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Abstract
This paper examines a non-zero-sum stochastic differential reinsurance-investment
game between two competitive insurers under the 𝛼-maximin mean-variance criterion.
Both insurers can purchase proportional reinsurance and invest in a financial market con-
sisting of one risk-free asset and one risky asset, and each insurer is concerned with its
terminal surplus and relative performance compared to its competitor. The insurers aim
to maximize the 𝛼-maximin mean-variance utility, which allows them to exhibit different
attitudes towards model ambiguity. By solving the extended Hamilton-Jacobi-Bellman
(HJB) equations for both insurers, we derive the 𝛼-robust equilibrium reinsurance and
investment strategies. Finally, several numerical examples are provided to illustrate the
impact of some model parameters on the equilibrium strategies.

1 Introduction
Reinsurance and investment are the two main issues in actuarial science. In recent years,
extensive research has been conducted on these topics with a variety of objectives, which
include minimizing the probability of ruin, as explored by [1–3], etc.; maximizing the
expected utility of the terminal wealth, as investigated by [4–6], etc.; and applying the mean-
variance criterion, as studied by [7–9], etc.

However, most studies assume that insurers can accurately estimate the surplus process
and financial risk asset fluctuations. In reality, financial and insurance markets are fraught
with uncertainties beyond the scope of insurers’ cognition, making accurate model estima-
tion challenging. Consequently, many scholars have introduced uncertainty into the model,
known as the robust control problem. For example, [10] assume that the insurer is ambiguity-
averse, its surplus process follows the Cramér-Lundberg model, and derive the robust invest-
ment and proportional reinsurance strategy under the mean–variance criterion. [11] assume
that an ambiguity-averse insurer (AAI) can invest its wealth in a market index, a risk-free
asset, and a pair of mispriced stocks, and derive the robust strategy. For more literature, the
readers may refer to [12–14], etc.

The above literature on robust control problems assume that insurers are extremely
ambiguity-averse and inclined to consider the strategies in the worst-case scenario. In fact,
very few decision makers are extremely ambiguity-averse. The experiments conducted by [15]
show that agents’ attitudes towards ambiguity can range from mild ambiguity-aversion to
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ambiguity-seeking when they believe they have more experience or a better understanding
of the actual situation. Considering different attitudes towards the ambiguity, [16,17] pro-
pose a more general utility function called 𝛼-maxmin expected utility. Then [18] assume that
the insurer’s surplus process is correlated with the dynamics of the risky asset, adopt the new
mean-variance criterion, namely 𝛼-maxmin mean-variance criterion, to the reinsurance-
investment problem, and obtain the optimal strategy. [19] generalize [18] by loosing the
restriction on the parameter 𝛼 and the reinsurance form. Considering the delay feature, [20]
study the 𝛼-robust reinsurance–investment problem under Heston’s stochastic volatility
model.

As we known, the financial institutions often concern the performance of their competi-
tors when they make decisions. Therefore, some scholars study the non-zero-sum stochas-
tic differential reinsurance-investment game between two competitive insurers. [21] for-
mulate the non-zero-sum reinsurance-investment game between two insurers and derive
the equilibrium strategies using dynamic programming principles. In [22], the surplus pro-
cesses of two competing insurers are modeled by the Cramér-Lundberg models and diffusion
approximated models, respectively. Under the mean-variance criterion, they study the robust
non-zero-sum game and obtain the time-consistent reinsurance-investment equilibrium
strategies.

To the best of our knowledge, there exists rare literature studying on the robust non-zero-
sum stochastic differential game between two competing insurers under the 𝛼-maxmin
mean-variance criterion. In this paper, we aim to explore how concerns over relative per-
formance and attitudes towards ambiguity affect the equilibrium reinsurance and invest-
ment strategies. Specifically, the surplus process of each insurer is described by a diffusion
approximation model which has been widely used in the literature, and each insurer can man-
age its risk by purchasing proportional reinsurance from a reinsurer, and invest in a finan-
cial market consisting of one risk-free asset and one risky asset. By applying the principle of
dynamic programming, we establish the extended Hamilton-Jacobi-Bellma (HJB) equations,
and derive the 𝛼-robust time-consistent optimal reinsurance-investment strategies. The main
innovations are concluded as follows. First, we extend the 𝛼-robust optimal reinsurance–
investment problem, previously studied for a single insurer in [18], to a stochastic differen-
tial game involving two competitive insurers, and we find that competition makes insurers
more risk-seeking. Second, we incorporate the 𝛼-maxmin mean–variance criterion into the
non-zero-sum reinsurance-investment game, and we get the closed-form strategies and value
functions. Third, we present a verification theorem for the 𝛼-maxmin-variance non-zero-sum
game, which is a valuable addition to the existing literature.

The remainder of this article is structured as follows. Section 2 formulates the non-zero-
sum stochastic differential reinsurance-investment game between two competitive insurers
under the 𝛼-maxmin mean–variance criterion. In Section 3, we derive the equilibrium strate-
gies and value functions by solving the extended HJB equations. Numerical examples are
presented in Section 4 to illustrate the impact of key model parameters on the equilibrium
strategies. Finally, Section 5 concludes the article.

2 Mathematical model
Let (Ω,F ,ℙ,{Ft}t∈[0,T]) be a complete probability space satisfying the usual conditions of
completeness and right continuity, where T > 0 represents a fixed finite time horizon. Assume
that all stochastic processes below are well-defined and adapted in the space.
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2.1 Wealth process
In this paper, we suppose the insurance market consists of two competing insurers, who are
abbreviated as insurer 1 and insurer 2. Assume that the surplus process of insure k, k∈ {1, 2},
without reinsurance is modeled by the diffusion approximation (DA) model as

dRk(t) = 𝜇kdt + 𝜎kdWk(t), k∈ {1, 2}, (1)

where the parameters 𝜇k > 0 and 𝜎k > 0 are the premium return rate and the volatility, respec-
tively.Wk(t) is a standard Brownian motion, and satisfies d ⟨W1(t),W2(t)⟩ = 𝜌dt, where
0 < 𝜌 < 1 which captures the correlation of the two insurers’ businesses. Readers who are
interested in the derivation process of the DA model can refer to [23]. The DA model (1) is
highly effective in the context of large insurance portfolios, as each claim is relatively insignif-
icant when compared to the overall surplus size, and this model has been widely used in the
literature, for example, [1,24–26], etc.

