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Abstract

Sodium pentachlorophenate (PCP-Na) is a toxic preservative used in wood products,
posing potential health risks through food contact materials. A rapid analytical method
combining ultrasonic-assisted liquid-liquid extraction with ultra-performance liquid
chromatography-high resolution mass spectrometry (UA-LLE-UPLC-HRMS) was devel-
oped for the determination of PCP-Na residues in bamboo and wooden cutting boards.
Sample pretreatment involved ultrasonic extraction using methanol/water (50:50 v/v,
2.0% ammonia), followed by liquid-liquid purification with n-hexane/ethyl acetate
(60:40 v/v). After solvent evaporation under nitrogen, the residue was reconstituted

in the initial mobile phase. Chromatographic separation was achieved on an Acquity
UPLC BEH C18 column (2.1 mmx100mm, 1.7 ym) using a gradient elution of meth-
anol and 0.01% ammoniated aqueous solution. Detection was performed in negative
electrospray ionization (ESI’) mode with targeted single ion monitoring (Targeted-SIM)
scanning, utilizing pentachlorophenol-"*C, (PCP-*C,) as an isotopically labeled internal
standard. The method exhibited excellent linearity across a concentration range of 1.0—
500.0 pg/L (R220.999), with a limit of detection (LOD) of 0.5 pg/kg and a limit of quan-
tification (LOQ) of 1.5 pg/kg. Validation studies at three spiking levels (20.0, 200.0, and
400.0 pg/kg) demonstrated satisfactory recoveries of 97.2%—-99.7% and precision with
relative standard deviations (RSDs) of 0.8%—1.7% (n=6). The total chromatographic
runtime was optimized to 6 minutes. Application of this method to Seventy-five com-
mercial cutting boards revealed PCP-Na residues in five samples, with concentrations
ranging from 1.3 to 416 mg/kg. This approach features streamlined sample preparation,
high sensitivity, robust accuracy, and rapid analysis, making it particularly suitable for
routine monitoring of PCP-Na residues in bamboo and wooden food contact materials.
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Introduction

Cutting boards serve as primary contact surfaces for diverse food ingredients,
making their material safety a critical determinant of public health outcomes. In
China, bamboo and wooden cutting boards remain prevalent in household kitch-
ens due to cultural preferences and longstanding usage traditions. Convention-
ally, these boards are expected to comprise untreated natural materials without
synthetic additives. However, their porous organic structure creates inherent chal-
lenges: prolonged use with inadequate sanitation promotes microbial proliferation
and organic residue accumulation, compromising both hygiene and durability. To
address these limitations, certain manufacturers have resorted to incorporating
industrial preservatives during production, notably sodium pentachlorophenate
(PCP-Na), to inhibit microbial degradation. While effective for material preserva-
tion, residual amounts of such biocides on food contact surfaces pose significant
consumer health risks. This practice has raised growing concerns amid increas-
ing global scrutiny of food safety, particularly regarding chemical migration from
food-contact materials. Recent studies and regulatory reports [1,2] highlight
escalating incidents of contamination linked to non-compliant additives in kitchen-
ware, underscoring the urgent need for robust analytical methods to monitor and
regulate these hazardous residues.

