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Abstract

Quorum sensing (QS) regulates bacterial functions like virulence and biofilm for-
mation, mediated by proteins such as Lasl and QscR in Pseudomonas aeruginosa.
This study investigates the structural dynamics of Lasl and QscR proteins in com-
plex with Sulfamerazine and Sulfaperin, using AiiA lactonase as a negative control,
through molecular dynamics (MD) simulations to identify potential QS modulators.
Molecular docking and MD simulations assessed binding affinity and structural
dynamics, analyzing parameters like docking scores, root-mean-square deviation
(RMSD), root-mean-square fluctuation (RMSF), solvent-accessible surface area
(SASA), radius of gyration (Rg), principal component analysis (PCA), and covari-
ance analysis. Sulfamerazine exhibited the highest binding affinity for Lasl based
on docking scores, indicating strong ligand-protein interactions. MD simulations
revealed stability in the Lasl-Sulfamerazine complex, with lower RMSD compared
to Lasl-Sulfaperin and QscR complexes. RMSF analysis indicated greater flexibil-
ity in ligand-binding regions of Lasl|-Sulfaperin and QscR complexes, suggesting
weaker binding. SASA showed a decrease in solvent-accessible surface area for the
Lasl-Sulfamerazine complex, supporting a compact structure. Rg values confirmed
this, with the Lasl-Sulfamerazine complex being more compact (~2.00 nm) than
QscR-ligand complexes (2.10—2.30 nm). PCA revealed significant conformational
changes in the Lasl-Sulfamerazine complex, with PC1 explaining 57.26% variance.
Covariance analysis indicated stronger residue coupling in the Lasl-Sulfamerazine
complex, suggesting higher rigidity, while Lasl-Sulfaperin and QscR complexes
exhibited flexible dynamics. AiiA lactonase was used as a negative control due to
its established quorum quenching activity, which hydrolyzes AHL molecules and
disrupts QS signaling. Unlike Lasl and QscR, AiiA does not rely on small molecule
binding for activation. However, a known Lasl or QscR inhibitor would have served
as a more appropriate positive control, which will be considered in future studies.
These findings suggest the Lasl-Sulfamerazine complex’s stability and rigidity
make Sulfamerazine a promising QS modulator. Computational analyses highlight
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its potential to disrupt bacterial communication. Further experimental validation is
needed to confirm its therapeutic implications.

1. Introduction

Antibiotic resistance is widely regarded as one of the most urgent global health
crises, placing millions of lives at risk and threatening to undo the medical advance-
ments of the past century [1]. According to the World Health Organization (WHO),
antibiotic resistance leads to at least 700,000 deaths annually worldwide, with projec-
tions suggesting that, if left unchecked, this number could rise to 10 million by 2050,
surpassing cancer as the leading cause of death. The rise of multidrug-

resistant (MDR) pathogens is central to this issue, as these bacteria have evolved
mechanisms to survive exposure to multiple classes of antibiotics, rendering standard
treatments ineffective. This growing resistance is exacerbated by the misuse and
overuse of antibiotics in both healthcare and agricultural settings, as well as a slow
pace in developing new antibiotics [2,3].

ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella
pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Entero-
bacter spp.) represent the leading causes of MDR infections worldwide, with quorum
sensing playing a central role in their pathogenicity. While P. aeruginosa serves as
a model organism for QS studies, similar regulatory systems contribute to virulence
and antibiotic resistance in other ESKAPE pathogens. [4,5]. A study by the Centers
for Disease Control and Prevention (CDC) estimates that, in the United States alone,
over 2.8 million antibiotic-resistant infections occur each year, leading to more than
35,000 deaths. Pathogens such as Escherichia coli, Klebsiella pneumoniae, Acine-
tobacter baumannii, and Staphylococcus aureus are also increasingly resistant to
common antibiotics, contributing to a growing healthcare burden and challenging
clinicians in their ability to treat infections effectively [6].

Targeting bacterial quorum sensing (QS) has emerged as a promising strategy to
mitigate antimicrobial resistance by disrupting coordinated behaviors such as virulence
factor production, biofilm formation, and antibiotic resistance. Unlike traditional antibiot-
ics, QS inhibitors (QSlIs) interfere with bacterial communication without exerting direct
selective pressure, reducing the likelihood of resistance development. [7]. QS is
mediated by the production, release, and detection of signaling molecules called acyl-
homoserine lactones (AHLs), which accumulate in the bacterial environment as the pop-
ulation density increases [8]. When these molecules reach a threshold concentration,
they bind to specific receptor proteins, such as LasR and QscR, activating or repressing
the transcription of genes responsible for collective behaviors. Disrupting these signaling
pathways can impair bacterial communication, potentially reducing virulence, preventing
biofilm formation, and enhancing the efficacy of existing antibiotics [9].

In Gram-negative bacteria such as P. aeruginosa, E. coli, and K. pneumoniae, QS
is predominantly regulated by acyl-homoserine lactones (AHLs) through Lasl/LuxI-
type homologs. In contrast, Gram-positive bacteria like Staphylococcus aureus utilize
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an agr-based QS system that relies on autoinducing peptides (AIPs) instead of AHLs. Recognizing these mechanistic dif-
ferences is crucial for designing broad-spectrum QS inhibitors. However, the QS system is not limited to P. aeruginosa—
many other bacterial species share similar QS machinery, making this strategy applicable to a broad range of pathogens.
For example, in Escherichia coli and Klebsiella pneumoniae, QS regulates the production of virulence factors such as
adhesins, toxins, and enzymes that promote infection and resistance [10,11]. In Staphylococcus aureus, the agr system—
another QS pathway—regulates the production of exotoxins and biofilm formation, key factors in the pathogenicity of this
bacterium [12].

The focus of the current study is to conduct in-silico analyses to identify potential quorum sensing inhibitors (QSls) that
can effectively disrupt the QS pathways of various bacterial species, including P. aeruginosa, E. coli, Klebsiella pneumo-
niae, and Staphylococcus aureus [13]. Lasl and QscR regulate key virulence factors in P. aeruginosa, including elastase,
pyocyanin production, and biofilm formation. These proteins serve as canonical representatives of the Luxl/LuxR quorum
sensing system, making them ideal models for studying acyl-homoserine lactone (AHL)-based signaling mechanisms and
evaluating potential quorum sensing inhibitors (QSIs). These proteins also share functional similarities with LuxI/LuxR-
type systems in E. coli and K. pneumoniae, suggesting potential for broader application of QSls. However, the extension
of these findings to S. aureus would require targeting its agr system, which operates through a distinct autoinducer signal-
ing mechanism., while simultaneously enhancing the activity of conventional antibiotics. In addition, natural enzymes like
AiiA lactonase, known for their ability to degrade AHLs and disrupt QS, will be used as a negative control to illustrate the
potential benefits of natural QS inhibition [14,15]. This study focuses on AHL-based QS systems due to their prevalence in
Gram-negative bacteria such as P. aeruginosa, E. coli, and K. pneumoniae.

The increasing prevalence of MDR infections and their associated healthcare costs highlight the urgent need for
alternative therapeutic strategies. According to a 2019 study in The Lancet, the global economic burden of antimicrobial
resistance is estimated to reach $100 trillion by 2050 if current trends continue [16]. This underscores the necessity of
innovative approaches such as QS inhibition to mitigate the effects of antibiotic resistance. Quorum sensing inhibition
has been explored as an alternative to conventional antibiotics, with numerous QSls identified from natural and synthetic
sources. These include synthetic compounds like TZD-C8 and natural compounds such as cinnamaldehyde, ajoene, and
baicalin, which interfere with QS-regulated pathways [17—19]. This study builds upon previous efforts by integrating molec-
ular docking and molecular dynamics simulations to assess ligand stability and binding specificity, providing mechanistic
insights into QSI interactions with Lasl and QscR. These computational analyses pave the way for experimental validation
and potential therapeutic development.

2. Methods and material
2.1. Selection of ligand

The ligand selection process was conducted through a systematic literature review of phytochemicals and synthetic
compounds with reported antimicrobial and quorum sensing inhibitory properties. To ensure a rational selection, we first
screened 751 compounds from publicly available databases such as Dr. Duke’s Phytochemical and Ethnobotanical Data-
bases(https://phytochem.nal.usda.gov/),andPubChem(https://pubchem.ncbi.nim.nih.gov/).The preliminary screening was
based on structural similarity to known QS modulators, documented antimicrobial properties, and drug-like characteristics.
After removing redundant and low-relevance compounds, 669 compounds were shortlisted for ADMET analysis. The final
set of 23 compounds was selected based on strict ADMET filtering criteria, ensuring optimal pharmacokinetic and safety
profiles., and additional details regarding compound selection are provided in Table 2. [20]. Additionally, N-Decanoyl-L-
homoserine lactone was included as a known positive control for QscR, and TZD-C8 (Z-5-octylidene-thiazolidine-2,4-
dione) was used as a known positive control for Lasl[21-23]. PubChem was the sole database used for ligand research,
which resulted in the absence of Compound IDs (CIDs) for certain chemicals. After a comprehensive selection process,
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the chosen compounds were selected for further analysis. The names of these selected compounds were then searched
in the PubChem database to retrieve their corresponding three-dimensional structures.