Assume that the two insurers can manage their insurance risks through purchasing pro-
portional reinsurance or acquiring new insurance businesses. Denote the risk exposure of
insurer k at time t by qk(t) ∶ [0,T]→ [0,+∞). When qk(t)∈ [0, 1], it indicates that insurer k
purchases reinsurance from a reinsurer. In this case, the risk exposure of insurer k reduces to
100qk%, meanwhile, the reinsurer would indemnify the rest 100(1– qk)% of each claim and
charge a reinsurance premium at a rate of pqkk (t) = (1– qk(t))𝜂k, where 𝜂k > 𝜇k > 0 is the pre-
mium return rate of the reinsurer. When qk(t)∈ (1,+∞), it means that insurer k acts as a
reinsurer and obtains new business from other insurers (refer to [27]). Under the reinsurance
strategy qk(t), the surplus process of insurer k becomes

dUk(t) = [𝜆k + 𝜂kqk(t)]dt + 𝜎kqk(t)dWk(t),

where 𝜆k = 𝜇k – 𝜂k.
We further assume that the two competing insurers can invest in a financial market con-

sists of one risk-free asset and one risk stock. The price dynamics S0(t) of the risk-free asset is
described by

dS0(t) = rS0(t)dt,

where r0 > 0 is the risk-free interest rate. The price of the risk stock, denoted by S(t), evolves
according to the geometric Brownian motion (GBM), which is employed in the Black–Scholes
model for stock price modeling. GMB is a continuous-time stochastic process in which the
logarithm of the randomly varying quantity follows a Brownian motion with drift. In real
stock prices, volatility is a dynamic variable that changes over time. However, GBM simplifies
the situation by assuming a constant volatility. Additionally, stock prices frequently experi-
ence jumps triggered by unpredictable events. In contrast, the path of the GBM is continuous.
Despite these simplifications, GBM remains the most prevalently used model for characteriz-
ing stock price behavior. This is primarily attributed to its easily computation and its ability to
provide reasonably good approximate estimations of stock prices. Then, S(t) evolves as

dS(t) = S(t)[𝜇dt + 𝜎dW(t)],

where 𝜎 > 0 and 𝜇 > r denote the volatility and the appreciation rate, respectively.W(t) is the
standard Brownian motion under measure ℙ, andW(t) is assumed independent withWk(t).
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Denote 𝜋k(t) as the amount invested by insurer k in the risky stock at time t, and the
remainder of its surplus is invested in the risk-free asset. Then under the reinsurance-
investment strategy uk(t) ∶= (qk(t),𝜋k(t)), the dynamics of surplus process {X̂uk

k (t)}t∈[0,T] of
insurer k follows

dX̂uk
k (t) = [rX̂

uk
k (t) + (𝜇 – r)𝜋k(t) + 𝜆k + 𝜂kqk(t)]dt

+ 𝜎𝜋k(t)dW(t) + 𝜎kqk(t)dWk(t),
(2)

X̂uk
k (0) = x̂

0
k is insurer k’s initial surplus.

2.2 Ambiguity attitudes
In the majority of the existing literature on the reinsurance–investment optimization prob-
lems, the insurers are assumed to have full faith in the models describing the real-world prob-
ability ℙ. Nevertheless, financial and insurance markets are fraught with uncertainties. It is
highly debatable which model is truly suitable for depicting the real-world, and even if an
appropriate model is selected, accurately estimating the parameters within that model is a
formidable challenge. In light of these complexities, following [13] and [18], this paper incor-
porates ambiguity into the analysis by seeking alternative models, and the model described
under the measure ℙ is treated as the reference model. To do this, we define a class of alterna-
tive measureℚk which is equivalent to ℙ, as follows

Qk ∶= {ℚk|ℚk ∼ℙ}.

For k∈ {1, 2}, let 𝜙k(t) ∶= (𝜙k1(t),𝜙k2(t))∈Φk be {Ft}t∈[0,T]-progressively measurable
processes, where Φk is a set of deterministic functions satisfying

𝔼ℙ [exp(∫
T

0

𝜙2
k1(t) + 𝜙2

k2(t)
2

dt)] <∞.

Then the Radon–Nikodým derivative process can be defined as:

dℚk

dℙ ∣Ft
∶= Λ𝜙

k (t)

= exp{ – ∫
t

0
𝜙k1(s)dW(s) –

1
2 ∫

t

0
(𝜙k1(s))2ds

– ∫
t

0
𝜙k2(s)dW(s) –

1
2 ∫

t

0
(𝜙k2(s))2ds}.

Applying the Girsanov’s Theorem, under the probability measureℚk, k∈ {1, 2}, we know
that

⎧⎪⎪⎨⎪⎪⎩

dWℚk(t) = dW(t) + 𝜙k1(t),
dWℚk

k (t) = dWk(t) + 𝜙k2(t),

are standard Brownian motions, andWℚk(t) is independent withWℚk
k (t). Accordingly, the

wealth process of insurer k is given by
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dX̂uk
k (t) = [rX̂

uk
k (t) + (𝜇 – r)𝜋k(t) + 𝜆k + 𝜂kqk(t) – 𝜎𝜋k(t)𝜙k1(t)

– 𝜎kqk(t)𝜙k2(t)]dt + 𝜎𝜋k(t)dWℚk(t) + 𝜎kqk(t)dWℚk
k (t).

(3)

In financial practice, financial institutions often place greater emphasis on their relative
performance compared to their peers. [28] propose an easy handling framework to model the
interaction mechanisms between the competition institutions. In this article, we build upon
their work and continue to use the relative performance to describe the competition between
the two insurers. Specifically, each insurer aims to outperform its competitor in terms of the
terminal wealth. Here the relative performance process of insurer k, for k, j∈ {1, 2}, k ≠ j, is
defined as

Xuk ,uj
k (t) = (1 – nk)X̂uk

k (t) + nk(X̂
uk
k (t) – X̂

uj
j(t))

= X̂uk
k (t) – nkX̂

uj
j (t),

where nk ∈ [0, 1]measures the sensitivity of insurer k to its competitor insurer j’s perfor-
mance, and the larger the nk, the more the insurer is concerned about increasing its relative
surplus, which indicates the game is more competitive.