PCP-Na, a multifunctional organochlorine compound, is extensively utilized as
a wood preservative, insecticide, and antibacterial agent in industrial and agricul-
tural applications [3,4]. However, mounting evidence highlights its significant health
and environmental risks. PCP-Na exhibits carcinogenic, teratogenic, and genotoxic
properties, demonstrating potential to induce chromosomal aberrations, gene muta-
tions, and chronic toxicity through bioaccumulation in biological systems [5—7]. The
International Agency for Research on Cancer (IARC) classifies PCP-Na as a Group
2B carcinogen, with particular concern arising from its acidic conversion to penta-
chlorophenol (PCP), a definitive Group 1 carcinogen [8]. Owing to its environmental
persistence and bioaccumulation potential, PCP-Na and its derivatives have become
ubiquitous contaminants, detected in aquatic systems, soil matrices, biota, and
agricultural products [9-12]. Human exposure occurs primarily via inhalation and
ingestion, manifesting acute symptoms including cephalalgia, nausea, and vomiting
[13]. Regulatory responses reflect these risks: China prohibits PCP-Na in food animal
production and mandates nondetection in animal-derived foods [14], while the U.S.
EPA designates it as a priority pollutant [15]. The U.S. EPA does not have a separate
drinking water standard for PCP-Na, but lists its parent compound, PCP, as a regu-
lated substance with a maximum contaminant level (MCL) of 0.001 mg/L [16]. WHO
has not established a separate limit value for PCP-Na, but proposes the following for
PCP: Provisional guideline value: 0.009 mg/L [17]. Commission Delegated Regulation
(EU) 2021/277 states that the permissible limit for PCP and its salts and esters equal
to or below 5mg/kg (0,0005% by weight) where they are present in substances, mix-
tures or articles [18]. Several nations further recognize PCP-Na as both a carcinogen
and persistent organic pollutant [19]. The use of PCP-Na as a wood preservative for
residential use is banned in countries such as the United States, Canada and Japan
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[20—22]. Notably, elevated PCP-Na residues persist in bamboo and wooden cutting boards, likely stemming from illegal
applications of PCP-Na solutions for corrosion inhibition, mold prevention, and color stabilization during manufacturing.
China currently lacks established maximum residue limits (MRLs) for PCP-Na in food-contact materials, creating regula-
tory vulnerabilities in product quality control. This oversight underscores the urgent need to develop accurate, sensitive
analytical methodologies for PCP-Na detection in household food-contact surfaces, ensuring alignment with global food
safety standards.

Current analytical approaches for PCP-Na detection encompass gas chromatography (GC) [23], gas
chromatography-tandem mass spectrometry (GC-MS/MS) [24,25], liquid chromatography (LC) [26], and liquid
chromatography-tandem mass spectrometry (LC-MS/MS) [1,27]. Nevertheless, these methods present operational lim-
itations: GC and GC-MS/MS necessitate derivatization procedures that introduce methodological complexity and sus-
ceptibility to matrix interference, while LC suffers from insufficient sensitivity for trace-level analysis. Although LC-MS/
MS has gained prominence through its derivatization-free operation, enhanced sensitivity, and superior selectivity, it
remains constrained by inadequate molecular weight determination accuracy and limited qualitative confirmation capa-
bilities. Emerging as a robust alternative, quadrupole-orbitrap high-resolution mass spectrometry (Q-Orbitrap HRMS)
addresses these limitations through exact mass measurement (<3 ppm mass accuracy), enabling definitive compound
identification and eliminating false positives. Simultaneously, its quantitative performance rivals that of triple quadrupole
systems. Regarding sample preparation, conventional solid-phase extraction (SPE) methods [28,29], despite wide-
spread adoption, suffer from time-intensive protocols and procedural complexity. This underscores the critical demand
for streamlined extraction techniques, particularly solvent-based liquid-liquid extraction (LLE), to enhance throughput
without compromising analytical reliability.

Existing analytical investigations of PCP-Na have predominantly focused on environmental matrices and food com-
modities [30—-32], while critical intermediate media like food-contact surfaces (particularly cutting boards) remain under-
explored. To address this knowledge gap, we developed a novel ultrasonic-assisted liquid-liquid extraction coupled with
ultra-performance liquid chromatography-high-resolution mass spectrometry (UA-LLE-UPLC-HRMS) methodology for
quantifying PCP-Na residues in bamboo and wooden cutting boards. The study aims to achieve three objectives: 1)
optimize the UA-LLE conditions to streamline pre-treatment steps and enhance detection efficiency. 2) develop an isotope
dilution UPLC-HRMS method to improve quantification sensitivity and accuracy, followed by comprehensive methodologi-
cal validation. 3) assess the contamination levels of PCP-Na in bamboo and wooden cutting boards by analyzing samples
collected from the Huzhou area. As a practical application, this validated method was implemented to assess PCP-Na
contamination levels in commercially available cutting boards from Huzhou City. The systematic evaluation not only
reveals current industrial practices but also establishes foundational data for regulating hazardous substance migration in
food-contact materials.

