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Abstract

This paper examines a non-zero-sum stochastic differential reinsurance-investment
game between two competitive insurers under the a-maximin mean-variance criterion.
Both insurers can purchase proportional reinsurance and invest in a financial market con-
sisting of one risk-free asset and one risky asset, and each insurer is concerned with its
terminal surplus and relative performance compared to its competitor. The insurers aim
to maximize the a-maximin mean-variance utility, which allows them to exhibit different
attitudes towards model ambiguity. By solving the extended Hamilton-Jacobi-Bellman
(HJB) equations for both insurers, we derive the a-robust equilibrium reinsurance and
investment strategies. Finally, several numerical examples are provided to illustrate the
impact of some model parameters on the equilibrium strategies.

1 Introduction

Reinsurance and investment are the two main issues in actuarial science. In recent years,
extensive research has been conducted on these topics with a variety of objectives, which
include minimizing the probability of ruin, as explored by [1-3], etc.; maximizing the
expected utility of the terminal wealth, as investigated by [4-6], etc.; and applying the mean-
variance criterion, as studied by [7-9], etc.

However, most studies assume that insurers can accurately estimate the surplus process
and financial risk asset fluctuations. In reality, financial and insurance markets are fraught
with uncertainties beyond the scope of insurers’ cognition, making accurate model estima-
tion challenging. Consequently, many scholars have introduced uncertainty into the model,
known as the robust control problem. For example, [10] assume that the insurer is ambiguity-
averse, its surplus process follows the Cramér-Lundberg model, and derive the robust invest-
ment and proportional reinsurance strategy under the mean-variance criterion. [11] assume
that an ambiguity-averse insurer (AAI) can invest its wealth in a market index, a risk-free
asset, and a pair of mispriced stocks, and derive the robust strategy. For more literature, the
readers may refer to [12-14], etc.

The above literature on robust control problems assume that insurers are extremely
ambiguity-averse and inclined to consider the strategies in the worst-case scenario. In fact,
very few decision makers are extremely ambiguity-averse. The experiments conducted by [15]
show that agents’ attitudes towards ambiguity can range from mild ambiguity-aversion to
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ambiguity-seeking when they believe they have more experience or a better understanding
of the actual situation. Considering different attitudes towards the ambiguity, [16,17] pro-
pose a more general utility function called a-maxmin expected utility. Then [18] assume that
the insurer’s surplus process is correlated with the dynamics of the risky asset, adopt the new
mean-variance criterion, namely a-maxmin mean-variance criterion, to the reinsurance-
investment problem, and obtain the optimal strategy. [19] generalize [18] by loosing the
restriction on the parameter a and the reinsurance form. Considering the delay feature, [20]
study the ar-robust reinsurance-investment problem under Heston’s stochastic volatility
model.

As we known, the financial institutions often concern the performance of their competi-
tors when they make decisions. Therefore, some scholars study the non-zero-sum stochas-
tic differential reinsurance-investment game between two competitive insurers. [21] for-
mulate the non-zero-sum reinsurance-investment game between two insurers and derive
the equilibrium strategies using dynamic programming principles. In [22], the surplus pro-
cesses of two competing insurers are modeled by the Cramér-Lundberg models and diffusion
approximated models, respectively. Under the mean-variance criterion, they study the robust
non-zero-sum game and obtain the time-consistent reinsurance-investment equilibrium
strategies.

To the best of our knowledge, there exists rare literature studying on the robust non-zero-
sum stochastic differential game between two competing insurers under the a-maxmin
mean-variance criterion. In this paper, we aim to explore how concerns over relative per-
formance and attitudes towards ambiguity affect the equilibrium reinsurance and invest-
ment strategies. Specifically, the surplus process of each insurer is described by a diffusion
approximation model which has been widely used in the literature, and each insurer can man-
age its risk by purchasing proportional reinsurance from a reinsurer, and invest in a finan-
cial market consisting of one risk-free asset and one risky asset. By applying the principle of
dynamic programming, we establish the extended Hamilton-Jacobi-Bellma (HJB) equations,
and derive the a-robust time-consistent optimal reinsurance-investment strategies. The main
innovations are concluded as follows. First, we extend the ct-robust optimal reinsurance-
investment problem, previously studied for a single insurer in [18], to a stochastic differen-
tial game involving two competitive insurers, and we find that competition makes insurers
more risk-seeking. Second, we incorporate the &-maxmin mean-variance criterion into the
non-zero-sum reinsurance-investment game, and we get the closed-form strategies and value
functions. Third, we present a verification theorem for the c¢-maxmin-variance non-zero-sum
game, which is a valuable addition to the existing literature.