Under the probability measureℚk, the dynamic of insurer k’s relative performance is
described by

dXuk ,uj
k (t)

= [rXuk ,uj
k (t) + (𝜇 – r)(𝜋k(t) – nk𝜋j(t)) + 𝜆k – nk𝜆j + 𝜂kqk(t) – nk𝜂jqj(t)

– 𝜎𝜋k(t)𝜙k1(t) + nk𝜎𝜋j(t)𝜙j1(t) – 𝜎kqk(t)𝜙k2(t) + nk𝜎jqj(t)𝜙k2(t)]dt

+ 𝜎𝜋k(t)dWℚk(t) – nk𝜎𝜋j(t)dWℚj(t) + 𝜎kqk(t)dWℚk
k (t)

– nk𝜎jqj(t)dWℚj
j (t),

(4)

with the initial relative performance Xuk ,uj
k (0) = x0k = x̂

0
k – nkx̂

0
j .

2.3 The 𝛼-robust non-zero-sum game
This section formulates the non-zero-sum game between the two competing insurers under
the 𝛼-maxmin mean-variance criterion which is formulated in [18]. Following [18] and [20],
we develop the 𝛼-maxmin mean–variance criterion of insurer k as follows: ∀(t, xk)∈ [0,T] ×
ℝ, k, j∈ {1, 2}, k ≠ j,

Juk ,ujk (t, xk) =𝛼k inf
𝜙k∈Φk

J𝜙k ,uk ,uj
k (t, xk) + 𝛼k sup

𝜙k∈Φk

J𝜙k ,uk ,uj
k (t, xk),

=𝛼kJ
𝜙k ,uk ,uj
k (t, xk) + 𝛼kJ

𝜙k ,uk ,uj
k (t, xk),

(5)

where 𝛼k ∈ [ 12 , 1], 𝛼k = 1 – 𝛼k,

J𝜙k ,uk ,uj
k (t, xk) = 𝔼𝜙k

t,xk [X
uk ,uj
k (T)] – 𝛾k

2
Var𝜙k

t,xk [X
uk ,uj
k (T)] +∫

T

t
h𝛽(𝜙k(s))ds, (6)
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and

J𝜙k ,uk ,uj
k (t, xk) = 𝔼𝜙k

t,xk [X
uk ,uj
k (T)] – 𝛾k

2
Var𝜙k

t,xk [X
uk ,uj
k (T)] – ∫

T

t
h𝛽(𝜙k(s))ds, (7)

in which, 𝔼𝜙k
t,xk [⋅] ∶= 𝔼ℚ

𝜙k [⋅∣Xuk ,uj
k (t) = xk], Var𝜙k

t,xk [⋅] =Var
ℚ𝜙k [⋅∣Xuk ,uj

k (t) = xk]. And 𝜙k and
𝜙k are the probability distortion functions to achieve the infimum and supremum in Eq (5),
respectively, and the penalty function which penalizes the deviation of alternative measureℚ
from the reference measure ℙ is selected as h𝛽(𝜙k(s)) = 𝜙2

k1
2𝛽k1 +

𝜙2
k2

2𝛽k2 .
In Eq (5), there are four parameters, 𝛼k, 𝛾k, and 𝛽ki, i∈ {1, 2}. First, 𝛼k represents insurer

k’s ambiguity attitude, and insurer k with a larger 𝛼k is more ambiguity aversion. In particular,
𝛼k = 1

2 , 1 represent the ambiguity-neutral, and extremely ambiguity-averse attitude, respec-
tively. Second, 𝛾k is the insurer k’s risk aversion coefficient. Third, 𝛽ki, i∈ {1, 2}, are the ambi-
guity aversion coefficients which measure insurer k’s level of ambiguity towards the reference
measure.

The two insurers aim to identify an optimal strategy that maximizes the expression in
Eq (5). Under this optimization criterion in place, the strategic interaction is defined as fol-
lows:

Problem 2.1.The non-zero-sum stochastic differential game between the two compet-
ing insurers, under the 𝛼-maxmin mean-variance criterion, involves the search for Nash
equilibrium strategies (u∗1 ,u∗2)∈ U1 × U2 such that for any (u1,u2)∈ U1 × U2, we have

Ju
∗
1 ,u

∗
2

1 (t, x1)≥ Ju1 ,u
∗
2

1 (t, x1),

Ju
∗
1 ,u

∗
2

2 (t, x2)≥ Ju
∗
1 ,u2

2 (t, x2).
(8)

And the admissible strategy is defined below.

Definition 2.2. (Admissible Strategy) For any given t∈ [0,T], a strategy uk(t) ∶=
(qk(t),𝜋k(t)), k∈ {1, 2}, is said to be admissible, if it satisfies:

(i) ∀t∈ [0,T], uk(t) is Ft-measurable, qk(t)≥ 0;
(ii) ∀(xk, t)∈ℝ× [0,T], it holds that 𝔼𝜙k [∫

T
0 ∥uk(s)∥

2 ds] <∞ for any 𝜙k ∈Φk, where

∥uk(s)∥2 = q2k(s) + 𝜋2
k(s);

(iii) ∀(xk, t)∈ℝ× [0,T], Eq (3) has a unique strong solution.

Let Uk denote the set of all admissible strategies for insurer k.
In order to handle the time-inconsistent issue in Problem 2.1, following [29], we give the

definition of equilibrium strategy as follows:

Definition 2.3. Let u∗k = (⋅, q∗k(⋅),𝜋∗k(⋅)) be an admissible strategy of insurer k. For any ini-
tial state (t, xk)∈ [0,T] × ℝ and 𝜖 > 0, when its competitor’s optimal strategy 𝜋∗j is known, we
define a perturbed strategy u𝜖k as follows:

u𝜖k(v) ∶=
⎧⎪⎪⎨⎪⎪⎩

ûk(v), v∈ [t, t + 𝜖),
u∗k(v), v∈ [t + 𝜖,T].
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where ûk ∈ Uk. If ∀ûk ∈ Uk, we have

lim
𝜖↓0

inf
J
u∗k ,u

∗
j

k (t, xk) – J
u𝜖k ,u

∗
j

k (t, xk)
𝜖 ≥ 0,

then u∗k (⋅) is called an equilibrium strategy of insurer k, and its equilibrium value function is

given by J
u∗k ,u

∗
j

k (t, xk).