Materials and methods
Reagents and materials

HPLC-grade acetonitrile (ACN), methanol (MeOH), n-hexane, and ethyl acetate (EA) were sourced from Merck GmbH
(Darmstadt, Germany). HPLC-grade formic acid (FA) was obtained from Shanghai Macklin Biochemical Technology Co.,
Ltd. (Shanghai, China). Guaranteed reagent-grade ammonia aqueous solution (NH3-H20) was procured from Merck
GmbH (Darmstadt, Germany). Ultrapure water (18.2 MQ-cm resistivity) was generated using a Milli-Q Integral Water Puri-
fication System (EMD Millipore, Billerica, MA, USA). Polytetrafluoroethylene (PTFE) syringe filters (13mm, 0.22 um) were
purchased from ANPEL Laboratory Technologies (Shanghai) Inc. (Shanghai, China).

A certified reference material of PCP-Na (1000 pg/mL in methanol) was acquired from TMRM Co., Ltd. (Jiangsu,
China). The isotopically labeled internal standard, pentachlorophenol-"*C, (PCP-"*C,, 99% chemical purity), was obtained
from Cambridge Isotope Laboratories, Inc. (Andover, MA, USA).
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Instruments and equipment

Vanquish UHPLC system coupled with Q Exactive™ Hybrid Quadrupole-Orbitrap mass spectrometer (Thermo Fisher
Scientifi, USA); Multi Reax multi-tube vortex mixer (Heidolph, Germany); KQ-800DE ultrasonic processor (Kunshan
Ultrasonic Instruments Co., Ltd., China); Allegra 64R refrigerated centrifuge (Beckman Coulter, Inc., USA); TurboVap LV
nitrogen concentrator (Biotage, Sweden); GM200 stainless-steel blade grinder (Retsch GmbH, Germany).

Standard solutions

The certified PCP-Na standard solution (1000 pg/mL in methanol) was metrologically diluted with anhydrous methanol to
achieve a 10-fold diluted stock solution (100 pg/mL). The PCP-"*C, solid reference material was gravimetrically prepared
(purity-corrected mass) in methanol to yield a 100 pg/mL internal standard stock solution. All solutions were cryogenically
stored at —20+ 1 °C in amber glass vials to prevent photodegradation and thermal decomposition.

Sample preparation and pre-treatment

Seventy-five commercially available bamboo and wooden cutting board specimens were systematically collected through
stratified sampling across Huzhou’s administrative divisions, including all three counties (Deqing, Changxing, Anji) and two
municipal districts (Wuxing, Nanxun). The sampling campaign (2023-2024) encompassed diverse retail channels: local
agricultural markets, supermarket chains, and shopping malls, ensuring representative coverage of consumer-accessible
products.

To ensure analytical reliability and minimize cross-contamination risks, the following tiered protocols were rigorously
implemented: 1) Tool decontamination: Stainless steel drill bits and collection aluminum foil were pre-cleaned via sequen-
tial solvent washing (n-hexane >methanol > ultrapure water, 15min ultrasonication per cycle) followed by drying. 2) Field
blanks: Three procedural blanks (aluminum foil + containers) were processed in parallel with each sampling batch to
monitor background contamination. 3) Nine-point grid sampling: Particulate matter was collected from a standardized 3% 3
grid (Fig. 1) using an electric drill. Drill-derived particulates were immediately deposited on pre-cleaned aluminum foil (pre-
washed with n-hexane). 4) Mechanical homogenization with cycle-specific cleaning: Samples underwent three sequential
grinding cycles (30sec at 600rpm), with inter-cycle chamber decontamination (10 mL methanol rinse +5min nitrogen dry-
ing) to eliminate particle carryover. 5) Preservation: Homogenized samples were transferred to polyethylene containers,
with each sample mass rigorously maintained at 220.0g. All specimens were archived under controlled ambient conditions
(25+2°C, RH<40%) pending analysis.

Accurately weighed homogenized samples (0.5+0.001 g) were transferred to 50 mL polypropylene centrifuge tubes.
Subsequently, 50 uL of isotopically labeled internal standard working solution (2000 pg/L PCP-"*C,) and 10mL of a
methano/water (50:50 v/v, 2.0% ammonia) were added. The mixture underwent primary extraction through sequential pro-
cessing: 1) vortex homogenization (2500 rpm, 60s); 2) ultrasonic-assisted extraction (20kHz, 450 W, 10 min); and 3) cen-
trifugation (10,000 rpm, 5min, 4 °C). A 5.00 mL aliquot of the supernatant was subjected to liquid-liquid extraction in 15mL
PP tubes with 75 pL formic acid and 4 mL n-hexane/ethyl acetate (60:40 v/v). Following secondary vortex mixing (5min)