The remainder of this article is structured as follows. Section 2 formulates the non-zero-
sum stochastic differential reinsurance-investment game between two competitive insurers
under the a-maxmin mean-variance criterion. In Section 3, we derive the equilibrium strate-
gies and value functions by solving the extended HJB equations. Numerical examples are
presented in Section 4 to illustrate the impact of key model parameters on the equilibrium
strategies. Finally, Section 5 concludes the article.

2 Mathematical model

Let (Q, F,P, {Fi}ie[o,1r]) be a complete probability space satisfying the usual conditions of
completeness and right continuity, where T > 0 represents a fixed finite time horizon. Assume
that all stochastic processes below are well-defined and adapted in the space.
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2.1 Wealth process

In this paper, we suppose the insurance market consists of two competing insurers, who are
abbreviated as insurer 1 and insurer 2. Assume that the surplus process of insure k, k € {1,2},
without reinsurance is modeled by the diffusion approximation (DA) model as

dRi(1) = pdt + o dWi(1), ke {1,2}, 1)

where the parameters 1 > 0 and o > 0 are the premium return rate and the volatility, respec-
tively. Wi (t) is a standard Brownian motion, and satisfies d (W, (t), W,(t)) = pdt, where

0 < p < 1 which captures the correlation of the two insurers’ businesses. Readers who are
interested in the derivation process of the DA model can refer to [23]. The DA model (1) is
highly effective in the context of large insurance portfolios, as each claim is relatively insignif-
icant when compared to the overall surplus size, and this model has been widely used in the
literature, for example, [1,24-26], etc.

Assume that the two insurers can manage their insurance risks through purchasing pro-
portional reinsurance or acquiring new insurance businesses. Denote the risk exposure of
insurer k at time £ by g (t) : [0, T] — [0, +00). When gx(¢) € [0, 1], it indicates that insurer k
purchases reinsurance from a reinsurer. In this case, the risk exposure of insurer k reduces to
100¢x%, meanwhile, the reinsurer would indemnify the rest 100(1 - gx)% of each claim and
charge a reinsurance premium at a rate of pf* () = (1 - gi(#) )k, where 9 > pi > 0 is the pre-
mium return rate of the reinsurer. When gx(#) € (1, +00), it means that insurer k acts as a
reinsurer and obtains new business from other insurers (refer to [27]). Under the reinsurance
strategy g (¢), the surplus process of insurer k becomes

dUk(t) = [Ak + nqu(t)]dt+ O'qu(t)de(t),

where /11( = Mk — Nk.
We further assume that the two competing insurers can invest in a financial market con-
sists of one risk-free asset and one risk stock. The price dynamics Sy(¢) of the risk-free asset is

described by
dSo ( t) = f’SO ( t) dt,

where 7y > 0 is the risk-free interest rate. The price of the risk stock, denoted by S(¢), evolves
according to the geometric Brownian motion (GBM), which is employed in the Black-Scholes
model for stock price modeling. GMB is a continuous-time stochastic process in which the
logarithm of the randomly varying quantity follows a Brownian motion with drift. In real
stock prices, volatility is a dynamic variable that changes over time. However, GBM simplifies
the situation by assuming a constant volatility. Additionally, stock prices frequently experi-
ence jumps triggered by unpredictable events. In contrast, the path of the GBM is continuous.
Despite these simplifications, GBM remains the most prevalently used model for characteriz-
ing stock price behavior. This is primarily attributed to its easily computation and its ability to
provide reasonably good approximate estimations of stock prices. Then, S(¢) evolves as

ds(t) = S(t)[udt + cdW(t)],

where o > 0 and u > r denote the volatility and the appreciation rate, respectively. W(t) is the
standard Brownian motion under measure P, and W(¢) is assumed independent with W;(t).
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Denote 7 (t) as the amount invested by insurer k in the risky stock at time ¢, and the
remainder of its surplus is invested in the risk-free asset. Then under the reinsurance-
investment strategy u(t) := (qk(t), 7x(t)), the dynamics of surplus process {X;* (£) }c[o,17 of
insurer k follows

dXk(t) = [P X5 (1) + (u - )7 () + A + meqe () ]dt o)
+om(t)dW(t) + oqr(t)dWi (1),

"uk =0 > e ey
XX (0) =7, is insurer K’s initial surplus.

