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Abstract 

Background

Massive intraoperative bleeding (IBL) in liver transplantation (LT) poses serious risks 

and strains healthcare resources necessitating better predictive models for risk strat-

ification. As traditional models often fail to capture the complex, non-linear patterns 

underlying bleeding risk, this study aimed to develop data-driven machine learning 

models for predicting massive IBL during living donor LT (LDLT) using preoperative 

factors.

Methods

Two hundred ninety consecutive LDLT cases from a prospective database were ana-

lyzed. Logistic regression models were built using 73 preoperative demographic and 

laboratory variables to predict massive IBL (≥ 80 mL/kg). The dataset was randomly 

split (70% training, 30% testing). The model was trained and validated through three-

fold cross-validation, with backward stepwise feature selection iterated 100 times 

across unique random splits. The final model, based on a high stability index, was 

evaluated using the area under the curve (AUC).

Results

Massive IBL was observed in 141 patients (48.6%). In standard logistic regression, 

significant differences were found in 42 of 73 factors between groups stratified by 

massive IBL, however, substantial multicollinearity limited interpretability. In the fea-

ture selection across 100 iterations, the data-driven model achieved an average AUC 

of 0.840 in the validation and 0.738 in the test datasets. The final model, based on 11 
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selected features with a high stability index, achieved an AUC of 0.844. An easy-to-

use online risk calculator for massive IBL was developed and is available at: https://

tai1wakiya.shinyapps.io/ldlt_bleeding_ml/.

Conclusions

Our findings highlight the potential of machine learning in capturing complex risk 

factor interactions for predicting massive IBL in LDLT.

Introduction

Liver transplantation (LT) is a high-risk procedure frequently accompanied by sub-
stantial intraoperative bleeding (IBL), which can lead to adverse outcomes [1–3]. 
Additionally, perioperative bleeding and transfusions consume significant human and 
financial resources [4,5]. Accordingly, effective strategies to anticipate and reduce 
bleeding are essential for optimizing outcomes and maintaining the sustainability of 
transplant programs.

Despite ongoing advances, predicting critical IBL during LT remains a major clini-
cal challenge. Risk stratification tools using conventional statistical methods, such as 
logistic regression, have been developed to identify patients at increased risk [6–9]. 
However, these models often assume linearity and independence among variables, 
limiting their ability to capture the complex, multifactorial nature of LT-associated 
bleeding. As a result, their accuracy and clinical utility remain suboptimal.

Machine learning offers a promising alternative by allowing the integration of 
numerous interrelated factors without requiring pre-specified assumptions about 
variable relationships. ML models can capture nonlinear associations and detect 
complex patterns that traditional approaches or clinical intuition may overlook. This 
capability also extends to handling high-dimensional datasets and identifying subtle 
but clinically relevant trends, potentially offering novel insights into perioperative risk 
[10,11]. This capability may enhance the predictive performance of bleeding models 
and facilitate more personalized perioperative management.

Although ML has shown value in various surgical contexts [12–14], its application in 
predicting bleeding outcomes in LT is still limited. Therefore, we aimed to develop a data-
driven, ML-based model using prospectively collected preoperative variables to predict 
massive IBL in LDLT. Our objective was to establish a clinically applicable framework that 
outperforms conventional models and supports individualized surgical planning.

Materials and methods

Patients

We conducted a retrospective monocentric observational study using a prospec-
tively maintained database. This study was approved by the Ethics Committee of 
Jichi Medical University (Approval No. 20−008). This study was designed and con-
ducted in accordance with the principles of the Declaration of Helsinki and Istanbul. 
The need for written informed consent for the present study was waived by the 
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Institutional Review Board of Jichi Medical University in view of its retrospective design, in accordance with national and 
local guidelines, considering the fact that all clinical/laboratory measurements and procedures were part of routine care. 
This study included 290 consecutive patients who underwent LDLT at our facility between 2008 and 2024.

As an institutional policy, LDLT was not undertaken in the presence of any extrahepatic infection or when vasopressor 
or inotropic support was required. All recipients therefore proceeded to incision without active extrahepatic infection and 
without vasopressor or inotropic support.

Surgical procedures and operative management

Donor hepatectomy was selected based on the recipient’s standard liver volume, weight, and graft volume determined 
using preoperative computed tomographic volumetry. For the recipient’s operation, inverted T-shaped or transverse 
incisions were made, and a total hepatectomy was performed. The graft hepatic vein was anastomosed to the stump of 
the recipient’s hepatic veins, which formed a single orifice, in an end-to-end manner. Hepatic artery reconstruction was 
routinely performed using microsurgical techniques. Choledocho-choledochostomy was the first choice for biliary recon-
struction, except in cases in which the bile duct could not be used, such as with biliary atresia (BA) or primary sclerosing 
cholangitis.