Fig 1. Standardized nine-point grid sampling protocol for rectangular bamboo and wooden cutting boards.

https://doi.org/10.1371/journal.pone.0326129.9001
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and centrifugation (10,000 rpm, 5min), the organic phase was quantitatively transferred to fresh tubes and concentrated to
dryness under nitrogen (30 °C, 15 psi) for 45min. The residue was reconstituted in 1.00mL of methanol/0.01% ammonia
aqueous solution (v/v 50:50) and then filtered through 0.22 um PTFE syringe filters into certified LC vials for UPLC-HRMS
analysis.

Analysis parameters of instruments

Chromatographic separation was performed on an Acquity UPLC BEH C18 analytical column (2.1 x 100mm, 1.7 ym
particle size;) maintained at 30.0+£ 0.5 °C. The mobile phase consisted of (A) 0.01% ammonia aqueous solution and (B)
methanol, delivered at 0.300 mL/min with a 5.00 L injection volume. A six-step gradient elution program was implemented
as detailed in Table 1, achieving complete separation within 6.0 min runtime.

High-resolution mass spectrometry was performed on a Q Exactive™ Hybrid Quadrupole-Orbitrap in negative electro-
spray ionization (ESI") mode. Optimized parameters included a 3.0kV spray voltage, sheath gas (N,) at 45 Arb, auxiliary
gas at 10 Arb, S-lens RF level 55, auxiliary gas heater at 350 °C, and capillary temperature at 320 °C. Data acquisition
employed a targeted single ion monitoring (Targeted-SIM) with a 4.0 m/z isolation window, m/z 50-750 scan range,
200ms ion injection time (IT), automatic gain control (AGC) target of 5x 10* ions, and 70,000 full width at half maximum
(FWHM) resolution at m/z 200.

Method validation

Validation parameters were then evaluated according to FDA guidelines [33]. To validate the analytical method of PCP-Na
in bamboo and wooden cutting boards, blank samples were selected, and the verification parameters such as linearity,
accuracy, precision, limits of detection (LOD), and limits of quantification (LOQ) were assessed. Linearity is the assump-
tion that there is a straightline relationship between the input (x) and output (y) variables. It is common practice to check
the linearity of a calibration curve by inspection of the correlation coefficient r (R?). Meanwhile, Analytical Method Commit-
tee suggests using the F-test as a reliable approach to check the linearity of any calibration function [34]. Accuracy is the
degree of agreement between the experimental value, obtained by replicate measurements, and the accepted reference
value. The accuracy is usually estimated by spiking a blank sample with low, medium or high concentration levels of the
substance to be measured and by recovery tests. Precision is defined as the closeness of agreement between quan-

tity values obtained by replicate measurements of a quantity under specified conditions. The relative standard deviation
(RSD) of six replicate samples at each spiked level is commonly used to assess analytical method precision. The LOD is
commonly defined as the lowest amount of analyte in a sample that can be reliably detected but not necessarily quanti-
tated by a particular analytical method. The LOQ is defined as the lowest concentration or amount of analyte that can be
determined with an acceptable level of precision and accuracy. The LOD and LOQ were established through experimental
determination based on the signal-to-noise ratio (LOD=3 S/N and LOQ=10 S/N, the LOD and LOQ of the method were
converted according to the volume (V), the conversion factor (f) and the weighing volume (m)).

Table 1. Gradient elution conditions.

Time (min) Flow (mL/min) Phase Al% Phase B/%
0 0.300 50.0 50.0
1 0.300 50.0 50.0
3 0.300 10.0 90.0
4 0.300 10.0 90.0
5 0.300 50.0 50.0
6 0.300 50.0 50.0

https://doi.org/10.1371/journal.pone.0326129.t001
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Statistical analysis

All results were presented as the mean of three or six independent experiments. Excel 2019 and OriginPro 2024 were
used for chart drawing. The error bars of the figures were generated by the values of the standard deviation.

