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Abstract

In an increasingly diverse investment landscape, the cryptocurrency market has
emerged as a compelling option, offering the potential for high returns, diversification
opportunities, and significant liquidity. However, the inherent volatility and regulatory
uncertainties of this market present substantial risks, underscoring the need for a
well-structured investment strategy. Among the various strategies available, portfolio
optimization has become a dynamic and evolving area of focus in finance. Despite
advancements in financial modeling, traditional portfolio optimization models often
fall short, as uncertainty remains a fundamental characteristic of capital markets. To
address this challenge, this paper integrates credibility theory with the Conditional
Value-at-Risk (CVaR) framework, harnessing their combined strengths in model-

ing downside risk and managing uncertainty. Nevertheless, relying solely on this
model may not be sufficient for achieving optimal investment outcomes, as portfolio
optimization models often neglect the crucial step of selecting high-quality assets.
This highlights the essential need for a robust pre-selection process. To tackle this
issue, this paper introduces a novel pre-selection framework based on Multi-Attribute
Decision Making (MADM) methods. Acknowledging that different MADM approaches
can yield varying results—which creates uncertainty regarding the most reliable
method—this research proposes a systematic framework for asset evaluation. By
considering these factors, this paper proposes a two-stage framework for enhancing
cryptocurrency portfolio performance. Stage 1, involves establishing comprehensive
performance criteria for cryptocurrencies and employing a novel method for asset
pre-selection. Stage 2 focuses on optimizing the selected assets using a credibilis-
tic CVaR model, while considering practical constraints from real-world investment
scenarios. The results of this two-stage framework demonstrate its effectiveness in
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constructing well-diversified and efficient portfolios, addressing both the challenges of
asset pre-selection and the complexities associated with uncertainty. By integrating
these methodologies, investors can navigate the risks associated with cryptocurrency
investments more effectively while maximizing potential returns.

1. Introduction

Investment plays a crucial role in fostering economic growth while enhancing per-
sonal financial well-being. It enables individuals and institutions to grow their wealth
over time, build financial security, and contribute to the overall prosperity of society.
One of the primary advantages of investing is the ability to generate passive income.
By investing in assets such as stocks, bonds, or real estate, individuals can earn
dividends, interest, or rental income, supplementing their primary sources of income.
This passive income can be reinvested to further increase wealth or used to fund
their lifestyle, providing financial stability and independence [1]. Moreover, investing
plays a crucial role in the economy by channeling funds toward productive activities,
fostering innovation, creating jobs, and ultimately driving economic growth [2].

In recent years, the investment environment has expanded significantly, offering a
wider range of market opportunities for investors [3]. Among these emerging markets,
the cryptocurrency market has garnered significant attention and popularity, driven
by its unique characteristics and potential for high returns [4]. Cryptocurrency offers
several key benefits that make it an attractive investment option. First, it provides
opportunities for diversification, allowing investors to reduce their exposure to tradi-
tional assets such as stocks and bonds [5]. Cryptocurrencies are also known for their
high liquidity, enabling investors to buy and sell quickly at competitive prices. Addi-
tionally, the decentralized nature of cryptocurrencies offers greater transparency and
security compared to traditional financial systems, as blockchain technology ensures
that transactions are recorded in a secure, immutable ledger [6]. Moreover, cryptocur-
rencies have the potential for high growth due to their evolving use cases, including
decentralized finance, digital assets, and smart contracts, making them appealing to
risk-tolerant investors seeking substantial returns [7,8]. However, while this market
presents significant investment opportunities, it also carries substantial risks due to
its inherent volatility, regulatory uncertainties, and market dynamics [9,10]. Price fluc-
tuations in the cryptocurrency market can be sudden and extreme, posing challenges
even to experienced investors [11]. Therefore, implementing a well-structured invest-
ment strategy is essential for managing risks, preserving capital, and maximizing
long-term returns. A wide range of investment strategies has been developed, each
designed to align with specific risk tolerances and financial objectives. Among these
approaches, portfolio optimization has emerged as one of the most effective and
widely applied methods in modern investment management.

Portfolio optimization is a dynamic and evolving topic in the fields of finance and
investment, playing an important role in modern asset management [12,13]. The con-
cept was first introduced by Harry Markowitz [14] in 1952 through his groundbreaking

PLOS One | https://doi.org/10.137 1/journal.pone.0325973  July 21, 2025 2/45




PLO\Sﬁ\\.- One

work on Modern Portfolio Theory (MPT), which laid the foundation for systematic investment strategies. A portfolio, in the
context of investment, refers to a collection of financial assets such as stocks, bonds, commaodities, real estate, or cryp-
tocurrencies held by an individual or institution. The primary goal of building a portfolio is to balance risk and return by
diversifying investments across different asset classes. Diversification reduces the overall risk of the portfolio because the
performance of various assets may not be perfectly correlated; when some assets decline in value, others may perform
well, offsetting potential losses. Markowitz’s portfolio theory introduced the concept of efficient portfolios, which offer the
highest expected return for a given level of risk or the lowest risk for a desired level of return. His mean-variance optimiza-
tion framework uses expected returns, variances, and covariances of asset returns to determine optimal asset allocation.
This approach remains a cornerstone of investment management, guiding both individual and institutional investors in
constructing portfolios that align with their financial goals and risk tolerance. Portfolio optimization has attracted significant
attention from both investors and researchers, driving continuous advancements in investment management techniques.
As the financial markets evolved, the need for more robust risk management tools became evident, prompting research-
ers to develop a variety of risk measures tailored to different investment environments. Among these measures, Value at
Risk (VaR) [15] and Conditional Value at Risk (CVaR) [16,17] have gained considerable prominence [18]. Both belong to
the class of downside risk measures, focusing on potential losses rather than overall variability. VaR estimates the max-
imum expected loss over a specific time frame at a given confidence level, while CVaR goes a step further by assessing
the average loss beyond the VaR threshold, providing a more comprehensive view of extreme risks [19,20]. Due to the
highly volatile and unpredictable nature of the cryptocurrency market, downside risk measures like VaR and CVaR have
better applicability in this context. They enable investors to evaluate and manage extreme losses, making them valuable
tools for constructing more resilient and risk-aware investment portfolios in the crypto market.

However, despite advances in financial modeling, uncertainty remains a fundamental characteristic of capital markets,
as much of the information used in investment decision-making is inherently uncertain, imprecise, or incomplete [21].

To tackle the challenges posed by this uncertainty, researchers have explored alternative approaches such as fuzzy set
theory, first introduced by Zadeh [22]. Building on this concept, Liu [23] proposed credibility theory, which was further
expanded in subsequent works [24]. Credibility theory offers several advantages in addressing uncertainty within financial
markets. Unlike traditional probabilistic models that rely on precise statistical distributions, credibility theory provides a
flexible framework for handling imprecise and incomplete data. It combines elements of probability and possibility theory,
making it well-suited for environments characterized by ambiguity and vagueness. One key benefit of credibility theory

is its ability to model uncertain asset returns using a more realistic representation of market conditions. This approach
accounts for both optimistic and pessimistic scenarios, enabling more comprehensive risk assessments. Additionally,
credibility measures are computationally efficient and can be easily integrated into portfolio optimization models, enhanc-
ing their practical applicability. Credibility theory has been applied in several portfolio optimization studies, demonstrating
its effectiveness in managing uncertainty and enhancing investment strategies. However, its application in cryptocurrency
portfolio optimization remains relatively underexplored. Given the unique volatility and uncertainty of the crypto market,
further investigation is needed to harness the potential of this theory in this emerging asset class.

To address this research gap, this paper integrates credibility theory with the CVaR framework, leveraging their com-
bined strengths in modeling downside risk and managing uncertainty. Additionally, practical constraints commonly encoun-
tered in real-world investment scenarios are considered, ensuring that the proposed framework is both theoretically
sound and practically applicable in the dynamic cryptocurrency market. However, relying solely on portfolio optimization
models may not be sufficient to achieve optimal investment outcomes. While these models offer valuable frameworks for
asset allocation, they often overlook the critical step of selecting high-quality assets. A thorough pre-selection process is
essential to identify assets with strong fundamentals, growth potential, and resilience to market fluctuations. By focusing
on high-potential assets before applying portfolio optimization models, investors can enhance the effectiveness of their
strategies. This ensures that the portfolio includes assets well-positioned for growth while minimizing potential risks. In the
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cryptocurrency market, pre-selection is particularly important due to the presence of numerous assets with limited invest-
ment value. Various methodologies have been proposed for asset pre-selection, including Data Envelopment Analysis
(DEA), machine learning, and deep learning techniques. Among these, Multi-Attribute Decision-Making (MADM) methods
have proven effective because they can evaluate assets based on multiple criteria, which is crucial for investors making
informed decisions. However, a notable challenge with MADM methods is that different methods can produce varying
results, creating uncertainty about which approach provides the most reliable outcome. To address this issue, this paper
proposes a novel pre-selection framework based on MADM methods that delivers robust and consistent results. To the
best of our knowledge, no existing study has applied a systematic pre-selection process in the context of cryptocurrency
portfolio optimization. Therefore, this paper first introduces a comprehensive set of cryptocurrency performance criteria
and utilizes the proposed pre-selection method based on these criteria. By integrating these components, this paper
presents a two-stage framework for enhancing cryptocurrency portfolio performance. In the first stage, after defining rele-
vant cryptocurrency performance criteria, we apply the novel pre-selection method. In the second stage, we implement a
credibilistic CVaR model with practical investment constraints, creating a comprehensive and effective investment strategy
for the cryptocurrency market.

The remainder of this paper is organized as follows: Section 2 provides a comprehensive and systematic literature
review in four subsections, examining prior research on (l) cryptocurrency portfolio optimization, (ll) portfolio optimization
with asset pre-selection, (lll) the application of credibility theory in portfolio optimization, and (IV) the identified research
gap. Section 3 outlines the research methodology, beginning with the introduction of key concepts and definitions related
to each stage of the proposed framework. This is followed by introducing alternatives and defining cryptocurrency per-
formance criteria essential for the asset pre-selection process in Stage 1. Finally, the proposed optimization model for
Stage 2, based on the credibilistic CVaR approach with practical investment constraints, is developed in detail. Section
4 presents the empirical results and computational analysis of the proposed two-stage framework, applying real-world
cryptocurrency market data to evaluate its performance. Section 5 provides an in-depth discussion, critically analyzing the
theoretical foundations and empirical outcomes of the proposed framework. Section 6 concludes the study by summariz-
ing key findings and suggesting potential directions for future research.

2. Literature review

This section provides a comprehensive review of the relevant literature, divided into four subsections to cover all key
aspects of the research. The first subsection reviews existing studies on cryptocurrency portfolio optimization, highlighting
various methods and frameworks used in this emerging market. The second subsection focuses on portfolio optimization
with asset pre-selection, emphasizing techniques employed to enhance investment outcomes through prior asset filtering.
The third subsection explores the application of credibility theory in portfolio optimization, discussing its role in managing
uncertainty and improving risk assessment. Finally, the fourth subsection identifies the research gap, outlining unexplored
areas and justifying the need for the proposed two-stage framework.

2.1. Cryptocurrency portfolio optimization

Cryptocurrency portfolio optimization has become a prominent area of research, fueled by the inherent complexity and
volatility of digital asset markets. As the cryptocurrency sector continues to expand, researchers and financial analysts
have concentrated on crafting innovative models and strategies to effectively balance risk and maximize returns in this
dynamic investment landscape. This literature review examines the wide range of methodologies and techniques applied
to cryptocurrency portfolio optimization, highlighting significant findings and advancements that contribute to shaping the
development of this fast-evolving domain.

James and Menzies [25] investigated whether the cryptocurrency market exhibits mathematical properties comparable
to those of the equity market. Departing from traditional portfolio theory, which is grounded in the financial behavior of
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equity securities, their research focused on the purchasing patterns of retail cryptocurrency investors. The study empha-
sized collective market dynamics and portfolio diversification within the cryptocurrency domain, exploring the applicability
of equity market findings to digital assets. Bowala and Singh [26] developed a data-driven risk forecasting approach
tailored to cryptocurrency portfolios, addressing the skewness and kurtosis of returns. Critiquing traditional risk measures
for their normality assumptions, they utilized high-frequency data to better capture volatility dynamics. Results showed
superior performance in optimizing cryptocurrency portfolios, providing a robust framework for risk management in this
volatile asset class. Sahu et al. [27] compared portfolio optimization methods and short-term strategies for the cryptocur-
rency market using high-frequency data from the top ten cryptocurrencies by market capitalization. The study evaluated
Sharpe ratio maximization and kurtosis minimization to balance returns and risks, offering insights into optimizing portfo-
lios in dynamic market conditions. Chen [28] examined the relevance and effectiveness of modern portfolio theory (MPT)
in portfolios that include cryptocurrencies. The study assessed whether traditional MPT principles, such as diversification
and risk—return optimization, remain applicable in the context of the high volatility and unique risk-return profiles character-
istic of cryptocurrencies. Jeleskovic et al. [29] explored the potential benefits of integrating cryptocurrencies into traditional
investment portfolios. Using a GARCH-Copula model within the Markowitz framework, the study evaluated whether such
integration enhances portfolio performance, particularly by improving the Sharpe ratio and overall portfolio stability,
offering new perspectives on optimizing mixed-asset portfolios. Kim et al. [30] examined the risk—return profiles of tradi-
tional, cryptocurrency, and hybrid portfolios, focusing on the impact of cryptocurrency integration into global portfolios.
Using ensemble methods and tracing strategies, the study analyzed allocation ratios of 1%, 3%, and 5% across optimiza-
tion techniques, including minimum variance, maximum diversification, equal risk contribution, and hierarchical risk parity.
Results highlighted the influence of allocation levels on returns, volatility, Sharpe ratios, and maximum drawdowns,
providing critical insights for optimizing portfolios with cryptocurrency exposure. Hrytsiuk et al. [31] introduced a modified
Markowitz model for cryptocurrency portfolios, substituting the variance-based risk metric with VaR. By incorporating the
Cauchy distribution characteristic of cryptocurrency returns, this approach addressed the standard model’s reliance on
normality assumptions. The findings highlighted improved risk assessment and portfolio robustness, effectively capturing
the heavy tails and extreme risks of volatile digital asset markets. Brauneis and Mestel [32] applied the Markowitz
mean-variance framework to assess diversification benefits in cryptocurrency portfolios using daily data from the top 500
cryptocurrencies over three years. The study compared naive diversification with optimization strategies targeting maxi-
mum return and minimum variance. Results demonstrated that diversified portfolios significantly reduced risk and outper-
formed single-asset investments, such as holding only Bitcoin, in overall performance. Ma et al. [33] used data from 2015
to 2019 to analyze the impact of integrating Bitcoin (BTC), Ethereum (ETH), Ripple (XRP), Bitcoin Cash (BTC), and
Litecoin (LTC) into traditional portfolios. The study evaluated diversification effects and risk-return improvements across
asset classes using various optimization techniques, emphasizing Ethereum and Bitcoin’s superior diversification benefits.
Mba et al. [34] proposed two advanced cryptocurrency portfolio optimization models, GARCH-DE and GARCH-DE-t-
copula, comparing them to the traditional Differential Evolution (DE) model. These models, tested in single- and multi-
period frameworks, addressed complex dependency structures and extreme risks in cryptocurrency markets. The
GARCH-DE-t-copula model, incorporating a t-copula, effectively captured tail dependencies and volatility clustering,
demonstrating superior risk management and return optimization under market volatility. Aljinovi¢ et al. [35] introduced a
multicriteria portfolio optimization approach leveraging the PROMETHEE Il method, expanding beyond traditional return
and risk measures. Their model incorporated diverse criteria, such as market capitalization, trading volume, VaR, CVaR,
and the overall attractiveness of cryptocurrencies. Using data from January 2017 to February 2020, they demonstrated
that their multicriteria approach achieved superior out-of-sample portfolio performance compared to conventional optimi-
zation models across various risk and return metrics. Maghsoodi [36] proposed a hybrid decision support system for
cryptocurrency portfolio management, integrating time series forecasting via the Prophet Forecasting Model (PFM) with
the enhanced CLUS-MCDA Il algorithm. This system utilized advanced clustering methods, such as DBSCAN, alongside
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multicriteria decision analysis techniques like VIKOR and MULTIMOORA, to optimize allocation across more than 70
cryptocurrencies. Their model provided investors with a robust and informed tool to navigate the highly dynamic cryptocur-
rency market. Mba and Mwambi [37] developed the Markov-switching COGARCH-R-vine (MSCOGARCH) model to
optimize cryptocurrency portfolios by addressing structural breaks, heavy tails, and volatility clustering. Compared to a
single-regime COGARCH model, the MSCOGARCH model demonstrated superior risk estimation and portfolio optimiza-
tion by accommodating regime changes in volatility. This approach offered enhanced flexibility for managing portfolios in
the volatile cryptocurrency market. Ali et al. [19] explored the diversification benefits of green cryptocurrencies in the
context of global portfolio optimization, introducing a novel four-step process to identify cryptocurrencies that are more
energy-efficient than others. This study highlights the growing concern over the environmental impact of cryptocurrencies,
particularly energy-intensive mining practices. By focusing on energy-efficient cryptocurrencies such as Cardano (ADA),
Tezos (XTZ), and Stellar (XLM), the authors demonstrate how these green cryptocurrencies can serve as effective diversi-
fiers for portfolios, offering benefits comparable to or even superior to their non-green counterparts like Bitcoin (BTC) and
Ethereum (ETH). The research employed a variety of advanced econometric models, including dynamic conditional
correlation (DCC-GARCH) and four-moment modified VaR, to evaluate the downside risk and expected shortfall of
portfolios containing both green and non-green cryptocurrencies. In a recent study, Ghanbari et al. [38] proposed a robust
framework for cryptocurrency portfolio optimization, leveraging the credibilistic CVaR criterion to address the distinct
characteristics of digital asset markets. Recognizing the high volatility, frequent price swings, and the inherent uncertainty
of cryptocurrencies, their approach models asset returns using fuzzy logic, enabling greater accuracy in risk assessment.
Their proposed framework accounts for the unpredictable behavior of the crypto market, including extreme tail risks,
offering a tailored solution for managing digital asset portfolios. This advancement underscores the potential of
credibility-based models in navigating the complexities of cryptocurrency investment.