2.2 Ambiguity attitudes

In the majority of the existing literature on the reinsurance-investment optimization prob-
lems, the insurers are assumed to have full faith in the models describing the real-world prob-
ability P. Nevertheless, financial and insurance markets are fraught with uncertainties. It is
highly debatable which model is truly suitable for depicting the real-world, and even if an
appropriate model is selected, accurately estimating the parameters within that model is a
formidable challenge. In light of these complexities, following [13] and [18], this paper incor-
porates ambiguity into the analysis by seeking alternative models, and the model described
under the measure [P is treated as the reference model. To do this, we define a class of alterna-
tive measure Qj which is equivalent to [P, as follows

Q= {Q|Qx ~ P}

For k € {1,2}, let ¢x(t) = (¢r1(t), Pra(t)) € Py be { Fi }1e[o,1-progressively measurable
processes, where @ is a set of deterministic functions satisfying

EP [exp(/oTWdt)]<oo.

Then the Radon-Nikodym derivative process can be defined as:

aq

B | = A®

Fi

“exp{- [ eu@aw) -] [@uora
- [} deaw) -1 [ Gule)ras).

Applying the Girsanov’s Theorem, under the probability measure Qy, k € {1,2}, we know
that

{dWQk(t) = dW(t) + (b,
AWZE(t) = dWi(t) + pra(2),

are standard Brownian motions, and W (¢) is independent with W}?k (). Accordingly, the
wealth process of insurer k is given by
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dX; (1) = [rXZk(t) + (= 1)mi(t) + Ak + Mg (t) - omi(t) i (1)

- O'qu(t)qbkz(t)]dt +om()dW (1) + aqu(t)dw“,?k(t).

In financial practice, financial institutions often place greater emphasis on their relative
performance compared to their peers. [28] propose an easy handling framework to model the
interaction mechanisms between the competition institutions. In this article, we build upon
their work and continue to use the relative performance to describe the competition between
the two insurers. Specifically, each insurer aims to outperform its competitor in terms of the
terminal wealth. Here the relative performance process of insurer k, for k,j € {1,2},k #j, is
defined as

Uk, Uj U U Y
XE(8) = (1= m )R (1) + m (R (1) - X2,)
—u it
=X (1) - mX (1),
where n; € [0, 1] measures the sensitivity of insurer k to its competitor insurer j’s perfor-
mance, and the larger the 1, the more the insurer is concerned about increasing its relative

surplus, which indicates the game is more competitive.

Under the probability measure Qy, the dynamic of insurer k’s relative performance is
described by

dx,*" (1)

= [P 8) + () e(0) = iy (1)) + A = i + o) = i (1)

- omi(t)pri (t) + momi(t)din (t) - oxqr(t)ra(t) + nkdj%‘(t)¢kz(t)]dt (4)
+ o (£) AW (1) - myor; (£)dW (1) + orgi(£) AW (1)
- (AW, (1),

with the initial relative performance X, (0) = x? =% - X -

2.3 The a-robust non-zero-sum game

This section formulates the non-zero-sum game between the two competing insurers under
the a-maxmin mean-variance criterion which is formulated in [18]. Following [18] and [20],

we develop the a-maxmin mean-variance criterion of insurer k as follows: V(¢,x¢) € [0, T] X
R, kje{1,2},k+j,

]Zk’uj(t, xp) = otk <¢)ing Lfk’uk’uj(t, Xk) + 0 sup Y;fk’uk’uj(t, X%,
kELk

$redy (5)
ﬂ,uk,uj —~ 7&,1,4](,1{,'
=, (tx) + Ty, (t %),
where oy € [%, 1,8 =1-o,
]¢>k,uk,uj Px Uje,Uj Yk bk Uje,Uj T
1) = B2 [X0(1)] - Dovardt, [x0(1) ] + [ ha(¢i(s))ds, ©6)
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and

“Protplj K Up,Uj koUj T
T ) = B2 [ ()] - Bovardy [ D] - [ hp@isnas @)

in which, [Ef,’c‘k []:= Q% [-|sz’uj(t) = xi), Varf)’;k [[]= var®”™ [-|X:k’uj(t) = xi ). And ¢y and
¢y are the probability distortion functions to achieve the infimum and supremum in Eq (5),
respectively, and the penalty function which penalizes the deviation of alternative measure Q
from the reference measure P is selected as hg(¢x(s)) = 24;3% + %

In Eq (5), there are four parameters, o, ¥k, and B, i € {1,2}. First, ay represents insurer
k’s ambiguity attitude, and insurer k with a larger oy is more ambiguity aversion. In particular,
ay = 3,1 represent the ambiguity-neutral, and extremely ambiguity-averse attitude, respec-
tively. Second, yy is the insurer k’s risk aversion coefficient. Third, By, i € {1,2}, are the ambi-
guity aversion coeflicients which measure insurer ks level of ambiguity towards the reference
measure.