Results and discussion
Optimization of chromatographic conditions

The BEH C18 stationary phase (2.1 %100 mm column geometry; 1.7-um particle size) demonstrated superior chro-
matographic performance, producing excellent peak shape and high S/N ratio. Based on these analytical merits, this
UPLC-optimized column configuration was ultimately implemented for compound separation.

The study systematically evaluated four mobile phase compositions—methanol/water, methanol/0.01% ammonia
aqueous solution, acetonitrile/water, and acetonitrile/0.01% ammonia aqueous solution—for their chromatographic and
mass spectrometric performance with PCP-Na and PCP-"°C_. Results indicated that methanol-based mobile phases pro-
vided optimal elution strength. Specifically, the methanol/0.01% ammonia aqueous solution combination yielded superior
performance, demonstrating enhanced peak symmetry, higher ionization efficiency, and narrower peak widths compared
to non-ammoniated systems. This improvement is attributed to ammonia’s role in promoting deprotonation of the pheno-
lic hydroxyl groups, which facilitates ionization in ESI- mode. SIM chromatograms of PCP-Na and PCP-"*C, with a mass
concentration of 50 pg/L under the optimized conditions are shown in Fig 2.

Optimization of mass spectrum conditions

The molecular architecture of pentachlorophenol incorporates five chlorine atoms, whose natural isotopic distribution
(3Cl and ®’Cl) generates characteristic isotopic clusters with distinct exact mass-to-charge ratios. Leveraging the Orbitrap
detector’s high mass resolution capability, monoisotopic **Cl selection was implemented during analysis. Targeted-SIM
scans in ESI- mode specifically captured the desodiated [M-Na] ions for PCP-Na and deprotonated [M-H] ions for PCP-
3C, in standard solutions. Mass accuracy errors between observed and theoretical exact masses remained below 3 ppm
(Fig 2), with absolute mass deviations under 0.5 mDa. Mass spectral information (Table 2) is provided for further details.

Optimization of pre-treatment conditions

Optimization of extraction solvents. A systematic screening of extraction solvents was conducted to optimize PCP-
Na recovery at 50 pg/L spiking levels. Evaluated systems included: (1) neat solvents (water, acetonitrile, methanol), (2)
methanol/water mixtures (25:75, 50:50, 75:25 v/v), and (3) acid/base-modified methanol/water (50:50 v/v, 1.0% formic
acid or 1.0% ammonia). Initial results demonstrated that methanol/water (50:50 v/v, 1.0% ammonia) achieved 77.0%
recovery, outperforming other solvents by 11.1-74.1% (Fig 3). Subsequent methodological refinement through ammonia
concentration optimization (0.5-2.5% v/v) revealed peak recovery (81.1%) at 2.0% ammonia, attributable to enhanced
phenolic group deprotonation and improved phase partitioning efficiency. This optimized solvent system (methanol/water
50:50 v/v, 2.0% ammonia) was consequently selected for all subsequent analyses.

Optimization of ultrasonic extraction time. The influence of ultrasonic extraction duration on PCP-Na recovery
was systematically investigated across a time gradient (2.5—-15min). As illustrated in Fig 4, analyte recovery exhibited a
time-dependent enhancement, increasing from 68.5% at 2.5min to 80.4% at 10 min. Beyond 10 min, recovery plateaued
(80.7% at 15min), indicating that 10 min represents the optimal balance between extraction efficiency and operational
practicality. Consequently, 10 min was established as the standardized extraction duration.

Optimization of the formic acid volume addition and liquid-liquid extraction solvent composition

A two-stage optimization protocol was implemented to enhance PCP-Na recovery during liquid-liquid extraction (LLE). Ini-
tial acidification studies evaluated the impact of formic acid volume (25-100 uL) addition prior to LLE on PCP-Na recovery.
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Fig 2. SIM chromatograms (a) and mass spectra (b) of PCP-Na and PCP-"*C_ with a mass concentration of 50 ug/L. PCP-Na and PCP-"*C reten-
tion time: 3.92min; m/z: 262.8396 (-0.4 ppm) and 268.8597 (0.8 ppm).

https://doi.org/10.1371/journal.pone.0326129.9002
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Table 2. Mass spectral information of PCP-Na and PCP-"*C_.