2.2. Portfolio optimization with asset preselection

Pre-selection plays a vital role in portfolio management by identifying and selecting assets prior to the portfolio
optimization process. This step is particularly critical in volatile markets such as cryptocurrencies, where asset selection
significantly affects portfolio performance. Pre-selection involves various methodologies aimed at filtering and selecting
high-potential assets. This literature review explores the significance of pre-selection in portfolio optimization, emphasizing
key developments and notable findings that shape this rapidly evolving field.

Lozza et al. [39] conducted an ex-post analysis of asset preselection frameworks, employing the joint Markovian
dynamics of asset returns within stochastic market boundaries. Examining approximately 10,000 equities across 14
international markets, their findings substantiated the superior efficacy of Markovian-based methodologies over traditional
Sharpe ratio optimization, emphasizing the strategic significance of probabilistic state transitions in enhancing portfolio
efficiency amidst intricate market dynamics. Huang [40] developed an advanced stock selection paradigm integrating
Support Vector Regression (SVR) for performance forecasting and Genetic Algorithms (GA) for parameter optimization
and feature refinement. Equally weighted portfolios, derived from performance-ranked stocks, demonstrated empirically
superior returns, affirming the model’s efficacy over conventional benchmarks in optimizing investment outcomes. Nguyen
[41] introduced a sophisticated risk-measurement framework for large-scale datasets, integrating a stock preselection
mechanism to exclude low-diversification stocks pre-optimization. By leveraging performance metrics such as the Sharpe
ratio, Stutzer index, and Omega measure, the methodology enhanced portfolio construction. Empirical findings confirmed
that preselection markedly improved portfolio performance and diversification, addressing critical challenges in large-scale
optimization. Rather et al. [42] introduced a robust hybrid model for stock return prediction, integrating linear models,
specifically the Autoregressive Moving Average and Exponential Smoothing techniques, with the nonlinear capabilities of a
Recurrent Neural Network (RNN). By combining these methods, the framework leveraged their complementary strengths,
while GA optimized the model’s weight distribution, ensuring balanced contributions. Experimental results demonstrated
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the hybrid model’s significant advantage over standalone RNNs, achieving superior predictive accuracy. Le Caillec et al.
[43] proposed a stock selection model integrating behavioral uncertainty and probabilistic techniques, utilizing Cumulative
Return and multiple Technical Indicators for preselection. Empirical analysis affirmed its efficacy in enhancing portfolio
performance, addressing traditional strategy limitations by incorporating both technical analysis and behavioral dynamics.
Fischer and Krauss [44] utilized a LSTM neural network to predict S&P 500 stock movements (1992-2015), outperform-
ing models without memory functions (e.g., RF, DNN, LR). LSTM-based portfolios consistently exceeded alternatives,
affirming the superiority of memory-enhanced architectures in financial time series analysis. Alizadeh et al. [45] developed
a portfolio optimization model combining an adaptive neural fuzzy inference system for return prediction with a variance
index for risk assessment. The model outperformed traditional Mean-Variance, neural network, and Sugeno—Yasukawa
approaches, demonstrating the efficacy of integrating Al techniques with modern portfolio optimization for enhanced
investment performance. Paiva et al. [46] introduced a unified decision-making model for day-trading in stock market
investments, combining Support Vector Machines (SVM) with the MV framework for portfolio selection. The model was
benchmarked against two alternatives: SVM+ 1/N and Random+MYV. Experimental results using assets from the Ibovespa
stock market demonstrated that the proposed model delivered superior performance, highlighting its effectiveness in
day-trading scenarios. Wang et al. [47] proposed a portfolio construction approach combining LSTM networks with the MV
model. The LSTM network was employed to identify stock price patterns using various technical indicators, including the
Relative Strength Index (RSI), Momentum Index (MOM), and True Range (TR). The MV model then optimized portfolios
composed of five to ten assets. Comparative experiments revealed that the LSTM+MV method consistently outperformed
other machine learning and MV-based models, particularly when portfolios included ten stocks. Ta et al. [48] constructed a
portfolio using a LSTM neural network alongside three portfolio optimization techniques: the equal weight method, Monte
Carlo simulation, and the Mean-Variance (MV) model. For comparison, linear regression and SVM were also applied in
the stock selection process. Test results demonstrated that the LSTM neural network surpassed linear regression and
SVM in prediction accuracy, and the portfolios it generated outperformed those built using the alternative methods. Chen
et al. [49] proposed an innovative portfolio construction method integrating eXtreme Gradient Boosting (XGBoost) with

an improved firefly algorithm (IFA) for stock price prediction. The Mean-Variance (MV) model was subsequently used

to select and optimize portfolios containing varying numbers of stocks, focusing on those with higher predicted returns.
Empirical evaluations revealed that the proposed hybrid model outperformed benchmark models, with its effectiveness
being particularly notable when the portfolio consisted of seven stocks.

2.3. Portfolio optimization using credibility theory

Credibilistic portfolio optimization has gained significant attention in research due to its effectiveness in addressing
uncertainty and ambiguity common in financial markets. Grounded in credibility theory and supported by fuzzy logic, this
approach provides a robust framework for optimizing portfolios under conditions of high market volatility. Its capacity

to incorporate expert opinions and subjective assessments into the investment decision-making process enhances its
relevance in complex financial environments. This literature review explores the application of credibility theory in portfolio
optimization, highlighting key methodologies, notable advancements, and empirical findings that underscore its value and
potential in contemporary portfolio management.

Liu et al. [50] developed a credibilistic CVaR-based portfolio optimization model, enhancing traditional mean-variance
frameworks by integrating CVaR of fuzzy variables to distinguish downside risks from upside potential. Solved via deter-
ministic mixed-integer programming, the model ensures computational efficiency and refined risk management in portfolio
optimization. Mohebbi and Najafi [51] proposed a multi-period fuzzy portfolio optimization model integrating credibility
theory and scenario tree analysis to address market uncertainty. Using a bi-objective VaR framework, the model opti-
mizes portfolios while incorporating transaction costs, risk-free investments, and practical constraints such as cardinality,
thresholds, classes, and liquidity. Solved via interactive dynamic programming, the model combines fuzzy set theory with
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scenario analysis, offering a robust, adaptive tool for balanced portfolio optimization under real-world conditions. Deng et
al. [52] developed a fuzzy mean-entropy portfolio optimization model leveraging credibility theory to enhance risk mea-
surement and portfolio selection under uncertainty. The model integrates entropy as a risk measure, arguing its superiority
over variance, especially in the context of fuzzy financial markets. It also incorporates transaction costs, addressing prac-
tical considerations often overlooked in traditional models. A sensitivity analysis was performed to assess the influence of
parameter variations on the optimal portfolio configuration. The proposed approach aims to equip investors with a reliable
and stable tool for portfolio optimization in uncertain and transaction-cost-sensitive financial environments. Liu et al. [53]
proposed a multi-period portfolio optimization model designed to incorporate bankruptcy control within a fuzzy economic
framework using credibility theory. The model seeks to maximize terminal wealth while simultaneously minimizing cumu-
lative risk and uncertainty throughout the investment horizon. To enhance decision-making, it integrates affine recourse,
addressing the impact of historical prediction biases on current portfolio adjustments. The authors also developed a hybrid
particle swarm optimization algorithm to solve the model efficiently, providing a practical and robust tool for investors to
manage risk and prevent bankruptcy in complex multi-period investment scenarios. Gupta et al. [54] introduced a multi-
period portfolio optimization model utilizing coherent fuzzy numbers within a credibilistic framework to enhance
decision-making under uncertainty. The model allows for greater flexibility in defining investor risk tolerance by incorporat-
ing mean absolute semi-deviation and CVaR as risk measures. It also addresses practical constraints, including cardinal-
ity, skewness, and transaction costs, to create realistic and adaptable investment strategies across multiple time horizons.
The effectiveness of the proposed model was demonstrated through real-world case studies involving assets from the
National Stock Exchange of India and major U.S. stock indices, noting its practical applicability and robustness in diverse
market conditions. Mehlawat et al. [55] proposed a multiobjective portfolio optimization model employing coherent fuzzy
numbers within a credibilistic framework. This model innovatively integrates investor attitudes—pessimistic, optimistic,

or neutral—toward financial markets through a novel credibility function. It replaces variance with mean-absolute semi-
deviation for a more realistic risk measure and incorporates skewness to account for the asymmetry of returns. Numerical
examples and a genetic algorithm-based solution method highlight the model’s ability to capture investor preferences and
handle market uncertainties effectively, offering enhanced flexibility and precision compared to traditional approaches.
Garcia et al. [56] extended the traditional mean-semivariance portfolio selection model by developing a multiobjective
credibilistic framework that includes the Price-to-Earnings Ratio (PER) as an additional performance criterion. Using L-R
power fuzzy numbers to represent uncertainty in asset returns and PER, the model addresses limitations of the classical
mean-variance framework while integrating real-world constraints such as budget, bounds, and cardinality. Empirical tests
on stocks from the Latin American Integrated Market demonstrated the model’s ability to generate a well-diversified set of
efficient portfolios tailored to multiple objectives. In another study, Garcia et al. [57] introduced an advanced multiobjec-
tive portfolio optimization model extending the stochastic mean-variance approach by incorporating fuzzy multiobjective
criteria. Using trapezoidal fuzzy numbers, the model balances objectives related to return, risk, and liquidity, providing a
robust framework for portfolio selection under uncertain and dynamic market conditions. Recently, Ghanbari et al. [38]
extended the theoretical application of credibility theory in cryptocurrency portfolio optimization by incorporating trapezoi-
dal fuzzy variables and the credibilistic CVaR framework to effectively model and quantify extreme tail risks. The inclusion
of cardinality and allocation constraints further enhanced the model’s robustness, offering a comprehensive approach

to managing the stochastic complexities of digital asset markets. This work represents a significant contribution to the
field of quantitative financial optimization, setting a valuable benchmark for future research in cryptocurrency investment
strategies.

2.4. Research gap

After conducting a comprehensive literature review from various perspectives relevant to this study, several critical
research gaps have been identified that this paper aims to address:
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1. Lack of asset preselection in cryptocurrency portfolio optimization

To the best of our knowledge, no existing study on cryptocurrency portfolio optimization incorporates an asset preselection
stage, despite its crucial importance in such a highly volatile and diverse market. Given the wide range of cryptocurrencies
with varying investment potentials, preselection is essential for filtering out low-quality assets. This paper addresses this
gap by proposing a two-stage investment framework specifically designed for the cryptocurrency market. The first stage
focuses on asset preselection, while the second stage involves portfolio optimization.

2. Absence of cryptocurrency performance criteria

Due to the lack of studies involving asset preselection in cryptocurrency portfolio optimization, there is also no established
set of performance criteria tailored for evaluating cryptocurrencies. This gap leaves investors without clear guidelines for
assessing asset quality before portfolio construction. To address this gap, this paper proposes a comprehensive set of
cryptocurrency performance criteria that reflect fundamental, technical, and market-driven factors relevant to digital asset
evaluation.

3. Limitations of existing preselection methods

Although various methodologies for asset preselection exist, MADM methods have emerged as one of the more effective
approaches due to their ability to consider multiple evaluation criteria. However, a key limitation is that different MADM
methods often produce varying results, causing confusion for investors when selecting assets. To address this issue, this
paper proposes a hovel preselection strategy based on MADM methods that generates robust and reliable results, reduc-
ing ambiguity in investment decision-making.

4. Neglect of market uncertainty in cryptocurrency portfolio optimization

Uncertainty is an inherent characteristic of the cryptocurrency market due to its extreme volatility, limited historical data,
and unpredictable market dynamics. Despite its importance, uncertainty has been insufficiently addressed in existing cryp-
tocurrency portfolio optimization models. To fill this gap, this paper applies a credibilistic CVaR model, which effectively
accounts for uncertainty by incorporating fuzzy logic principles, providing a more realistic and adaptive risk management
approach. This model also considers practical constraints, enhancing its applicability and relevance in real-world invest-
ment scenarios.

3. Research methodology

This paper presents a two-stage framework for enhancing cryptocurrency portfolio performance, designed to address
portfolio construction challenges in volatile and uncertain cryptocurrency markets. The framework consists of two stages:
In stage 1, we perform pre-selection of high-potential assets by a novel asset preselection approach, and in stage 2, we
optimize the selected assets using a credibilistic CVaR approach (see Fig 1).

This section outlines the research methodology in detail and is divided into two subsections. Section 3.1, introduces the
pre-selection process of Stage 1, and Section 3.2, provides a detailed description of the optimization process in Stage 2.

3.1. Stage 1 - Asset preselection

In Stage 1, we focus on the pre-selection of high-potential assets using a novel approach grounded in MADM methods.
A notable challenge with MADM techniques is that different methods can yield varying results, leading to uncertainty
about which approach provides the most reliable outcome. To address this issue, this paper proposes a robust pre-
selection framework designed to provide consistent outcomes. This framework first calculates the results using a variety
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Fig 1. The methodology of proposed two-stage framework for enhancing cryptocurrency portfolio performance.

https://doi.org/10.1371/journal.pone.0325973.9001

of methods, specifically employing 13 MADM techniques in this paper. Each of these methods offers unique strengths and
perspectives in evaluating potential cryptocurrency assets. By utilizing multiple approaches, we aim to capture a compre-
hensive view of asset performance. Once the results are generated from these methods, they are systematically com-
bined using the Copeland approach. This method evaluates and aggregates the outcomes, allowing us to rank the assets
based on their overall performance across all selected MADM methods. By applying the Copeland approach, we enhance
the reliability of the final selections, mitigating the inconsistencies that can arise from relying on a single MADM method.
This dual-layered process not only strengthens our pre-selection framework but also ensures that the selected assets are
those most likely to perform well in the dynamic cryptocurrency market.
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In this section, we will first provide background knowledge on the 13 MADM methods and other approaches utilized in
Stage 1 of our framework. Following that, we will describe the cryptocurrency dataset, which represents the alternatives
in our analysis. In the third part, we will introduce the criteria for evaluating cryptocurrency performance. To the best of
our knowledge, no existing study has implemented a systematic pre-selection process in the context of cryptocurrency
portfolio optimization, resulting in a lack of benchmarks for these criteria. Therefore, we aim to establish a robust set of
criteria for evaluating cryptocurrency performance, which can serve as a valuable benchmark for assessing cryptocurren-
cies during pre-selection or selection. Finally, we will employ the Analytic Hierarchy Process (AHP) method to determine
the weight of each criterion, ensuring a systematic and rigorous evaluation framework.

