S1 and S2 Tables). These 
findings suggest that regular physical activity differently affects SSE and MF/IAF. The MF/IAF represent frequency power 
balance between low and high-frequency oscillatory activities, whereas SSE captures the complexity; a unique aspect 
of the spectral components contained in electrophysiological activity. As the patients with cognitive impairment lose the 
complexity, the SSE decreases as symptoms progress [25], suggesting positive correlations between SSE and neuropsy-
chological parameters. Our results showed that regular physical activity biased this relationship, indicating that patients in 
the Active group maintained comparable complexity in their electrophysiological oscillatory components even when their 
cognitive state was impaired. This implies that regular physical activity had an additional influence on the electrophysiolog-
ical activity in the Active group. Taken together, it is plausible that regular physical activity modified the electrophysiological 
activity (i.e., MEG spectral parameters). The influence of regular physical activity was evident in all MEG spectral param-
eters, while it was most salient for the SSE, because the relationships between SSE and current cognitive states (i.e., 
neuropsychological parameters) were biased by the regular physical activity.

The additional influence reminds us of the ‘cognitive reserve’ concept, which is defined as an adaptability of cogni-
tive processes that helps to explain differential susceptibility of cognitive abilities or day-to-day function to brain ageing, 
pathology, or injury [78]. Physical, cognitive, and social activities increase the cognitive reserve and attenuate the effects 
of neuropathology on cognitive states [79]. Its physiological backgrounds are based on axonogenesis and synaptogenesis 
[10], greater efficiency of and less decline in functional brain networks [80,81], and neuroplasticity [11]. These physio-
logical changes are induced by physical activity [82–84]. A previous MEG study showed that a high cognitive reserve is 
associated with enhanced high-frequency oscillatory (gamma) activity [85], which is related to synaptic activities [65], net-
work activities [66], and neuroplasticity [67]. Altogether, we speculate that regular physical activity leads to physiological 
changes in the brain that facilitate the adaptation to difficulties in daily live for patients with cognitive impairment, and that 
these changes are associated with high values in MEG spectral parameters, especially in SSE. For the clinical practice, it 
is promising that MEG spectral parameters can be used to evaluate positive effects of lifestyle-associated factors during 
medical consultations [34].

Limitations

The current study has some limitations. First, this study was conducted in a single hospital with an MEG centre. To gen-
eralise the present findings, they should be replicated in other hospitals with different patients. We are currently prepar-
ing similar studies with various collaborating hospitals. Second, we cannot rule out the possibility of reverse causality. 
Although we assumed that regular physical activity enhanced the MEG spectral parameters, the causality might in fact be 
opposite; patients with high MEG spectral parameters could prefer a healthy lifestyle including regular physical activity. 
There could also be no causal relationship; for example, both could be consequences of other factors, such as different 
lifestyle-associated, genetic, environmental, and/or unknown factors. We cannot exclude these possibilities because this 
was a retrospective observational study, not an intervention study. However, the present findings are still valuable for the 
clinical practice. There is an association between regular physical activity and MEG spectral parameters which allows phy-
sicians to infer patients’ lifestyles. Patients with lower MEG spectral parameters than other patients with comparable cur-
rent cognitive states will likely not have healthy lifestyles and should be encouraged to change them. We have previously 
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reported the efficacy of this strategy in a case series [34] which was an intervention study. Future longitudinal studies are 
required to clarify the causality. Third, some potential confounding factors were not considered in the present study, both 
lifestyle-associated (e.g., education and environment) [86,87] and other factors (e.g., genetic factors) [88]. We have exam-
ined the comprehensive effects of regular physical activity, which includes its interactions with other lifestyle-associated 
factors. However, some lifestyle-associated and/or other factors could influence MEG spectral parameters independently 
from regular physical activity, which should have been controlled for. However, because this was a retrospective observa-
tional study based on existing clinical records, only limited information was available. We are planning further studies to 
investigate the influence of other factors.

Conclusions

MEG spectral parameters capture additional influences of regular physical activity on brain activity as well as the current 
state of cognition (i.e., neuropsychological assessment scores). These measurements can assist physicians in designing 
therapeutic strategies and promoting lifestyle changes to prevent cognitive decline.
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