Compound Quasi-molecular lon Theoretical Exact Mass (m/z) Experimental Exact Mass (m/z) Deviation (ppm)
PCP-Na [M-Na]: C,CI,O 262.8397 262.8396 -0.4
PCP-3C, [M-HJ: "*C.CI.O- 268.8599 268.8597 -0.8

https://doi.org/10.1371/journal.pone.0326129.t002

1 Water Jacetonitrile
methanol methanol-water(25:75 v/v)
methanol-water(50:50 v/v) methanol-water(75:25 v/v)

methanol-water(50:50 v/v, 1.0% formic acid) methanol-water(50:50 v/v, 1.0% ammonia)
== methanol-water(50:50 v/v, 0.5% ammonia) methanol-water(50:50 v/v, 1.5% ammonia)

= methanol-water(50:50 v/v, 2.0% ammonia) methanol-water(50:50 v/v, 2.5% ammonia)
90 -

80 -

70 A

60 -

50 A

Recovery/%

S50
5550050

555555
4
4

20 A

55
45
45

anrattal

HH

10 -

555555555
5555505,
b 55555555,

Extraction solvent

Fig 3. The recovery of PCP-Na with different extraction solvents (n =3). The recovery was calculated as mean values. The optimal recovery (%)
was 81.1+£2.8.

https://doi.org/10.1371/journal.pone.0326129.9003

As shown in Fig 5, recovery increased proportionally with acid volume, peaking at 75 pL (80.6% recovery), beyond which
a 1.7% decline occurred at 100 pL. Subsequent liquid-liquid extraction solvent optimization compared six n-hexane/ethyl
acetate ratios (20:80-100:0 v/v). The 60:40 v/v system demonstrated optimal performance (80.5% recovery). This ratio

provided 4.8-21.3% higher recovery than other combinations, as shown in Fig 6. The results showed that n-hexane/ethyl
acetate (60:40 v/v) was selected as the standardized LLE protocol, followed by nitrogen blow-down at room temperature.

Method validation

Linearity, LOD, and LOQ. To prepare calibration solutions, appropriate amounts of PCP-Na external standard
and PCP-"*C, internal standard were diluted in a methanol-0.01% ammonia solution (50:50 v/v). The internal standard
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Fig 4. The recovery of PCP-Na with different ultrasonic extraction times (n =3). The recovery was calculated as mean values. The optimal recov-
ery (%) was 80.4+2.2.

https://doi.org/10.1371/journal.pone.0326129.9004
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Fig 5. The recovery of PCP-Na with different volumes of formic acid added (n =3). The recovery was calculated as mean values. The optimal
recovery (%) was 80.6+2.7.

https://doi.org/10.1371/journal.pone.0326129.9005

concentration was set at 50.0 pg/L, while the PCP-Na concentrations were set at 1.0, 5.0, 10.0, 20.0, 50.0, 100.0, 200.0
and 500.0 pg/L. UPLC-HRMS in Targeted-SIM mode, with the quasi-molecular ions [M-Na] at m/z 262.8397 for PCP-Na
and [M-H] at m/z 268.8599 for the isotopically labeled internal standard PCP-"*C. Calibration curves were constructed
by plotting the peak area ratio (Y =analyte/internal standard) against the analyte concentration (X, ug/L), employing
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Fig 6. The recovery of PCP-Na with different liquid-liquid extraction solvent composition (n =3). The recovery was calculated as mean values.
The optimal recovery (%) was 80.5+2.3.

https://doi.org/10.1371/journal.pone.0326129.9006

1/X weighting to account for heteroscedasticity. The results showed that PCP-Na exhibited a good linear relationship
within the range of 1.0-500.0 pg/L, with a regression equation of Y=0.00835845X +9.369e-5 and a linear determination
coefficient (R?) of 0.9998. The linearity of the standard curve was verified by an F-test (Table 3). Blank bamboo and
wooden cutting boards were spiked with low concentrations for detection. Method validation studies revealed a LOD of 0.5
pg/kg and a LOQ of 1.5 ug/kg, respectively.