3.1.1. Background knowledge on MADM methods. This paper employs a total of 13 MADM methods (see Table
1) to enhance the pre-selection process of cryptocurrency assets. These methods include MARCOS [58] (see Appendix
1in S1 Appendix), CODAS [59] (Appendix 2 in S1 Appendix), CoCoSo [60] (Appendix 3 in S1 Appendix), EDAS [61]
(Appendix 4 in S1 Appendix), WASPAS [62] (Appendix 5 in S1 Appendix), TOPSIS [63] (Appendix 6), MOORA [64]
(Appendix 7), COPRAS [65] (Appendix 8), ARAS [66] (Appendix 9 in S1 Appendix), VIKOR [67] (Appendix 10 in S1°
Appendix), MABAC [68] (Appendix 11 in S1 Appendix), MACBETH [69] (Appendix 12 in S1 Appendix), and TODIM
[70] (Appendix 13 in S1 Appendix). Each method offers unique strengths and insights, collectively providing a robust
framework for evaluating the potential of cryptocurrency assets in the context of our systematic pre-selection approach.

3.1.2. Mean rank method. The mean rank method is an effective decision-making technique used to evaluate
multiple alternatives by assigning ranks based on specific criteria or performance metrics. Each alternative is assessed
individually, receiving a rank relative to others—where the best-performing alternative is ranked 1, the second-best is
ranked 2, and so on. After all ranks are assigned, the mean rank method calculates the average rank for each alternative.
The alternative with the lowest average rank is then selected as the optimal choice, as a lower rank indicates better
overall performance. This method is widely applicable in fields like finance, marketing, and operations management,
offering a straightforward approach to streamline evaluations and minimize subjectivity in the ranking process.

Table 1. Summary of employed MADM methods and corresponding references.

Method Abbreviation Reference
Measurement of Alternatives and Ranking according to COmpro- | MARCOS [58]
mise Solution

Combinative Distance-based Assessment CODAS [59]
COmbined COmpromise SOlution CoCoSo [60]
Evaluation based on Distance from Average Solution EDAS [61]
Weighted Aggregates Sum Product Assessment WASPAS [62]
Technique for Order of Preference by Similarity to Ideal Solution TOPSIS [63]
Multi-Objective Optimization on the basis of Ratio Analysis MOORA [64]
Complex PRoportional Assessment COPRAS [65]
Additive Ratio ASsessment ARAS [66]
VliseKriterijumska Optimizacija | Kompromisno Resenje VIKOR [67]
Multi-Attributive Border Approximation area Comparison MABAC [68]
Measuring Attractiveness by a Categorical Based Evaluation MACBETH [69]
TecHnique

TOmada de Decisao Interativa e Multicriterio - Interactive and TODIM [70]
Multicriteria Decision Making

Source: Authors’ own compilation

https://doi.org/10.1371/journal.pone.0325973.t001
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3.1.3. Borda count method. The Borda count method [71] is a systematic approach for ranking alternatives based
on their performance in pairwise comparisons. It begins by constructing an m x m matrix, where m represents the
number of alternatives under consideration. Each entry in this square matrix is populated based on the number of wins
each alternative achieves when compared to others. In this matrix, if an alternative in a given row has more wins than
an alternative in a corresponding column, an “M” is placed in that entry. This notation signifies that the alternative in the
row ranks higher than the one in the column across various decision-making scenarios. Conversely, if the number of wins
in the row is equal to or less than that in the column, an “X” is recorded in that entry, indicating that the row’s alternative
ranks equally or lower than the column’s alternative. After populating the matrix, the total number of wins for each
alternative is calculated by summing the “M” entries in each row. This tally reflects the number of times each alternative
has outperformed others in head-to-head comparisons. Finally, the alternatives are ranked based on the total number of
wins, with those achieving a higher win count receiving a superior rank. This method not only provides a clear ranking but
also emphasizes the comparative strengths of each alternative, making it a valuable tool in decision-making processes
where multiple options need to be evaluated against one another.

3.1.4. Copeland method. Similar to the Borda count method, the Copeland method [72] also employsan m x m
matrix to facilitate the ranking of alternatives based on their performance in pairwise comparisons. In this matrix, each
entry is determined by the number of wins each alternative accumulates against others. Specifically, if an alternative in
a given row has more wins than the alternative in a corresponding column, an “M” is placed in that entry. This indicates
that the alternative in the row holds a higher rank in the context of various decision-making scenarios. Conversely, if
the number of wins in the row is equal to or less than that in the column, an “X” is recorded, suggesting that the row’s
alternative ranks equally or lower than the column’s alternative. Once the matrix is populated, the next step involves
calculating the total number of wins for each alternative by summing the “M” entries in each row. This provides a clear
indication of how many alternatives each option has outperformed. Additionally, the method also requires determining
the number of losses for each alternative, which is done by summing the “M” entries in each column. The final ranking of
the alternatives is derived from the difference between the total number of wins and losses for each option. Alternatives
that exhibit a greater positive difference between their wins and losses are assigned higher ranks, reflecting their
overall superiority in the comparison process. This approach not only allows for a nuanced ranking of alternatives but
also emphasizes the relative strengths and weaknesses of each option, making the Copeland method a robust tool for
decision-making in complex scenarios where multiple alternatives must be evaluated. By considering both wins and
losses, the Copeland method provides a more balanced assessment compared to methods that focus solely on wins.

3.1.5. Dataset description. This section is dedicated to providing a comprehensive description of the dataset utilized
in this study. The analysis focuses on 47 alternative cryptocurrencies, with data meticulously gathered from CoinGecko.
com, a reputable platform known for its extensive cryptocurrency market data. The dataset encompasses daily price
information spanning from December 1, 2023, to December 14, 2024. This timeframe allows for a thorough examination
of price movements and trends in the rapidly evolving cryptocurrency market. From the daily price data, returns for each
asset were calculated to assess their performance over the specified period. Descriptive statistics for the selected assets
are summarized in Table 2, offering a clear view of key metrics such as mean, median, standard deviation, and other
relevant statistical measures. This table serves as a crucial reference for understanding the characteristics of the assets
under consideration.

It is important to highlight that the descriptive statistics for all assets were computed based on a dataset comprising 379
days of data. However, the asset ONDO presents a slight deviation, as it has only been available for 330 days (the asset
was launched 330 days ago). This discrepancy is worth noting, as it may affect the reliability of the statistical analysis for
ONDO compared to the other assets included in the study.

However, since the difference between 330 and 379 days is relatively small, we believe this deviation can be neglected
for the purposes of this study. The difference of just 49 days is unlikely to significantly distort the overall trends or findings.
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Table 2. Summary of descriptive statistics for selected cryptocurrency assets.

Alt Name Coin/Token Count Mean SD Min 25% 50% 75% Max Variance
1 ETH Ethereum 379 0.0023 0.0334 -0.1006 -0.0148 0.0022 0.0198 0.1905 0.0011
2 SOL Solana 379 0.0045 0.0446 -0.1362 -0.0253 0.0001 0.0337 0.1442 0.0020
3 TRX Tron 379 0.0037 0.0520 -0.2090 -0.0081 0.0016 0.0120 0.8888 0.0027
4 BNB BSC (Binance) 379 0.0035 0.0304 -0.0852 -0.0131 0.0019 0.0173 0.1651 0.0009
5 BTC Bitcoin 379 0.0030 0.0275 -0.0824 -0.0110 0.0017 0.0158 0.1227 0.0008
6 LINK Chainlink 379 0.0029 0.0467 -0.1504 -0.0264 -0.0004 0.0280 0.3219 0.0022
7 ARB Arbitrum 379 0.0013 0.0502 -0.1712 -0.0272 -0.0022 0.0263 0.2444 0.0025
8 Sul Sui 379 0.0073 0.0624 -0.1656 -0.0319 0.0002 0.0314 0.3931 0.0039
9 AVAX Avalanche 379 0.0073 0.0624 -0.1656 -0.0319 0.0002 0.0314 0.3931 0.0039
10 POL Polygon 379 0.0004 0.0446 -0.1703 -0.0268 -0.0022 0.0245 0.1536 0.0020
11 CRV Curve 379 0.0035 0.0579 -0.2035 -0.0276 -0.0010 0.0311 0.2730 0.0033
12 APT Aptos 379 0.0032 0.0522 -0.1761 -0.0273 -0.0025 0.0279 0.2484 0.0027
13 OP Optimism 379 0.0028 0.0590 -0.1647 -0.0344 -0.0015 0.0354 0.3937 0.0035
14 CORE CORE 379 0.0067 0.0959 -0.2911 -0.0344 -0.0035 0.0259 0.8688 0.0092
15 UNI Uniswap 379 0.0045 0.0597 -0.1410 -0.0259 0.0004 0.0270 0.5379 0.0036
16 MNT Mantle 379 0.0032 0.0458 -0.1012 -0.0223 -0.0007 0.0208 0.3299 0.0021
17 CRO Cronos 379 0.0032 0.0532 -0.1483 -0.0202 -0.0019 0.0201 0.6701 0.0028
18 ONDO Ondo 330 0.0088 0.0046 0.0677 -0.0329 0.0003 0.0438 0.3836 0.1439
19 NUM Numbers 379 0.0074 0.1118 -0.2281 -0.0408 -0.0093 0.0312 1.1497 0.0125
20 CAKE Pancakeswap 379 0.0022 0.0469 -0.1965 -0.0228 0.0006 0.0234 0.2104 0.0022
21 MKR Maker 379 0.0019 0.0459 -0.1455 -0.0235 -0.0021 0.0205 0.2367 0.0021
22 RUNE Thorchain 379 0.0016 0.0572 -0.1824 -0.0352 -0.0017 0.0350 0.3148 0.0033
23 TON TON 379 0.0035 0.0443 -0.1497 -0.0207 0.0002 0.0223 0.2294 0.0020
24 ADA Cardano 379 0.0039 0.0449 -0.1588 -0.0212 0.0006 0.0248 0.2276 0.0020
25 GNO Gnosis 379 0.0020 0.0418 -0.1232 -0.0224 0.0006 0.0241 0.2099 0.0017
26 AAVE Aave 379 0.0048 0.0501 -0.1725 -0.0254 0.0002 0.0282 0.2823 0.0025
27 AR Arweave 379 0.0051 0.0696 -0.2026 -0.0399 -0.0019 0.0403 0.5116 0.0048
28 DYDX dYdX 379 0.0004 0.0541 -0.2204 -0.0305 -0.0017 0.0266 0.3138 0.0029
29 NEAR Near 379 0.0052 0.0605 -0.1712 -0.0315 -0.0014 0.0379 0.3681 0.0037
30 1INCH 1inch 379 0.0023 0.0502 -0.2352 -0.0281 0.0024 0.0295 0.2447 0.0025
31 ROSE Oasis 379 0.0020 0.0513 -0.1951 -0.0316 -0.0040 0.0337 0.1863 0.0026
32 SEI Sei 379 0.0046 0.0682 -0.1820 -0.0373 -0.0057 0.0375 0.2713 0.0047
33 ONE Harmony 379 0.0041 0.0560 -0.1984 -0.0299 0.0020 0.0369 0.2582 0.0031
34 MANA Decentraland 379 0.0023 0.0503 -0.1877 -0.0226 0.0021 0.0254 0.3839 0.0025
35 KAVA Kava 379 0.0003 0.0436 -0.2042 -0.0222 0.0022 0.0256 0.1779 0.0019
36 RON Ronin 379 0.0031 0.0504 -0.1811 -0.0287 0.0007 0.0318 0.1700 0.0025
37 VET Vechain 379 0.0040 0.0516 -0.1661 -0.0256 -0.0001 0.0302 0.3717 0.0027
38 LTC Litecoin 379 0.0022 0.0381 -0.1838 -0.0163 0.0020 0.0197 0.1863 0.0014
39 EOS EOS 379 0.0023 0.0461 -0.2158 -0.0218 0.0024 0.0226 0.2390 0.0021
40 CELO Celo 379 0.0028 0.0566 -0.1891 -0.0292 0.0004 0.0294 0.5029 0.0032
41 FTM Fantom 379 0.0057 0.0605 -0.1893 -0.0365 0.0041 0.0433 0.2945 0.0037
42 EGLD MultiversX 379 0.0012 0.0439 -0.1943 -0.0243 -0.0014 0.0276 0.1340 0.0019
43 STX Stacks 379 0.0050 0.0618 -0.1726 -0.0329 -0.0007 0.0358 0.4108 0.0038
44 XMR Monero 379 0.0013 0.0382 -0.3663 -0.0126 0.0024 0.0168 0.2379 0.0015
45 ATOM Cosmos 379 0.0009 0.0426 -0.1692 -0.0229 -0.0017 0.0221 0.1887 0.0018
46 XTZ Tezos 379 0.0027 0.0504 -0.1824 -0.0204 0.0001 0.0230 0.4876 0.0025
47 ALGO Algorand 379 0.0044 0.0525 -0.1587 -0.0260 0.0019 0.0288 0.3759 0.0028
Source: Authors’ own compilation based on data from CoinGecko.com

https://doi.org/10.1371/journal.pone.0325973.t002
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Therefore, we think it is beneficial to consider ONDO as an option rather than removing it entirely, as its inclusion may
offer valuable insights, particularly as the asset develops further and additional data becomes available. Removing it could
limit the scope of our analysis, especially considering that many portfolio optimization studies may encounter similar data
limitations with newly launched assets.

3.1.6. Criteria for evaluating cryptocurrency performance. This part is dedicated to the description of the criteria
for evaluating cryptocurrency performance. In this paper, we introduce 11 comprehensive criteria for assessing crypto
assets, as detailed in Table 3. This table not only presents the criteria themselves but also outlines the types of benefits
and costs associated with each criterion, thereby providing a clear and structured framework for evaluation. To the best
of our knowledge, no existing study has implemented a systematic pre-selection process specifically in the context of
cryptocurrency portfolio optimization. This gap has resulted in a lack of established benchmarks for these criteria, making
it challenging for researchers and practitioners to assess cryptocurrency assets effectively. To address this issue, we aim
to establish a robust set of criteria that can serve as a valuable benchmark for evaluating cryptocurrencies during the pre-
selection phase. Our criteria are designed to ensure that the assessment of cryptocurrency performance is both rigorous
and comprehensive, addressing the unique challenges posed by this dynamic asset class. By developing these criteria,
we hope to facilitate more informed decision-making in the rapidly evolving cryptocurrency market. This systematic
approach not only enhances the reliability of our evaluations but also contributes to the broader field of cryptocurrency
research by providing a structured methodology that others can replicate.

Table 3. Comprehensive criteria for evaluating cryptocurrency performance.

Criteria Cost/ Description

Benefit
Avg TPS Benefit | The average number of transactions processed per second (TPS) on a blockchain network. This metric indicates the

network’s speed and capacity to handle transactions.

Avg Active Benefit | The average number of addresses that participate in network transactions within a specific time frame (in this case,
Addresses daily). It counts addresses that have conducted at least one transaction on the network.
Max Drawdown Cost The maximum percentage decline in the value of an asset from its all-time high (ATH). This metric is considered a mea-
From ATH sure of cost and risk, demonstrating how much a project’s price can drop during bearish market conditions.
Avg TVL (Billion Benefit | The average total value locked (TVL) in a decentralized finance (DeFi) protocol. It indicates how much value (typically
Dollars) cryptocurrencies) is locked in smart contracts on a platform.
Avg Fee (Dollars) | Cost The average transaction fee on a blockchain network, referring to the cost’s users incur to execute transactions. These

fees are typically paid to miners or validators as rewards for processing and validating transactions. Transaction fees
can vary depending on network congestion, transaction size, and user prioritization.

Avg Daily Volume | Benefit | The average daily trading volume of a cryptocurrency. This metric includes buy and sell transactions across all trading

(Billion Dollars) platforms (both centralized and decentralized exchanges).

Avg M-Cap (Billion |Benefit | The average total market value of a project in the cryptocurrency market. Market cap is calculated by multiplying the
Dollars) total circulating supply of tokens by the current price per token.

Total Revenue Benefit Refers to the total income generated by a blockchain or protocol through various activities, such as transaction fees, ser-
(Million Dollars) vice fees, and other financial operations. This revenue is typically collected from users or participants within the ecosystem.
Circulating/Total Benefit This ratio represents the proportion of tokens in circulation relative to the total token supply. It indicates what percentage
Supply of a cryptocurrency’s total supply is currently available and tradable in the market.

Full-Time Benefit Refers to developers who work full-time on the development, improvement, and maintenance of a blockchain project.
Developers These individuals are part of the project’s technical team and consistently write, update, and test the project’s code. This

metric reflects the strength of the development team.

Total Developers Benefit Refers to the total number of developers involved in the development of a blockchain project, whether full-time, part-
time, or volunteer. This metric includes all contributors who have updated or participated in the project’s code reposito-
ries, such as those on GitHub.