According to Definition 2.3, the equilibrium strategy is time-consistent.

3 Main results
This section presents the verification theorem, followed by the derivation of the 𝛼-robust
equilibrium strategy. We first denote

C1,2([0,T]×ℝ) ∶={𝜙(t, x)|𝜙(t, x)is continuously differentiable for t∈ [0,T]
and twice continuously differentiable for x∈ℝ},

and for any (t, xk)∈ [0, t]×ℝ, 𝜓k(t, xk)∈ C1,2([0,T]×ℝ), we define an infinitesimal operator
as

L𝜙k ,𝜙j ,uk ,uj𝜓k(t, xk)

= 𝜕𝜓k(t, xk)
𝜕t + [rxk + (𝜇 – r)(𝜋k – nk𝜋j) + 𝜆k – nk𝜆j + 𝜂kqk – nk𝜂jqj – 𝜎𝜋k𝜙k1

+ nk𝜎𝜋j𝜙j1 – 𝜎kqk𝜙k2 + nk𝜎jqj𝜙j2]
𝜕𝜓k(t, xk)

𝜕xk
+ 1
2
(𝜎2𝜋2

k + n2k𝜎2𝜋2
j – 2nk𝜎2𝜋k𝜋j

+ 𝜎2
kq

2
k + n2k𝜎2

j q
2
j – 2𝜌nk𝜎k𝜎jqkqj)

𝜕2𝜓k(t, xk)
𝜕x2k

.

(9)

Next we present the main results for the two competing insurers.

Theorem 3.1. (Verification Theorem) For Problem 2.1, if there are real-valued functions
Vk(t, xk), gk(t, xk), gk(t, xk)∈ C1,2([0,T]×ℝ) satisfy the following conditions:

(1) For any (t, xk)∈ [0,T]×ℝ,

sup
uk∈Uk

{𝛼k inf
𝜙k∈Φk

[Luk ,u
∗
j ,𝜙k ,𝜙∗jVk(t, xk) –

𝛾k
2
Luk ,u

∗
j ,𝜙k ,𝜙∗j g2

k
(t, xk)

+ 𝛾kgk(t, xk)L
uk ,u

∗
j ,𝜙k ,𝜙∗j g

k
(t, xk) + h𝛽(𝜙k)]

+𝛼k sup
𝜙k∈Φk

[Luk ,u
∗
j ,𝜙k ,𝜙

∗
j Vk(t, xk) –

𝛾k
2
Luk ,u

∗
j ,𝜙k ,𝜙

∗
j g2k(t, xk)

+ 𝛾kgk(t, xk)L
uk ,u

∗
j ,𝜙k ,𝜙

∗
j gk(t, xk) – h𝛽(𝜙k)]} = 0,

(10)
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(2) For any (t, xk)∈ [0,T]×ℝ,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Vk(T, xk) = xk,
Lu∗k ,u

∗
j ,𝜙∗k ,𝜙

∗
j g

k
(t, xk) =Lu∗k ,u

∗
j ,𝜙
∗
k ,𝜙
∗
j gk(t, xk) = 0,

g
k
(T, xk) = gk(T, xk) = xk.

(11)

(3) For any (t, xk)∈ [0,T]×ℝ, u∗k (t), 𝜙∗k (t), 𝜙
∗
k (t), L

u∗k ,u
∗
j ,𝜙∗k ,𝜙

∗
j V(t, xk), Lu∗k ,u

∗
j ,𝜙
∗
k ,𝜙
∗
j V(t, xk),

Lu∗k ,u
∗
j ,𝜙∗k ,𝜙

∗
j g2

k
(t, xk) and Lu∗k ,u

∗
j ,𝜙
∗
k ,𝜙
∗
j g2k(t, xk) are deterministic functions of t and independent

of xk.
(4) 𝜙∗

k
= 𝜙u∗k

k
and 𝜙∗k = 𝜙

u∗k
k .

Then u∗k is the 𝛼-robust equilibrium strategy, Vk(t, xk) = J
u∗k ,u

∗
j

k (t, xk) is the equilibrium

value function of insurer k. Besides, g
k
(t, xk) = 𝔼

𝜙∗
k

t,xk[X
u∗k ,u

∗
j

k (T)], gk(t, xk) = 𝔼
𝜙∗k
t,xk[X

u∗k ,u
∗
j

k (T)].

Proof : See S1 Appendix. ◻

Theorem 3.2. Consider the 𝛼-robust game between the two competing insurers in
Problems 2.1.

(1) The time-consistent optimal reinsurance strategy of insurer k, k∈ {1, 2}, is given by:

q∗k =
𝜂k𝜎j[𝛾j – (𝛼j – 𝛼j)𝛽j2] + nk𝜌𝜂j𝜎k𝛾k

{[𝛾k – (𝛼k – 𝛼k)𝛽k2][𝛾j – (𝛼j – 𝛼j)𝛽j2] – nknj𝜌2𝛾k𝛾j}𝜎2
k𝜎jer(T–t)

, (12)

and the time-consistent optimal investment strategy is given by:

𝜋∗k =
(𝜇 – r)[𝛾j – (𝛼j – 𝛼j)𝛽j1 + nk𝛾k]

{[𝛾k – (𝛼k – 𝛼k)𝛽k1][𝛾j – (𝛼j – 𝛼j)𝛽j1] – nknj𝛾k𝛾j}𝜎2er(T–t)
. (13)

(2) The equilibrium value function is given by

Vk(t, xk) = er(T–t)xk +
nk𝜆j – 𝜆k

r
(1 – er(T–t)) +∫

T

t
dk1(s)ds +∫

T

t
dk2(s)ds, (14)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dk1(s) = 𝛼k–𝛼k
2 𝛽k2𝜎2

k(q∗k )2e2r(T–s) + (𝛼k – 𝛼k)nk𝛽j2𝜎2
j (q∗j )2e2r(T–s)