2.2. ADMET profiling

ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) profiling was performed using SwissADME (http://
www.swissadme.ch/) and pkCSM (https://biosig.lab.ug.edu.au/pkcsm/prediction) tools [24,25]. The canonical SMILES of
the selected phytochemicals were compiled into a text file and used as input for both platforms. SwissADME was utilized
to evaluate key pharmacokinetic parameters, including absorption, solubility, lipophilicity (LogP), and drug-likeness based
on Lipinski’s Rule of Five. Lipinski’s rule of 5 was applied to filter compounds based on molecular weight, hydrogen bond
donors/acceptors, and logP values. In Table 2, a score of 0 indicates no violation, while a higher score reflects devia-
tions from the rule. Compounds with one violation were retained for analysis, while those with multiple violations were
excluded to ensure drug-likeness. Additionally, pkCSM predicted toxicity profiles, such as hepatotoxicity, mutagenicity
(AMES toxicity), and other toxicological endpoints. Compounds were restricted to a molecular weight range of 150-500¢g/
mol to optimize absorption and pharmacokinetics. ADMET profiling was performed to identify compounds with optimal
absorption, distribution, metabolism, excretion, and toxicity properties, ensuring their suitability for drug development. The
ADMET screening parameters and selection thresholds applied in this study are summarized in Table 1. The selection
criteria included Lipinski's Rule of Five to assess drug-likeness, where compounds with more than one violation were
excluded. Specific thresholds were applied, such as molecular weight between 150-500 g/mol for optimal bioavailability,
LogP values between —0.4 to +5.0 to maintain balance between solubility and permeability, and a topological polar surface
area (TPSA) under 130 A2 to ensure effective cellular uptake. Toxicity parameters, including hepatotoxicity and mutagen-
icity (AMES test), were strictly considered, and compounds showing potential toxicity were filtered out. These thresholds
were selected based on established guidelines for small-molecule drug discovery to maximize the likelihood of in vivo
efficacy. [26]. To ensure the robustness of the findings, several factors were controlled during the study. The protein-ligand
complexes were simulated under consistent conditions to mitigate size-related biases. Additionally, ligand selection was
based on strict ADMET filtering criteria to minimize variability in drug-like properties.

Table 1. AMDET profiling parameters and shorting criteria.

Parameter Range/criteria
Molecular weight (g/mol) 150-500
Rotatable bond count 0-10
Heavy atom count 20-70
H-bond donor count 0-5
H-bond acceptor count 0-10
Topological polar surface area (a?) 20-130
Complexity 0-1000
Xlogp -0.4to +5.0
Blood-brain barrier (bbb) permeability Preferred for cns-active drugs; limited permeability for non-cns drugs
Lipinski’s rule of five No more than one violation:
- molecular weight < 500 g/mol
-logp<5
- h-bond donors <5
- h-bond acceptors<10
Hepatotoxicity Absence preferred; assess using in silico predictions and in vitro assays
Ames test (mutagenicity) Negative result preferred; assess using in silico predictions and in vitro assays

https://doi.org/10.1371/journal.pone.0325830.t002
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2.3. Protein selection

The crystal structures of quorum sensing proteins QscR (PDB ID: 6CCO0) [27] and Lasl (PDB ID: 1RO5) [28] both derived
from Pseudomonas aeruginosa, and AiiA lactonase (PDB ID: 7L5F) [29], derived from Bacillus thuringiensis, were
retrieved from the RCSB Protein Data Bank. (https://www.rcsb.org). These structures, originating from Pseudomonas
aeruginosa and Bacillus thuringiensis, provide critical insights into quorum sensing regulation and disruption. Structural
data were used for docking studies to identify potential inhibitors targeting QscR and Lasl, with AiiA serving as a natural
quorum sensing disruptor for control comparison [30].

2.4. Molecular docking

The compounds that successfully passed ADMET profiling were selected for molecular docking studies using PyRx 0.8
(https://pyrx.sourceforge.io). Ligands were energy-minimized within the PyRx suite using the steepest descent algorithm
and the Universal Force Field (UFF) [31]. The target protein was prepared by converting it into pdbqt format, and the grid
box size was adjusted to encompass the entire protein surface, ensuring unbiased exploration of potential binding sites.
Docking was performed in triplicate to ensure reproducibility, with results expressed in kcal/mol. More negative docking
scores corresponded to stronger binding affinities. Binding poses were examined for interactions with key residues and
cross-referenced with the co-crystal ligand to validate the binding within the active site.

The docking results were visualized using PyMol and Biovia Discovery Studio Visualizer 2021 [32]. Both the output.
pdbqt file and the prepared macromolecule were loaded simultaneously in PyMol. From the nine conformations generated
during docking, only those with a root mean square deviation (RMSD) of O were selected for detailed analysis. Binding
affinities of the ligand interactions were documented in a tabular format. The resulting protein-ligand complexes were
saved in pdb format for further analysis, focusing on identifying key binding sites.

2.5. Molecular dynamic simulation

A 200 ns molecular dynamics (MD) simulation was conducted using GROMACS 2023 to explore the system’s dynamic
behavior under physiological conditions. The TIP3P modified water model was employed to accurately simulate the sol-
vent environment, while the CHARMMS36 all-atom force field, as described by Huang and MacKerell Jr. (2024) [33], was
used for both the protein and the ligands. To ensure electrical neutrality, Na+ and CI- ions were added. Energy minimiza-
tion was carried out before the simulation to resolve any steric clashes and optimize the system’s geometry, providing a
stable starting configuration. The system was then equilibrated in two phases: first at constant volume and temperature
(NVT) at 300K, followed by equilibration at constant pressure and temperature (NPT) at 1 bar, allowing for volume adjust-
ments [34].

Several analyses were performed to interpret the MD simulation data. The Root Mean Square Deviation (RMSD) was
calculated to assess the overall stability of the protein structure and verify the achievement of equilibrium, with the ‘Lig fit
Protein’ parameter focusing on the interaction between the ligand and the protein. Root Mean Square Fluctuation (RMSF)
was utilized to evaluate the flexibility of specific protein regions by measuring atomic deviations over time. The Radius
of Gyration (Rg) was analyzed to examine the compactness of the protein throughout the simulation, representing the
average distance between the protein’s center of mass and its extremities. Solvent Accessible Surface Area (SASA) cal-
culations were conducted to gain insights into protein folding and stability by measuring the solvent-exposed surface area.
Additionally, Covariance analysis was utilized to determine the correlated motions between residues in the protein-
ligand complexes. To further elucidate the connectivity between residues, mutual information analysis could be employed
in future studies to quantify dependencies and reveal functionally linked regions within the protein. The simulation results
were visualized using the matplotlib package in Python to create detailed graphical representations of the analyzed
parameters.

PLOS One | https://doi.org/10.1371/journal.pone.0325830 June 9, 2025 57127



https://www.rcsb.org
https://pyrx.sourceforge.io

PLO\Sﬁ\\.- One

2.6. Re-Simulation and blind protein-ligand docking by replica-exchange monte carlo simulation

In this study, a re-simulation of the protein-ligand complex was conducted to assess the stability and conformational changes
after a 200 ns molecular dynamics (MD) simulation. The final complexed structure obtained from this simulation was then
used as the input for blind protein—ligand docking using EDock (https://zhanggroup.org/EDock/), a replica-exchange Monte
Carlo simulation-based web server [35]. The EDock approach was employed to predict potential binding sites and evaluate
the interactions between the protein and ligand. By performing the docking simulation with the re-simulated complex, we
aimed to gain a deeper understanding of the binding mechanism and to identify potential ligand candidates for further experi-
mental validation. The results provided critical insights into the binding affinity and conformation of the ligand within the active
site of the protein, supporting the identification of promising molecules for drug development

2.7. Cluster analysis of RMSD using GROMACS

Cluster analysis was conducted to investigate the conformational dynamics of the system over the course of the molecular
dynamics (MD) simulation. The GROMACS software package was employed to perform RMSD-based clustering using
the gmx cluster command. Inpuit files, including the trajectory file (traj.xtc), topology file (topol.tpr), and index file (index.
ndx), were used to define the atom groups for clustering. The trajectory was pre-processed to remove periodic boundary
conditions and center the protein using the gmx trjconv command. The RMSD-based clustering was performed with a
0.2nm cutoff, using the GROMOS method to identify distinct conformational states. The resulting clusters were visualized
using an XPM file (clusters.xpm), which was further analyzed with GIMP to inspect the distribution and characteristics of
the clusters. The cluster.xvg file, which provides the RMSD for each cluster over time, was plotted to evaluate cluster sta-
bility, while the cluster.xtc file, containing the centroids of the clusters, allowed for structural comparisons of the dominant
conformations. Additionally, further analysis was performed by comparing the RMSD of the cluster centroids to a reference
structure using the gmx rms command. This cluster analysis provided a comprehensive understanding of the structural
dynamics, revealing both stable and transient conformational states during the simulation [36].

3. Results

The ligand selection process identified a total of 669 unique compounds with antibacterial and antimicrobial potential.
These included both phytochemical and chemical compounds derived from literature and database research. The final list
was refined from an initial pool of 751 compounds by removing duplicates and validating the biological relevance of each
compound.

3.1. ADMET analysis

After screening 669 phytochemicals, an ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) profiling
was conducted to filter candidates based on specific threshold criteria. Initially, 669 phytochemicals were evaluated for
ADME properties, with most failing to meet the necessary criteria for further analysis. Only 98 of these compounds passed
the ADME thresholds and were selected for toxicity testing. All ligands screened, along with their ADMET properties, are
provided in the supplemental file (Supplementary CSV 1). All screened ligands and their ADMET profiles are provided
here. The selection of phytochemicals was based on a range of pharmacokinetic and toxicity parameters to identify com-
pounds with desirable properties. Phytochemicals featuring more than five hydrogen bond donors or over ten hydrogen
bond acceptors were excluded, as these characteristics can impair absorption and permeation. To optimize absorption,
compounds were restricted to a molecular weight of 500 g/mol or less. Toxicity testing required negative results for both
AMES toxicity and hepatotoxicity. Additional criteria included the evaluation of polar surface area and the number of rotat-
able bonds. Phytochemicals with a polar surface area of 145 A or less and no more than 10 rotatable bonds were consid-
ered more likely to have favorable oral bioavailability, as an excess of rotatable bonds may reduce permeation efficiency.
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Moreover, the correlation between molecular weight and heavy atom count was analyzed, with an ideal heavy atom

count of around 36, corresponding to a molecular weight near g/mol. These carefully chosen parameters ensured that the
selected phytochemicals possessed optimal pharmacokinetic profiles, low toxicity, and good potential for oral bioavailabil-
ity, making them suitable candidates for further exploration in drug development. (Table 2). These criteria ensured that the
selected phytochemicals possessed favorable pharmacokinetic properties, minimal toxicity, and strong potential for oral
bioavailability, making them promising candidates for drug discovery and development.