The two insurers aim to identify an optimal strategy that maximizes the expression in
Eq (5). Under this optimization criterion in place, the strategic interaction is defined as fol-

lows:

Problem 2.1. The non-zero-sum stochastic differential game between the two compet-
ing insurers, under the @-maxmin mean-variance criterion, involves the search for Nash
equilibrium strategies (u}, u; ) € U; X U, such that for any (u;, uy) € Uy X U,, we have

]’ff’”z(t,xl) Zﬁl,uﬁ(t’xl),

. (®)
i (1,12) 2 15 (1),

And the admissible strategy is defined below.

Definition 2.2. (Admissible Strategy) For any given t € [0, T, a strategy u () :=
(g (1), me(2)), k € {1,2}, is said to be admissible, if it satisfies:
(i) Vt € [0, T], uk(t) is F;-measurable, gx(t) > 0;
(ii) V(x, t) € R x [0, T], it holds that E%* [[OT |ur(s)])? ds] < oo for any ¢y € @y, where

() = g (s) + 7R (s)s
(iii) V(xx, t) € R X [0, T], Eq (3) has a unique strong solution.

Let Uy denote the set of all admissible strategies for insurer k.
In order to handle the time-inconsistent issue in Problem 2.1, following [29], we give the
definition of equilibrium strategy as follows:

Definition 2.3. Let u} = (-, g} (+), 7;(-)) be an admissible strategy of insurer k. For any ini-
tial state (£,x¢) € [0, T] X R and € > 0, when its competitor’s optimal strategy ;" is known, we
define a perturbed strategy ug as follows:

() {ak(v), vE[bt+e),

up(v), vet+eT).
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where i, € Uy. If Vi, € Uy, we have

u:,uf ~ ui,uf
mingt (03%) T (63) >0,
€lo €

then ] (-) is called an equilibrium strategy of insurer k, and its equilibrium value function is

*

given by ]:Z & (t, Xk )

According to Definition 2.3, the equilibrium strategy is time-consistent.

3 Main results

This section presents the verification theorem, followed by the derivation of the a-robust
equilibrium strategy. We first denote

C™([0, T} x R) :={¢(t,x)|$(t, x)is continuously differentiable for ¢ € [0, T]

and twice continuously differentiable for x€ R},

and for any (£, x) € [0,t] X R, (£, xx) € C*([0, T] X R), we define an infinitesimal operator
as

£¢k>¢j’“k’“j¢k(t’ xe)

G

ot + [rxk + (;z - 1’) (7Tk - I’lk77.'j) + /lk - I’lkllj + Niqgk - }’lknjqj - U7‘[k¢k1

ope(t,xe)
axk
52¢>k(t, xk) .

2
Ox;

1 2_2 2.2_2 2 (9)
+ momPi1 - OrqPra + nkajqjquz] 2(0 T + N0 T = 200" Tk T

2 2 2.2 2
+0kq; + 10 q; - ZP"kaUijk%‘)

Next we present the main results for the two competing insurers.

Theorem 3.1. (Verification Theorem) For Problem 2.1, if there are real-valued functions
Vie(t, i), g, (6 x0), 8 (%) € C"*([0, T] X R) satisfy the following conditions:
(1) For any (t,xx) € [0, T] X R,

sup {ak inf [L’uk’”f Ped, Vie(txx) - ﬁﬁ%uj Pt & (txx)
ukGZ/{k ¢k€¢’k 2 =k

ut PP’

R ACEDY FACED) +hﬁ(¢k)]

+q sup [,C”k’”f'*’¢k’$j Vie(t,xx) - Vi puouf it g (txe)
PrEDK 2

+ }/kgk(t, xk)ﬁuk,uf,cbk,% g (txi) - hﬁ(cﬁk)]} -0,

(10)
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(2) For any (t,x¢) € [0, T] X R,

Vie( T, x¢) = X e
£ P08 gk(t)xk) _ Lo P g (txe) =0, (11)
gk(T>xk) =8 (T, xe) = xi.