–[𝜎2
k(q∗k )2 + n2k𝜎2

j (q∗j )2 – 2𝜌nk𝜎k𝜎jq∗k q∗j ]
(𝛼+𝛼)𝛾k

2 e2r(T–s)

+(𝜂kq∗k – nk𝜂jq∗j )er(T–s)
dk2(s) = 𝛼k–𝛼k

2 𝛽k1𝜎2(𝜋∗k )2e2r(T–s) + (𝛼k – 𝛼k)nk𝛽j1𝜎2(𝜋∗j )2e2r(T–s)

– (𝛼k+𝛼k)𝛾k
2 e2r(T–s)[𝜎2(𝜋∗k )2 + n2k𝜎2(𝜋∗j )2 – 2nk𝜎2𝜋∗k𝜋∗j ]

+(𝜇 – r)(𝜋∗k – nk𝜋∗j )er(T–s).

(3) The associated probability distortion functions of extremely ambiguity-averse measure
and the extremely ambiguity-seeking measure are given respectively by

{
𝜙∗
k1
= 𝛽k1𝜎𝜋∗k er(T–t),

𝜙∗
k2
= 𝛽k2𝜎kq∗k er(T–t),

(15)
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and

⎧⎪⎪⎨⎪⎪⎩

𝜙∗k1 = –𝛽k1𝜎𝜋∗k er(T–t),
𝜙∗k2 = –𝛽k2𝜎kq∗k er(T–t).

(16)

Proof : Assume Vk(t, xk), gk(t, xk), gk(t, xk), 𝜙
u∗k , 𝜙u∗k satisfying condition (1) in

Theorem 3.1. Through simple calculations, we obtain

0 = sup
uk∈Uk

⎧⎪⎪⎨⎪⎪⎩

𝜕Vk(t, xk)
𝜕t + [rxk + (𝜇 – r)(𝜋k – nk𝜋∗j ) + 𝜆k – nk𝜆j + 𝜂kqk – nk𝜂jq

∗
j ]
𝜕Vk(t, xk)

𝜕xk

+
1
2
(𝜎2𝜋2

k + n
2
k𝜎

2(𝜋∗j )
2 – 2nk𝜎2𝜋k𝜋∗j + 𝜎

2
kq

2
k + n

2
k𝜎

2
j (q

∗
j )

2 – 2𝜌nk𝜎k𝜎jqkq
∗
j )

× (𝜕
2Wk(t, xk)
𝜕x2k

– 𝛼k𝛾k(
𝜕g

k
(t, xk)

𝜕xk
)
2
– 𝛼k𝛾k(

𝜕gk(t, xk)
𝜕xk

)
2
)

+ 𝛼k inf
𝜙k∈Φk

{(–𝜎𝜋k𝜙k1 + nk𝜎𝜋∗j 𝜙
∗
j1
– 𝜎kqk𝜙k2 + nk𝜎jq

∗
j 𝜙
∗
j2
)
𝜕Vk(t, xk)

𝜕xk
+

𝜙2
k1

2𝛽k1

+
𝜙2
k2

2𝛽k2
} + 𝛼k sup

𝜙k∈Φk

{(–𝜎𝜋k𝜙k1 + nk𝜎𝜋∗j 𝜙
∗
j1 – 𝜎kqk𝜙k2 + nk𝜎jq

∗
j 𝜙
∗
j2)

𝜕Vk(t, xk)
𝜕xk

–
𝜙2
k1

2𝛽k1
–
𝜙2
k2

2𝛽k2
}
⎫⎪⎪⎬⎪⎪⎭
. (17)

In order to solve (11) and (17), we assume that the forms of the solutions are as follows:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Vk(t, xk) =Ak(t)xk + Bk(t),
g
k
(t, xk) = ak(t)xk + bk(t),

gk(t, xk) = ak(t)xk + bk(t),
(18)

where Ak(t), Bk(t), ak(t), bk(t), ak(t), bk(t) are functions of t. By the first and the third rela-
tion of (11), we have the boundary conditions

{ Ak(T) = ak(T) = ak(T) = 1,
Bk(T) = bk(T) = bk(T) = 0.

Substituting (18) and their partial derivatives into (17) yields

0 = sup
uk∈Uk

{A′
kxk + B′k + [rxk + (𝜇 – r)(𝜋k – nk𝜋∗j ) + 𝜆k – nk𝜆j + 𝜂kqk – nk𝜂jq∗j ]Ak

+ 1
2
(𝜎2𝜋2

k + n2k𝜎2(𝜋∗j )2 – 2nk𝜎2𝜋k𝜋∗j + 𝜎2
kq

2
k + n2k𝜎2

j (q∗j )2 – 2𝜌nk𝜎k𝜎jqkq∗j )

× ( – 𝛼k𝛾ka2k – 𝛼k𝛾ka2k)

+ 𝛼k inf
𝜙k∈Φk

{( – 𝜎𝜋k𝜙k1 + nk𝜎𝜋∗j 𝜙∗j1 – 𝜎kqk𝜙k2 + nk𝜎jq
∗
j 𝜙∗j2)Ak +

𝜙2
k1

2𝛽k1
+
𝜙2
k2

2𝛽k2
}

+ 𝛼k sup
𝜙k∈Φk

{( – 𝜎𝜋k𝜙k1 + nk𝜎𝜋∗j 𝜙
∗
j1 – 𝜎kqk𝜙k2 + nk𝜎jq∗j 𝜙

∗
j2)Ak –

𝜙2
k1

2𝛽k1
–
𝜙2
k2

2𝛽k2
}}.

(19)
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By the first-order condition on Eq (19) with respect to 𝜙k, the infimum and the supremum
of 𝜙k in Eq (19) can be achieved respectively at

{
𝜙∗
k1
= 𝛽k1𝜎𝜋kAk,𝜙∗k2 = 𝛽k2𝜎kqkAk,

𝜙∗k1 = –𝛽k1𝜎𝜋kAk,𝜙
∗
k2 = –𝛽k2𝜎kqkAk.