3.2. Molecular interaction at the active site

The ADMET-filtered 23 phytochemicals were analyzed through docking in PyRx (Table 3). AiiA lactonase was included as
a reference quorum quenching enzyme, while no specific positive control was used since no established Lasl or QscR
inhibitors were available for comparison.

Notably, the positive control TZD-C8 ((z)-5-Octylidenethiazolidine-2,4-dione) showed a docking score of —7.4 kcall
mol for Lasl, placing it within the effective binding range compared to other ligands, while N-dodecanoyl-L-homoserine
lactone, a well-established QscR modulator, exhibited a binding score of —7.5 kecal/mol. While a positive control with both
Lasl and QscR inhibitor was not included as the known drug for both QscR and Lasl have not yet discovered. While AiiA

Table 2. The ADMET analysis of the selected compounds.

S. CID Compound Name Gl BBB AMES Hepato Lipinki rules Skin Sen-
N absorption permeant toxicity toxicity 5 violation sitisation
1 3552 Halazone High No No No 0 No
2 4421 Nalidixic Acid High No No No 0 No
3 4735 Pentamidine High No No No 0 No
4 5319 Sulfabenzamide High No No No 0 No
5 5325 Sulfamerazine High No No No 0 No
6 5327 Sulfamethazine High No No No 0 No
7 5336 Sulfapyridine High No No No 0 No
8 5344 Sulfisoxazole High No No No 0 No
9 7322 2-Hydroxy-5-sulfobenzoic acid High No No No 0 No
10 8281 Sulfadicramide High No No No 0 No
1 11974 Dibrompropamidine High No No No 0 No
12 64949 Propamidine High No No No 0 No
13 68760 Brodimoprim High No No No 0 No
14 68780 Protiofate High No No No 0 No
15 68933 Sulfaperin High No No No 0 No
16 893742 5-chloro-N-(4-fluorobenzyl) High No No No 0 No
thiophene-2-sulfonamide
17 2353996 5-chloro-N-(furan-2- High No No No 0 No
ylmethyl)thiophene-2-sulfonamide
18 2796468 N-(carbamoylcarbamothioyl)- High No No No 0 No
2-chlorobenzamide
19 5280343 Quercetin High No No No 0 No
20 9909368 Ginkgolide-a High No No No 0 No
21 28025864 Antimicrobial TH-8 High No No No 0 No
22 50930787 3-(4-hydroxy-3,5-dimethylcyclohexyl)- | High No No No 0 No
N-(2-hydroxyethyl)propanamide
23 108886377 Antimicrobial agent-3 High No No No 0 No

https://doi.org/10.1371/journal.pone.0325830.t001
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Table 3. The binding affinity of the selected compounds (Kcal/mol) and their interacting residues.

SN CID Compound Name Binding Binding Affin- Binding Affinity
Affinity (Lasl) ity (QscR) (AiiA lactonase)
1 46220260 (2)-5-Octylidenethiazolidine-2,4-dione (Lasl! Inhibitor) -7.4%0.01 N/A -7.5%0.05
2 10221437 N-dodecanoyl-L-Homoserine lactone N/A -7.5%0.23 -7.1%0.15
3 9909368 Ginkgolide-a -8.2+0.01 -7.1%£0.015 -7.8%0.5
4 68933 Sulfaperin -7.9£0.02 -9.1£0.01 -7.1£0.015
5 5280343 Quercetin -7.9%0.01 -6.9+0.02 -7.4%0.02
6 5325 Sulfamerazine -7.8%0 -8.7£0.023 -7.1%0.25
7 5344 Sulfisoxazole -7.5%0 -8.6%£0.23 -8.410.25
8 108886377 Antimicrobial agent-3 -7.5%0.01 -8+0.01 -8.3+0.015
9 5336 Sulfapyridine -7.5%£0.02 -7.3%0.0 -7.5%£0.025
10 5327 Sulfamethazine -7.5%£0.04 -6.3%0.0 -7.7£0.02
1 8281 Sulfadicramide -7.5%£0.03 -5.2+0.012 -7.5%0.0
12 893742 5-chloro-N-(4-fluorobenzyl)thiophene-2-sulfonamide -7.4%0.06 -9.1+0.015 -7.5%0.01
13 50930787 3-(4-hydroxy-3,5-dimethylcyclohexyl)-N-(2-hydroxyethyl)propanamide -7.4%0.35 -5.4%0.01 -6.7%0.0
14 5319 Sulfabenzamide -7.3£0.45 -6.4£0.034 -8.410.025
15 4421 Nalidixic Acid -7.3%£0.03 -5.7£0.25 -70.0
16 2353996 5-chloro-N-(furan-2-ylmethyl)thiophene-2-sulfonamide -7.2%0.01 -8.1%£0.01 -7.4%£0.01
17 28025864 Antimicrobial TH-8 -7.2%0.24 -5.9+0.2 -8.6+0.0
18 3552 Halazone =70 -6.9%£0.34 -6.8+£0.015
19 2796468 N-(carbamoylcarbamothioyl)-2-chlorobenzamide -6.7%0 -8.9%0.2 -7.4%0.01
20 4735 Pentamidine -6.7+0.01 -6.1£0.25 -7.4%0.2
21 68780 Protiofate -6.7£0.02 -4.9%0.35 -6.3+0.25
22 7322 2-Hydroxy-5-sulfobenzoic acid -6.5+0.01 -6.4+0.25 -6.2+0.20
23 68760 Brodimoprim -6.5%£0.01 -5.6%£0.0 -6.9+0.01
24 11974 Dibrompropamidine -5.7%0 -6.8+0.01 -7.7%0.00
25 64949 Propamidine =570 -6.8%£0.0 -7.5

Sulfaperin (CID 68933) and Sulfamerazine (CID 5325) interact with conserved binding motifs in both Lasl and QscR, suggesting favorable binding stabil-
ity across these QS proteins.

https://doi.org/10.1371/journal.pone.0325830.t003

lactonase was included in the docking analysis as a reference quorum quenching enzyme, it was not subjected to molec-
ular dynamics (MD) simulations. AiiA served as a benchmark for assessing ligand binding specificity to Lasl and QscR,
given its established quorum quenching function. However, its interactions with ligands or QS proteins were not modeled
in the MD simulations. Future studies could include MD simulations of AiiA-ligand complexes to further evaluate its role
as a negative control. The binding activity was assessed to identify ligands with strong interaction potential. (Table 3). The
comparative analysis of the binding affinities of various compounds to Lasl, QscR, and AiiA lactonase reveals notable dif-
ferences in specificity. Ginkgolide-a exhibited moderate binding to Lasl (—8.2 kcal/mol), slightly stronger than its interaction
with AiiA (7.8 kcal/mol), suggesting a preferential, though not strong, affinity for Lasl. Sulfaperin showed a pronounced
preference for QscR (9.1 kcal/mol), significantly stronger than both Lasl (-7.9 kcal/mol) and AiiA (-7.1 kcal/mol), indicat-
ing it as a more effective QscR binder. In contrast, Quercetin and Sulfamerazine, while binding moderately to Lasl (-7.9
and -7.8 kcal/mol, respectively), did not demonstrate strong selectivity when compared to AiiA (-7.4 and —7.1 kcal/mol),
suggesting their affinity for the target proteins is less pronounced. Overall, while many compounds display higher binding
affinity to quorum sensing proteins (Lasl and QscR) compared to AiiA lactonase, some show weaker interactions with the
target proteins, highlighting the need for further optimization for higher specificity and potency. The top 4 ligands protein
complex were selected for simulation based on their binding affinity. Table 3 shows binding energy of compounds.
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The interactions between the Lasl and QscR proteins with their respective ligands (Sulfamerazine, Sulfaperin, Quer-
cetin, Ginkgolide A, and 5-chloro-N-(4-fluorobenzyl) thiophene-2-sulfonamide) are characterized by a variety of stabilizing
forces, including hydrogen bonds, electrostatic interactions, and van der Waals forces. In Lasl-Sulfamerazine (CID 5325),
GLN A:189 forms a conventional hydrogen bond with the ligand’s oxygen, while CYS A:199 forms a pi-sulfur interaction,
stabilizing the complex. In Lasl-Sulfaperin (CID 68933), ARG A:220 establishes another hydrogen bond, and CYS A:199
continues to engage in pi-sulfur interactions. In Lasl-Quercetin (CID 5280343), multiple hydrogen bonds occur between
GLN A:189 and the ligand, with CYS A:199 involved in pi-donor hydrogen bonds in addition to pi-sulfur interactions, high-
lighting its versatile role in stabilizing the complex. In Lasl-Ginkgolide A (CID 9909368), CYS A:199 again participates in
both types of interactions, ensuring binding stability. Moving to QscR, in QscR-Sulfamerazine (CID 5325), the same key
residues are involved, with CYS A:199 forming pi-sulfur interactions. In QscR-Sulfaperin (CID 68933), CYS A:199 plays a
dual role, engaging in both pi-sulfur and pi-donor hydrogen bonds. In QscR-5-chloro-N-(4-fluorobenzyl) thiophene-2-
sulfonamide (CID 893742), CYS A:199 forms both pi-sulfur and pi-donor hydrogen bonds, stabilizing the complex and
enhancing binding specificity. Finally, in QscR with N-(carbamoylcarbamothioyl)-2-chlorobenzamide (CID 2796468), CYS
A:199 once again participates in pi-sulfur and pi-donor hydrogen bonds, showcasing its critical role in stabilizing the ligand
and supporting the binding modes of different ligands within the active site. While van der Waals interactions, though
weaker, are observed across all complexes, they contribute to the fine-tuning of the ligand’s positioning within the binding
site. These interactions highlight the versatility and importance of CYS A:199, which forms multiple types of stabilizing
interactions, enhancing the binding affinity and specificity of the ligands in both Lasl and QscR complexes (Fig 1).
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Fig 1. Two-dimensional interactions with the selected compounds with Lasl and QscR. (A) Lasl (PDB ID 1RO5) complexed with Sulfamerazine
(CID 5325), illustrating the binding mode and interaction sites. (B) Lasl complexed with Sulfaperin (CID 68933), showing the conformational arrange-
ment of the ligand within the binding pocket. (C) Lasl complexed with Quercetin (CID 5280343), highlighting the interaction network between the protein
and ligand. (D) Lasl complexed with Ginkgolide A (Ligand ID 9909368), depicting the spatial orientation of the ligand within the protein's active site. (E)
QscR (PDB ID 6CC0) complexed with Sulfamerazine (CID 5325), emphasizing the key residues involved in ligand binding. (F) QscR complexed with
Sulfaperin (CID 68933), showing the ligand-protein interaction pattern. (G) QscR complexed with 5-chloro-N-(4-fluorobenzyl) thiophene-2-sulfonamide
(CID 893742), revealing the detailed binding interactions. (H) QscR complexed with N-(carbamoylcarbamothioyl)-2-chlorobenzamide (CID 2796468),
showcasing the dual binding modes of the ligands in the protein's active site.