Definition of massive intraoperative bleeding

At the start of surgery, pre-existing ascites was aspirated and excluded from IBL calculation. During the procedure, newly 
accumulated peritoneal fluid was included in the field in–out balance to calculate IBL. The volume was measured using 
suction canisters and swab weight, and it may include non-blood components to a variable extent, such as ascites, bile, or 
lymph. IBL was divided by body weight and referred to as adjusted intraoperative bleeding (aIBL, mL/kg). Massive aIBL was 
defined as aIBL ≥ 80 mL/kg. In clinical practice, the estimated circulating blood volume is approximately 70–80 mL/kg [15]. 
Therefore, aIBL exceeding 80 mL/kg is effectively equivalent to the loss of the entire circulating blood volume, indicating a 
clinically significant hemorrhagic event. Accordingly, 80 mL/kg serves as a physiologically meaningful and practical cutoff.

Data collection

For each patient, we collected demographic and laboratory data immediately before LT. The data were accessed for 
research purposes on April 22, 2025. Investigators had access to identifiable participant information during data collec-
tion; however, all data were de-identified prior to analysis. Seventy-three perioperative variables were extracted from the 
prospectively collected database. Patient demographic data included age, sex, body height, body weight, and etiology. 
Etiology was categorized as follows: acute liver failure (ALF), BA, graft failure, or other. Additionally, information regarding 
the history of previous abdominal surgery, ABO incompatibility, rituximab desensitization, and graft type was collected. 
Graft type was categorized as left lateral segment (LLS), left liver (LL), right liver (RL), right posterior segment (RPS), 
reduced LLS, or monosegment graft. To prevent statistical bias and enhance the generalizability of the model, incidence 
factors with a prevalence of less than 5%, such as spontaneous bacterial/fungal peritonitis and portal vein thrombosis, 
were excluded from the predictive variables. The 55 laboratory variables and their abbreviations are detailed in S1 Table. 
Prior to binary logistic regression analysis, the variables were standardized to have a mean of 0 and a standard deviation 
of 1, thereby ensuring that the logistic coefficients reflected the magnitude of influence on prediction. Given our focus on 
identifying modifiable risk factors, we placed particular emphasis on preoperative laboratory parameters, which can be 
influenced by conditions such as infection and thrombosis and can be actively managed before surgery. Accordingly, our 
candidate predictors were drawn primarily from preoperative indicators. In particular, we included pre-incision laboratory 
values because they integrate the cumulative effects of prior treatments, including the management of preoperative infec-
tions and the administration of blood products, and best capture the immediate preoperative physiological state. The study 
dataset used in this analysis is provided in S2 File.
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Statistical analyses

Continuous variables were expressed as medians (ranges) and analyzed using nonparametric methods for non-normally 
distributed data (Mann–Whitney U test). Categorical variables were reported as numbers (percentages) and analyzed 
using the chi-square test or Fisher’s exact test, as appropriate. Variables with a significant relationship to massive IBL 
in univariate analysis were used in a binary logistic regression model. The correlation between the two parameters was 
analyzed using the Spearman rank-order method. Differences were considered significant at P < 0.05. Statistical analyses 
were performed using GraphPad Prism (v10.2.3; GraphPad Software, San Diego, CA; USA, https://www.graphpad.com).

Data preparation and splitting

The overall workflow is illustrated using a block diagram in Fig 1. The dataset comprised 73 features along with corre-
sponding binary labels. Data preprocessing involved a stratified random split, allocating 70% of the data for training and 
30% for testing. To ensure a robust evaluation across different random splits, this process was repeated 100 times using 
unique random seeds (random_state = rr, where rr = 0, 1,..., 99).

Backward feature selection and model optimization

To identify the most informative predictors of massive intraoperative bleeding, we applied backward stepwise feature 
selection within a logistic regression framework. Model optimization and evaluation were conducted using stratified 3-fold 
cross-validation, repeated across 100 random data splits to ensure generalizability. At each iteration, variables were pro-
gressively removed based on their contribution to model performance, assessed using the area under the receiver operating 
characteristic curve (AUC). The feature set yielding the highest validation AUC was selected as the final model. Details of 
the feature elimination procedure, coefficient ranking, and model tuning are provided in S1 File. All analyses were conducted 
using Python libraries including Scikit-learn and Pandas [16]. Run instructions are provided in S3 File. The analysis script is 
provided in S4 File.