Note: “Ave”=Average, “Max”=Maximum

Source: Authors’ own compilation

https://doi.org/10.1371/journal.pone.0325973.t003
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Next, we employed the Analytic Hierarchy Process (AHP) method [73] to determine the weight of each criterion
involved in the evaluation of cryptocurrency performance. AHP is a structured decision-making tool that allows for the sys-
tematic comparison of multiple criteria by breaking down complex problems into a hierarchy of manageable components.
This method facilitates a thorough assessment by enabling decision-makers to evaluate the relative importance of each
criterion through pairwise comparisons. The structure of the AHP model is illustrated in Fig 2, which visually represents
the hierarchical arrangement of the criteria. This figure outlines how the criteria are organized, showing the relationships
and dependencies among them. At the top of the hierarchy is the overall goal, followed by the criteria that contribute to
this goal.

The results of the AHP analysis are presented in Table 4, highlighting the weights assigned to each criterion based on
pairwise comparisons.

In total, 55 comparisons were made during the AHP process, resulting in a Consistency Ratio (CR) of 1.5%, indicating
a high level of consistency in the judgments made. The principal eigenvalue calculated from the AHP model was found to
be 11.221, further confirming the reliability of the derived weights. This systematic approach ensures that the evaluation of
cryptocurrency assets is both rigorous and justified, enhancing the robustness of our framework.

3.2. Stage 2 - Portfolio optimization

After introducing the pre-selection process (Stage 1) in the previous section, this section focuses on the optimization
process. Given that uncertainty is a fundamental characteristic of capital markets, this paper integrates credibility theory
with the CVaR framework, effectively leveraging their combined strengths to model downside risk and manage uncertainty
during the optimization process of Stage 2. Furthermore, practical constraints commonly encountered in real-world invest-
ment scenarios are taken into account, ensuring that the proposed framework is both theoretically robust and practically
applicable within the dynamic cryptocurrency market. This integrated model is employed for constructing portfolios, facili-
tating more informed investment decisions.

In this section, we will first present key concepts and definitions related to fuzzy theory and credibility measures, provid-
ing a foundational understanding necessary for the subsequent discussion. Following this, we will describe the proposed
model in detail, elucidating how it addresses the challenges of uncertainty and risk management in cryptocurrency portfo-
lio optimization.

Ranking of Cryptocurrency Assets

%\

% i Fog T Avg Daily Avg Total Circalat
=46 . =8 Avg Fee Volume M-Cap Revenue i Full-Time Total
Avg TPS Active Drawdown (Billion ' ) ITotal
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Fig 2. Schematic representation of the AHP model for weighting evaluating cryptocurrency criteria.

https://doi.org/10.1371/journal.pone.0325973.9002
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Table 4. Weights assigned to each criterion based on AHP method.

Code Criteria Weight
C, Avg TPS 11.10%
C, Avg Active Addresses 9.30%
C, Max Drawdown From ATH 3.30%
C, Avg TVL (Billion Dollars) 17.80%
C, Avg Fee (Dollars) 10.90%
C, Avg Daily Volume (Billion Dollars) 6.40%
C, Avg M-Cap (Billion Dollars) 9.00%
C, Total Revenue (Million Dollars) 18.10%
C, Circulating/Total Supply 4.30%
C, Full-Time Developers 2.50%
C, Total Developers 7.20%

Source: Authors’ own computation from AHP method

https://doi.org/10.1371/journal.pone.0325973.t004

3.2.1. Some concepts and definitions in fuzzy theory and credibility measure. In this section, we will revisit
several fundamental concepts and definitions that are crucial for understanding the subsequent content. We will
specifically focus on three key areas: (I) Fuzzy set theory, (Il) Fuzzy numbers, and (lll) Credibility theory. Together, these
elements form an integral part of the analytical framework that supports this study.

Definition 1. Fuzzy set theory

Classical set theory evaluates elements based on binary criteria, determining whether an element is either a member
of a set or not. This black-and-white approach can be limiting, as it does not account for the complexities of real-world
situations where membership may not be absolute. In contrast, fuzzy set theory offers a more sophisticated mathematical
framework that allows for a nuanced evaluation of element membership within a set. In fuzzy set theory, this evaluation is
represented through a membership function, which assigns each element a membership grade that ranges from zero to
one. This functionality enables the model to effectively capture the vagueness and uncertainty inherent in various scenar-
ios, allowing for a more flexible representation of reality.

Let X denote a universe of discourse, with its generic element represented as x. A fuzzy set A can be characterized as
a collection of ordered pairs defined within the universe X, expressed mathematically as follows:

A= {(xpa(¥)| x€X)} (1)

In this expression, 14(x) denotes the membership function, which quantifies the degree of membership of an element

x € X. The membership function is defined within the real interval [0,1]. A value of ua(x) = 1 indicates full membership,
meaning that the element completely belongs to the fuzzy set A, while a value of pa(x) = 0 signifies no membership.
Intermediate values represent varying degrees of membership, reflecting how strongly the element x belongs to the fuzzy
set A. This flexibility to express partial membership is particularly useful in domains where uncertainty and ambiguity are
prevalent, such as in decision-making processes, risk assessment, and various applications in economics, finance and
engineering. By accommodating the complexities of real-world situations, fuzzy set theory enhances our ability to model
and analyze data in a way that traditional set theory cannot.

Definition 2. Fuzzy Numbers
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In practical applications, it is common for experts to express their assessments and judgments using fuzzy numbers.
These fuzzy numbers are particularly useful in situations where uncertainty or imprecision is inherent in the data or the
information being conveyed. Fuzzy numbers allow for a more flexible representation of values, enabling decision-makers
to capture the nuances of their evaluations. Two specific forms of fuzzy numbers that are widely used are triangular and
trapezoidal fuzzy numbers. These forms are defined by their unique characteristics as follows:

Triangular fuzzy number Let A be defined as a triangular fuzzy number characterized by the parameters (a;, as, as),
where aj, a,, and as are real numbers satisfying a; < a, < a;. The membership function u4(x) associated with Ais
defined piecewise as follows:

0, X € (=00, a1)
X8 x € [ay, a9]
~(x) = ax—a;
HalX) a?_a);, X € [a, as]
0, X € (as, +o0) ()

In this representation, the triangular fuzzy number A achieves its maximum membership value of 1 at x = a;. As x moves
away from a, towards either a; or a3, the membership values decrease linearly to 0, creating the characteristic triangular
shape depicted in Fig 3.

Trapezoid fuzzy number Let A be defined as a trapezoid fuzzy number characterized by the parameters (ai, as, as, a~3),

where aj, a,, as and a4 are real numbers satisfying a; < a; < a3 < a4. The membership function pa(x) associated with A is
defined piecewise as follows:

0, X € (—o00,a1)
aa-, XE a1, a)
/LZ\(X) =<1, X e [32,83]
as—X
2, X € las, a4
s X E (84, +oo) (3)

The membership function for a trapezoidal fuzzy number takes on a trapezoidal shape, where the fuzzy number A main-
tains a constant maximum membership value of 1 over the interval [a,, a3]. Outside this interval, the membership values
decrease linearly to 0 as x approaches a; or ay, resulting in the characteristic trapezoidal shape depicted in Fig 4.

Definition 3. Credibility theory

Credibility theory, originally introduced by Liu [23] and further developed in subsequent works [24], provides a robust
mathematical framework for analyzing and modeling fuzzy phenomena. This theory is essential for the advancement of

HA(X) 4

1

sl 4

0" a a; asz

Fig 3. Visual representation of a triangular fuzzy number.

https://doi.org/10.1371/journal.pone.0325973.9003
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Fig 4. Visual representation of a trapezoid fuzzy number.

https://doi.org/10.1371/journal.pone.0325973.9004

credibility fuzzy programming, which allows decision-makers to quantify and evaluate their level of confidence in meeting
specific constraints amid uncertainty. Credibility theory offers a versatile approach to managing various types of fuzzy
data, such as triangular and trapezoidal fuzzy numbers, which are commonly employed to represent uncertain information
in decision-making processes. By incorporating these fuzzy numbers, the theory facilitates a more nuanced and realistic
portrayal of uncertainty encountered in real-world situations. Liu [23,24] lays out the fundamental definitions and notations
that form the basis of credibility theory, including the concept of the credibility measure. This measure is a crucial tool for
assessing the likelihood or degree of confidence that a particular event or condition will occur within a fuzzy context. As
highlighted by Liu and Liu [74], the calculation of the credibility measure is expressed as follows:

Cr¢ e A} = %(Pos{g € A} + Nes{¢ € A}) @)

In this equation, Pos{¢ € A} denotes the possibility measure of the event {£ € A}, while Nes{¢ € A} represents the neces-
sity measure of the same event. Both measures are fundamental concepts in fuzzy set theory:

* Possibility Measure (Pos): The possibility measure, denoted as Pos{{ € A}, evaluates the highest degree of member-
ship of the variable ¢ within the fuzzy set A. This measure reflects the most plausible extent to which the event {£ € A}
can occur, capturing the potential for membership in a fuzzy context. It is mathematically defined as:

Pos{¢ € A} = sup W(X)ca (5)

Here, sup 1(x),., signifies the supremum (or least upper bound) of the membership function p(x) for all x within the set A.
This measure essentially provides a value between 0 and 1, indicating the highest degree to which ¢ can be considered a
member of A.

» Necessity Measure (Nes): In contrast, the necessity measure Nes{¢ € A} assesses the degree of certainty associated
with the event {¢ € A}. It is calculated as the complement of the highest degree of membership found in the complement
set A°, providing a measure of how definitive the membership is. This is expressed as:

Nes{¢ € A} = 1 —sup pu(X) e pe (6)

In this formulation, sup w(x), ., represents the maximum degree of membership for any element outside the set A. By
taking the complement, this measure effectively captures the certainty that ¢ belongs to A.
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Since Pos{¢ € A} = sup u(x),., and Nes{¢ € A} = 1 —sup p(X) 4., the credibility measure can also be formulated as:

1
Cric € A} = 5(sup H(X)yea + 1 =SUP K(X)cpc) @
This formulation illustrates that the credibility measure takes into account both the possibility and necessity of the event
{¢ € A}, offering a thorough evaluation of its likelihood within a fuzzy context.
When examining a specific fuzzy event characterized by {¢ < r}, where r is a real number, the credibility measure is
expressed as:

CHE < 1} = 1 (SUP W(X) o, + 1= SUD R(X)) @
This equation allows for the assessment of the credibility that a fuzzy variable ¢ will assume a value less than or equal to
a specified real number r. It considers both the maximum membership value within the interval (—oo, r] and the comple-
ment membership value in the interval (r, +c0), providing a balanced perspective on the likelihood of the event.

Another key concept in credibility theory is the expected value of a fuzzy variable ¢, which represents the “average”
outcome of ¢ while accounting for its fuzzy characteristics. It is calculated using the following expression:

Ee] = /O+oo Cr{¢>r}dr- [O Cr{¢<r}dr )

Equation (9) integrates the credibility measures across the entire real line, effectively determining the expected value of
£ by weighing contributions from both positive and negative ranges. The first integral evaluates the credibility of ¢ being
greater than or equal to r, while the second integral assesses the credibility of ¢ being less than or equal to r.

The following sections of the paper will concentrate on applying the credibility measure to specific types of fuzzy vari-
ables, specifically triangular and trapezoidal fuzzy numbers.

Credibility measure for triangular fuzzy numbers Consider a fuzzy variable characterized by the triplet (a;, as, as)
of crisp numbers, where (a; < ay < as). Utilizing the general formula for credibilistic expected value (as presented in
Equation (9)), we can derive the credibilistic expected value of the triangular fuzzy variable ¢ as follows:

a; +2as + a3
E[{]=——- ———
This expression indicates that the expected value of the triangular fuzzy variable is a weighted average, giving more sig-
nificance to the mode a, due to its central position within the triangular structure.

Next, we determine the credibility measure Cr{¢ < r} for a triangular fuzzy number using the following equation:

0, r<a;
r-a
Cre < Jopar B ETEE
> = as—2as+r
23(63_22) , a<r<as
1, a3 <r (11)

This measure captures the probability that the fuzzy variable ¢ will take on a value less than or equal to a specific real
number r. It incorporates different cases depending on the value of r relative to the parameters aj, az,and as.
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Similarly, the credibility measure Cr{¢ > r} for a triangular fuzzy number can be expressed as:

1, r<a;
2as—a;—r
a; <r<as
2(ax-a1)’ - =
o == G2
Has—az)’ as < r<as
0, as<r (12)

This measure assesses the probability that the fuzzy variable ¢ will assume a value greater than or equal to r. Like the
previous measure, it accounts for different scenarios based on the position of r relative to the triangular parameters.

Fig 5 visually represents these credibility measures, illustrating the likelihood of various outcomes in the context of a
triangular fuzzy variable. The graphical depiction aids in understanding how the credibility measures change with different
values of r and highlights the inherent uncertainty associated with fuzzy variables.

Credibility measure for trapezoidal fuzzy numbers Consider a fuzzy variable defined by the quadruplet (ay, as, as, as)
of crisp numbers, where (a; < a; < as < a4). Using the general formula for the credibilistic expected value (as outlined in
Equation (9)), we can define the expected value for a trapezoidal fuzzy variable ¢ as follows:

at+axt+as+a
E¢] = 1 24 3 4 .

This equation indicates that the expected value of the trapezoidal fuzzy variable is the arithmetic mean of its four parame-
ters, reflecting the central tendency of the fuzzy number.
Next, we determine the credibility measure Cr{¢ < r} for a trapezoidal fuzzy number, which is expressed as:

0, r<a
Ses): A1 S<r<a
cri¢ <n={3 a, <r<aj
Sonl, a<r<a
L ag<r (14)
Cr{¢ <r} Cr{¢ =r}
A A
1 1
0.5 0.5
0 a; a; as r 0 a; a as r

Fig 5. Credibility measures for a triangular fuzzy variable.

https://doi.org/10.1371/journal.pone.0325973.9005
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This measure evaluates the probability that the fuzzy variable ¢ will take on a value less than or equal to a specific real
number r. It considers various cases based on the position of r relative to the trapezoidal parameters, reflecting the inher-
ent uncertainty associated with trapezoidal fuzzy numbers.

In a similar fashion, the credibility measure Cr{¢ > r} for a trapezoidal fuzzy number can be formulated as follows:

1, r<a
2ax—r-a
2(22_a11), a; <r<as
cri¢ >n =<3, a, <r<as
2
aqa—r
ares)’ 3 SIS A
0, as<r (15)

This measure assesses the probability that the fuzzy variable ¢ will assume a value greater than or equal to r. Like the
previous measure, it accounts for different scenarios depending on the value of r in relation to the trapezoidal parameters.

Fig 6 visually illustrates these credibility measures, depicting the likelihood of various outcomes in the context of a trap-
ezoidal fuzzy variable. The graphical representation aids in understanding how the credibility measures vary with different
values of r, highlighting the uncertainties and potentialities associated with trapezoidal fuzzy numbers.

3.2.2. Proposed model. In this paper, we employ the Credibilistic CVaR criterion, taking into account practical
constraints such as cardinality constraints, and floor and ceiling constraints — also known as quantity, threshold, or box
constraints. We utilize trapezoidal fuzzy variables to model this Credibilistic CVaR.

In this section, we will detail the model and the modeling process. We begin by introducing the concept of CVaR and
explaining its significance in risk management. Following that, we will delve into the specifics of Credibilistic CVaR, high-
lighting its advantages and how it accommodates uncertainty. Next, we will discuss the various constraints involved in our
model, including cardinality constraints that limit the number of selected elements, as well as floor and ceiling constraints
that set limits on variable quantities. Finally, we will present the complete model, integrating the Credibilistic CVaR with the
identified constraints, to provide a comprehensive framework for decision-making under uncertainty.

3.2.3. Conditional Value at Risk (CVaR). A key objective of risk management is to evaluate and enhance the
performance of financial investments by thoroughly analyzing the associated risks involved in profit generation. One of
the most commonly employed methods for quantifying these risks is VaR, which has gained widespread acceptance
as a standard tool for estimating potential losses. However, despite its widespread use, VaR has significant limitations,

Ccr{i§ <r} CriE¢ =1}
A A
1 1
0.5 0.5
0 a, a; as; Qg : 0 ay a as Qay -

Fig 6. Credibility measures for a trapezoidal fuzzy variable.

https://doi.org/10.1371/journal.pone.0325973.9006
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particularly regarding its inability to adequately capture extreme or tail risks—those rare but severe losses that can occur
in adverse market conditions. In light of these shortcomings, CVaR has emerged as a more advanced and comprehensive
risk assessment measure. Often referred to as mean excess loss, mean shortfall, or tail VaR, CVaR offers a more
nuanced understanding of risk by concentrating on the potential losses that surpass the VaR threshold. This focus allows
CVaR to provide valuable insights into the tail end of the loss distribution, making it especially relevant in situations where
extreme risks are a primary concern.