(3) For any (t,x¢) € [0, T|XR, uf (1), g; (1), 5; (1), £ P2 V(t, x¢), Lo $io®; V(t, xx),

£ e glz( (t,x) and L% P9 g (t,x¢) are deterministic functions of ¢ and independent
of x.
* R —
(4) ¢7 =¢% and ¢y ="
Then u; is the a-robust equilibrium strategy, Vi (¢, xx) = ]:k " (t,xx) is the equilibrium
— [E$: u;’u]%

T
value function of insurer k. Besides, gk(t, x) = B, [ka g (T)], g (tx) = Ey, [Xk (T)]

Proof: See S1 Appendix. o

Theorem 3.2. Consider the ct-robust game between the two competing insurers in
Problems 2.1.
(1) The time-consistent optimal reinsurance strategy of insurer k, k € {1,2}, is given by:

nkoj[y; - (@ - o) Ba] + momiowyi

qi = = = , (12)
{[r - @ - a)Brlly; - (@ - @)Bp] - mnip?yiy; orose -0
and the time-consistent optimal investment strategy is given by:
= (u-r1) [7] ( i 1);8]1 kY] (13)

{[rx - @ - a)Bully; - (@ - a)Bin] - memyiy;fo2e -0
(2) The equilibrium value function is given by

mdi — A
Vk(t,Xk) — er(T‘t)xk 4 kjik
r

T T
(1-ef<”>)+f dkl(s)ds+/ do(s)ds,  (14)
t t
where

da(s) = P55 Brao(qi) e ™ + (ar - @) mfo} (qf ) e )
~[o3(a0)? + nio}())? - 20marojaia; | LT
+(migic - minyg; ) )

dio(s)= B0 ()% (™) + (o - @) mifBo? () 2 (1)
_(0(k+;0?k)yk 2r(T-5) [O.z(ﬂ.}:)z n nioz(ﬂj*)z _ andzﬂ]’:ﬂ'»*]

j
+(p - r) (7 - me} )er (7).

(3) The associated probability distortion functions of extremely ambiguity-averse measure
and the extremely ambiguity-seeking measure are given respectively by

* r(T-t) (15)

{ fljl = Buonie ™,
¢:, = Breokgie
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and
—%
by = -BuomieT, (16)
Tk -
Pra = -Braokgie .
iy
Proof: Assume Vi (t,xi), gk(t, xk)> 8 (6xk), ¢, ¢ © satisfying condition (1) in
Theorem 3.1. Through simple calculations, we obtain
OVi(t,x . «10Vi(t, x)
0= su]}/){ {% + [rxk + (u-r) (7 - % ) + Ak — medj + Mgy - n;q; ]%
u €U
1 * * * *
+ 3 (azn'i + nicz(ﬂj ) - anazﬂkr[j + a,fqi + niaf(qj ) - 2p1k0k0;qkq; )
CRACED) 0g,(b%) o g (tx) \2
x( o —OCka( £ ) -Ofk)/k( £ ) )
. * gk * gk aVk(t’xk) ¢2
e o {(oman mon' s ot roer) o+ B
2 — *TH *TF BV t, X
+ %} + Tk ¢Slelg { (—G?‘[k¢k1 +mOT] b)) - Orqedre + m0jq P ) #
A s -
2B 2Pk

In order to solve (11) and (17), we assume that the forms of the solutions are as follows:

Vie(t,xx) = Ar(t) Xk + Bi(t),
8, (t:xi) = a(t)xi + by (1), (18)

g (txi) = ar(t)xe + be(1),

where A(t), Bi(t), a,(t), by (t), ax(t), bi(t) are functions of £. By the first and the third rela-
tion of (11), we have the boundary conditions

{ (1) =a (T) =@ (1) = 1,
B(T) = b, (T) = bi((1) = .

Substituting (18) and their partial derivatives into (17) yields

0= sup {A;(xk + B+ [rxk + (u-r1)(7mg - nkﬂj*) + Ak — mdj + Mgk - nknjq;]Ak
up €U

1
+ 5(52771% + nioz(r[j*)2 - 2moPt T + Orqh + nicrjz(qj*)2 - ankokajqkqf)

]
X ( - ak}’kﬂi - ak]’kai) (19)
+ o inf {( ~ OTkPr1 + nkOTT P — Opqrdra + nko'jq*¢'* )Ak + Lﬁl + Lﬁz}
PreDy 7= 5 2B 2Bk
a * ¥ * % Ph P
+ o) sup - O P + MO Py — Ok QP + Mk0iq; Pip ) Ak — - .
PrEDk {( 7 % 12) 2B 2Pk }
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By the first-order condition on Eq (19) with respect to ¢y, the infimum and the supremum
of ¢ in Eq (19) can be achieved respectively at

{ 2;1 = Bklo'ﬂ'kAk, 91:2 = ,Bkzo'quAk, (20)

b1 = -PrioTkAR Prp = ~PraokqrAx-

Inserting Eq (20) back into Eq (19) yields

0= sup {A,’(xk + By + [rxx + (= 1) (7 - mert’) + Ak = miedy + M — i) | A
up €U

Lo s 2 2 20 4y2 2 222 20 x\2 *
+ E(G T+ mio” ()" = 2mo  mm) + ojcqi + o (q; ) - 2pnk0k0iqkq; )