Accuracy and precision. To evaluate method accuracy and precision, matrix recovery studies were conducted using
blank bamboo and wooden cutting boards fortified with PCP-Na at three concentration levels (20.0, 200.0, and 400.0
ug/kg). Six independent replicates per level were prepared by spiking with PCP-Na standard and PCP-"*C, internal
standard solutions, followed by sample pretreatment and UPLC-HRMS analysis. As summarized in Table 4, the method
demonstrated exceptional accuracy with mean recoveries of 97.2%—99.7% across all tested concentrations. Precision
was confirmed by low RSDs ranging from 0.8% to 1.7% (n=6). These results collectively validate the effectiveness of
the isotope dilution strategy using "*C -labeled internal standard. The observed recovery consistency across distinct
concentration levels indicates minimal matrix interference, attributable to the structural analog compensating for extraction
efficiency variations and ionization suppression/enhancement effects during MS detection. Furthermore, the sub-2% RSD
values highlight the method’s robustness against operational variability in complex sample processing workflows.

Determination comparison to other methods

Table 5 summarizes a comparative analysis of existing methods for determining pentachlorophenol and its sodium salt in
wooden products. The LODs of the existing methods were in the range of 0.2—3.0 pg/kg. The sensitivity of this method was
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Table 3. F-test for linearity.

Comments X Y Y
The amount of analyte (ug/L), the chromatographic ana- | 1 0.0084 0.0091 0.0082 0.0086
lyte/internal standard peik area ratio and its average are | g 0.0418 0.0420 0.0415 0.0418
designated as X, Y and Y respectively. 10 0.0833 00842 0.0836 0.0837

20 0.1669 0.1654 0.1676 0.1666

50 0.4199 0.4170 0.4184 0.4184

100 0.8321 0.8365 0.8383 0.8356

200 1.6840 1.6800 1.6710 1.6783
The calibration curve was obtained by plotting y vs x. 500 4.1848 41747 4.1798 4.1798
Proposed linear model by gsmg theT r.eportezd data. ¥ — 0.00835845X -+ 9.369€ — 5
Reported squared correlation coefficient (R?).

R?=0.9998
X N2 w2 < a2
(Y-) (Y=Y (Y-9)
1 2.72e-9 4.20e-7 6.36e-8 4.00e-8 2.50e-7 1.60e-7 2.19e-8 2.19e-8 2.19e-8
5 7.39e-9 1.30e-8 1.49e-7 0.00 4.00e-8 9.00e-8 7.39e-9 7.39e-9 7.39e-9
10 1.43e-7 2.72e-7 6.11e-9 1.60e-7 2.50e-7 1.00e-8 4.76e-10 4.76e-10 4.76e-10
20 1.32e-7 3.47e-6 1.14e-7 9.00e-8 1.44e-6 1.00e-6 4.39%e-7 4.39%e-7 4.39%e-7
50 3.55e-6 1.03e-6 1.47e-7 2.25e-6 1.96e-6 0.00 1.47e-7 1.47e-7 1.47e-7
100 1.47e-5 3.15e-7 5.58e-6 1.23e-5 8.10e-7 7.29e-6 1.15e-7 1.15e-7 1.15e-7
200 1.49e-4 6.75e-5 6.14e-7 3.25e-5 2.89e-6 5.33e-5 4.25e-5 4.25e-5 4.25e-5
500 3.00e-5 2.13e-5 2.32e-7 2.50e-5 2.60e-5 0.00 2.32e-7 2.32e-7 2.32e-7
Residual error sum squares I L [ ., Lo,
(Eq. 1) §S =3 > (Y-Y) §S. =3 > (Y=Y SSr=_> (Yi=Y)
Pure error sum squares (Eq. 2) =1 j=1 i=1 j=1 i=1 j=1
Lack-of-fit error sum (Eq. 1) (Eq. 2) (Eq. 3)
squares (Eq. 3)
SS,=2.99e—-4 SS. =1.68e—4 SSjor = 1.30e—4
Degrees of freedom (DF) DF, =1J-2=24-2=22 DF. =I1J—1=24-8=16 DFof=1-2=8-2=6
Associated variances 02 =1.36e-5 02 =1.05e-5 g,%f =92.17e-5
% = SS/DF
Fisher ratio (F = o2/02;) 2.067 (calculated) < 2.741 (tabulated at the 95% with 6 and 16 degrees of freedom)
calculated (if
<F
calculated tabulated

then Linear)
Conclusions R?=0.9998, while F___ . <F_ . indicating that the curve is linear

https://doi.org/10.1371/journal.pone.0326129.t003

slightly lower than that of previously reported methods [1,25]. This reduced sensitivity is associated with the sample amount
used during pre-treatment. The simplified pre-treatment workflow based on UA-LLE greatly simplified the sample purification
process and gave the method better precision (0.8% to 1.7%). Notably, the combination of HRMS calibrated with isotopi-
cally labeled internal standards effectively mitigates matrix effects and improves the accuracy and reliability of quantification,
resulting in better average recoveries (97.2%-99.7%) for this method, compared to methods based on external standards.