Development of an online calculator for estimating the risk of massive aIBL

We developed an online calculator based on the final logistic regression model to estimate the probability of massive 
aIBL. To ensure model robustness, feature stability was evaluated across multiple random data splits using occurrence 
rate and absolute mean weight. The summarization script is provided in S5 File. Features consistently selected with 
strong predictive weights were incorporated into the final model. Prior to application, selected features were standardized 
and weighted using their regression coefficients to calculate the predicted probability of massive aIBL. The calculator is 
available at: https://tai1wakiya.shinyapps.io/ldlt_bleeding_ml/. Details of the feature selection metrics, weighting proce-
dures, and standardization process are provided in S1 File.

Results

Clinical significance of massive aIBL

Among the 290 patients, those with aIBL greater than 80 mL/kg exhibited significantly higher rates of graft loss compared 
to those with lower aIBL (Fig 2). These findings support the clinical validity of using 80 mL/kg as a reasonable and action-
able threshold for defining massive aIBL in LDLT.

Comparison of patient characteristics in the massive aIBL and non-massive aIBL groups

The demographic data of the 290 enrolled patients are presented in Table 1, which also includes information on the IBL. 
Among all cases, massive aIBL was observed in 141 patients (48.6%). Except for indication and graft type, no significant 
differences were observed in the demographic data between the groups.

https://www.graphpad.com
https://tai1wakiya.shinyapps.io/ldlt_bleeding_ml/
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Comparison of laboratory data in the massive aIBL and non-massive aIBL groups

Laboratory data are presented in Table 2. Significant differences (P < 0.05) were observed in 40 of the 55 laboratory test 
items between the two groups. To predict the occurrence of massive aIBL, we conducted a binary logistic regression anal-
ysis with the occurrence of massive aIBL as the dependent variable. Forty significant predictor variables associated with 
massive aIBL, identified using univariate analysis (P < 0.05), were included in the binary logistic regression analysis. The 
analysis identified total bile acids (P = 0.013, odds ratio [OR] = 1.010, 95% confidence interval [CI]: 1.000–1.010), albumin 
(P = 0.014, OR = 0.228, 95% CI: 0.071–0.736), and ammonia (P = 0.043, OR = 1.020, 95% CI: 1.000–1.050) as significant 
predictors of incidences of massive aIBL. However, as noted in S2 Table, there was significant multicollinearity among 

Fig 1.  The study workflow and methodological process.

https://doi.org/10.1371/journal.pone.0326000.g001

https://doi.org/10.1371/journal.pone.0326000.g001
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Fig 2.  Graft survival curve stratified by adjusted intraoperative bleeding volume using an 80 mL/kg cutoff. IBL, intraoperative bleeding; LDLT, 
living donor liver transplantation.

https://doi.org/10.1371/journal.pone.0326000.g002

Table 1.  Comparison of patient characteristics in the massive aIBL and non-massive aIBL groups.

All
(n = 290)

aIBL
<80mL/kg
(n = 149)

aIBL
≥80mL/kg
(n = 141)

P value

Gender, female, n 168 (57.9) 88 (59.1) 80 (56.7) 0.778

Age, year 3 (0-69) 3 (0-65) 4 (0-69) 0.606

Body height, cm 94.9 (46.0-178.0) 95.6 (50.5-176.5) 93.0 (46.0-178.0) 0.480

Body weight, kg 14.2 (2.6-87.9) 14.1 (2.6-72.5) 14.4 (2.6-87.9) 0.673

Indication, n 0.046

  ALF 14 (4.8) 3 (2.0) 11 (7.8)

  BA 155 (53.5) 83 (55.7) 72 (51.1)

  Graft failure 13 (4.5) 4 (2.7) 9 (6.4)

  Other 108 (37.2) 59 (39.6) 49 (34.8)

History of previous abdominal surgery, n 198 (68.3) 98 (65.8) 100 (70.9) 0.415

ABO incompatible, n 58 (20.0) 27 (18.1) 31 (22.0) 0.499

Rituximab desensitization, n 59 (20.3) 34 (22.8) 25 (17.7) 0.352

Graft type, n <0.001

  LLS 127 (43.8) 78 (52.3) 49 (34.8)

  LL 74 (25.5) 43 (28.9) 31 (22.0)