CVaR is a significant risk assessment tool that goes beyond traditional VaR by concentrating on the tail end of the loss
distribution. While VaR provides a measure of the maximum expected loss within a specified confidence level, it falls short
by not fully encompassing the potential extreme losses that can occur beyond this threshold. In contrast, CVaR captures
the expected loss that exceeds the VaR level, thus offering a more comprehensive perspective on the risks associated
with extreme outcomes. This characteristic makes CVaR particularly valuable in situations where tail risk is a critical
concern, such as in financial risk management, insurance underwriting, and portfolio optimization strategies. By focusing
on the worst-case scenarios, CVaR enables decision-makers to better understand and mitigate the risks of substantial
losses. One of the fundamental advantages of CVaR is its coherence, which means it adheres to several desirable math-
ematical properties, including sub-additivity, translation invariance, monotonicity, and positive homogeneity. The property
of sub-additivity is especially important, as it ensures that the risk of a combined portfolio does not exceed the sum of the
individual portfolio risks, thereby encouraging diversification. These properties collectively enhance the robustness and
reliability of CVaR as a risk assessment measure across various financial contexts. Mathematically, the CVaR of a random
variable ¢ at a confidence level a can be expressed as:

OVaR(xm) =+ (L= | X6 =] ple)ot -

In this formulation, [f(X, &) —7]" is expressed as:

o [F(XE)- if fX,§)=n>0
[fX, &) —n] " {0 ! if f(X,f)—ZSO (17

In this context, 7 represents the VaR threshold, o denotes the confidence level, f(X, &) indicates the loss function, and
p(&) is the probability density function for £. This formulation utilizes linear programming techniques to efficiently compute
CVaR, making it highly applicable in financial optimization scenarios where understanding and managing risk is critical.
3.2.4. Credibilistic VaR and CVaR. Integrating credibility theory into the computation of CVaR enables a more flexible
and nuanced approach to managing uncertainty. Credibility theory is particularly valuable in contexts where data is fuzzy
or imprecise, offering an alternative to traditional probability-based methods. By applying this framework, practitioners can
better account for the inherent uncertainties in their risk assessments.
Since credibilistic CVaR can be derived from credibilistic VaR, we first need to introduce the concept of credibilistic
VaR to facilitate this process. For a fuzzy variable ¢ and a confidence level a € (0, 1], VaR within the context of credibility
theory can be defined as:

Evar(ar) = —sup{x | CH¢ < x} < a} (18)

This definition helps identify the maximum value of x for which the credibility measure CH¢ < x} is less than or equal to
the specified confidence level a. In essence, it provides a fuzzy counterpart to the traditional VaR measure, adapting the
concept to better handle uncertainty and imprecision inherent in fuzzy data. Moreover, there is an alternative formulation
for VaR within the framework of credibility theory:
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Evar(r) = —=inf{X|Cr{¢ < x} > a} = —inf{X|®(x) > a} = -7 () (19)

In this expression, ®(x) denotes the cumulative credibility distribution function.
Based on the information provided, the VaR for a triangular fuzzy variable defined by the parameters ¢ = (a;, az, as)
and a confidence level a € (0, 1] can be determined using the following equations:

N 2(81—32)0[—31 o€ (0, 05]
§VaR<a) T2 (a2 - 33) a + as —2as [eAS (05, ].] (20)

Similarly, the VaR for a trapezoidal fuzzy variable defined by the parameters ¢ = (a;, as, as,a4) and a confidence level
a € (0, 1] can be determined using the following equations:

N 2(81—32)0[—31 o€ (0, 05]
Svar(ar) = 2 (as—ay) o+ a, —2as a € (0.5, 1] (21)

The CVaR within the framework of credibility theory, referred to as £qyar, is derived by integrating the VaR function across
the confidence interval:

1 1
R = —— a d
€evar 1_a/a Evar(r)dr (22)

Based on the information provided, the CVaR for a triangular fuzzy variable defined by the parameters ¢ = (a1, as, as)
and a confidence level a. € (0, 1] can be determined using the following equations:

¢ (a) = aa;—(14+ a)as « € (0, 0.5]

CvaR - (Oé - 1)32 —qds o c (05, 1] (23)
Similarly, the CVaR for a trapezoidal fuzzy variable defined by the parameters ¢ = (a1, aq, as, as) and a confidence level
a € (0, 1] can be determined using the following equations:

aa;—(1+a)az «a€ (0, 0.5]

£CVaR(0¢) - {(Oé— 1)83 —ay o € (0.5, 1] (24)
In these formulations (Equations 20-24), different expressions for VaR and CVaR are applied depending on whether the
confidence level a falls below or above 0.5.

3.2.5. Additional constraints for an effective and realistic portfolio optimization. In the realm of real-world
portfolio optimization, it is crucial to take into account a variety of practical constraints to ensure that the model
genuinely reflects the complexities of actual investment scenarios. These constraints play a vital role in shaping
investment strategies that are not only theoretically sound but also feasible and relevant to real-life decision-making. By
incorporating practical constraints, we can significantly enhance the realism of the portfolio selection process [75]. For
example, constraints related to asset selection, risk exposure, and diversification need help to create a more accurate
representation of what investors might face in the market. This alignment with practical investment considerations allows
investors to make informed decisions that take into account the limitations and requirements of their specific situations.
Furthermore, considering these constraints can lead to better risk management. Constraints such as maximum allowable
loss, transaction costs, and liquidity requirements ensure that the portfolio not only seeks returns but also protects
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against potential pitfalls. This dual focus on return maximization and risk minimization is essential for developing a

robust investment strategy. In addition, practical constraints can facilitate compliance with regulatory requirements and
institutional guidelines, especially concerning cryptocurrencies. Many investors, such as pension funds and mutual funds,
are subject to rules that dictate how assets can be allocated. By integrating these constraints into the optimization model,
we ensure that the resulting portfolios are compliant with relevant regulations, thus avoiding potential legal issues and
enhancing investor confidence.

* Cardinality constraint: The cardinality constraint imposes a limit on the number of assets that can be included in a portfo-
lio. This limitation is essential for several reasons, primarily for managing transaction costs and fostering effective port-
folio diversification. By restricting the number of assets, investors can avoid the complications and expenses associated
with trading too many securities, which can erode potential returns. In practical terms, the selection status of each asset
within the portfolio is indicated by a binary variable Z;. This means that for each asset, Z; can either be 0 (indicating that
the asset is not included in the portfolio) or 1 (indicating that the asset is included). The cardinality constraint can be
mathematically expressed as follows:

N 7 _
i=Zi=K (25)
Here, N represents the total number of available assets in the market, while K denotes the maximum number of assets
that can be included in the portfolio. This equation ensures that the sum of the binary variables does not exceed the speci-
fied limit of K, enforcing the constraint that only a defined number of assets can be selected.

Additionally, the binary variable Z;must satisfy the following condition:

* Floor and ceiling constraints: Floor and ceiling constraints, often referred to as buy-in thresholds, set the minimum and
maximum limits for the allocation of portfolio assets. These constraints are critical for maintaining a balanced investment
strategy, as they prevent the portfolio from becoming overly concentrated in a single asset and ensure that no asset is
allocated an insignificant proportion of the overall investment. By establishing these boundaries, investors can effec-
tively manage their exposure to risk. For instance, a floor constraint ensures that a minimum percentage of the portfolio
is invested in a particular asset, while a ceiling constraint caps the maximum percentage that can be allocated. This
approach helps to diversify investments and mitigate the potential negative impact of poor performance from any single
asset. The mathematical representation of these constraints is expressed as:

Zi<xi<uZ, i=1,2,...N (27)

In this formulation, x; represents the proportion of the portfolio allocated to asset i, while /; and u; denote the lower and
upper bounds, respectively, for this allocation. The binary variable Z; indicates whether the asset is included in the portfo-
lio (1) or not (0). Thus, if an asset is not selected (i.e., Z; = 0), the allocation x; is effectively zero.

Moreover, the following conditions must be satisfied:

0<li<u<1 (28)

This ensures that the lower bound /; is non-negative and does not exceed the upper bound u;, which in turn cannot
exceed 1 (or 100% of the portfolio).
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Final structure of proposed portfolio optimization model
Based on all the information provided, this section will present the final structure of the proposed portfolio optimization
model in detail. The paper utilizes a credibilistic CVaR approach with trapezoidal fuzzy variables, enhancing its ability to
handle uncertainty in asset returns. In addition, the proposed model incorporates cardinality, floor and ceiling constraints
to ensure a balanced and realistic investment strategy. Furthermore, the model restricts the confidence level to the interval
a € (0, 0.5], which ensures that the assessment of risk remains conservative. This conservative approach is designed to
mitigate potential losses and enhance the robustness of the portfolio, leading to more informed investment decisions. The
final structure of the proposed portfolio optimization model is established as follows:

n
Min CVaR = Z Xj|aayi— (1 + «)ag]
i—1 (29)

n
ayj+ as; + asj + au;
St in 1i 2i . 3i 4i 2 R
i=1 (30)

n
ZX,‘ =1
i=1

(31)
liZi < x; < uiZ; (32)
n
Y zZi=K
i—1 (33)
Z={0,1} (34)
x>0, i=1,2, ...,n (35)

In this formulation, Equation (29) specifies the model’s objective, which is to minimize the credibilistic CVaR. Equation
(30) introduces a constraint related to expected returns. This constraint ensures that the portfolio achieves a minimum
required return R. By doing so, it establishes a necessary balance between risk and return, allowing investors to pursue
profit while managing potential downsides. Next, Equation (31) sets a budget constraint, ensuring that the entire budget
is fully allocated across the selected assets. This constraint is vital for maintaining the integrity of the investment strategy,
as it prevents any portion of the budget from remaining uninvested. Equation (32) outlines the floor and ceiling con-
straints, which establish minimum and maximum limits on the allocation for each asset within the portfolio. In this context,
Z; acts as a binary variable that indicates whether a specific asset is included in the portfolio. This mechanism prevents
over-concentration in any single asset and ensures that each asset meets its respective allocation thresholds. Addition-
ally, Equation (33) describes the cardinality constraint, which restricts the number of assets included in the portfolio to a
maximum of K. This limitation reflects practical considerations, such as managing transaction costs and maintaining a
manageable portfolio size, thereby enhancing the overall efficiency of the investment strategy. Finally, Equations (34) and
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(35) establish essential binary and non-negativity constraints. Equation (34) mandates that Z; be a binary variable, indicat-
ing whether an asset is included in the portfolio (1) or excluded (0). Meanwhile, Equation (35) requires that x;, the propor-
tion allocated to each asset, be non-negative. This condition ensures that short positions are not taken, thereby aligning
the model with traditional investment practices that typically avoid negative allocations.

4. Numerical experiments

This section is devoted to the numerical experiments and provides a systematic presentation of the results, organized
step by step. It is divided into two distinct subsections.

The first subsection outlines the outcomes of the asset preselection process, which employs our novel preselection
approach. This segment emphasizes the methodology used as well as the results obtained from selecting assets prior
to the optimization phase. The second subsection focuses on the portfolio optimization results derived from the assets
identified in the earlier stage, specifically utilizing the credibilistic CVaR model. In this part, we will also explore the val-
idation process conducted to ensure the robustness and effectiveness of the proposed model. Together, these subsec-
tions provide a comprehensive overview of the two-stage framework for enhancing cryptocurrency portfolio performance,
demonstrating its application and effectiveness in real-world scenarios.

4.1. Asset preselection results

As highlighted in Table 2, we collected data on 47 alternative cryptocurrency assets over the period from December 1,
2023, to December 14, 2024. Furthermore, as detailed in Table 3, we established 11 criteria to evaluate the preselection
of these crypto assets. These criteria were carefully chosen to reflect key performance indicators and risk factors that are
critical for effective portfolio management in the volatile cryptocurrency market. Using the collected data in conjunction
with the specified criteria, we developed a decision matrix, which is presented in Table 5. This matrix serves as a vital
tool for comparing the assets based on the established criteria, facilitating informed decision-making in the preselection
process.

All data used in this analysis were sourced from a variety of reputable databases, ensuring a comprehensive and
diverse dataset. It is worth noting that while most criteria can be directly obtained from these databases, two specific met-
rics — “Avg Active Addresses” and “Circulating/Total Supply” — were not readily available and required further calculation.
The methodologies and calculations for these two criteria are detailed in Appendices 14 and 15, respectively.

As noted, we propose a novel approach for the preselection of cryptocurrency assets that begins with calculating
results through a diverse set of methods, specifically utilizing 13 MADM techniques outlined in this paper. The techniques
employed in our analysis include MARCOS, CODAS, CoCoSo, EDAS, WASPAS, TOPSIS, MOORA, COPRAS, ARAS,
VIKOR, MABAC, MACBETH, and TODIM. Once the results are generated from these methods, they are systematically
combined using the Copeland approach, which ensures a comprehensive evaluation by aggregating rankings from multi-
ple decision-making techniques.

To implement this framework effectively, we first need to calculate the outputs of all 13 MADM methods using the data
provided in the decision matrix. The results of these calculations are systematically organized and presented in Table 6,
which provides a clear and comprehensive overview of the findings.

As seen in Table 6, the rankings for each cryptocurrency vary significantly depending on the method used, which can
be confusing for investors when selecting the most appropriate approach. For instance, Alternative 33 (ONE, token: Har-
mony) has the following ranks: 8 in MARCOS, 7 in CODAS, 31 in CoCoSo, 16 in EDAS and WASPAS, 29 in TOPSIS and
VIKOR, 2 in MOORA, 32 in COPRAS, 11 in ARAS, 34 in MABAC, 27 in MACBETH, and 18 in TODIM. This wide range of
rankings for a single alternative illustrates the inconsistency across different methods, a challenge that extends to other
alternatives as well. For more information, the Spearman correlation of these methods is provided in Fig 7. This figure
visually represents the correlation coefficients between the various ranking methods, highlighting how closely aligned
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Table 5. Decision matrix for cryptocurrency asset preselection.