(20)

Inserting Eq (20) back into Eq (19) yields

0 = sup
uk∈Uk
{A′

kxk + B′k + [rxk + (𝜇 – r)(𝜋k – nk𝜋∗j ) + 𝜆k – nk𝜆j + 𝜂kqk – nk𝜂jq∗j ]Ak

+ 1
2
(𝜎2𝜋2

k + n2k𝜎2(𝜋∗j )2 – 2nk𝜎2𝜋k𝜋∗j + 𝜎2
kq

2
k + n2k𝜎2

j (q∗j )2 – 2𝜌nk𝜎k𝜎jqkq∗j )

× ( – 𝛼𝛾ka2k – 𝛼𝛾ka2k) +
1
2
(𝛼k – 𝛼k)(𝛽k1𝜎2𝜋2

k + 𝛽k2𝜎2
kq

2
k)A2

k

+ 𝛼knk𝛽j1𝜎2(𝜋∗j )2AjAk + 𝛼knk𝛽j2𝜎2
j (q∗j )2AjAk – 𝛼knk𝛽j1𝜎2(𝜋∗j )2AjAk

– 𝛼knk𝛽j2𝜎2
j (q∗j )2AjAk}. (21)

Furthermore, applying the first-order condition on Eq (21) with respect to qk and 𝜋k gives

q∗k =
–𝜂kAk + 𝜌nk𝜎k𝜎j (–𝛼k𝛾ka2k – 𝛼k𝛾ka2k) q∗j
𝜎2
k [–𝛼k𝛾ka2k – 𝛼k𝛾ka

2
k + (𝛼k – 𝛼k)𝛽k2A2

k]
, (22)

and

𝜋∗k =
–(𝜇 – r)Ak + nk𝜎2 (–𝛼k𝛾ka2k – 𝛼k𝛾ka2k)𝜋∗j
𝜎2 [–𝛼k𝛾ka2k – 𝛼k𝛾ka

2
k + (𝛼k – 𝛼k)𝛽k1A2

k]
. (23)

Substituting Eq (22) and (23) back into (21) and the second equation of (11), we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A′
kxk + B′k + [rxk + (𝜇 – r)(𝜋∗k – nk𝜋∗j ) + 𝜆k – nk𝜆j + 𝜂kq∗k – nk𝜂jq∗j ]Ak

+ 1
2(𝜎2(𝜋∗k )2 + n2k𝜎2(𝜋∗j )2 – 2nk𝜎2𝜋∗k𝜋∗j + 𝜎2

k(q∗k )2 + n2k𝜎2
j (q∗j )2 – 2𝜌nk𝜎k𝜎jq∗k q∗j )

×( – 𝛼k𝛾ka2k – 𝛼k𝛾ka2k) + 1
2(𝛼k – 𝛼k)(𝛽k1𝜎2(𝜋∗k )2 + 𝛽k2𝜎2

k(q∗k )2)A2
k

+𝛼knk𝛽j1𝜎2(𝜋∗j )2AjAk + 𝛼nk𝛽j2𝜎2
j (q∗j )2AjAk – 𝛼knk𝛽j1𝜎2(𝜋∗j )2AjAk

–𝛼knk𝛽j2𝜎2
j (q∗j )2AjAk = 0,

a′kxk + b
′
k + [rxk + (𝜇 – r)(𝜋∗k – nk𝜋∗j ) + 𝜆k – nk𝜆j + 𝜂kq∗k – nk𝜂jq∗j – 𝛽k1𝜎2(𝜋∗k )2Ak

+nk𝛽j1𝜎2(𝜋∗j )2Aj – 𝛽k2𝜎2
k(q∗k )2Ak + nk𝛽j2𝜎2

j (q∗j )2]AjAk = 0,

a′kxk + b
′
k + [rxk + (𝜇 – r)(𝜋∗k – nk𝜋∗j ) + 𝜆k – nk𝜆j + 𝜂kq∗k – nk𝜂jq∗j – 𝛽k1𝜎2(𝜋∗k )2Ak

–nk𝛽j1𝜎2(𝜋∗j )2Aj – 𝛽k2𝜎2
k(q∗k )2Ak – nk𝛽j2𝜎2

j (q∗j )2Aj]Ak = 0.
(24)

By matching the coefficients of the terms of xk, we have

A′
k(t) + rAk(t) = a′k(t) + rak(t) = a

′
k(t) + rak(t) = 0,
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Combining with Ak(T) = ak(T) = ak(T) = 1 yields

Ak(t) = ak(t) = ak(t) = e
r(T–t). (25)

Moreover, the time-consistent equilibrium strategy of insurer k satisfies

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

q∗k =
–𝜂kAk+𝜌nk𝜎k𝜎j(–𝛼𝛾ka2k–𝛼𝛾ka

2
k)q
∗
j

𝜎2
k[–𝛼𝛾ka2k–𝛼𝛾ka

2
k+(𝛼–𝛼)𝛽k2A

2
k]
= 𝜂k+𝜌nk𝜎k𝜎j𝛾kq∗j er(T–t)

[𝛾k–(𝛼k–𝛼k)𝛽k2]𝜎2
ker(T–t)

,

𝜋∗k =
–(𝜇–r)Ak+nk𝜎2(–𝛼𝛾ka2k–𝛼𝛾ka

2
k)𝜋

∗
j

𝜎2[–𝛼𝛾ka2k–𝛼𝛾ka
2
k+(𝛼–𝛼)𝛽k1A

2
k]
= (𝜇–r)+nk𝜎2𝛾k𝜋∗j er(T–t)

[𝛾k–(𝛼k–𝛼k)𝛽k1]𝜎2er(T–t) .
(26)

Then we can obtain Eq (12) which is the reinsurance strategy of each insurer by solving the
system of equations:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

q∗1 =
𝜂1+𝜌n1𝜎1𝜎2𝛾1q∗2 er(T–t)
[𝛾1–(𝛼1–𝛼1)𝛽12]𝜎2

1er(T–t)
,

q∗2 =
𝜂2+𝜌n2𝜎2𝜎1𝛾2q∗1 er(T–t)
[𝛾2–(𝛼2–𝛼2)𝛽22]𝜎2

2er(T–t)
,

and (13) which is the investment strategy of each insurer by solving the system of equations:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜋∗1 =
(𝜇–r)+n1𝜎2𝛾1𝜋∗2 er(T–t)
[𝛾1–(𝛼1–𝛼1)𝛽11]𝜎2er(T–t) ,

𝜋∗2 =
(𝜇–r)+n2𝜎2𝛾2𝜋∗1 er(T–t)
[𝛾2–(𝛼2–𝛼2)𝛽21]𝜎2er(T–t) .