  RL 57 (19.7) 20 (13.4) 37 (26.2)

  Monosegment 16 (5.5) 2 (1.3) 14 (9.9)

  Reduced LLS 13 (4.5) 5 (3.4) 8 (5.7)

  RPS 3 (1.0) 1 (0.7 2 (1.4)

IBL, mL 1012 (30-64510) 540 (30-5000) 2603 (250-64510) <0.001

aIBL, mL/kg 78.6 (1.6-1112.4) 36.5 (1.6-79.5) 159.5 (80.4-1112.4) <0.001

aIBL, adjusted intraoperative bleeding; ALF, acute liver failure; BA, biliary atresia; IBL, intraoperative bleeding; LL, left liver; LLS, left lateral segment; RL, 
right liver; RPS, right posterior segment.

https://doi.org/10.1371/journal.pone.0326000.t001

https://doi.org/10.1371/journal.pone.0326000.g002
https://doi.org/10.1371/journal.pone.0326000.t001
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Table 2.  Comparison of laboratory data in the massive aIBL and non-massive aIBL groups.

All
(n = 290)

aIBL
<80mL/kg
(n = 149)

aIBL
≥80mL/kg
(n = 141)

P value

A2PI, % 73.5 (16.4-150.0) 86.1 (27.3-150.0) 60.7 (16.4-116.1) <0.001

Alb, g/dL 3.0 (1.7-4.6) 3.2 (1.8-4.4) 2.8 (1.7-4.6) <0.001

ALP, U/L 803.0 (119.0-7793.0) 857.0 (136.0-7452.0) 688.0 (119.0-7793.0) 0.320

ALT, U/L 49.5 (1.0-723.0) 50.0 (1.0-467.0) 48.0 (10.0-723.0) 0.633

AMY, U/L 43.0 (3.0-387.0) 45.0 (7.0-387.0) 38.0 (3.0-320.0) 0.027

AnGap, mmol/L 11.7 (2.0-26.4) 12.0 (3.4-26.4) 11.1 (2.0-19.6) <0.001

AST, U/L 75.5 (14.0-1013.0) 62.0 (16.0-565.0) 88.0 (14.0-1013.0) 0.148

AT3, % 67.1 (17.1-157.5) 79.8 (21.8-157.5) 47.3 (17.1-138.5) <0.001

BE, mmol/L −1.2 (−9.5-12.0) −1.4 (−9.5-8.9) −0.7 (−8.0-12.0) 0.063

BS, mg/dL 108.0 (51.0-349.0) 111.0 (61.0-244.0) 104.0 (51.0-349.0) 0.024

BUN, mg/dL 8.0 (1.0-66.0) 7.0 (1.0-66.0) 9.0 (1.0-58.0) <0.001

Ca, mg/dL 8.7 (7.4-12.4) 8.8 (7.4-12.4) 8.7 (7.5-12.4) 0.006

Ca2calc, mmol/L 1.1 (0.7-1.4) 1.1 (0.8-1.4) 1.1 (0.7-1.4) 0.417

Che, U/L 162.0 (25.0-443.0) 176.0 (25.0-443.0) 130.0 (33.0-436.0) <0.001

Cl, mmol/L 107.0 (89.0-115.00 108.0 (90.0-115.0) 106.0 (89.0-114.0) <0.001

CPK, U/L 65.0 (10.0-981.0) 67.0 (11.0-566.0) 64.0 (10.0-981.0) 0.624

Crea, mg/dL 0.24 (0.02-3.34) 0.23 (0.02-1.79) 0.24 (0.03-3.34) 0.191

CRP, mg/dL 0.20 (0.01-7.59) 0.13 (0.01-7.59) 0.51 (0.01-6.81) <0.001

Dbil, mg/dL 0.68 (0.01-39.06) 0.28 (0.01-19.13) 2.24 (0.01-39.06) <0.001

Ddimer, μg/mL 1.1 (0.1-47.8) 0.5 (0.1-16.6) 2.4 (0.1-47.8) <0.001

Ferri, ng/mL 42.6 (3.0-3526.1) 28.3 (3.0-2370.0) 61.3 (4.1-3526.1) <0.001

Fib, mg/dL 173.5 (42.0-592.0) 190.0 (42.0-592.0) 166.0 (43.0-356.0) 0.003

GGT, U/L 82.5 (8.0-1517.0) 112.0 (8.0-1517.0) 58.0 (8.0-1255.0) 0.529

Hb, g/dL 9.1 (4.1-13.5) 9.6 (6.4-13.5) 8.6 (4.1-13.4) <0.001

HCO3 23.2 (16.8-36.5) 22.8 (16.8-33.0) 23.9 (17.6-36.5) 0.004

Hct, % 27.1 (11.3-39.9) 29.0 (19.8-39.9) 25.7 (11.3-38.5) <0.001