1
x (~ana; ~ayay) + (- ar) (Buo’ni + foidi A7

+ aknkﬁjlaz(nf )V AjA + ocknkﬁjzajz (q; )V AjAx - TeniPino? (7} ) AjAx
- Qo (q; )ZA,Ak}. (21)
Furthermore, applying the first-order condition on Eq (21) with respect to g and 7y gives

~MeAr + pnroa; (-ayra; - Qyay ) q;

9 = —— , (22)
of [~auyial - Quyid; + (@ - ) PraAl]
and
—(u - 1) Ag + ngo? (—ayra; - @kyedy) 77
7_[; _ (,Ll ) ( Vi 4 k) j (23)

o2 [~axykal - Qxyiag + (@ - ) PraAl]
Substituting Eq (22) and (23) back into (21) and the second equation of (11), we obtain

Ajxi + By + [ + (- 1) (7 = ma} ) + Ak = midy + e — minq; | A
+%(62 (me)? + mpo* () )? - 2mo’mim) + op (g )* + mpoi (g7 ) - 2pnkak0jq;§qf)
x( - ayiat - @yiar) + 1@ - ) (Bao? (1) + Bao}(ap)? 42
+omBino’ (7)) AjAx + ameBppoi (g7 )* AjAx - QB o (7] ) AjAx
—Qnifo; (g7 ) AjAx =0,

ajxi + by + [rxk + (M=) (7} = mr) + A = midj + gy — maq; - B (77 ) Ax
+neB0 (7} )2 A - Braoi(a; ) Ak + miBac?(q) )Z]AjAk =0,

A + by + [rxk + (U= 1) (7 = ) + i = iy + g = g - Brao” (7 ) Ax

—Hkﬁjlaz(ﬂj*)zAj - 6k20’i(q2)2Ak - nkﬁjzajz(qf)zAj]Ak =0.

(24)
By matching the coeflicients of the terms of x;, we have

A(t) + rAk(t) = a (t) + ra (t) = a (1) + rag(t) = 0,
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Combining with A¢(T) = a,(T) =ax(T) = 1 yields
Ar(t) = g () =a(t) =", (25)

Moreover, the time-consistent equilibrium strategy of insurer k satisfies

* —ﬂkAk+P”k5kaj(—aykﬂi-a}’kﬁi)qf _ 7)k+P”kUk0;}’kq*er(T_t)
G = of[-anat-ayia+(@-a)BrA?]  [vi-(@-ar)Brlope () (26)
e (DA’ (Cang-ana)ml () mayr et

k o?[-ayral-Qypai+(A-o) B A7 [¥i-(@x-ax)Bri]o2e (T-0

Then we can obtain Eq (12) which is the reinsurance strategy of each insurer by solving the
system of equations:

« _ mitpmoioryigie D
N~ fi-@-an)pulote T’
5 _ _Mtpmar0iyagie )

27 [y (@-a2)Ba2]o3er (T

and (13) which is the investment strategy of each insurer by solving the system of equations:

Tt = (u-r)+maty iy 9
L™ [n-(@- 011):311]026’(’ R
«_ () tmatyamy D

T, =

[r2-(@-az)Ba]o?e (-0

Then substituting Eq (25) back into (24), combining with By(T) = b, (T) = bx(T) = 0, we

yield
Tet T T
Bi(f) = (1 S0 4 [ i (s)ds + /t dia(s)ds, 27)
— k (T T T
Qk(t):+(l—e(T f>)+ft dkl(s)ds+ft dy, (s)ds, (28)
_ Y T_ T_
B(£) =Kk Ty f i (s)ds + [ i (s)ds, (29)
r t t
where

* * ar-a * - = * r(T- -
di(s) = [’7ka - nn;q; + %Bkzai(qk 2" (T 4 (o - Q) mbpo; (q; )’e (T S)]e’(T $)

_ (ax +@Q)yk 2 (1=9)
2

dals) = [ ) - ) + B B0 e + (- Bmfno ()2 |

[ot(ai)? + mio}(q))* - 2omaroqia; |-

s &' (T-) _ (ax + Q) 7k le(T—s)