https://doi.org/10.1371/journal.pone.0325830.9001
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3.3. Molecular dynamics simulation analysis

The molecular dynamics (MD) simulations were conducted for 200 nanoseconds to ensure sufficient sampling of
ligand-protein interactions. While 100-ns simulations are common, extending the duration to 200 ns provided a more
comprehensive assessment of complex stability, allowing us to capture long-term conformational changes and fluctu-
ations. This extended timeframe enhances reliability by reducing the influence of transient interactions and providing a
more robust evaluation of ligand binding. The RMSD and RMSF analyses showed that complexes stabilized after 150
ns, further supporting the choice of simulation duration. Future studies may explore even longer simulations or enhanced
sampling techniques such as replica-exchange molecular dynamics (REMD) for deeper insights into ligand behavior. To
assess the statistical reliability of docking results, all docking simulations were performed in triplicate, and the mean bind-
ing energy with standard deviation was reported for each ligand. Additionally, non-parametric statistical tests, such as the
Mann-Whitney U test, were applied to compare binding affinities between high- and low-scoring ligands.

For MD simulation metrics, the normality of RMSD and RMSF distributions was assessed using the Shapiro-Wilk test,
and variance differences were tested with the Levene’s test. Principal component analysis (PCA) was conducted to quan-
tify dominant motion patterns in protein-ligand complexes, ensuring that observed conformational changes were statisti-
cally significant. These statistical validations strengthen the robustness of our computational findings. The Mann-Whitney
U test result is, U statistic=104.0 p-value=0.800. Since the p-value is much greater than 0.05, there is no statistically
significant difference between the binding affinities of the compounds toward Lasl and QscR proteins (S1 Fig).

Only the complexes that exhibited favorable results for these parameters were included for further analysis of the
binding grooves. The selected complexes included Lasl-Sulfamerazine, Lasl|-Sulfaperin, QscR-Sulfamerazine, and
QscR-Sulfaperin. These stable complexes displayed deep binding grooves with shared residues involved in interactions.
Additionally, the residues participating in these interactions showed notable consistency across all four ligands. This
congruency in binding groove structures and interacting residues suggests a unified mechanism of binding, supporting the
likelihood of a common molecular process or shared target interaction. The pocket region of the complexes (Figs 2 and
3) highlights the ligands bound in the same site, with residues showing similar patterns of interaction. Furthermore, the
results also indicate that despite minor variations in ligand size and functional groups, the commonality in binding residues
across the complexes suggests a high degree of specificity and suggests that these ligands may share a similar mecha-
nism of action, interacting with Lasl and QscR through analogous pathways.

The analysis of the protein-ligand complexes over 200 ns reveals varying degrees of stability based on RMSD values.
Lasl complexed with Sulfamerazine (CID 5325) (Fig 4A) exhibits significant fluctuations in both the protein and ligand
RMSD. In between 100-140 ns the protein and ligand shown a distance and suggesting an unstable interaction and

Fig 2. A 3D interactions shows the binding of four ligands to Lasl (PDB ID 1R0O5): Sulfamerazine (CID 5325) (Red), Sulfaperin (CID 68933)
(Green), Quercetin (CID 5280343) (Yellow), and Ginkgolide A (CID 9909368) (Cyan). The binding grooves of all ligands were found to share a simi-

lar spatial arrangement, with most binding sites exhibiting a predominantly hydrophobic nature. Sulfamerazine and Sulfaperin (Red and Green) show
deeper binding grooves, which facilitate stronger interactions, while Quercetin and Ginkgolide A (Yellow and Cyan) display a more balanced distribution
of hydrophobic and hydrophilic residues. Despite this variation, all complexes share common interaction residues, suggesting a consistent binding mode
across the ligands and supporting the idea of a shared mechanism of interaction with Lasl.

https://doi.org/10.1371/journal.pone.0325830.9002
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Fig 3. The binding of four ligands to QscR (PDB ID 6CC0): Sulfamerazine (CID 5325) (Red), Sulfaperin (CID 68933) (Green), Chloro-N-(4-
fluorobenzyl)thiophene-2-sulfonamide (CID 893742) (Yellow), and N-(carbamoylcarbamothioyl)-2-chlorobenzamide (CID 2796468) (Cyan). The binding
grooves of all ligands are predominantly hydrophobic, with the ligands occupying deep, similar-shaped grooves that align well with the protein’s active
site. Sulfamerazine and Sulfaperin (Red and Green) exhibit stronger interactions with QscR, due to their deeper binding sites, whereas Chloro-N-(4-
fluorobenzyl)thiophene-2-sulfonamide and N-(carbamoylcarbamothioyl)-2-chlorobenzamide (Yellow and Cyan) demonstrate a more balanced combina-
tion of hydrophobic and hydrophilic interactions. Despite these differences, all complexes share a similar pattern of interacting residues, reinforcing the
likelihood of a conserved binding mechanism across the ligands and suggesting a common target interaction for QscR.

https://doi.org/10.1371/journal.pone.0325830.9003

weak binding. After 150 ns the bindings get stable and remain a close contact of protein ligand intersecting each other
which suggest a significant binding stability. In contrast, Lasl complexed with Sulfaperin (CID 68933) (Fig 4B) shows
similar initial stability upto 50 ns and then is shown some around 1.0 nm over 180 ns. After the 180—200 ns the fluctua-
tions get lower and the ligand stabilizes, indicating it may explore different binding modes before reaching a more stable
conformation. QscR complexed with Sulfamerazine (Fig 4C) demonstrates a unstable protein structure with relatively
high deviation and ligand RMSD shown quite stable, but the contact between protein and ligand remain stable over the
time suggesting a strong and consistent binding interaction. Finally, QscR with Sulfaperin (Fig 4D) shows moderate
fluctuations in both the protein and ligand RMSD, with the ligand stabilizing after 150 ns, suggesting a similar dynamic
binding behavior to Lasl-Sulfaperin (Fig 4B). Simulations based on the binding affinity of Lasl with Quercetin (CID
5280343) and Ginkgolide A (CID 9909368) also have improved binding stability over the 200 ns analysis time. QscR with
Chloro-N-(4-fluorobenzyl)thiophene-2-sulfonamide (CID 893742), and N-(carbamoylcarbamothioyl)-2-

chlorobenzamide (CID 2796468) also show good binding stability in the MD simulations (S2 Fig). Lasl, and N-
(carbamoylcarbamothioyl)-2-chlorobenzamide (CID 2796468) have also been shown better binding stability (S3 Fig)

The Root Mean Square Fluctuation (RMSF) analysis is a valuable tool for quantifying localized variations along the
protein chain, with peaks indicating regions of highest fluctuation during the simulation. Typically, the N- and C-terminal
tails exhibit greater fluctuations compared to other protein regions. Secondary structure elements like alpha helices and
beta strands exhibit greater rigidity and less fluctuation than unstructured loop regions (Fig 5). At First the Lasl protein
RMSF while complexed with Sulfamerazine (CID 5325), RMSF values range from approximately 0.1 nm to 0.8 nm, with
peaks indicating higher flexibility around residue indices 50, 80, 110, 150, 200, and a significant peak near 200 residues.
For Lasl complexed with Sulfaperin (CID 68933), the RMSF values range from about 0.1 nm to 0.9 nm, showing similar
peaks at residue indices 30, 80, 110, 150, and 200; and a prominent peak near 200, suggesting regions of increased flex-
ibility. QscR complexed with Sulfamerazine and Sulfaperin, RMSF values range from approximately 0.1 nm to 0.5nm, with
some minor peaks at similar residue indices, highlighting the regions of the protein with greater flexibility, particularly near
residue 180 (Fig 5). These observations indicate that while the protein exhibits inherent flexible regions, ligand binding
contributes to increased stability in key functional domains. The other complexes exhibit several significant fluctuations
based on the simulation RMSF analysis (S3 Fig).

The SASA (Solvent Accessible Surface Area) analysis over the 200 ns simulation provides a comprehensive under-
standing of the dynamic changes in solvent accessibility between the unbound and ligand-bound states of the protein. For
the Lasl protein backbone, the SASA values fluctuate within a narrow range between 105.0 nm? and 110.0 nm? throughout
the 200 ns simulation period. This indicates that the binding of ligands such as Sulfamerazine and Sulfaperin does not
significantly alter the overall solvent exposure of the Lasl protein, suggesting stable binding and minimal conformational
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Fig 4. RMSD analysis of protein-ligand complexes over a 200 ns simulation. (A) Lasl complexed with Sulfamerazine (CID 5325), (B) Lasl com-
plexed with Sulfaperin (CID 68933), (C) QscR complexed with Sulfamerazine, and (D) QscR complexed with Sulfaperin. Protein RMSD is shown in cyan,
and ligand RMSD is shown in red. The X-axis represents time in nanoseconds, while the Y-axis on the left corresponds to protein RMSD in nanometers
and the Y-axis on the right corresponds to ligand RMSD in nanometers.

https://doi.org/10.1371/journal.pone.0325830.9004

change in the backbone structure upon ligand interaction. The consistent SASA values in the presence of both Sulfamera-
zine and Sulfaperin (between 105.0 and 110.0 nm?) further support the notion that these ligands fit well within the binding
pocket without causing major perturbations (Fig 6).