Criteria Avg Avg Active | Max Avg TVL | Avg Fee |Avg Daily | Avg Total Circu- | Full- Total
TPS Addresses | Drawdown | (Billion |(Dollars) |Volume M-Cap Revenue |lating/ |Time Devel-
From ATH | Dollars) (Billion (Billion | (Million Total Devel- | opers
Dollars) Dollars) | Dollars) Supply | opers
Alternatives Weights
11.10%  9.30% (3.30%) 17.80% (10.90%) 6.40% 9.00% 18.10% 4.30% 2.50% 7.20%
A, |ETH Ethereum |22.7 6.200 94.32% 21.034 |4.135 20.321 250 1950.123 | 1.000 2788 8865
A, |SOL Solana 1053.7 |6.550 97.43% 0.345 0.007 1.534 50.123 100.456 0.782 664 2856
A, |TRX Tron 159 13.625 96.00% 5.532 0.887 1.034 80.456 | 40.234 0.892 135 952
A, |BNB BSC 378.3 11.675 85.53% 2.832 0.103 1.812 350.789 | 800.789 0.775 556 2,015
(Binance)
A, |BTC Bitcoin 6.71 12.100 84.85% 0.012 15 30.543 650.987 |250.345 0.905 358 1,246
A, |LINK Chainlink | 7.03 0.047 90.52% 0.011 0.53 0.534 20.234 20.678 0.500 61 158
A, |ARB Arbitrum 59 3.975 75.12% 1.543 0.014 0.312 10.678 15.456 0.128 712 2,530
A, |SUIl Sui 854.1 0.039 80.00% 0.002 0.0024 0.026 5.123 5.234 0.053 202 1,108
A, |AVAX |Avalanche |89.2 0.688 92.57% 0.634 0.158 0.745 15.456 30.789 0.486 496 1,706
A, |POL Polygon 190.4 6.725 91.08% 0.823 0.022 0.923 30.567 | 50.123 0.930 834 2,877
A, |CRV Curve 7.56 2.150 95.68% 2.345 0.503 0.035 2.345 10.345 0.227 32 62
A, |APT Aptos 49.5 2.892 78.49% 0.008 0.003 0.423 7.456 8.234 0.200 179 835
A, |OP Optimism | 11.8 1.600 76.82% 0.657 0.0114 0.345 6.234 12.789 0.073 | 466 1,707
A, |[CORE |CORE 5.49 4.225 82.64% 0.004 0.5013 0.034 1.123 2.123 0.202 16 41
A, | UNI Uniswap 10.95 5.808 88.03% 3.067 4.88 0.645 12.345 | 60.456 0.753 17 51
A, | MNT Mantle 25.5 0.025 70.16% 0.001 0.45 0.033 0.567 3.234 0.515 30 130
A, |CRO Cronos 72.2 6.700 89.43% 0.134 0.102 0.256 3.234 25.567 0.835 16 81
A,; |ONDO | Ondo 0.023 10.525 65.29% 0.003 0.345 0.032 0.234 1.123 0.139 17 39
A, |NUM Numbers | 0.65 0.003 68.12% 0.001 0.543 0.031 0.123 0.512 0.250 12 24
A,, |CAKE | Pan- 3.067 1.306 93.55% 0.045 1.86 0.03 0.345 20.678 1.000 14 36
cakeswap
A,, | MKR Maker 3.69 0.316 87.43% 5.034 0.693 0.145 2.456 18.345 0.972 25 78
A,, |RUNE | Thorchain |0.021 0.007 92.43% 0.245 0.123 0.134 0.789 7.234 0.660 18 48
A,, | TON TON 175 3.235 74.22% 0.032 0.026 0.029 0.456 40.789 0.244 52 245
A,, |ADA Cardano | 0.084 4.010 95.07% 0.215 0.153 1.245 40.234 35.123 0.778 217 635
A, |GNO Gnosis 65.6 0.098 80.95% 0.014 0.002 0.028 0.567 5.234 0.260 257 647
A, |AAVE | Aave 0.275 0.121 90.46% 4.567 34.76 0.212 1.789 22.789 0.875 23 94
A, AR Arweave |9.34 0.168 85.44% 0.009 0.397 0.027 0.234 3.123 0.758 |46 132
A,, |DYDX | dYdX 1.53 0.608 88.36% 0.005 0.864 0.123 0.678 10.456 0.065 30 60
A,, |NEAR | Near 117.8 2.900 91.12% 0.112 0.011 0.113 0.789 15.234 0.900 322 1,214
A,, | 1INCH | 1inch 1.018 0.502 89.74% 0.021 0.062 0.103 0.456 8.123 0.400 52 122
A,, |ROSE | Oasis 2.83 3.889 87.53% 0.003 0.627 0.052 0.234 2.345 0.570 81 382
A,, | SEI Sei 1.664 3.945 60.29% 0.002 0.488 0.051 0.123 1.678 0.180 496 1,706
A,, |ONE Harmony | 8.941 0.041 94.44% 0.011 0.0016 0.049 0.345 6.234 0.935 80 228
A,, | MANA | Decen- 0.097 1.340 92.54% 0.004 0.851 0.048 0.456 12.789 0.820 35 50
traland
A,. |[KAVA | Kava 0.276 1.528 86.45% 0.137 0.011 0.047 0.234 4.567 0.750 28 90
A,, |RON Ronin 18.65 2.429 72.35% 0.012 0.0031 0.046 0.123 9.345 0.150 12 36
A,, |VET Vechain 10.25 4.001 93.50% 0.008 0.056 0.045 0.345 11.678 0.838 22 45
A, |LTC Litecoin 3.582 3.052 90.41% 0.003 0.064 0.044 50.123 20.123 0.869 33 81
A,, | EOS EOS 3.493 1.525 95.27% 0.005 0.0124 0.043 0.789 5.456 0.980 37 121

(Continued)
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Table 5. (Continued)

Criteria Avg Avg Active | Max Avg TVL | Avg Fee |Avg Daily | Avg Total Circu- | Full- Total
TPS Addresses | Drawdown | (Billion |(Dollars) |Volume M-Cap Revenue | lating/ |Time Devel-
From ATH | Dollars) (Billion (Billion | (Million Total Devel- | opers
Dollars) Dollars) |Dollars) | Supply |opers
A,, |CELO |Celo 12.37 0.944 88.44% 0.011 0.0022 0.042 0.234 3.234 0.500 342 1,206
A, |FTM Fantom 59.2 0.470 91.00% 0.157 0.015 0.234 0.345 7.789 0.882 269 1,013
A,, |[EGLD | MultiversX |2.318 0.020 89.65% 0.006 0.065 0.041 0.234 4.123 0.796 57 181
A,, |STX Stacks 1.023 1.135 85.38% 0.004 0.104 0.04 0.123 2.234 0.715 55 155
A,, | XMR Monero 3.504 0.449 82.14% 0.002 0.053 0.039 1.456 10.789 1.000 30 80
A,, |ATOM | Cosmos 7.243 0.357 87.56% 0.009 0.034 0.038 0.789 8.456 1.000 683 2,272
A, | XTZ Tezos 2.519 1.495 90.32% 0.005 0.026 0.037 0.567 6.123 1.000 72 228
A,, |[ALGO |Aigorand |170.3 1.273 92.18% 0.007 0.0019 0.036 0.234 5.789 0.780 87 444

https://doi.org/10.1371/journal.pone.0325973.t005

the rankings are across different approaches. A higher correlation indicates a greater agreement in rankings, while lower
values suggest significant discrepancies.

As illustrated in the analysis, there is a significant variation among the various ranking methods employed. This dis-
crepancy highlights the necessity for a robust framework that can effectively synthesize these differing outcomes. There-
fore, implementing our proposed method becomes crucial in ensuring a reliable evaluation process.

To address this challenge, we have integrated the results from the 13 selected methods to derive a single comprehen-
sive ranking. This was achieved through three distinct combined approaches: (a) Mean Rank, (b) Borda Count, and (c)
Copeland. The outcomes from the Mean Rank method are detailed in Table 7, providing a foundational overview. Follow-
ing this, Table 8 presents a pairwise matrix of 47 cryptocurrency assets based on the results outlined in Table 6. Table 9
then showcases the results from both the Borda Count and Copeland methods, offering further insights into the rankings
derived from these approaches. This integrated methodology aims to provide investors with a clearer and more consistent
evaluation framework, enhancing decision-making processes in the ever-evolving landscape of investment opportunities.
By reconciling the differences among the various methods, we strive to present a unified perspective that better informs
investment strategies.

In Table 7, we calculated the mean rank of each asset, providing a foundational metric to assess their performance
relative to one another. This mean rank serves as a critical indicator of each asset’s standing, with lower values reflecting
better rankings.

Subsequently, we constructed a Pairwise Comparison Matrix in Table 8. This matrix serves as a detailed framework
for evaluating the relative performance of each asset by comparing them in pairs. For each asset pair, we assessed their
standings based on the number of better ranks they received across the 13 selected methods. In this comparison, the
asset that received a greater number of better ranks was designated as a win (1). Conversely, the asset with fewer better
ranks was classified as a loss (0). For instance, in this paper, consider two assets: if one asset ranked better than the
other in at least 7 of the 13 methods, it would be classified as a win (1). On the other hand, if the same asset had a lower
count of better ranks compared to its counterpart, it would be classified as a loss (0).

After completing Table 8, the Pairwise Comparison Matrix, we analyzed the results to derive meaningful insights. The
sum of each row corresponds to the total wins for that specific asset, reflecting the number of other assets it has outper-
formed. Meanwhile, the sum of each column indicates the total losses, showcasing how many assets surpassed it in rank.
This dual perspective provides a comprehensive view of each asset’s competitive standing. With this data in hand, we
can proceed to calculate the Borda Count and Copeland scores. The Borda Count method uses the total number of wins
for each asset; thus, an asset with a higher total win’s count is assigned a better rank. In contrast, the Copeland score
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is derived from the difference between wins and losses—each asset is ranked more favorably if it has a higher positive
difference. This approach highlights not only the wins but also the impact of losses on the asset’s overall standing. Finally,
Table 9 presents the results of the Borda Count and Copeland methods, offering deeper insights into the rankings derived
from this comprehensive analysis.

Based on the results presented in Table 8, we constructed the Pairwise Comparison Matrix, enabling us to calculate the
total wins and losses for each asset. This matrix serves as a foundational tool for evaluating asset performance, allowing
for a systematic comparison. Utilizing this data, we derived the rankings based on both the Borda count and Copeland
methods, which are summarized in Table 9. Importantly, in this study, the rankings from both methods are identical due to
the use of an odd number of comparison methods (13 methods).

When the number of methods is odd, the outcomes are limited to two possibilities: a win (1) or a loss (0). A win occurs
when an asset ranks higher than its counterpart in at least 7 of the 13 methods, while a loss is assigned if it ranks lower.
In this context, it becomes evident that an asset with a higher number of wins will correspondingly have fewer losses,
resulting in a significant difference between the wins and losses. Consequently, the Borda count, which focuses solely
on the tally of wins, aligns perfectly with Copeland’s method, which takes into account the overall difference between
wins and losses. Conversely, the scenario shifts when the number of methods is even. In such cases, we encounter
three potential outcomes: win (1), loss (0), and draw (0). For example, if there are 12 methods and asset jranks better
than asset j in 6 methods, while asset j ranks better than asset i in the remaining 6, this situation results in a draw. This
complicates our ability to ascertain that an asset with a greater number of wins necessarily has fewer losses, as the pres-
ence of draws introduces ambiguity into the comparisons. As a result, we would expect the Borda count to yield different
outcomes compared to Copeland’s method in this context. Given these considerations, Copeland’s approach emerges as
the more robust method for consolidating results, as it effectively accounts for both wins and losses. Although our findings
reveal that the results from the Borda count and Copeland are consistent in this study (attributable to the 13 methods uti-
lized), we aimed to present a comprehensive framework in this paper. This framework serves as a benchmark for readers
who may explore various scenarios in future analyses. It is crucial to emphasize that if the number of methods changes,
particularly to an even count, the effectiveness of the Borda count for making accurate comparisons may be diminished.
Additionally, the summarized results from the Mean Rank, Borda Count, and Copeland methods are presented in Table
A3 (Appendix 16). This table illustrates that while both the Borda count and Copeland methods may yield similar rankings
under certain conditions, they can differ significantly from the mean rank approach, underscoring the importance of select-
ing an appropriate method based on the specific context of the analysis.

As previously noted, we employed the Copeland method for our comparisons. The results derived from this approach
are displayed in Table 10, where we have categorized the assets into five distinct groups: excellent, satisfactory, average,
below average, and poor. Each category is visually differentiated by a specific color in the table, enhancing clarity and
facilitating quick assessment.

The categorization of assets into distinct groups enhances clarity and provides a clear guide for asset evaluation. Each
category—excellent, satisfactory, average, below average, and poor—has its own economic significance. The “excellent”
category represents the top-performing assets, indicating their strong potential for high returns and stability, making them
ideal candidates for inclusion in a portfolio focused on maximizing performance. On the other hand, assets categorized as
“poor” highlight those with lower expected returns or higher associated risks, serving as a signal for investors to avoid or
limit exposure. By utilizing these categories, investors can align their portfolios more effectively with their financial goals,
risk preferences, and market conditions.

In the subsequent steps of our analysis, we will focus on the assets classified as excellent (Top 10 assets), as this cat-
egory contains high-quality assets with strong potential for superior performance. By concentrating on these high-quality
assets, we have effectively conducted a preselection of the leading cryptocurrency options, ensuring that only the most
promising candidates are considered for our investment strategy. This targeted focus on high-quality assets allows for a
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Table 6. Cryptocurrency rankings according to different methods.

Alternative MARCOS CODAS CoCoSo (A = 0.5) | EDAS WASPAS TOPSIS MOORA
Result Rank | Result Rank | Result Rank Result Rank Result Rank Result Rank |Result |Rank

A, 0.6423 |1 10.331 |1 45515 |1 0.5463 |1 0.2843 |1 0.7318 |1 0.1659 |1
A, 0.2863 |4 3.179 4 27170 |5 0.1205 |28 0.1489 |3 0.3488 |3 0.0985 |9
A, 0.2419 |5 2.146 5 2.7578 |4 0.0870 43 0.1040 |4 0.3258 |4 0.0960 |43
A, 0.3336 |2 3.643 3 3.2140 |2 0.1770 |4 0.1621 |2 0.4048 |2 0.0982 |26
A, 0.3264 |3 3.822 2 2.8093 |3 0.3930 |3 0.0611 |6 0.3210 |5 0.0742 |46
A, 0.0527 |44 -5.065 |44 1.7489 |30 0.1114 |33 0.0138 |36 0.2640 |39 0.0970 |37
A, 0.1009 |21 2229 |21 2.0252 |11 0.0776 44 0.0424 |8 0.2765 |9 0.0985 |14
A, 0.1932 |6 1.917 6 1.7400 |34 0.1698 |5 0.0321 |12 0.3110 |6 0.0985 |6
A, 0.0740 |33 -3.912 |35 1.8323 |20 0.0753 45 0.0306 |14 0.2708 |17 0.0980 |30
A, 0.1611 |9 -0.350 11 23237 |6 0.0559 |47 0.0681 |5 0.2834 |8 0.0984 |16
A, 0.0684 | 36 -4.072 |38 1.8244 |22 0.1033 |37 0.0227 |22 0.2747 |11 0.0971 |36
A, 0.1282 |13 -0.941 13 1.9145 |15 0.0971 |39 0.0345 |11 0.2697 |18 0.0985 |7
A, 0.0691 |35 -4.238 | 41 1.7413 |33 0.1039 | 36 0.0259 |20 0.2692 |20 0.0985 |12
A, 0.0635 |39 -4.112 39 1.7552 |29 0.1258 | 21 0.0117 |38 0.2653 | 36 0.0971 |35
A, 0.1311 12 -0.893 12 2.1538 |7 0.1140 |30 0.0426 |7 0.2615 |44 0.0847 |45
A, 0.0556 |42 -4.838 43 1.7099 |37 0.1283 |15 0.0097 |45 0.2634 | 41 0.0972 |33
A, 0.1185 |14 -1.202 15 2.1078 |8 0.0943 | 41 0.0362 |9 0.2739 |12 0.0982 |25
A, 0.1095 18 -0.942 14 1.9337 |13 0.1385 |7 0.0165 |31 0.2753 |10 0.0975 |31
A, 0.0408 |46 -5.972 46 1.2719 |47 0.1419 |6 0.0062 |47 0.2620 |42 0.0970 |38
A, 0.0765 |31 -3.068 |30 1.7827 |27 0.1235 |25 0.0152 |33 0.2568 |46 0.0932 |44
A, 0.1132 |16 -1.312 16 2.0743 |9 0.1253 |22 0.0306 |15 0.2934 |7 0.0965 |40
A, 0.0551 43 -4.664 42 1.6217 |43 0.1279 |17 0.0106 |44 0.2658 |32 0.0981 |28
A, 0.0912 |23 -2.751 26 1.9675 |12 0.0923 42 0.0281 |19 0.2733 |13 0.0984 |17
A, 0.1033 |19 -1.933 |20 2.0305 |10 0.0697 46 0.0311 13 0.2720 |14 0.0981 |29
A, 0.1389 |10 0.220 9 1.7462 |32 0.1121 |31 0.0282 |18 0.2678 |23 0.0985 |4
A, 0.1030 |20 -1.791 19 1.3864 |46 0.5274 |2 0.0211 |25 0.1162 |47 0.0348 |47
A, 0.0604 | 41 -4.218 40 1.7207 |36 0.1301 |13 0.0113 42 0.2638 40 0.0974 |32
A, 0.0320 47 -6.738 |47 1.5845 |44 0.1330 |8 0.0073 |46 0.2608 |45 0.0960 |42
A, 0.1143 |15 -1.393 18 1.9071 |16 0.0963 |40 0.0301 |17 0.2709 |16 0.0985 |10
A, 0.0484 |45 -5.451 45 1.6790 |40 0.1310 |11 0.0115 |41 0.2655 |35 0.0983 |22
A, 0.0786 | 30 -3.215 |32 1.8259 |21 0.1098 |34 0.0138 |35 0.2650 |38 0.0967 |39
A, 0.0730 |34 -3.640 |33 1.6726 |41 0.1261 |19 0.0116 40 0.2652 |37 0.0971 |34
A 0.1750 |8 1.756 7 1.7466 |31 0.1282 |16 0.0305 |16 0.2664 |29 0.0985 |2
A, 0.0683 |37 -3.709 | 34 1.7351 |35 0.1240 |23 0.0117 |37 0.2619 43 0.0961 |41
A, 0.0843 |28 -2.923 |29 1.7907 |26 0.1235 |24 0.0179 |28 0.2668 |27 0.0985 |10
A, 0.1103 |17 -1.369 17 1.5765 |45 0.1234 |26 0.0224 |23 0.2670 |24 0.0985 |8
A, 0.0907 |24 -2.414 123 1.8726 |18 0.1183 |29 0.0186 |27 0.2685 |21 0.0983 |21
A, 0.0932 |22 -2.352 |22 1.9336 |14 0.1010 |38 0.0208 | 26 0.2693 |19 0.0983 |23
A, 0.0900 |25 -2.444 24 1.8027 |25 0.1261 | 20 0.0179 |29 0.2668 | 26 0.0985 |13
A, 0.1347 |11 -0.143 10 1.6288 |42 0.1286 |14 0.0236 |21 0.2661 |31 0.0985 |5
A, 0.0859 | 26 -2.763 |27 1.7698 |28 0.1118 |32 0.0217 |24 0.2678 |22 0.0985 |15
A, 0.0620 |40 -4.066 | 37 1.6969 |38 0.1318 |10 0.0112 43 0.2656 | 34 0.0983 |24
A 0.0657 |38 -4.013 |36 1.6830 |39 0.1273 |18 0.0116 | 39 0.2656 | 33 0.0982 |27
A, 0.0762 |32 -3.085 |31 1.8210 |23 0.1304 |12 0.0146 | 34 0.2662 | 30 0.0983 |20
A, 0.0813 |29 -2.875 |28 1.8106 |24 0.1320 |9 0.0156 |32 0.2666 | 28 0.0984 |19
A, 0.0855 |27 -2.657 |25 1.8354 |19 0.1221 |27 0.0169 |30 0.2669 |25 0.0984 |17
A, 0.1787 |7 1.100 8 1.9009 |17 0.1062 |35 0.0354 |10 0.2712 |15 0.0985 |3