> [oz(n,’f)z + o (n)? - 2nk027r,f7rf],

dy(s) =[medi - mania) - Bia (g% T + mpot (g ) eI [T,
dio(s) =[ (4 =) - m} ) = B (1) U 4 mio? () )7 ) [ 7,
da(s) = [meai - g + Boot (@) - miBna? (g )2e I [T,
do(s) =[(r=n) (7t = mi) ) + B ()2 ") =m0 () )2 (1) [0,
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Consequently, Eqs (14)-(16) can be readily derived. |

Remark 3.3. From Eqs (12) and (13), we find that the equilibrium reinsurance strategy
g; (t) is independent of the ambiguity level on the risk asset Sx1, ;15 while the equilibrium
investment strategy 7z} (¢) is independent of the ambiguity level on the insurance risk S,
Bj2- And the equilibrium strategy of each insurer (g; (t), 7 (t)) is independent of the state
variable x;(t) and x;(t), k,j € {1,2},k #}.

Remark 3.4. The ambiguity attitudes of the insurers have significant impacts on the
equilibrium strategies, the existence of ambiguity-seeking would stimulate the two insur-
ers to choose an aggressive strategy, that is increasing the amount invested in the risky asset
and ceding less insurance business risk to the reinsurer. When o = 1, i.e., the insurers are
extremely ambiguity-averse, the model degenerates to [22], and the optimal reinsurance-
investment strategies are in consistent with that in [22].

Proposition 3.5. The equilibrium reinsurance strategy gy () is increasing in n, and
decreasing in B, o and yx.

Proof: We only prove g; (t) is increasing in 1, and we can similarly prove that g; (¢) and
decreasing in By, and ay and y. By differentiating Eq (12) with respect to ny yields

3q; (1)  pumiokyii + nip*yiyioraie "D A,

ank A% (30)
where
Ay ={[yx - @ - a)Brlly; - (@ - )] - mmie’yay; boroze 0,
Ay =mi0lyj - (& - )] + nkpnjory k-
Due to % <ok < 1, we have A; > 0,A; > 0. Then from Eq (30), we obtain %ﬂi’f) > 0. m]

Remark 3.6. Proposition 3.5 indicates that when the sensitivity coefficient 7y increases,
that is the competition between the insurers intensifies, insurers tend to reduce their pur-
chases of reinsurance and take more insurance risks themselves. But in the following three
conditions, there is a tendency to increase the purchase of reinsurance and reduce its own risk
exposure g; (t): (1) insurance liabilities are more ambiguous (larger i, ); (2) insurers are more
ambiguity-averse (i.e., larger ax); (3) insurers are more risk-averse (i.e., larger y).

Similarly, we can obtain the properties of the equilibrium investment strategy.

Proposition 3.7. Equilibrium investment strategy 7; (¢) about ny is monotonically increas-
ing, about By, otk and y is monotonically decreasing.

Remark 3.8. Proposition 3.7 indicates that when the sensitivity coefficient 7 increases,
that is the competition between the insurers intensifies, insurers tend to increase the amount
invested in risky asset. However, there are three conditions that the insurers tend to reduce
the amount invested in the risky asset: (1) risk asset returns are more ambiguous (larger Sx;);
(2) insurers are more ambiguous and disgusted (larger a); (3) insurers are more risk averse
(larger ).

4 Numerical Simulations

In this section, we present several numerical examples to show sensitivity analysis about the
equilibrium strategies. Unless otherwise stated, the model parameters are given in S1 Table.
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Since the impact of general model parameters for the «-robust equilibrium reinsurance
and investment strategies has been studied by [22], in this paper, we focus on the ambiguity
parameters &, Bk1, Bk, the risk coefficient y; and the sensitivity coefficients .

S1 Fig displays the different effects of the risk attitude coefficients atx and the sensitiv-
ity coefficients n on the equilibrium reinsurance strategies of the two insurers at the initial
time (¢=0), for k € {1,2}. The results show that the insurer who is more ambiguity-seeking
(smaller o) adopt a more aggressive reinsurance strategy by retaining a higher proportion
of insurance risk rather than ceding it to the reinsurer. Additionally, the optimal retention
level g; (0) increases as ny rises, which is consistent with the conclusion in Proposition 3.5.
This behavior can be attributed to the fact that insurer with higher sensitivity coefficients ny
is more concerned about outperforming its competitor. As a result, they are willing to take
on more risk themselves to widen the wealth gap, rather than spending additional funds to
purchase reinsurance protection. In other words, competition drives insurers to become
more risk-seeking. Notably, when 7y = 0, indicating no concern for relative performance, the
insurer tends to purchase the maximum amount of reinsurance to minimize their own risk
exposure.