K, mmol/L 4.2 (2.1-8.0) 4.1 (2.7-8.0) 4.3 (2.1-6.2) 0.340

Lactate, mmol/L 1.2 (0.4-10.4) 1.2 (0.4-10.4) 1.2 (0.5-8.5) 0.549

LDH, U/L 219.0 (98.0-938.0) 217.0 (98.0-938.0) 230.0 (101.0-754.0) 0.081

MCH, pg 29.7 (19.9-41.1) 29.1 (19.9-39.1) 30.7 (23.0-41.1) <0.001

MCHC, g/dL 33.4 (30.0-36.1) 33.4 (30.0-36.1) 33.6 (30.3-36.0) 0.036

MCV, fL 88.5 (65.0-118.6) 86.0 (65.0-111.6) 91.0 (72.6-118.6) <0.001

Mg, mg/dL 2.0 (0.8-2.9) 2.1 (1.3-2.5) 2.0 (0.8-2.9) 0.036

Na, mmol/L 139.0 (123.0-148.0) 140.0 (123.0-148.0) 138.0 (123.0-147.0) <0.001

NH3, μmol/L 43.5 (4.0-161.0) 39.0 (4.0-119.0) 49.0 (15.0-161.0) <0.001

P, mg/dL 4.1 (1.9-6.7) 4.5 (2.0-6.4) 3.8 (1.9-6.7) <0.001

PCO2, mmHg 38.6 (28.3-102.0) 37.6 (29.0-54.8) 39.4 (28.3-102.0) 0.003

PH 7.39 (7.13-7.54) 7.40 (7.19-7.54) 7.39 (7.13-7.53) 0.887

PIC, μg/mL 0.5 (0.1-8.9) 0.4 (0.1-2.9) 0.6 (0.1-8.9) <0.001

Plasminogen, % 62.1 (17.9-148.5) 71.0 (23.2-148.5) 54.2 (17.9-141.0) <0.001

Plt, x 104/μL 10.5 (1.4-66.5) 12.6 (2.4-66.5) 8.6 (1.4-34.9) <0.001

PO2, mmHg 181.6 (69.4-463.0) 191.0 (93.3-463.0) 166.2 (69.4-386.3) <0.001

ProteinC, % 44.5 (10.8-180.8) 57.9 (12.0-180.8) 34.0 (10.8-131.7) <0.001

PTINR 1.35 (0.91-5.80) 1.25 (0.91-2.72) 1.47 (0.99-5.80) <0.001

(Continued)
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many factors in this analysis. The presence of multicollinearity can lead to instability in estimates, wider confidence inter-
vals, and increased errors in coefficient estimates, complicating interpretation and potentially leading to incorrect conclu-
sions. These results indicate that to construct a predictive model that exhibits multicollinearity with our dataset, it is crucial 
to select variables objectively, excluding subjectivity, and to utilize alternative analytical methods.

Correlations between preoperative laboratory tests and intraoperative bleeding volume

Next, we examined the relationship between the preoperative laboratory test results and aIBL. Of the 55 parameters 
tested, 42 showed significant correlations with the bleeding volume. Positive correlations were found for 43.6% of the 
parameters, whereas 56.4% exhibited negative correlations. The top five positively correlated biomarkers were D-dimer 
(r = 0.588), prothrombin time international normalized ratio (r = 0.495), total bilirubin (r = 0.461), direct bilirubin (r = 0.438), 
and total bile acids (r = 0.363). Conversely, antithrombin III (r = −0.560), alpha 2-plasmin inhibitor (r = −0.555), protein C 
(r = −0.527), prothrombin time percent (r = −0.495), and plasminogen (r = −0.458) were highly negatively correlated (Fig 3). 
These findings suggest that these markers can potentially guide preoperative assessment and intervention.