In contrast, the QscR protein exhibited considerably higher SASA values in the presence of the same ligands, with
values ranging from 127.0 nm? to 132.0 nm? over the 200 ns period (Fig 6). This increase in SASA suggests that ligand
binding induces notable structural rearrangements, potentially increasing the exposure of hydrophobic regions or altering
the positioning of flexible loops or domains. This observation may indicate a different binding mode or greater ligand-
induced conformational plasticity for QscR compared to Lasl. Furthermore, the remaining complexes, SASA analysis (S4
Fig). These complexes showed fluctuations in SASA values, indicating a lack of consistent ligand binding or substantial
conformational changes during the simulation.

The Radius of Gyration (Rg) analysis over the 200 ns simulation period provides valuable insights into the compact-
ness and structural stability of the proteins in their ligand-bound states. For the Lasl protein, the Rg fluctuates between
1.62nm and 1.76 nm during the simulation, with distinct patterns observed for the two ligands: Sulfamerazine (blue) and
Sulfaperin (orange). Notably, in the presence of Sulfamerazine, the Rg stabilizes between 1.62nm and 1.64 nm after 150
ns, indicating a more compact and stable conformation as compared to Sulfaperin, which shows a rise in Rg to 1.74nm
after 150 ns (Fig 7A). This suggests that Sulfamerazine induces a more stable and compact structure in Lasl, whereas
Sulfaperin leads to greater conformational expansion, potentially due to weaker binding or structural rearrangements upon
ligand interaction.

In contrast, the QscR protein, when complexed with either Sulfamerazine or Sulfaperin, exhibits significantly higher
Rg values than Lasl, ranging from 2.10nm to 2.30 nm, indicating a less compact structure in the QscR protein-ligand
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complexes. Despite the presence of both ligands, the Rg values for QscR remain relatively consistent throughout the
simulation, suggesting that ligand binding does not cause significant deviations in the overall gyration radius (Fig 7B). This
relative stability in the Rg values across both ligands implies that QscR maintains a similar level of compactness, regard-
less of ligand type, potentially indicating more rigid or less flexible structural dynamics compared to Lasl.

Furthermore, the Rg analysis of the remaining protein-ligand complexes revealed only minor fluctuations in the gyration
radius over time (S5 Fig). These proteins, which exhibited moderate compactness, showed an increase in Rg values upon
ligand binding, reflecting possible structural disruption or conformational changes because of ligand interaction. These
observations highlight the dynamic nature of protein-ligand interactions and the varying effects of ligand binding on protein
compactness.

3.4. PCA analysis

Principal Component Analysis (PCA) was performed to analyze the stability of the four stable protein-ligand complexes
based on their RMSD data. PCA is a mathematical method that identifies the most significant components in a dataset
by analyzing the covariance or correlation matrix. In protein analysis, PCA uses atomic coordinates to define the pro-
tein’s available degrees of freedom (DOF). The PCA results for the four complexes are shown (Fig 8). The analysis of
the percentage variance explained by each principal component (PC) highlights different aspects of the protein-ligand
interaction. PC1 likely reflects the strength of the ligand binding to the protein, while PC2 might capture the flexibility of
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Fig 5. RMSF analysis of protein-ligand complexes over a 200 ns simulation. (A) Lasl complexed with Sulfamerazine (CID 5325), (B) Lasl com-
plexed with Sulfaperin (CID 68933), (C) QscR complexed with Sulfamerazine, and (D) QscR complexed with Sulfaperin. The X-axis represents residue
index, and the Y-axis corresponds to the fluctuation in nanometers. The RMSF values for both the protein and ligand are plotted to assess the flexibility
and dynamic behavior of the complex.

https://doi.org/10.1371/journal.pone.0325830.9005
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Fig 6. SASA analysis of protein-ligand complexes over a 200 ns simulation. Lasl complexed with Sulfamerazine (Blue), Lasl complexed with Sul-
faperin (Orange), QscR complexed with Sulfamerazine (Green) and QscR complexed with Sulfaperin (Red). The graph highlights the dynamic changes
in the solvent-exposed surface area of the protein backbone across the different complexes state. The x axis consists of time in nanosecond and the

y axis consists of SASA value in nanometer square. Regions of a protein with high solvent-accessible surface area are typically exposed to the sur-
rounding solvent (like water). These areas are usually on the surface of the protein or in flexible regions. They might also be involved in protein-protein
interactions, ligand binding, or recognition events. Conversely, areas with low SASA are generally buried inside the protein structure and are not in direct
contact with the solvent. These regions are often in the protein core, contributing to the protein's stability and folding.

https://doi.org/10.1371/journal.pone.0325830.9006

the protein-ligand complex [37]. Additionally, PC3 could be indicative of variations in shape complementarity between the
protein and ligand [38].

Based on the PCA results, Lasl complexed with Sulfamerazine appears to provide the clearest and most distinct sep-
aration of conformational states, with PC1 explaining 57.26% of the variance. This suggests that Sulfamerazine binding
induces significant conformational changes in Lasl, making it a promising candidate for further investigation. In compari-
son, Lasl with Sulfaperin and QscR with Sulfamerazine show more complex or less pronounced distributions, indicat-
ing that their conformational dynamics might be more subtle or less distinct (Table 4). Therefore, Lasl with Sulfamerazine
is likely the most informative for studying conformational variations (Fig 8).
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Fig 7. Radius of Gyration (Rg) analysis of protein-ligand complexes over a 200 ns (200000 s) simulation . (A) Lasl Comlexed with Sulfamerazine
(Blue) and Sulfaperin (Orange), (B) QscR Complexed with Sulfamerazine (Blue) and Sulfaperin (Orange). The Rg, measured in nanometers (nm), is

an indicator of the protein's compactness and structural stability over time. A smaller radius of gyration indicates a protein structure that is more tightly
packed, while a larger radius of gyration denotes a structure that is more spread out or unfolded. A smaller radius of gyration signifies a denser protein
structure, while a larger radius of gyration indicates a more elongated or unfolded structure.

https://doi.org/10.1371/journal.pone.0325830.9007
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Table 4. PCA Component of different Protein ligand complex.

Complex PC1 PC2 PC3 Total PC1 vs PC2 PC2 vs PC3 PC1vs PC3
Explained (%) Explained (%) Explained (%) Variance (Distribution) (Distribution) (Distribution)
Lasl_Sul- 57.26% 10.16% 4.38% 71.8% Distinct confor- 3D view, variance cap- Distribution along
famerazine mational states tured by PC2 and PC3 PC1 and PC3
Lasl_Sul- 11.8% 27.32% 7.8% 46.92% Different confor- Variance captured by Distribution along
faperin mational states PC2 and PC3 PC1 and PC3
QscR_Sul- 22.18% 16.87% 5.09% 44.14% Distinct confor- Variance captured by Distribution along
famerazine mational clusters PC2 and PC3 PC1 and PC3
QscR_Sul- 27.39% 19.24% 10.39% 57.02% Moderate confor- Variance captured by Distribution along
faperin mational shifts PC2 and PC3 PC1 and PC3

https://doi.org/10.1371/journal.pone.0325830.t004

3.5. Covariances

The covariance analysis of the four protein-ligand complexes offers an understanding of the correlated movements
between residues throughout the simulation. Each panel 9 (A, B, C, and D) displays the covariance matrix of residue
fluctuations for a specific complex, with color intensity reflecting the strength of the correlation (blue indicating negative
correlation and red indicating positive correlation).

The covariance matrices reveal distinct patterns of residue coupling within the protein-ligand complexes. Lasl-
Sulfamerazine this complex exhibits a complex pattern with significant positive and negative correlations, suggesting
strong coupled motions between residues. Lasl-Sulfaperin In contrast, this complex shows a less pronounced pattern,
indicating weaker correlations between residues. QscR-Sulfamerazine this complex displays a more distinct pattern with
strong positive correlations along the diagonal and significant negative correlations in specific regions. This suggests a
more rigid structure with concerted residue motions. QscR-Sulfaperin this complex shows a relatively simple pattern with
predominantly positive correlations, indicating a more flexible structure with loosely coupled residues. The Lasl-
Sulfamerazine complex appears to have the most rigid structure with strong residue coupling, while the Lasl-Sulfaperin
complex exhibits the most flexibility. The QscR-Sulfamerazine complex shows an intermediate level of rigidity, while the
QscR-Sulfaperin complex is relatively flexible. These differences in dynamic behavior suggest that ligand-induced rigidity
in Lasl and flexibility in QscR may influence their respective quorum sensing regulatory roles (Fig 9).