S2 Fig illustrates the influence of the ambiguity aversion coefficients By, and the risk aver-
sion coefficients y; on the equilibrium reinsurance strategy of two insurers at the initial time,
for k € {1,2}. It is evident that, for a given level of ambiguity aversion, the optimal retention
proportion g; (0) decreases as the risk aversion coefficient yj increases. This trend can be
attributed to the fact that an insurer with a higher risk aversion coefficient yx prefers to bear
less insurance risk and thus cedes more risk to the reinsurer. Moreover, the optimal reten-
tion proportion g; (0) also decreases with increasing ambiguity aversion parameter fx,. This
finding aligns with our intuition, as insurer with higher levels of ambiguity aversion is more
inclined to purchase additional reinsurance to mitigate the adverse impacts of potential model
misspecification. Particularly, S, = 0, for k € {1,2}, corresponds to an ambiguity-neutral
insurer who cedes the most insurance risk to the reinsurer.

S3 Fig displays the impacts of the ambiguity attitude coefficients ax and the sensitiv-
ity coefficients n on the equilibrium investment strategy 7z (0), for k € {1, 2}. Firstly, it is
observed that the equilibrium investment strategy 7z} (0) is a decreasing function of a; when
ny is held constant. A larger o indicates a higher degree of ambiguity aversion on the part
of the insurer, leading to a reduction in the amount invested in the risky asset as a means of
avoiding uncertainty. Moreover, when #y is fixed, the equilibrium investment strategy 7; (0)
is seen to decrease as o grows. The larger o is, the more ambiguous averse the insurer k
is. Therefore, he tends to reduce the amount invested in the risky asset to avoid uncertainty.
Additionally, for a given ay, the equilibrium investment strategy 7r; (0) is an increasing func-
tion of ny. This is attributed to the competitive environment, which encourages insurers to
be more risk-seeking. Insurer with a higher sensitivity coefficient ny is inclined to increase its
investment in the risky asset to enhance its prospects of outperforming its competitor at the
terminal day. These findings are consistent with Proposition 3.7.

S4 Fig shows that the effects of parameters B, (i.e., the ambiguity aversion coeflicients)
and parameters yj (i.e., risk aversion coefficients) on the equilibrium investment strategy
7 (0), for k € {1,2}. As is shown in $4 Fig, for a fixed ambiguity aversion coefficient, 7; (0)
will decrease with the increase of yj. This is because the insurer with a larger risk-averse coef-
ficient y4 which means it is more risk-averse tends to reduce the money invested in the risky
asset. Moreover, 775 (0) decreases as the ambiguity aversion parameter 8y, increases, because
the insurer with higher levels of ambiguity aversion is prone to decrease the money invested
in the risky asset to offset the adverse effects of model misspecification.
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5 Conclusion

In this paper, we study the a-robust non-zero-sum reinsurance and investment game involv-
ing two competing insurers, both of them adopt the a-maxmin mean-variance utility. We
formulate the optimization problem, and by using techniques in stochastic control theory,
we derive the extended HJB equations, and obtain the closed-form solutions of the optimal
reinsurance-investment strategies and value functions. The numerical results reveal several
insightful findings. The results show that the optimal reinsurance and investment strategies
are directly proportional to the sensitivity coeflicient of competition, while they are inversely
proportional to the risk attitude coefficients, the ambiguity aversion coeflicients and the risk
aversion coefficient. The competition makes insurers more risk-seeking, that is, the insurer
who is more concerned about the relative performance and aim to outperform its competitor
would adopt a more aggressive strategy, Specifically, this insurer would retain more insur-
ance risk and invest more wealth in the risky asset. And the insurer with a greater inclination
towards ambiguity would also adopt a more aggressive strategy.

Several extensions of this paper can be explored in the future research, such as the stock
price process obeying other models and bounded memory, etc. We leave these extensions for
future work.

Supporting information

S1 Appendix. Proof of Theorem 3.1.
(PDF)

S1 Table. Values of basic parameters.
(PDF)

S1 Fig. Effects of the risk attitude coefficients ax and the sensitivity coefficients ny on the
optimal reinsurance strategy of insurer k, for k € {1,2}.
(TIF)

S2 Fig. Effects of the ambiguity aversion coefficients i, and risk aversion coefficients yy
on the optimal reinsurance strategy of insurer k, for k € {1,2}.
(TIF)

S3 Fig. Effects of the ambiguity attitude coefficients ax and the sensitivity coefficients ny
on the optimal investment strategy of insurer k, for k € {1,2}.
(TIF)

S4 Fig. Effects of the ambiguity aversion coefficients i, and risk aversion coefficients yx
on the optimal reinsurance strategy of insurer k, for k € {1,2}.
(TIF)
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