Feature selection and model performance in logistic regression for massive aIBL prediction

We further explored a more robust prediction model for massive aIBL. We used the backward stepwise method for feature 
selection to construct our binary logistic regression model. During this process, we calculated the absolute magnitudes 
of the coefficients and removed the least influential covariates. This analysis incorporated laboratory variables as well as 
demographic data, including age, categorical age (under 6 years, 6–18 years, or 18 years and older), sex, body height, 
body weight, etiologies (ALF, BA, graft failure, or other), history of previous abdominal surgery, ABO incompatibility, ritux-
imab desensitization, and graft type (LLS, LL, RL, RPS, reduced LLS, or monosegment). We started with all 73 features 
and systematically removed the least significant ones from the set. One of the representative feature selection processes 
is presented in S3 Table and S1 Fig. The process for narrowing down the variables is detailed in S3 Table. Antithrombin 
III was identified as the final covariate in the dataset. S1 Fig illustrates the performance of the model at each stage. The 
highest validation AUC of 0.867 was observed at the stage with 12 covariates. The AUC obtained in the test dataset was 
0.728. To ensure a robust evaluation, this process was repeated 100 times across different random splits (S2 Fig). The 

All
(n = 290)

aIBL
<80mL/kg
(n = 149)

aIBL
≥80mL/kg
(n = 141)

P value

PTpercent, % 57.7 (8.8-115.1) 68.4 (19.1-115.1) 49.7 (8.8-95.6) <0.001

RBC, x 104/μL 310.5 (122.0-461.0) 334.0 (210.0-461.0) 278.0 (122.0-442.0) <0.001

TAT, ng/mL 2.5 (0.5-218.1) 2.0 (0.5-53.1) 3.0 (0.6-218.1) <0.001

TBA, μmol/L 67.2 (0.1-619.6) 30.9 (0.1-493.6) 119.5 (0.4-619.6) <0.001

Tbil, mg/dL 2.74 (0.11-50.01) 1.56 (0.11-25.63) 6.18 (0.16-50.01) <0.001

Tchol, mg/dL 142.0 (46.0-1999.0) 149.0 (46.0-1999.0) 134.0 (56.0-1115.0) 0.010

TCO2, mmol/L 24.5 (17.8-38.3) 23.9 (17.8-34.4) 25.2 (18.6-38.3) 0.002

TG, mg/dL 49.0 (10.0-370.0) 49.0 (15.0-370.0) 49.0 (10.0-342.0) 0.499

TP, g/dL 5.7 (3.2-8.4) 5.8 (4.3-7.3) 5.6 (3.2-8.4) 0.113

UA, mg/dL 4.0 (0.6-9.9) 4.1 (0.7-9.5) 3.9 (0.6-9.9) 0.027

WBC, x 103/μL 3.1 (0.5-15.7) 3.4 (0.6-10.2) 3.0 (0.5-15.7) 0.251

aIBL, adjusted intraoperative bleeding; IBL, intraoperative bleeding.

Abbreviations for laboratory test items are detailed in S1 Table.

https://doi.org/10.1371/journal.pone.0326000.t002

Table 2.  (Continued)

https://doi.org/10.1371/journal.pone.0326000.t002
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average number of selected features across these 100 trials was 15.1. The average AUC in the validation and test data-
sets was 0.840 (standard deviation [SD] = 0.022) and 0.738 (SD = 0.046), respectively. These findings support a sys-
tematic approach for preoperatively predicting massive IBL in LDLT, suggesting the robustness and reliability of feature 
selection and model performance.

Fig 3.  Correlations between preoperative laboratory tests and intraoperative bleeding volume. The left panel shows Spearman’s rank correla-
tion coefficients, and the right panel shows p-values. All abbreviations and their units are listed in S1 Table.

https://doi.org/10.1371/journal.pone.0326000.g003

https://doi.org/10.1371/journal.pone.0326000.g003
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Identifying key predictors and constructing an online calculator for massive aIBL

To evaluate the consistency of selected features across 100 random data splits, index stability was assessed using 
occurrence rate and absolute mean weight (Fig 4). Based on the results from 100 iterations, features meeting the 
predefined criteria of an occurrence rate of at least 50% and an absolute mean weight of 0.5 or greater were selected. 
A total of 11 features were identified as robust predictors. Among them, six features exhibited positive mean weights, 
indicating a direct association with massive aIBL occurrence: D-dimer, ferritin, age, total bile acids, gamma-glutamyl 
transferase, and ammonia. Conversely, five features demonstrated negative mean weights, suggesting a potential 
protective effect: fibrinogen, platelet count, albumin, LLS graft, and antithrombin III. To enhance clinical applicabil-
ity and ensure streamlined implementation, we developed a final prediction model for massive aIBL using these 11 
selected features. In the test across all 290 cases, the model achieved an AUC of 0.844, with a sensitivity of 74.5%, 
specificity of 78.5%, positive predictive value of 76.6%, and negative predictive value of 76.5%. To further facilitate 
clinical adoption, we developed a user-friendly online calculator based on this risk model and made available online 
at: https://tai1wakiya.shinyapps.io/ldlt_bleeding_ml/.