Then substituting Eq (25) back into (24), combining with Bk(T) = bk(T) = bk(T) = 0, we
yield

Bk(t) =
nk𝜆j – 𝜆k

r
(1 – er(T–t)) +∫

T

t
dk1(s)ds +∫

T

t
dk2(s)ds, (27)

bk(t) =
nk𝜆j – 𝜆k

r
(1 – er(T–t)) +∫

T

t
dk1(s)ds +∫

T

t
dk2(s)ds, (28)

bk(t) =
nk𝜆j – 𝜆k

r
(1 – er(T–t)) +∫

T

t
dk1(s)ds +∫

T

t
dk2(s)ds, (29)

where

dk1(s) = [𝜂kq∗k – nk𝜂jq∗j +
𝛼k – 𝛼k

2
𝛽k2𝜎2

k(q∗k )2er(T–s) + (𝛼k – 𝛼k)nk𝛽j2𝜎2
j (q∗j )2er(T–s)]er(T–s)

–
(𝛼 + 𝛼)𝛾k

2
e2r(T–s)[𝜎2

k(q∗k )2 + n2k𝜎2
j (q∗j )2 – 2𝜌nk𝜎k𝜎jq∗k q∗j ],

dk2(s) = [(𝜇 – r)(𝜋∗k – nk𝜋∗j ) +
𝛼k – 𝛼k

2
𝛽k1𝜎2(𝜋∗k )2er(T–s) + (𝛼k – 𝛼k)nk𝛽j1𝜎2(𝜋∗j )2er(T–s)]

× er(T–s) –
(𝛼k + 𝛼k)𝛾k

2
e2r(T–s)[𝜎2(𝜋∗k )2 + n2k𝜎2(𝜋∗j )2 – 2nk𝜎2𝜋∗k𝜋∗j ],

dk1(s) = [𝜂kq∗k – nk𝜂jq∗j – 𝛽k2𝜎2
k(q∗k )2er(T–s) + nk𝛽j2𝜎2

j (q∗j )2er(T–s)]er(T–s),

dk2(s) = [(𝜇 – r)(𝜋∗k – nk𝜋∗j ) – 𝛽k1𝜎2(𝜋∗k )2er(T–s) + nk𝛽j1𝜎2(𝜋∗j )2er(T–s)]er(T–s),

dk1(s) = [𝜂kq∗k – nk𝜂jq∗j + 𝛽k2𝜎2
k(q∗k )2er(T–s) – nk𝛽j2𝜎2

j (q∗j )2er(T–s)]er(T–s),

dk2(s) = [(𝜇 – r)(𝜋∗k – nk𝜋∗j ) + 𝛽k1𝜎2(𝜋∗k )2er(T–s) – nk𝛽j1𝜎2(𝜋∗j )2er(T–s)]er(T–s).
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Consequently, Eqs (14)–(16) can be readily derived. ◻

Remark 3.3. From Eqs (12) and (13), we find that the equilibrium reinsurance strategy
q∗k (t) is independent of the ambiguity level on the risk asset 𝛽k1, 𝛽j1; while the equilibrium
investment strategy 𝜋∗k (t) is independent of the ambiguity level on the insurance risk 𝛽k2,
𝛽j2. And the equilibrium strategy of each insurer (q∗k (t),𝜋∗k (t)) is independent of the state
variable xk(t) and xj(t), k, j∈ {1, 2}, k ≠ j.

Remark 3.4.The ambiguity attitudes of the insurers have significant impacts on the
equilibrium strategies, the existence of ambiguity-seeking would stimulate the two insur-
ers to choose an aggressive strategy, that is increasing the amount invested in the risky asset
and ceding less insurance business risk to the reinsurer. When 𝛼k = 1, i.e., the insurers are
extremely ambiguity-averse, the model degenerates to [22], and the optimal reinsurance-
investment strategies are in consistent with that in [22].

Proposition 3.5.The equilibrium reinsurance strategy q∗k(t) is increasing in nk, and
decreasing in 𝛽k2, 𝛼k and 𝛾k.

Proof : We only prove q∗k (t) is increasing in nk, and we can similarly prove that q∗k (t) and
decreasing in 𝛽k2 and 𝛼k and 𝛾k. By differentiating Eq (12) with respect to nk yields

𝜕q∗k (t)
𝜕nk

=
𝜌𝜇j𝜂j𝜎k𝛾kΔ1 + nj𝜌2𝛾k𝛾j𝜎2

k𝜎jer(T–t)Δ2

Δ2
1

, (30)

where

Δ1 ={[𝛾k – (𝛼k – 𝛼k)𝛽k2][𝛾j – (𝛼j – 𝛼j)𝛽j2] – nknj𝜌2𝛾k𝛾j}𝜎2
k𝜎jer(T–t),

Δ2 =𝜂k𝜎j[𝛾j – (𝛼j – 𝛼j)𝛽j2] + nk𝜌𝜂j𝜎k𝛾k.

Due to 1
2 < 𝛼k < 1, we have Δ1 > 0,Δ2 > 0. Then from Eq (30), we obtain 𝜕q∗k (t)

𝜕nk > 0. ◻

Remark 3.6. Proposition 3.5 indicates that when the sensitivity coefficient nk increases,
that is the competition between the insurers intensifies, insurers tend to reduce their pur-
chases of reinsurance and take more insurance risks themselves. But in the following three
conditions, there is a tendency to increase the purchase of reinsurance and reduce its own risk
exposure q∗k (t): (1) insurance liabilities are more ambiguous (larger 𝛽k2); (2) insurers are more
ambiguity-averse (i.e., larger 𝛼k); (3) insurers are more risk-averse (i.e., larger 𝛾k).

Similarly, we can obtain the properties of the equilibrium investment strategy.