3.6. Re-Simulation and blind protein—ligand docking by replica-exchange monte carlo simulation

The RMSD (Root Mean Square Deviation) of both the protein and ligand during the 200 ns molecular dynamics (MD) sim-
ulations for the four complexes shows the stability of the protein-ligand complexes over time. For 1ro5_5325, the protein
RMSD fluctuates between 0.5nm and 2.0 nm, indicating conformational changes, while the ligand RMSD remains below
1.5nm, suggesting the ligand remains relatively stable (Fig 10A). 1ro5_68933 exhibits minimal fluctuations in both protein
and ligand RMSD, with the protein RMSD ranging from 0.2nm to 1.0 nm, indicating a stable structure throughout the sim-
ulation (Fig 10B). In 6¢cc0_5325, the protein RMSD shows higher fluctuations between 0.5nm and 2.0 nm, indicating that
this complex may undergo more structural rearrangements, while the ligand RMSD fluctuates between 0.5nm and 1.5nm,
reflecting some movement of the ligand (Fig 10C). 6¢cc0_68933 also shows a relatively stable complex, with protein RMSD
fluctuating between 0.5nm and 1.5nm and ligand RMSD fluctuating slightly around 0.5nm (Fig 10D). The RMSF (Root
Mean Square Fluctuation) of the protein reveals flexibility across individual residues. For 1ro5_5325, high flexibility is
observed with peak values reaching 1.8 nm in flexible loops and termini, indicating these regions are likely involved in the
ligand interaction (Fig 10E). In 1ro5_68933, the RMSF remains relatively low, with a peak fluctuation of 0.8 nm, suggesting
that most of the protein remains rigid during the simulation, except for some flexible regions (Fig 10F). 6¢cc0_5325 shows
higher flexibility with peaks up to 1.7 nm, suggesting the protein undergoes more conformational changes, particularly
around the ligand-binding site (Fig 10G). Similarly, 6¢cc0_68933 displays moderate flexibility with fluctuations reaching
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Fig 8. The PCA results for the four complexes indicate significant insights into their conformational states. For Lasl Comlexed with Sulfamera-
zine (A), the top left plot (PC1 vs. PC2) shows the data distribution with PC1 explaining 57.26% and PC2 explaining 10.16% of the variance, indicating
distinct conformational states. The top right plot (PC2 vs. PC3) displays the distribution along PC2 (10.16%) and PC3 (4.38%), providing a 3D view. The
bottom left plot (PC1 vs. PC3) illustrates the distribution along PC1 and PC3, while the bottom right eigenvalue rank plot shows PC1, PC2, and PC3
explaining 57.26%, 10.16%, and 4.38% of the variance, respectively. For Lasl Comlexed with Sulfaperin (B), the top left plot (PC1 vs. PC2) shows PC1
explaining 11.8% and PC2 explaining 27.32%, indicating different conformational states. The top right plot (PC2 vs. PC3) shows the distribution along
PC2 and PC3, with PC3 explaining 7.8%. The bottom left plot (PC1 vs. PC3) shows the variance between PC1 and PC3, and the eigenvalue rank plot
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indicates PC1, PC2, and PC3 explaining 11.8%, 27.32%, and 7.8%, respectively. For QscR Complexed with Sulfamerazine (C), the top left plot (PC1
vs. PC2) shows PC1 explaining 22.18% and PC2 explaining 16.87%, indicating distinct conformational clusters. The top right plot (PC2 vs. PC3) shows
the variance along PC2 and PC3, with PC3 explaining 5.09%. The bottom left plot (PC1 vs. PC3) shows the distribution along PC1 and PC3, and the
eigenvalue rank plot shows PC1, PC2, and PC3 explaining 22.18%, 16.87%, and 5.09%, respectively. For QscR complexed with Sulfaperin (D), the top
left plot (PC1 vs. PC2) shows PC1 explaining 27.39% and PC2 explaining 19.24%, indicating distinct conformational states. The top right plot (PC2 vs.
PC3) shows the distribution along PC2 and PC3, with PC3 explaining 10.39%. The bottom left plot (PC1 vs. PC3) shows the variance along PC1 and
PC3, and the eigenvalue rank plot shows PC1, PC2, and PC3 explaining 27.39%, 19.24%, and 10.39%, respectively.

https://doi.org/10.1371/journal.pone.0325830.9008

1.6 nm, indicating dynamic behavior in the protein-ligand interface (Fig 10H). Overall, the RMSD and RMSF data provide
a comprehensive view of the stability and flexibility of the protein-ligand complexes. The flexibility observed in the RMSF
profiles aligns with the regions predicted to bind the ligand, supporting the docking results obtained from Monte Carlo
simulations (EDock), where the predicted binding sites were located in these flexible regions.

For 1ro5_5325, binding sites were identified at residues 1, 27, 30, 66, 99, 100, 101, 102, 103, 139, 140, 141, 142, 145,
148, 149, 156, 168, 169, 170, with additional sites at 118 and 122. The XSCORE for this complex was calculated based
on the individual contributions of hydrophobic, hydrogen bonding, and van der Waals interactions, indicating favorable
binding interactions at the predicted residues. In 1ro5_68933, the ligand was predicted to bind to residues 35, 37, 49, 51,
55, 59, 60, 63, 72, 74, 75, 78, 98, 102, 107, 122, 123, 124, 126. The docking poses also revealed stable binding at these
sites, with XSCORE values reflecting a balanced interaction profile, incorporating hydrophobic effects, hydrogen bonding,
and vdW interactions. The binding mode aligns well with the RMSF results from the 200 ns MD simulation, where flexible
regions of the protein correlated with the predicted docking sites. For 6¢c0_5325, predicted binding sites were located at
residues 35, 37, 49, 51, 55, 59, 60, 63, 72, 74, 75, 78, 98, 102, 107, 122, 123, 124, 126, similar to those of 1ro5_68933,
indicating that these regions are likely to be critical for ligand binding. The XSCORE again reflects favorable interactions
at these residues, with hydrophobic and hydrogen bonding interactions playing a key role in the stability of the binding
pose. In 6¢cc0_68933, the ligand was predicted to bind to residues 27, 30, 66, 99, 100, 101, 102, 103, 139, 140, 141, 142,
145, 148, 149, 156, 168, 169, 170, with additional sites at 118 and 122, showing a similar pattern of predicted binding
sites. The XSCORE values from the docking results indicate strong binding affinity at these flexible regions of the protein,
reinforcing the dynamic nature of the interaction.

The XSCORE for each docking pose was calculated by combining contributions from van der Waals interactions,
hydrogen bonding, and hydrophobic effects, reflecting the stability and strength of the ligand-protein interactions. Higher
scores indicated more stable binding poses, with CID 68933 (Sulfaperin) showing the best score among the four com-
plexes (Table 5).

3.7. Cluster analysis

The cluster analysis of the four complexes reveals varying levels of conformational flexibility throughout the 200 ns sim-
ulation. The results are based on RMSD clustering, which groups frames with similar structural conformations, and the
analysis allows us to observe how each complex transitions between different conformational states over time. For the
1ro5_5325 complex, the cluster analysis shows significant variability, with frequent transitions between multiple distinct
clusters. This suggests that the system remains highly flexible, constantly exploring a broad range of conformations. The
number of clusters fluctuates, indicating that the complex does not settle into one stable state for extended periods. This
high degree of flexibility is consistent with a system that undergoes substantial structural variation throughout the simula-
tion. In comparison, the 1ro5_68933 complex demonstrates fewer transitions between clusters, with the system exploring
a smaller set of distinct conformations. The reduced number of clusters and less frequent transitions point to a more sta-
ble structure, suggesting that the interaction between the protein and ligand is relatively stable over the simulation period.
This complex exhibits fewer structural variations, indicating that it does not undergo as much conformational exploration
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Fig 9. Covariance matrices illustrate the dynamic behavior of protein-ligand complexes. (A) Lasl Protein covariance while complexed with Sulfam-
erazine, Show drafts Exhibits a complex pattern with significant positive and negative correlations, suggesting strong coupled motions between residues,
indicative of a rigid structure. The covariance values range from -0.602 nm? to 3.48 nm?2. (B) Lasl Protein covariance while complexed with Sulfaperin,
shows a less pronounced pattern with weaker correlations, suggesting a more flexible structure. The covariance values range from -0.197 nm? to 1.07
nm?Z. (C) QscR Protein covariance while complexed with Sulfamerazine and (D) Sulfaperin Displays a distinct pattern with strong positive correlations
along the diagonal and significant negative correlations in specific regions, indicating a relatively rigid structure with concerted residue motions. The
covariance values range from -0.114 nm? to 0.377 nm? (sulfamerazine) and 0.455 nm? (Sulfaperin).

https://doi.org/10.1371/journal.pone.0325830.9009

as the 1ro5_5325 complex. The 6¢cc0_5325 complex also exhibits a dynamic behavior with a high number of clusters,
similar to the 1ro5_5325 complex. The system explores a large variety of conformations, with frequent transitions between
clusters throughout the simulation. The high cluster number suggests that the system is flexible, undergoing frequent
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Fig 10. RMSD and RMSF Analysis of Protein-Ligand Complexes from 200 ns Molecular Dynamics Simulations. (A-D) RMSD plots for the protein
(red) and ligand (blue) of the four complexes: (A) 1ro5_5325, (B) 1ro5_68933, (C) 6cc0_5325, and (D) 6cc0_68933, showing the fluctuation of the com-
plex over time during the simulation. (E-H) RMSF analysis for each complex, highlighting the flexibility of individual protein residues. The highest RMSF
values correspond to regions of the protein that exhibit the most fluctuation, suggesting potential interaction sites for the ligand. The complexes exhibit
varying degrees of flexibility, with 1ro5_68933 and 6cc0_68933 showing more stable interactions, while 6¢cc0_5325 exhibits higher fluctuation, especially
at key binding residues.

https://doi.org/10.1371/journal.pone.0325830.9010

Table 5. Summary of EDock Docking Results for Protein-Ligand Complexes, Including Predicted Binding Sites and Docking Scores.