Discussion

In this study, we developed and validated ML models to predict massive IBL during LDLT. Using preoperative 
demographic and laboratory data, we employed logistic regression models with backward feature selection to 
achieve high predictive accuracy. Furthermore, we developed an online calculator that provides physicians with an 
accessible tool to estimate an individualized risk of massive IBL in the preoperative setting. To our knowledge, this 
is the first study to apply a ML model for IBL prediction in LT and to translate these findings into a clinically appli-
cable prediction tool. The true innovation of this study lies not only in the excellent accuracy of the model but also 
in showcasing a groundbreaking artificial intelligence-based approach with significant future potential for manage-
ment in LT.

Fig 4.  Index stability across 100 iterations. The index is arranged in order of occurrence, sorted by mean weight. All abbreviations and their units are 
listed in S1 Table.

https://doi.org/10.1371/journal.pone.0326000.g004

https://tai1wakiya.shinyapps.io/ldlt_bleeding_ml/
https://doi.org/10.1371/journal.pone.0326000.g004
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Previous studies have attempted to predict bleeding and transfusion requirements in LT by using various clinical param-
eters and traditional standard statistical models [6–9]. While these studies have provided valuable insights, their models 
often exhibit suboptimal predictive performance and limited clinical applicability. Standard methods in clinical studies have 
several limitations, including the selection of variables, confounding factors, and multicollinearity, as demonstrated in this 
study. Even in prospective studies, the issue of multicollinearity remains a challenge to resolve. Furthermore, standard 
methods often fail to capture the complex, non-linear relationships between variables that significantly influence bleeding 
risk. In contrast, our study goes beyond traditional analyses by employing a data-driven approach, allowing us to system-
atically identify not only well-established risk factors but also previously unrecognized predictors.

Our study leveraged ML techniques, which are used to identify intricate patterns and interactions among multiple fac-
tors, demonstrating superior accuracy and robustness in predicting massive IBL. ML offers several key benefits, including 
increased accuracy through the simultaneous analysis of multiple variables and their interrelationships, and the ability 
to identify complex patterns and correlations that traditional methods might overlook. By incorporating a comprehensive 
set of preoperative variables and employing advanced feature selection methods, our ML models offer a more reliable 
and practical tool for preoperative risk stratification in LDLT. These models effectively manage complex, high-dimensional 
datasets, uncover hidden correlations, and explore non-linear medical relationships, enhancing predictive capabilities and 
potentially leading to new scientific insights.

Crucially, we went beyond model development by translating these findings into a tangible clinical tool. To ensure 
practical utility in real-world clinical settings, we developed an online calculator based on our predictive model, providing 
an accessible platform for physicians to rapidly assess massive IBL risk. This helps bridge the gap between advanced 
computational modeling and clinical decision-making, while integrating ML into clinical practice, which may contribute to 
improving patient outcomes and optimizing resource management.

Antithrombin III and ferritin emerged as significant predictors in our machine learning-based model, providing new 
insights into bleeding risk in LT. Antithrombin, a liver-derived serine protease inhibitor, is a key physiological anticoagulant 
with additional anti-inflammatory effects mediated through endothelial interactions [17]. In cardiovascular surgery, low 
preoperative antithrombin III levels have been consistently associated with increased intraoperative blood loss [18]. Mech-
anistically, reduced antithrombin activity allows excess thrombin and factor Xa activity, promotes systemic microthrom-
bosis and a hypercoagulable state, and accelerates the consumption of coagulation factors, platelets, and antithrombin 
itself. Secondary fibrinolysis then ensues, leading to a bleeding tendency. Antithrombin supplementation can, in principle, 
interrupt this cycle by suppressing thrombin generation and indirectly support hemostasis through endothelial protection. 
However, clinical outcomes have been inconsistent across studies and meta-analyses [19–22]. Similarly, although the 
available studies are both dated and limited in number, evidence supporting a positive effect of antithrombin III supple-
mentation in LT remains limited [23,24]. Therefore, while antithrombin appears useful as a biomarker for risk stratification, 
effective intervention in the LT setting will likely require targeting the early hypercoagulable phase with optimized dosing 
and timing rather than antithrombin restoration alone.