Source: Authors’ own computation

https://doi.org/10.1371/journal.pone.0325973.t006
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COPRAS ARAS VIKOR (9 = 0.5) MABAC MACBETH TODIM (6 = 1)
Result Rank Result Rank Result Rank Result Rank Result Rank Result Rank
0.2537 1 1 1 1.0000 1 0.535 1 66.468 1 1 1
0.0644 4 0.2560 4 0.4615 3 0.164 4 27.342 4 0.7580 3
0.0482 5 0.1869 5 0.4280 4 0.142 5 25.516 5 0.6277 5
0.0962 2 0.3688 2 0.5149 2 0.242 2 33.079 3 0.7607 2
0.0908 3 0.3597 3 0.4086 5 0.190 3 37.161 2 0.6757 4
0.0064 36 0.0204 35 0.2854 45 -0.043 44 5.743 38 0.2081 33
0.0183 11 0.0637 15 0.3274 13 0.003 14 7.283 28 0.4181 9
0.0315 6 0.1522 6 0.3506 7 0.032 7 11.069 12 0.2609 25
0.0134 16 0.0442 23 0.3056 27 -0.023 28 7.914 23 0.3456 15
0.0255 7 0.0925 8 0.3724 6 0.060 6 15.841 7 0.6275 6
0.0134 18 0.0477 20 0.2949 38 -0.032 37 7.820 24 0.1307 42
0.0134 17 0.0721 14 0.3117 22 -0.017 24 5.875 36 0.3965 11
0.0110 21 0.0370 24 0.2992 31 -0.033 38 4.010 42 0.2991 22
0.0058 39 0.0178 36 0.2976 34 -0.028 31 5.834 37 0.1030 45
0.0213 9 0.0852 10 0.2906 41 0.024 10 14.761 8 0.3647 12
0.0047 42 0.0128 43 0.2980 33 -0.028 32 3.556 44 0.1475 40
0.0139 14 0.0450 22 0.3433 8 0.024 9 12.021 9 0.3539 14
0.0105 22 0.0341 26 0.3430 9 0.027 8 8.180 20 0.1214 43
0.0027 47 0.0059 47 0.2854 44 -0.043 43 1.788 47 0.0000 47
0.0047 43 0.0177 37 0.2858 43 -0.024 29 9.027 17 0.1756 37
0.0230 8 0.0869 9 0.3335 10 0.020 11 11.622 10 0.2974 23
0.0058 40 0.0137 41 0.2912 40 -0.042 42 6.003 34 0.1042 44
0.0158 13 0.0508 18 0.3247 14 -0.001 15 6.809 29 0.3075 20
0.0159 12 0.0539 17 0.3280 12 0.005 12 11.190 11 0.4398 7
0.0105 23 0.0783 13 0.2962 36 -0.037 40 4.343 41 0.3328 16
0.0197 10 0.0798 12 0.0000 47 -0.099 47 21.636 6 0.2542 27
0.0046 44 0.0123 45 0.2962 35 -0.031 36 5.946 35 0.1790 36
0.0030 46 0.0089 46 0.2649 46 -0.065 46 3.439 46 0.0339 46
0.0129 19 0.0470 21 0.3292 11 0.005 13 10.354 13 0.4246 8
0.0058 41 0.0128 44 0.2866 42 -0.048 45 4.810 40 0.1381 41
0.0072 31 0.0243 31 0.3062 26 -0.016 23 8.052 21 0.2445 29
0.0067 35 0.0210 34 0.3139 19 -0.008 19 3.894 43 0.2307 32
0.0071 32 0.0801 11 0.3020 29 -0.030 34 7.482 27 0.3315 18
0.0046 45 0.0149 39 0.2930 39 -0.029 33 7.722 26 0.1746 38
0.0075 29 0.0254 28 0.3076 25 -0.022 27 6.788 31 0.2363 31
0.0082 26 0.0493 19 0.3015 30 -0.030 35 3.492 45 0.1727 39
0.0087 25 0.0247 30 0.3187 17 -0.008 18 9.540 14 0.2379 30
0.0113 20 0.0346 25 0.3225 15 -0.003 16 9.492 15 0.3113 19
0.0073 30 0.0247 29 0.3094 24 -0.020 26 8.587 18 0.2593 26
0.0070 33 0.0610 16 0.2959 37 -0.037 41 5.645 39 0.2924 24
0.0092 24 0.0301 27 0.3101 23 -0.019 25 7.925 22 0.3326 17
0.0060 38 0.0136 42 0.2982 32 -0.034 39 6.274 32 0.1931 35
0.0063 37 0.0146 40 0.3033 28 -0.027 30 6.242 33 0.1991 34
0.0069 34 0.0163 38 0.3131 21 -0.015 22 6.803 30 0.2483 28
0.0080 27 0.0216 33 0.3133 20 -0.015 21 7.756 25 0.3576 13
0.0079 28 0.0224 32 0.3141 18 -0.014 20 8.332 19 0.3021 21
0.0134 15 0.0946 7 0.3195 16 -0.007 17 9.290 16 0.4030 10
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Fig 7. Spearman correlation coefficients among 13 selected MADM methods.

https://doi.org/10.1371/journal.pone.0325973.9007

more refined and informed investment approach, ensuring that the portfolio remains aligned with the investor’s risk-return
objectives.

4.2. Portfolio optimization results

Following the preselection of assets, which outlines the results of Stage 1, this section focuses on the portfolio optimiza-
tion process, specifically regarding asset weight allocation. In this stage, we will allocate weights to the assets classified
as excellent, specifically the top 10 assets, under various scenarios. These scenarios will be constructed by varying the
values assigned to the cardinality constraints, enabling us to create portfolios of different sizes tailored to the preferences
and risk appetites of diverse investors. To verify the efficiency of our proposed model and validate our two-stage frame-
work, we will evaluate the portfolios generated using the top 10 assets against those developed using larger groups,
including the top 20, 30, 40, and all 47 assets. For each of these portfolios, we will establish scenarios analogous to our
own results, ensuring that the comparisons are meaningful and relevant. This validation process will provide insights into
the effectiveness of our preselection methodology and its impact on portfolio performance. In this section, we will detail
the results step by step, illustrating the implications of our findings.

As previously highlighted, we employ the Credibilistic CVaR criterion, which incorporates practical constraints into our
analysis. To accurately model this Credibilistic CVaR, we utilize trapezoidal fuzzy variables. The initial step in this process
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Table 7. Combined results of 13 methods using the mean rank approach.

MAR- | CODAS |CoCoSo |EDAS |WASPAS TOP- MOORA | COPRAS |ARAS |VIKOR MABAC 'MAC- | TODIM | Mean | Final
cos (A = 0.5) sis (9 = 0.5) BETH |(0 =1)  Rank |Rank
A, |1 1 1 1 1 1 1 1 1 1 1 1 1 1.00 |1
A, 4 5 28 |3 3 |9 4 4 3 4 4 3 600 |3
A, |5 5 4 43 |4 4 43 5 5 4 5 5 5 10.54 |5
A, |2 3 2 4 2 2 26 2 2 2 2 3 2 415 |2
A, |3 2 3 3 6 5 46 3 3 5 3 2 4 677 |4
A, 44 |44 30 33 36 39 |37 36 3 45 44 38 |33 38.00 |45
A (21 |21 1 44 |8 9 14 1 15 |13 14 28 |9 16.77 |12
A, |6 6 34 5 12 6 |6 6 6 7 7 12 |25 10.62 |6
A, 33 |35 20 45 |14 17 |30 16 23 |27 28 23 |15 25.08 |27
A, |9 1 6 47 |5 8 16 7 8 6 6 7 6 10.92 |7
A, 36 |38 22 37 |22 1 |36 18 20 |38 37 24 |42 29.31 |33
A, 13 |13 15 39 1 18 |7 17 14 |22 24 36 |11 18.46 |14
A, |35 |41 33 36 20 20 12 21 24 |31 38 42 |22 28.85 | 32
A, |39 |39 29 21 |38 36 35 39 36 34 31 37 45 3531 |39
A, 12 |12 7 30 |7 44 45 9 10 |41 10 8 12 19.00 |15
A, 42 |43 37 15 |45 41 33 42 43 |33 32 44 |40 37.69 |42
A, 14 |15 8 4 o 12 |25 14 22 |8 9 9 14 15.38 |10
A, 18 |14 13 7 31 10 |31 22 26 |9 8 20 |43 19.38 |16
A, 46 |46 47 6 47 42 38 47 47 |44 43 47 |47 42.08 | 46
A, 31 |30 27 25 |33 46 44 43 37 |43 29 17 |37 34.00 |37
A, 16 |16 9 22 |15 7 40 8 9 10 1 10 |23 15.08 |9
A, 43 |42 43 17 |44 32 |28 40 41 |40 42 34 |44 37.69 |42
A, 23 |26 12 42 |19 13 |17 13 18 |14 15 29 |20 20.08 |18
A, 19 |20 10 46 |13 14 |29 12 17 12 12 1 7 17.08 |13
A, 10 |9 32 31 18 23 |4 23 13 |36 40 41 16 22.77 |20
A, 20 |19 46 2 25 47 47 10 12 |47 47 6 27 27.31 |30
A, 41 |40 36 13 |42 40 32 44 45 |35 36 35 |36 36.54 | 41
A, 47 |47 44 8 46 45 42 46 46 |46 46 46 |46 42,69 |47
A, 15 |18 16 40 |17 16 |10 19 21 |1 13 13 |8 16.69 | 11
A, 45 |45 40 1n 41 3B 22 41 44 |42 45 40 |41 37.85 |44
A, 30 |32 21 34 35 38 39 31 31 |26 23 21 |29 30.00 |34
A, 34 |33 41 19 |40 37 34 35 34 |19 19 43 |32 3231 |35
A, |8 7 31 16 |16 29 |2 32 1 |29 34 27 |18 20.00 |17
A, |37 |34 35 23 |37 43 41 45 39 |39 33 26 |38 36.15 |40
A, 28 |29 26 24 |28 27 10 29 28 |25 27 31 |31 26.38 |28
A, 17 |17 45 26 |23 24 |8 26 19 |30 35 45 |39 27.23 |29
A, 24 |23 18 29 |27 21 |21 25 30 |17 18 14 30 22.85 | 21
A, 22 |22 14 38 26 19 |23 20 25 |15 16 15 19 21.08 |19
A, 25 |24 25 20 |29 26 13 30 29 |24 26 18 |26 24.23 |25
A, 11 |10 42 14 |21 31 |5 33 16 |37 41 39 |24 24.92 | 26
A, 26 |27 28 32 |24 2 |15 24 27 |23 25 2 |17 24.00 |24
A, 40 |37 38 10 |43 34 |24 38 42 |32 39 2 |35 34.15 |38
A, |38 |36 39 18 |39 33 |27 37 40 |28 30 33 |34 33.23 |36
A, |32 |31 23 12 |34 30 |20 34 38 |21 22 30 |28 27.31 |30
A, |29 |28 24 9 32 28 19 27 33 |20 21 25 |13 23.69 |22
A, 27 |25 19 27 |30 25 17 28 32 |18 20 19 |21 23.69 |22
A, |7 8 17 3 10 15 |3 15 7 16 17 16 10 1354 |8

Source: Authors’ own computation

https://doi.org/10.1371/journal.pone.0325973.t007
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Table 8. Pairwise comparison matrix of 47 cryptocurrency assets.
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Table 9. Combined results of 13 methods using the Borda count and Copeland approaches.

Alternative Total Wins Total Losses Difference between Wins and Losses Borda Count Copeland
A, ETH Ethereum 46 0 46 1 1
A, SOL Solana 43 3 40 4 4
A, TRX Tron 42 4 38 5 5
A, BNB BSC (Binance) 45 1 44 2 2
A, BTC Bitcoin 44 2 42 3 3
A, LINK Chainlink 5 41 -36 42 42
A, ARB Arbitrum 34 12 22 13 13
A, Sul Sui 41 5 36 6 6
A, AVAX Avalanche 23 23 0 23 23
A, POL Polygon 40 6 34 7 7
A, CRV Curve 13 33 -20 34 34
A, APT Aptos 33 13 20 14 14
A, OP Optimism 15 31 -16 32 32
A, CORE CORE 8 38 -30 38 38
A, UNI Uniswap 38 8 30 8 8
A, MNT Mantle 3 43 -40 44 44
A, CRO Cronos 38 8 30 8 8
A, ONDO Ondo 31 15 16 16 16
A, NUM Numbers 1 45 -44 46 46
A, CAKE Pancakeswap 11 35 -24 36 36
A, MKR Maker 37 9 28 10 10
A, RUNE Thorchain 5 41 -36 42 42
A, TON TON 28 18 10 17 17
A, ADA Cardano 36 10 26 11 11
A, GNO Gnosis 28 18 10 17 17
Ay AAVE Aave 22 24 -2 24 24
A, AR Arweave 6 40 -34 41 41
A, DYDX dydX 0 46 -46 47 47
A, NEAR Near 33 13 20 14 14
A, 1INCH 1inch 2 44 -42 45 45
A, ROSE Oasis 15 31 -16 32 32
A, SEI Sei 13 33 -20 34 34
A, ONE Harmony 27 19 8 19 19
A, MANA Decentraland 7 39 -32 40 40
A, KAVA Kava 17 29 -12 30 30
A, RON Ronin 22 24 -2 24 24
A, VET Vechain 24 22 2 22 22
A, LTC Litecoin 26 20 6 20 20
A, EOS EOS 21 25 -4 26 26
A, CELO Celo 21 25 -4 26 26
A, FTM Fantom 26 20 6 20 20
A, EGLD MultiversX 8 38 -30 38 38
A, STX Stacks 10 36 -26 37 37
A, XMR Monero 16 30 -14 31 31
A, ATOM Cosmos 21 25 -4 26 26
A, XTZ Tezos 21 25 -4 26 26
A, ALGO Algorand 35 11 24 12 12
Source: Authors’ own computation

https://doi.org/10.1371/journal.pone.0325973.t009
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Table 10. Categorization of cryptocurrency assets based on Copeland method results.

Alternative Final Rank Alternative Final Rank
A RON Ronin 24
A EOS EOS 26
A, CELO Celo 26
A, ATOM Cosmos 26
A XTZ Tezos 26
A KAVA Kava 30
A, XMR Monero 31
A, OP Optimism 32
A, ROSE Oasis 32
A, CRV Curve 34
A SEI Sei 34
A CAKE Pancakeswap 36
A, STX Stacks 37
A, CORE 38
A, MultiversX 38
A Decentraland 40

FTM Fantom
A, VET Vechain 22
A, AVAX Avalanche 23
Ay AAVE Aave 24

Source: Authors’ own computation

https://doi.org/10.1371/journal.pone.0325973.t010

involves gathering trapezoidal fuzzy variables for each asset, which are derived from expert opinions and compiled in
Table 11. This data will serve as a foundational element for our analysis, allowing us to assess the potential risks and
returns associated with the selected portfolios.