Proposition 3.7. Equilibrium investment strategy 𝜋∗k (t) about nk is monotonically increas-
ing, about 𝛽k1, 𝛼k and 𝛾k is monotonically decreasing.

Remark 3.8. Proposition 3.7 indicates that when the sensitivity coefficient nk increases,
that is the competition between the insurers intensifies, insurers tend to increase the amount
invested in risky asset. However, there are three conditions that the insurers tend to reduce
the amount invested in the risky asset: (1) risk asset returns are more ambiguous (larger 𝛽k1);
(2) insurers are more ambiguous and disgusted (larger 𝛼k); (3) insurers are more risk averse
(larger 𝛾k).

4 Numerical Simulations
In this section, we present several numerical examples to show sensitivity analysis about the
equilibrium strategies. Unless otherwise stated, the model parameters are given in S1 Table.
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Since the impact of general model parameters for the 𝛼-robust equilibrium reinsurance
and investment strategies has been studied by [22], in this paper, we focus on the ambiguity
parameters 𝛼k, 𝛽k1, 𝛽k2, the risk coefficient 𝛾k and the sensitivity coefficients nk.

S1 Fig displays the different effects of the risk attitude coefficients 𝛼k and the sensitiv-
ity coefficients nk on the equilibrium reinsurance strategies of the two insurers at the initial
time (t = 0), for k∈ {1, 2}. The results show that the insurer who is more ambiguity-seeking
(smaller 𝛼k) adopt a more aggressive reinsurance strategy by retaining a higher proportion
of insurance risk rather than ceding it to the reinsurer. Additionally, the optimal retention
level q∗k (0) increases as nk rises, which is consistent with the conclusion in Proposition 3.5.
This behavior can be attributed to the fact that insurer with higher sensitivity coefficients nk
is more concerned about outperforming its competitor. As a result, they are willing to take
on more risk themselves to widen the wealth gap, rather than spending additional funds to
purchase reinsurance protection. In other words, competition drives insurers to become
more risk-seeking. Notably, when nk = 0, indicating no concern for relative performance, the
insurer tends to purchase the maximum amount of reinsurance to minimize their own risk
exposure.

S2 Fig illustrates the influence of the ambiguity aversion coefficients 𝛽k2 and the risk aver-
sion coefficients 𝛾k on the equilibrium reinsurance strategy of two insurers at the initial time,
for k∈ {1, 2}. It is evident that, for a given level of ambiguity aversion, the optimal retention
proportion q∗k (0) decreases as the risk aversion coefficient 𝛾k increases. This trend can be
attributed to the fact that an insurer with a higher risk aversion coefficient 𝛾k prefers to bear
less insurance risk and thus cedes more risk to the reinsurer. Moreover, the optimal reten-
tion proportion q∗k (0) also decreases with increasing ambiguity aversion parameter 𝛽k2. This
finding aligns with our intuition, as insurer with higher levels of ambiguity aversion is more
inclined to purchase additional reinsurance to mitigate the adverse impacts of potential model
misspecification. Particularly, 𝛽k2 = 0, for k∈ {1, 2}, corresponds to an ambiguity-neutral
insurer who cedes the most insurance risk to the reinsurer.

S3 Fig displays the impacts of the ambiguity attitude coefficients 𝛼k and the sensitiv-
ity coefficients nk on the equilibrium investment strategy 𝜋∗k (0), for k∈ {1, 2}. Firstly, it is
observed that the equilibrium investment strategy 𝜋∗k (0) is a decreasing function of 𝛼k when
nk is held constant. A larger 𝛼k indicates a higher degree of ambiguity aversion on the part
of the insurer, leading to a reduction in the amount invested in the risky asset as a means of
avoiding uncertainty. Moreover, when nk is fixed, the equilibrium investment strategy 𝜋∗k (0)
is seen to decrease as 𝛼k grows. The larger 𝛼k is, the more ambiguous averse the insurer k
is. Therefore, he tends to reduce the amount invested in the risky asset to avoid uncertainty.
Additionally, for a given 𝛼k, the equilibrium investment strategy 𝜋∗k (0) is an increasing func-
tion of nk. This is attributed to the competitive environment, which encourages insurers to
be more risk-seeking. Insurer with a higher sensitivity coefficient nk is inclined to increase its
investment in the risky asset to enhance its prospects of outperforming its competitor at the
terminal day. These findings are consistent with Proposition 3.7.

S4 Fig shows that the effects of parameters 𝛽k1 (i.e., the ambiguity aversion coefficients)
and parameters 𝛾k (i.e., risk aversion coefficients) on the equilibrium investment strategy
𝜋∗k (0), for k∈ {1, 2}. As is shown in S4 Fig, for a fixed ambiguity aversion coefficient, 𝜋∗k (0)
will decrease with the increase of 𝛾k. This is because the insurer with a larger risk-averse coef-
ficient 𝛾k which means it is more risk-averse tends to reduce the money invested in the risky
asset. Moreover, 𝜋∗k (0) decreases as the ambiguity aversion parameter 𝛽k2 increases, because
the insurer with higher levels of ambiguity aversion is prone to decrease the money invested
in the risky asset to offset the adverse effects of model misspecification.
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5 Conclusion
In this paper, we study the 𝛼-robust non-zero-sum reinsurance and investment game involv-
ing two competing insurers, both of them adopt the 𝛼-maxmin mean-variance utility. We
formulate the optimization problem, and by using techniques in stochastic control theory,
we derive the extended HJB equations, and obtain the closed-form solutions of the optimal
reinsurance-investment strategies and value functions. The numerical results reveal several
insightful findings. The results show that the optimal reinsurance and investment strategies
are directly proportional to the sensitivity coefficient of competition, while they are inversely
proportional to the risk attitude coefficients, the ambiguity aversion coefficients and the risk
aversion coefficient. The competition makes insurers more risk-seeking, that is, the insurer
who is more concerned about the relative performance and aim to outperform its competitor
would adopt a more aggressive strategy, Specifically, this insurer would retain more insur-
ance risk and invest more wealth in the risky asset. And the insurer with a greater inclination
towards ambiguity would also adopt a more aggressive strategy.

Several extensions of this paper can be explored in the future research, such as the stock
price process obeying other models and bounded memory, etc. We leave these extensions for
future work.
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