Regarding ferritin, no direct evidence has previously established its role in predicting bleeding in liver surgery, includ-
ing LT. Ferritin reflects both iron metabolism and systemic inflammation, and its elevation may indicate a preoperative 
inflammatory state that predisposes patients to coagulopathy [25]. Iron overload induces oxidative stress through Fenton 
chemistry, which causes endothelial dysfunction and consequently promotes bleeding [26]. Inflammatory responses are 
known to disrupt hemostasis through mechanisms such as endothelial dysfunction, hyperfibrinolysis, and altered coagu-
lation cascades [27]. Supporting this, our analysis identified a strong positive correlation between IBL and C-reactive pro-
tein, another established inflammatory marker; however, ferritin demonstrated greater stability as a predictive index than 
C-reactive protein. Together, these findings illustrate how machine learning can reveal biologically and clinically relevant 
predictors that are often overlooked by conventional approaches. Ferritin appears to be a useful biomarker for risk strati-
fication, but interventional evidence is limited. No randomized controlled trial has shown that lowering ferritin through iron 
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chelation reduces IBL in LT. Therefore, the benefit of iron-metabolism–targeted hemostatic strategies remains uncertain 
and warrants prospective evaluation.

This model was developed and calibrated in an LDLT cohort and is therefore positioned primarily for LDLT work-
flows; application to orthotopic liver transplantation (OLT) should be undertaken with caution. In settings where LDLT 
predominates, including Japan, OLT often represents a different case mix, with a higher prevalence of ALF and 
higher MELD scores, which may shift the relative importance of predictors. As a small exploratory check, we applied 
the LDLT model without recalibration to our 13 OLT recipients treated during the study period and obtained 9 of 13 
correct classifications, corresponding to sensitivity 75%, specificity 60%, accuracy 69%, and AUC 0.694 (S4 Table). 
While this suggests some portability, broader applicability will require model updating on dedicated OLT datasets 
and, ideally, training and validation in mixed multicenter cohorts that include both OLT and LDLT.

The findings of this current study should be interpreted in light of several limitations. First, because fluid that accumulates 
intraoperatively can contain non-blood components, our measurement may slightly overestimate true blood loss. Although 
pre-existing ascites at laparotomy was excluded from IBL measurement, complete separation of blood from newly accu-
mulated non-blood peritoneal fluid during surgery is difficult in routine practice. In anticipation of multicenter validation, 
standardizing IBL definitions and measurement across institutions would improve comparability and model transportability. 
Second, some clinically relevant factors could not be incorporated. For example, viscoelastic testing with ROTEM, which 
informs coagulopathy management, was not routinely available during the study period. These variables were therefore 
not included in feature selection. The candidate feature set warrants reconsideration in future work, and incorporating such 
additional features may further improve model discrimination and calibration. Third, it was a single-institution cohort study 
with a relatively small patient population, which limits generalizability. Additional training data could potentially enhance the 
prediction accuracy. Furthermore, the lack of external validation using an independent dataset is also a limitation. One rea-
son for the absence of external validation is the argument made by some biostatistics experts in predictive research stating 
that independent verification can be misleading and should be omitted as a model evaluation step [28,29]. These experts 
report that simulations confirming at least 100 events and 100 non-events are required for a reliable assessment of predic-
tive performance. They suggest using all available data for model development, with some form of cross-validation or boot-
strap validation to assess the statistical optimism in average predictive performance [29,30]. Based on these biostatistical 
perspectives, we chose to build our ML model using all data with cross-validation, performing 100 iterations with randomly 
split datasets to ensure robustness and generalizability. However, we acknowledge that the results of predictive research 
with small sample sizes are exploratory in nature [29]. Nevertheless, external validation in various clinical settings, cover-
ing the heterogeneity among cases, is essential for clinical application. Given the high prediction accuracy of our method, 
further development using large databases, such as national or regional datasets, is expected and necessary.

Conclusions

Our study demonstrates the potential of ML to predict massive IBL during LDLT. These data-driven predictive models 
could revolutionize preoperative planning and intraoperative management, ultimately improving patient care and resource 
efficiency. As some predictors are exploratory, they should be interpreted cautiously until externally validated. Future 
research should focus on external validation using large datasets and the integration of these models into clinical practice.

Supporting information

S1 Fig. AUC by step in backward selection. AUC at each step of backward stepwise feature selection for the binary 
logistic regression model, shown for one representative iteration (one of 100 repetitions). AUC, area under the receiver 
operating characteristic curve.
(TIF)
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