For the optimization process, we utilized the data presented in Table 11, along with the Credibilistic CVaR frame-
work defined in Equations 29-35. We employed GAMS software to solve the optimization model, carefully setting the
parameters as follows: a = 0.05, an expected return (R) of 10%, a floor (/;) of 0.1, and a ceiling (u;) of 0.5. The cardinality
constraints were established for K values of 3, 5, and 7, allowing us to explore different portfolio sizes. After solving the
model, we constructed three distinct portfolios using the top 10 assets, each corresponding to the specified cardinal-
ity constraints. For instance, when K = 3, the selected asset allocations were: A, (TRX) at 50% (ranked 5), A, (UNI) at
10% (ranked 8), and A, (CRO) at 40% (ranked 9). These allocations reflect a strategic selection aimed at optimizing the
risk-return profile within the set of constraints. The detailed results of these portfolios, including the asset weights and cor-
responding ranks, are summarized in Table 12. This comprehensive analysis allows us to assess how different cardinality
constraints influence portfolio composition and performance.

To verify the efficiency of our proposed model and validate our two-stage framework, we expanded the scope of our
analysis by generating additional portfolios using larger asset groups. Specifically, we examined the top 20, 30, 40, and all
47 assets, allowing for a comprehensive evaluation across multiple scenarios. The results of these portfolio constructions
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Table 11. Trapezoidal fuzzy representation of cryptocurrency returns expectations.

Rank Alternative Trapezoidal Fuzzy Data Rank Alternative Trapezoidal Fuzzy Data

X1 A, ETH (-0.101, -0.028, 0.118, 0.19) Xo5 A RON (-0.181, -0.093, 0.082, 0.17)
X2 A, BNB (-0.085, -0.023, 0.103, 0.165) Xo6 Ay EOS (-0.216, -0.102, 0.125, 0.239)
X3 A, BTC (-0.082, -0.031, 0.071, 0.123) Xo7 A, CELO (-0.189, -0.016, 0.33, 0.503)
X4 A, SOL (-0.136, -0.066, 0.074, 0.144) Xog A, ATOM (-0.169, -0.08, 0.099, 0.189)
X5 A, TRX (-0.209, 0.065, 0.614, 0.889) X29 A XTZ (-0.182, -0.015, 0.32, 0.488)
X6 A, Sul (-0.166, -0.026, 0.253, 0.393) X30 A, KAVA (-0.204, -0.109, 0.082, 0.178)
X7 A, POL (-0.17, -0.089, 0.073, 0.154) X31 A, XMR (-0.366, -0.215, 0.087, 0.238)
Xs A UNI (-0.141, 0.029, 0.368, 0.538) X392 A, OP (-0.165, -0.025, 0.254, 0.394)
X9 A, CRO (-0.148, 0.056, 0.465, 0.67) X33 A, ROSE (-0.195, -0.1, 0.091, 0.186)
X10 A, MKR (-0.145, -0.05, 0.141, 0.237) X34 A, CRV (-0.204, -0.084, 0.154, 0.273)
X11 A, ADA (-0.159, -0.062, 0.131, 0.228) X35 A, SEI (-0.182, -0.069, 0.158, 0.271)
X12 A, ALGO (-0.159, -0.025, 0.242, 0.376) X36 A, CAKE (-0.197, -0.095, 0.109, 0.21)
X13 A, ARB (-0.171, -0.067, 0.14, 0.244) X37 A, STX (-0.173, -0.027, 0.265, 0.411)
X14 A, APT (-0.176, -0.07, 0.142, 0.248) X38 A, CORE (-0.291, -0.001, 0.579, 0.869)
X15 A, NEAR (-0.171, -0.036, 0.233, 0.368) X39 A, EGLD (-0.194, -0.112, 0.052, 0.134)
X16 A, ONDO (-0.144, -0.012, 0.252, 0.384) X40 A, MANA (-0.188, -0.045, 0.241, 0.384)
X17 A, TON (-0.15, -0.055, 0.135, 0.229) X1 A, AR (-0.203, -0.024, 0.333, 0.512)
X18 A, GNO (-0.123, -0.04, 0.127, 0.21) X42 A, LINK (-0.15, -0.032, 0.204, 0.322)
X19 A, ONE (-0.198, -0.084, 0.144, 0.258) X43 A, RUNE (-0.182, -0.058, 0.191, 0.315)
X20 A, LTC (-0.184, -0.091, 0.094, 0.186) X44 A MNT (-0.101, 0.007, 0.222, 0.33)
Xa1 A, FTM (-0.189, -0.068, 0.174, 0.294) X45 A, 1INCH (-0.235, -0.115, 0.125, 0.245)
X22 A, VET (-0.166, -0.032, 0.237, 0.372) X46 A, NUM (-0.228, 0.116, 0.805, 1.15)
Xo3 A, AVAX (-0.166, -0.026, 0.253, 0.393) Xa7 A DYDX (-0.22, -0.087, 0.18, 0.314)
Xo4 A, AAVE (-0.172, -0.059, 0.169, 0.282)

Source: Authors’ own compilation

https://doi.org/10.1371/journal.pone.0325973.t011

are detailed in Table 13. By analyzing these larger groups, we can better understand the dynamics of risk and return when
more assets are considered. This broader perspective helps us assess the robustness of our model, particularly in terms
of its adaptability and performance under different conditions.

As observed in the results, assets A, (TRX, rank 5) and A, (CRO, rank 9) were included in all portfolio constructions,
regardless of the input data configurations and scenarios. In addition, assets UNI (rank 8) and A, were present in all
scenarios and input data sets, with the exception of the portfolio that utilized 47 input data points and a cardinality of kK = 3
. Notably, all these assets belong to the top 10 category, classified as excellent assets. This consistent presence across
various portfolios further emphasizes the reliability and quality of these selections in optimizing investment outcomes.

As reflected in the results, the model successfully constructed robust portfolios across different input data configura-
tions. It effectively generated various scenarios tailored for different types of investors. These outcomes underscore the
efficiency of our proposed model, demonstrating its capability to adapt to diverse requirements. Notably, the results show
that portfolios formed from high-quality assets outperform those generated from other datasets. This finding highlights
the critical importance of the preselection process prior to portfolio optimization, as selecting superior assets enhances
overall portfolio performance. The analysis confirms that thoughtful asset selection is vital for achieving optimal investment
outcomes.
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Table 12. Asset weight allocations for top 10 assets under different cardinality constraints.

No. k Objective Function X1 Xo X3 X5 Xg Xg Xg
A, A, A, A, A, A, A,
(ETH) (BNB) (BTC) (TRX) (sul) (UNI) (CRO)
Scenario 1 k=3 -0.070 - - - 50% - 10% 40%
Scenario 2 k=5 -0.052 - 10% - 50% 10% 10% 20%
Scenario 3 k=17 -0.033 10% 10% 10% 40% 10% 10% 10%
Source: Authors’ own computation
https://doi.org/10.1371/journal.pone.0325973.t012
Table 13. Asset weight allocations for larger asset groups: top 20, 30, 40, and 47.
Input Data: Top 20 Assets (x; to X20)
No. k Objective Function Xo X5 X6 Xg Xog X12 X16
A, A, A, A, A, A, A,
(BNB) (TRX) (SuI) (UNI) (CRO) (ALGO) (ONDO)
Scenario 1 k=3 -0.070 - 50% - 10% 40% - -
Scenario 2 k=5 -0.054 - 50% - 10% 20% 10% 10%
Scenario 3 k=17 -0.036 10% 40% 10% 10% 10% 10% 10%
Input Data: Top 30 Assets (x; to x30)
No. k Objective Function X5 Xg Xg X12 X16 Xa7 X29
A, A, A, A, A, A, A,
(TRX) (UNI) (CRO) (ALGO) (ONDO) (CELO) (XTZ)
Scenario 1 k=3 -0.070 50% 10% 40% - - - -
Scenario 2 k=5 -0.055 50% 10% 20% - 10% - 10%
Scenario 3 k=17 -0.038 40% 10% 10% 10% 10% 10% 10%
Input Data: Top 40 Assets (x; to x40)
No. k Objective Function X5 Xg Xg X16 Xo7 Xog X38
A, A, A, A, A, A A,
(TRX) (UNI) (CRO) (ONDO) (CELO) (XTZ) (CORE)
Scenario 1 k=3 -0.070 50% 10% 40% - - - -
Scenario 2 k=5 -0.057 50% 10% 20% 10% - - 10%
Scenario 3 k=17 -0.041 40% 10% 10% 10% 10% 10% 10%
Input Data: All Assets (x1 to x47)
No. k Objective Function X5 Xg Xg X16 X38 X4 X6
A, A, A, A, A, A, A,
(TRX) (UNI) (CRO) (ONDO) (CORE) (MNT) (NUM)
Scenario 1 k=3 -0.105 40% - 10% - - - 50%
Scenario 2 k=5 -0.094 20% 10% 10% - 10% - 50%
Scenario 3 k=17 -0.074 10% 10% 10% 10% 10% 10% 40%
Source: Authors’ own computation
https://doi.org/10.1371/journal.pone.0325973.t1013
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5. Discussion and Practical implications

This paper introduces a two-stage framework designed to enhance cryptocurrency portfolio performance, addressing a
critical gap in the literature and providing practical tools for investors.

The first stage emphasizes the pre-selection of high-potential assets through an innovative approach grounded in
MADM methods. This strategy enables investors to systematically identify and evaluate assets that exhibit promising
characteristics, significantly enhancing the asset selection process. Given the inherent volatility and unpredictability of the
cryptocurrency market, the emphasis on high-quality pre-selection highlights the crucial need for rigorous asset evalua-
tion. Historically, the lack of comprehensive studies addressing asset pre-selection in cryptocurrency portfolio optimization
has resulted in the absence of established performance criteria specifically tailored for evaluating cryptocurrencies. This
paper addresses this critical gap by introducing comprehensive criteria for the pre-selection of cryptocurrency assets. By
providing a structured methodology, the research empowers investors to cherry-pick high-quality assets based on sys-
tematic evaluations rather than relying on intuition or superficial analysis. From a methodological perspective, this paper
also contributes a robust framework for ranking and pre-selecting crypto-assets grounded in MADM techniques. One of
the notable challenges associated with MADM approaches is that different methods can yield varying results, creating
uncertainty regarding which technique provides the most reliable outcomes. To combat this issue, this paper presents a
unified framework for pre-selection that synthesizes results from multiple MADM methods. By combining insights from
various approaches, the framework enhances reliability and fosters greater trust in the asset selection process. More-
over, the implications of this framework extend beyond cryptocurrency. Its methodologies can be applied in various fields
within decision science and engineering, where the ranking and ordering of alternatives are essential. This versatility
underscores the framework’s potential to inform asset selection processes across different asset classes and investment
contexts, ultimately leading to more effective decision-making. Therefore, the first stage of this two-stage framework not
only fills a significant gap in the literature but also provides practical tools and methodologies that empower investors to
make informed decisions in the rapidly evolving cryptocurrency landscape.

In the second stage, the focus shifts to the optimization process itself. Recognizing that uncertainty is a fundamental
characteristic of capital markets, the framework incorporates credibility theory within the CVaR framework. By integrating
these methodologies, the model effectively leverages their combined strengths to address downside risk and manage
uncertainty during the optimization phase. This dual approach not only enhances the robustness of the portfolio but also
empowers investors to make informed decisions in a volatile market landscape. Integrating credibility theory with tradi-
tional risk management frameworks equips managers with the tools necessary to navigate the complexities of cryptocur-
rency investments. This framework enables decision-makers to assess and account for uncertainties, leading to more
resilient investment strategies. The ability to model downside risk effectively aids in capital preservation, particularly in a
market characterized by rapid fluctuations and unpredictable events.

Therefore, the two-stage framework presented in this paper offers a structured and comprehensive pathway for
enhancing cryptocurrency portfolio performance. By focusing on high-quality pre-selection in the first stage and
sophisticated optimization in the second, this framework provides invaluable insights for investors seeking to navi-
gate the intricacies of the cryptocurrency market. This holistic approach not only aids in optimizing investment strat-
egies but also prepares investors to respond effectively to the challenges posed by market volatility and uncertainty.
Furthermore, the methodologies introduced in this paper have broad applicability beyond cryptocurrency, providing
valuable insights for asset selection processes across various investment domains. The principles of the proposed
two-stage framework can be seamlessly applied to traditional financial markets, such as stocks, bonds, and alterna-
tive investments, thereby enhancing the asset selection process and optimizing portfolio construction in these mar-
kets as well. By integrating systematic pre-selection with advanced optimization techniques, this framework equips
investors and managers with powerful tools for better decision-making, ensuring that portfolios are aligned with both
risk and return objectives.
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While the two-stage framework presented in this paper offers a structured and innovative approach to cryptocurrency
portfolio optimization, several limitations should be acknowledged. First, the methodology relies on the availability of
high-quality and consistent data, which can be a significant challenge in the cryptocurrency market due to its rapid evolu-
tion and volatility. Data gaps, especially in newly launched cryptocurrencies, may affect the accuracy of the asset pre-
selection process. Additionally, while the integration of credibility theory with CVaR improves risk management, it may not
account for all potential market dynamics, particularly during extreme market events. Furthermore, the framework also
assumes that investors have access to sufficient computational resources and expertise to implement the methodologies
effectively, which may limit its applicability to some investors. Lastly, while the proposed methods have been demonstrated
in the context of cryptocurrency, further research is needed to test their effectiveness across other asset classes and
market conditions. These limitations suggest that while the framework provides valuable insights, its real-world application
may require adaptation to specific contexts and additional refinements.

6. Conclusions

This study presents a comprehensive two-stage framework aimed at enhancing cryptocurrency portfolio performance,
specifically designed to tackle the challenges of portfolio construction in volatile and uncertain cryptocurrency markets.
The framework comprises two sequential stages: Stage 1 focuses on the pre-selection of high-potential assets using a
novel asset pre-selection approach. This process begins with the evaluation of 47 cryptocurrency assets, which are sorted
based on comprehensive performance criteria. The assets are then categorized into five distinct groups, allowing for a
systematic assessment. From these groups, we identify the top-performing segment, selecting the top 10 assets that
exhibit the highest potential for returns. Stage 2 optimizes the selected assets through the application of a credibilistic
CVaR model, while also considering various cardinality constraints to construct different scenarios for portfolio alloca-
tion. The effectiveness of this two-stage framework was rigorously tested by comparing the resultant portfolios against
those constructed from the other asset groups. The results of this two-stage framework demonstrate its effectiveness in
constructing well-diversified and efficient portfolios, addressing both the challenges of asset pre-selection and the com-
plexities associated with uncertainty. By integrating these methodologies, investors are better equipped to navigate the
risks associated with cryptocurrency investments while maximizing potential returns. This innovative approach not only
enhances portfolio performance but also provides valuable insights for investors operating in the dynamic landscape of
cryptocurrency markets.

Although the proposed framework represents a significant advancement in enhancing cryptocurrency portfolio
performance, several avenues for further research remain. One promising area is the development of robust perfor-
mance criteria that can be applied to other markets, such as equities, bonds, and commaodities. This would facilitate the
implementation of the pre-selection process beyond cryptocurrencies, enabling a broader application of the framework.
Additionally, exploring alternative fuzzy number representations, such as coherent fuzzy numbers, could provide a more
nuanced understanding of investor expectations. Traditional fuzzy numbers may not adequately represent the complexi-
ties of investor sentiment, especially in volatile markets. By investigating how these alternative representations influence
portfolio performance and risk management, researchers could uncover new insights that enhance decision-making pro-
cesses. Furthermore, the reliability of expert opinions in gathering fuzzy data is another critical aspect to consider. Expert
insights are often essential in shaping investment decisions, particularly in uncertain environments like cryptocurrency
markets. However, the subjective nature of these opinions can introduce bias. By utilizing Z-number theory, researchers
could develop a more structured framework for incorporating expert insights, mitigating potential biases while enhancing
the credibility of the data. This approach could result in more accurate models that reflect true market conditions, ulti-
mately improving portfolio outcomes.

It is crucial to acknowledge that digital assets, especially cryptocurrencies, are continually evolving and are marked by
substantial volatility and inherent risks. The value of most cryptocurrencies is largely influenced by speculative trading,
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where market sentiment is a key driver. Therefore, investors must exercise caution and perform comprehensive due
diligence before making investment decisions in the cryptocurrency market, fully understanding its speculative nature and
the various factors that can impact market dynamics.
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