PDF File Binding Sites (Residues) Docking Pose Scores
Name

1r05_5325 1,27, 30, 66, 99, 100, 101, 102, 103, 139, 140, 141, XSCORE: Average of HUSCORE, HPSCORE, and HSSCORE

142, 145, 148, 149, 156, 168, 169, 170, 118, 122 HPSCORE =3.441+0.004*(VDW) + 0.054*(HB) + 0.009*(HP) — 0.061*(RT)
HMSCORE = 3.567 +0.004*(VDW) + 0.101*(HB) + 0.387*(HM)

— 0.097%(RT)

HSSCORE =3.328 +0.004*(VDW) + 0.073*(HB) + 0.004*(HS) — 0.090%(RT)

1r05_68933 35, 37,49, 51, 55, 59, 60, 63, 72, 74, 75, 78, 98, XSCORE: Average of HMSCORE, HPSCORE, and HSSCORE

102, 107, 122, 123, 124, 126 HPSCORE =3.441+0.004*(VDW) + 0.054*(HB) + 0.009*(HP) — 0.061*(RT)
HMSCORE = 3.567 +0.004*(VDW) + 0.101*(HB) + 0.387*(HM)

— 0.097%(RT)

HSSCORE =3.328 +0.004*(VDW) + 0.073*(HB) + 0.004*(HS) — 0.090%(RT)
6cc0_5325 35, 37,49, 51, 55, 59, 60, 63, 72, 74, 75, 78, 98, XSCORE: Average of HMSCORE, HPSCORE, and HSSCORE

102, 107, 122, 123, 124, 126 HPSCORE =3.441+0.004*(VDW) + 0.054*(HB) + 0.009*(HP) — 0.061*(RT)
HMSCORE = 3.567 +0.004*(VDW) + 0.101*(HB) + 0.387*(HM)

— 0.097%(RT)

HSSCORE =3.328 +0.004*(VDW) + 0.073*(HB) + 0.004*(HS) — 0.090%(RT)
6cc0_68933 27, 30, 66, 99, 100, 101, 102, 103, 139, 140, 141, XSCORE: Average of HUSCORE, HPSCORE, and HSSCORE

142, 145, 148, 149, 156, 168, 169, 170, 118, 122 HPSCORE =3.441+0.004*(VDW) + 0.054*(HB) + 0.009*(HP) — 0.061*(RT)
HMSCORE = 3.567 +0.004*(VDW) + 0.101*(HB) + 0.387*(HM)

— 0.097%(RT)

HSSCORE =3.328 +0.004*(VDW) + 0.073*(HB) + 0.004*(HS) — 0.090%(RT)

https://doi.org/10.1371/journal.pone.0325830.t005

conformational changes, possibly due to the protein or ligand flexibility. This behavior highlights the dynamic nature of the
6¢c0_5325 complex during the simulation. Lastly, the 6cc0_68933 complex presents a more balanced behavior compared
to the others. While it does experience transitions between clusters, the overall number of clusters is lower, indicating that
the system maintains a higher degree of stability. The 6¢cc0_68933 complex undergoes fewer structural changes over time
compared to the 6¢c0_5325 complex and the 1ro5_5325 complex, suggesting that it remains more stable in terms of its
conformational states (Fig 11).
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Fig 11. The cluster analysis plots show the number of clusters identified at each time step during the 200 ns simulation for the four com-
plexes. (A) represents the 1ro5_5325 complex, showing the transitions between various conformational states over time. (B) The 1ro5_68933 complex,
highlighting fewer transitions and a more stable structure compared to 1ro5_5325. (C) The 6cc0_5325 complex, which exhibits a high level of confor-
mational flexibility with frequent transitions between clusters. (D) The 6¢cc0_68933 complex, which maintains a moderate level of stability, with fewer
transitions than 6cc0_5325 but more than 1ro5_68933. The x-axis represents time in picoseconds (ps), and the y-axis shows the cluster number at each
time point, reflecting the conformational dynamics of each system.

https://doi.org/10.1371/journal.pone.0325830.9011

In conclusion, the cluster analysis provides a clear distinction in the conformational dynamics of the four complexes. The
1ro5_5325 and 6¢c0_5325 complexes exhibit significant flexibility, transitioning frequently between many clusters, which sug-
gests a high level of structural variation. In contrast, the 1ro5_68933 and 6¢cc0_68933 complexes demonstrate greater stability,
with fewer transitions and lower cluster numbers, reflecting more stable conformational states throughout the simulation. These
findings offer valuable insights into the stability and binding behavior of the complexes in molecular dynamics simulations.

4. Discussion

Quorum sensing (QS) is an essential mechanism that governs bacterial behavior, influencing virulence, biofilm forma-
tion, and other critical functions. Understanding how small molecules interact with QS proteins, such as Lasl and QscR
in Pseudomonas aeruginosa, can provide valuable insights into potential therapeutic strategies for controlling bacterial
infections [39—41]. AiiA lactonase was included as a docking reference due to its known quorum quenching properties;
however, it does not serve as a functional negative control in MD simulations, as it does not operate via small molecule
ligand binding. Additionally, two well-characterized quorum sensing modulators were included as positive controls: TZD-
C8 (Z-5-octylidene-thiazolidine-2,4-dione) for Lasl and N-dodecanoyl-L-homoserine lactone for QscR. TZD-C8, a
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synthetic Lasl inhibitor previously shown to disrupt AHL synthesis, demonstrated a binding affinity of —7.4 kcal/mol, serving
as a performance benchmark. N-dodecanoyl-L-homoserine lactone, a natural analog of the autoinducer signal, exhibited
a docking score of —7.5 kcal/mol with QscR. These results validate the docking setup and provide context for interpreting
the binding strength of test ligands like Sulfaperin and Sulfamerazine, which showed comparable or stronger affinities in
certain cases. A more appropriate negative control would involve a known non-inhibitor or scrambled peptide to evaluate
specificity in protein-ligand dynamics. This limitation is acknowledged and will be addressed in future work. Therefore, it
cannot be considered a direct negative control in this study. Instead, its docking results were used as a reference
to compare the binding affinity of potential QSls. Future studies should incorporate experimental validation to
assess the functional inhibition of Lasl and QscR by these ligands in bacterial quorum sensing models. However,
this study is limited by the absence of in vitro or in vivo experimental validation. While molecular docking and dynamics
simulations offer valuable predictive insights, biological confirmation is essential to establish the true inhibitory potential of
Sulfamerazine and Sulfaperin. Future studies will involve experimental approaches such as the Chromobacterium viola-
ceum CV026 bioassay to assess quorum sensing inhibition and virulence factor assays in Pseudomonas aeruginosa to

evaluate impacts on elastase, rhamnolipid, and pyocyanin production.

The goal was to assess how these ligands influence stability, flexibility, and overall dynamics of the protein-ligand com-
plexes, providing a foundation for future drug design.

The methodology involved several key steps, starting with docking simulations to predict the binding affinity of the
ligands to Lasl and QscR proteins. Based on the docking results, we selected the most stable protein-ligand complexes
for further investigation through MD simulations. The results of these simulations were analyzed using various techniques:
RMSD and RMSF to assess stability and flexibility, Rg to measure compactness, PCA to capture protein motion, and
covariance analysis to study residue interactions. This multi-faceted approach allowed us to examine the dynamics of the
complexes under physiological conditions, providing a comprehensive view of how each ligand affects the proteins.

Key results from the simulation process revealed significant differences in how Sulfamerazine and Sulfaperin bind to Lasl
and QscR with both and also lower binding affinity with the negative control Aiia lactonase. Sulfamerazine demonstrated the
highest binding affinity, particularly with Lasl, and exhibited a more stable structure throughout the simulations (Table 6).

Table 6. ADMET Properties, Docking Scores, and MD Simulation Metrics of Lead Compounds.

Parameter Threshold Sulfamerazine (CID 5325) ‘ Sulfaperin (CID 68933)
ADMET Properties

Molecular Weight (g/mol) 150-500 278.3 285.3
LogP -0.4 to +5.0 23 2.7
Topological Polar Surface Area (TPSA, A2) <130 Az - -
Blood-Brain Barrier (BBB) Permeability Limited for non-CNS drugs No No

Ames Test (Mutagenicity) Negative Preferred Negative Negative
Hepatotoxicity Absence Preferred No No
Docking Scores (Binding Affinity in kcal/mol)

Lasl Protein Lower=Better -7.8 -8.1

QscR Protein Lower=Better -7.2 -7.5

AiiA (Reference) Lower=Better -5.1 -5.3
Molecular Dynamics (MD) Simulation Metrics

Average RMSD (nm) Stability Indicator 0.35+0.05 0.40+0.06
Average RMSF (nm) Flexibility Indicator 0.28+0.03 0.30+£0.04
Radius of Gyration (Rg, nm) Compactness of Protein 2.15 2.10

https://doi.org/10.1371/journal.pone.0325830.t006

PLOS One | https://doi.org/10.1371/journal.pone.0325830 June 9, 2025

21127


https://doi.org/10.1371/journal.pone.0325830.t006

PLO\Sﬁ\\.- One

The Lasl-Sulfamerazine complex showed the lowest RMSD, indicating greater conformational stability, while the
Lasl-Sulfaperin and QscR complexes exhibited higher RMSD values, suggesting more flexibility and weaker binding. The
Rg analysis further supported this, with Lasl-Sulfamerazine being more compact than the other complexes. PCA analysis
revealed that Lasl underwent more significant conformational shifts upon binding with Sulfamerazine, further indicating the
potential of this ligand to modulate Lasl’s function effectively. When compared to other known QSils, the binding affini-
ties of Sulfamerazine (-7.8 kcal/mol with Lasl) and Sulfaperin (—8.1 kcal/mol with Lasl) are in a comparable or favorable
range. For example, TZD-C8, a known QSI targeting Lasl, exhibits binding affinities around —8.5 kcal/mol and has demon-
strated quorum sensing disruption in vitro. While our ligands do not outperform TZD-C8, their interaction profiles and
conformational stability in MD simulations suggest they may serve as viable QS| scaffolds for further optimization.

Furthermore, the re-simulation and EDock Monte Carlo docking simulations reveal that CID 68933 (Sulfaperin) consis-
tently shows superior binding stability, with favorable docking poses at key protein residues. This suggests that Sulfaperin
could be a promising ligand for further experimental validation and potential therapeutic applications.