Actual sample determination

The validated method was implemented to assess PCP-Na contamination in seventy-five commercially available bam-
boo and wooden cutting boards collected across five administrative regions (Wuxing District, Nanxun District, Changxing
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Table 4. The recovery and RSD of PCP-Na in bamboo and wooden cutting boards at different
spiked levels (n=6).

Compound Spiked Level Average Recovery RSD
(nglkg) (%) (%)

PCP-Na 20.0 99.7 1.7
200.0 97.5 0.8
400.0 97.2 0.9

https://doi.org/10.1371/journal.pone.0326129.t004

Table 5. Comparison of proposed method respect to references published by others.

Matrix Equipment Sample preparation Quantification LOD LoQ Recovery (%) RSD(%) Reference
(uglkg) | (Hg/kg)
Surface of GC-MS/MS Purification by SLC Internal standard | 3.0 10.0 86.0% ~ 96.0% 2.% ~4.2% [24]
wooden SPE column and acetic | curve
chopping board anhydride and pyridine
derivatization
Wooden chop- GC-MS/MS Vortex-assisted Internal standard | 0.2 0.7 90.0% ~ 103.6% 1.5% ~ 3.6% [25]
ping boards pre-column derivatization | curve
and wooden
chopsticks
Cutting boards UPLC-MS/MS | Extracted using solvent | Matrix-matching | 0.4 1.0 71.75% ~ 96.50% | 5.19% ~ 16.66% | [1]
and purification by auto- | internal standard
mated SPE system. curve
Wooden UPLC-HRMS | Ultrasonically extracted External standard | 2.0 6.0 80.7% ~ 95.3% 6.6% [35]
chopsticks and purification by SLC | curve
SPE column
Bamboo and UPLC-HRMS | Ultrasonic-assisted Internal standard | 0.5 1.5 97.2% ~ 99.7% 0.8% ~1.7% This study
wooden cutting liquid-liquid extraction curve
boards

https://doi.org/10.137 1/journal.pone.0326129.t005

County, Deqing County, and Anji County) of Huzhou City between 2023 and 2024. The sampling strategy comprised

two phases: 25 samples (5 per region) in 2023 and 50 samples (10 per region) in 2024. Notably, contamination hotspots
were identified in Nanxun District and Anji County through longitudinal monitoring. In the 2023 cohort, two samples were
quantified above the LOD: one from Nanxun District (1.3mg/kg) and one from Anji County (183 mg/kg). The 2024 survey
revealed that three samples exceeded the LOD, including two from Nanxun District (13.4 mg/kg and 74.6 mg/kg) and one
from Anji County (416 mg/kg). These findings underscore the critical need for enhanced regulatory oversight in food-
contact material production chains.

Conclusions

This study successfully developed a rapid and robust analytical method for monitoring PCP-Na residues in bamboo and
wooden food-contact materials. By integrating ultrasound-assisted liquid-liquid extraction (UA-LLE) with UPLC-HRMS
detection, this method achieves high sensitivity (LOD: 0.5 pyg/kg) and precision (RSD <2%), significantly simplifying sam-
ple preparation.The optimized workflow minimizes solvent consumption and achieves chromatographic separation within
6 minutes, demonstrating high efficiency for high-throughput screening.Analysis of 75 commercially available bamboo and
wooden cutting boards from Huzhou City revealed that five samples contained detectable PCP-Na, with concentrations
ranging from 1.3mg/kg to 416 mg/kg. According to Regulation (EU) 2021/277, the permissible limit is 5mg/kg. Among

the detected samples, four exceeded the 5mg/kg limit by a significant margin, highlighting potential risks associated with
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PCP-Na residues in bamboo and wooden cutting boards and the need for regulatory attention. This study provides empiri-
cal evidence advocating for stricter regulations on chlorophenol-based preservatives in household food-contact materials.
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