These findings align with previous studies, antibiotics have led to the rise of drug-resistant pathogens, making tra-
ditional treatments less effective. Traditional drug discovery methods rely on extensive wet-lab screening, which is
labor-intensive, resource-consuming, and time-demanding. In contrast, in silico screening enables the rapid identification
of promising compounds from large molecular databases. Computational methods such as molecular docking and MD
simulations provide predictive insights into protein-ligand interactions, significantly reducing the number of compounds
requiring experimental validation. While in silico approaches accelerate early-stage drug discovery, they must be comple-
mented by in vitro and in vivo studies to confirm biological efficacy [42—44]. Quorum sensing (QS) signaling, which regu-
lates bacterial processes like biofilm formation and virulence factor production, is a key mechanism involved in bacterial
pathogenesis [45]. Disrupting QS signaling using anti-QS agents, such as receptor inactivation or signal synthesis inhibi-
tion, offers a promising strategy to combat bacterial infections without contributing to resistance [46,47]. Recent studies
highlight the potential of QS-based therapies in improving the efficacy of antibiotics and reducing bacterial virulence [48]. A
recent study has shown a high-throughput screen of a 25,000-compound library to identify small molecules that modulate
quorum sensing (QS) in Pseudomonas aeruginosa, specifically targeting the LasR regulator. The screen led to the discov-
ery of four new structural classes of LasR modulators, including potent antagonists that outperform existing N-acyl homo-
serine lactone (AHL)-based inhibitors and an agonist with activity close to the native ligand. These novel compounds,
with promising physicochemical profiles, offer valuable tools for studying QS in P. aeruginosa and could potentially serve
as anti-virulence agents [49]. Another study has developed a high-throughput cell-based assay to screen 200,000 com-
pounds for LasR-dependent gene expression inhibitors in Pseudomonas aeruginosa. Two potent inhibitors were identified:
PD12 (a tetrazole with a 12-carbon alkyl tail, IC50 30nM) and V-06—-018 (a phenyl ring with a 12-carbon alkyl tail, IC50
10 uM). Both compounds inhibited quorum-sensing gene expression and reduced production of virulence factors elas-
tase and pyocyanin. These compounds may serve as scaffolds for future quorum-sensing modulators [50]. Another study
which aligns with our study, the study conducted on Lasl protein.

The study identified sulfaperin and sulfamerazine as potential quorum sensing inhibitors based on molecular docking
and MD simulations. The strong binding affinities suggest these compounds could modulate QS-related pathways, but
further experimental validation is needed to assess their biological impact. One possible mechanism of inhibition involves
competitive binding to the active site of Lasl, interfering with AHL synthesis. However, structural changes observed in
QscR-ligand complexes suggest an alternative mode of allosteric inhibition. Further studies, including biochemical assays
and site-directed mutagenesis, would help clarify these mechanisms.

Additionally, this study has certain limitations, including the use of in silico models without experimental validation. The
computational approach provides predictive insights but does not confirm in vitro or in vivo efficacy. Future studies should
include bacterial assays, such as the Chromobacterium violaceum CV026 bioassay, and virulence factor inhibition assays
in P. aeruginosa to confirm QS inhibitory activity.
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TZD-C8 also disrupted swarming motility and quorum-sensing signal production, making it a promising inhibitor for
Luxl-type acyl-homoserine lactase synthases in P. aeruginosa [51].

While QscR has received less attention compared to LasR in quorum sensing research, its role as a global regulator
in P. aeruginosa highlights its significance as a target for QS inhibition. Previous studies have shown that QscR functions
as a transcriptional repressor, modulating virulence and biofilm formation by controlling the expression of LasR-regulated
genes. Our study identified sulfaperin and sulfamerazine as potential QscR inhibitors based on molecular docking and
MD simulations, demonstrating strong and stable binding interactions. The structural insights obtained from these simula-
tions provide a basis for further exploration of QscR-targeting inhibitors. Future research should investigate whether these
ligands exhibit functional inhibition of QscR-dependent gene regulation.

Sulfonamides have been widely studied for their antimicrobial properties, but their role as QS inhibitors has received
limited attention. Recent computational studies have identified certain sulfonamide derivatives as potential LasR antag-
onists, but few have investigated their impact on Lasl or QscR. Our findings indicate that Sulfaperin and Sulfamerazine
interact with conserved binding motifs in Lasl and QscR, suggesting a novel mechanism of QS inhibition. Future studies
should compare the molecular properties of these ligands with previously identified QSls to establish correlations in bind-
ing dynamics and molecular similarity. Experimental validation through bacterial quorum sensing assays will be essential
to confirm the inhibitory activity of these compounds

To our knowledge, Sulfaperin and Sulfamerazine have not been previously identified as quorum sensing inhibitors.
While computational studies have explored various QS inhibitors, sulfonamides have been underrepresented in molecular
dynamics simulations related to QS inhibition. However, a few studies have suggested that certain sulfonamide deriv-
atives can act as antagonists of LasR, inhibiting AHL-dependent QS signaling. Our results extend this perspective by
demonstrating that sulfonamides can also interact with Lasl and QscR, highlighting their potential as broader-spectrum
QS inhibitors. Further research should focus on comparing the binding mechanisms of these ligands with other known QS
inhibitors, particularly within the sulfonamide class, to determine structural or functional similarities.

This study combines two key proteins to create a unified inhibitory mechanism, which presents a powerful and inno-
vative strategy. The significance of this work lies in its potential to guide the development of new therapeutics targeting
bacterial quorum sensing (QS) systems [52,53]. By offering detailed insights into how ligands interact with Lasl and
QscR, the study adds to the growing knowledge of QS inhibition [54]. The observed structural dynamics emphasize the
importance of both stability and flexibility in drug design, as ligands that induce the correct conformational changes can
effectively disrupt QS signaling. Future experimental validation should include in vitro bacterial assays to confirm QS
inhibitory activity. Standard quorum sensing inhibition assays, such as the Chromobacterium violaceum CV026 assay, can
be used to assess AHL degradation or QS disruption. Additionally, measuring QS-regulated virulence factor production
(e.g., rhamnolipid, elastase, or pyocyanin production in P. aeruginosa) would provide functional validation of the compu-
tational findings. Structural characterization through crystallography or surface plasmon resonance could further confirm
ligand-protein interactions and optimize QS inhibitor design for therapeutic applications. The focus of this study was on
AHL (Acyl-Homoserine Lactone) systems due to their well-established role in regulating quorum sensing (QS) across a
variety of bacterial species, particularly in Gram-negative bacteria. While our study focuses on AHL-based QS systems,
the findings may offer insights for developing QSlIs targeting other systems such as Al-2 in Gram-negative and AlP-based
systems in Gram-positive bacteria like Staphylococcus aureus. Expanding future research to include these pathways may
broaden the applicability of QSI strategies. AHL-based QS systems play a crucial role in controlling key biological pro-
cesses such as virulence factor production, biofilm formation, and antibiotic resistance, making them an important target
for intervention. However, it is also important to consider other QS systems, such as Al-2 and AIP, which have significant
roles in different bacterial species. Future research could expand to target these additional QS pathways, offering new
opportunities for the development of broader-spectrum quorum-sensing inhibitors and further insights into microbial com-
munication mechanisms.

PLOS One | https://doi.org/10.1371/journal.pone.0325830 June 9, 2025 23127




PLO\Sﬁ\\.- One

5. Conclusion

In conclusion, the identification of Sulfaperin and Sulfamerazine as potential quorum sensing inhibitors (QSIs) aligns

with drug development efforts to combat antimicrobial resistance. These compounds could serve as lead scaffolds for

the development of small-molecule QSls, which could be optimized through medicinal chemistry approaches such as
structure-activity relationship (SAR) studies. Additionally, integrating QSls into existing antibiotic therapies may enhance
treatment efficacy by disrupting bacterial communication and reducing virulence.. Future experimental validation should
include in vitro bacterial assays to confirm QS inhibitory activity. Standard quorum sensing inhibition assays, such as the
Chromobacterium violaceum CV026 bioassay, can be used to assess AHL degradation or QS disruption. Additionally,
measuring QS-regulated virulence factor production (e.g., rhamnolipid, elastase, or pyocyanin production in P. aerugi-
nosa) would provide functional validation of the computational findings. Structural characterization through crystallography
or surface plasmon resonance could further confirm ligand-protein interactions, while repurposed compounds could expe-
dite the transition to preclinical testing due to their established safety profiles.

Supporting information

S$1 Fig. Box plot comparing the binding affinities (in kcal/mol) of compounds toward Lasl and QscR proteins. The
median binding affinities are represented by red lines within the boxes. While QscR shows a broader distribution of affin-
ities, statistical analysis using the Mann-Whitney U test (U=104.0, p=0.800) indicates no significant difference between
the two groups (p>0.05), suggesting comparable binding tendencies of the compounds toward both targets.

(PNG)

S2 Fig. RMSD analysis of protein-ligand complexes over a 200 ns simulation. Root Mean Square Deviation (RMSD)
analysis for Lasl complexed with Quercetin (CID 5325), Lasl with Ginkgolide A (CID 68933), QscR with Chloro-N-
(4-fluorobenzyl)thiophene-2-sulfonamide (CID 893742), and QscR with N-(carbamoylcarbamothioyl)-2-chlorobenzamide
(CID 2796468). Protein RMSD (cyan) and ligand RMSD (red) are plotted, with the X-axis representing time (nanoseconds)
and Y-axis for RMSD (nanometers). Results demonstrate stable complexes with minimal fluctuations.

(PNG)

S3 Fig. RMSF analysis of protein-ligand complexes over a 200 ns simulation. Root Mean Square Fluctuation (RMSF)
analysis highlighting the flexibility of residues in each protein-ligand complex. Specific regions with notable fluctuations
are identified, such as residues 100—-150 in the Lasl-Quercetin complex and residues 25-50 in other complexes, reflecting
ligand influence on protein dynamics.

(PNG)

S4 Fig. SASA analysis of protein-ligand complexes over a 200 ns simulation. Solvent Accessible Surface Area (SASA)
analysis showing differences in solvent exposure among the complexes. Lasl-Quercetin exhibited the highest SASA values
(130—135 nm?), while QscR-Chloro-N-(4-fluorobenzyl)thiophene-2-sulfonamide displayed lower SASA values (100-110 nm?).
(PNG)

S5 Fig. Radius of Gyration (Rg) analysis of protein-ligand complexes. Radius of Gyration (Rg) analysis illustrates the compact-
ness of the complexes. Lasl-Quercetin complex remained stable (1.65—1.7 nm), while QscR-N-(carbamoylcarbamothioyl)-2-
chlorobenzamide showed wider Rg variations (2.05-2.25nm), indicating conformational flexibility.

(PNG)
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