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Abstract 

Neisseria gonorrhoeae is classified by the Centers for Disease Control and Preven-

tion as an urgent public health threat due to rising infections and rapid resistance 

development. N. gonorrhoeae has developed resistance to nearly all FDA-approved 

drugs, with ceftriaxone being the only remaining effective treatment for gonococcal 

infections. Alarmingly, ceftriaxone-resistant N. gonorrhoeae strains were isolated 

worldwide, raising the potential of untreatable gonorrhea in the near future. Hence, 

the critical need to develop new anti-N. gonorrhoeae therapeutics cannot be over-

emphasized. In this study, we identified the peptide mimetic brilacidin as an effective 

anti-gonococcal agent. Brilacidin completed phase 2 clinical trials for treating skin 

infections, oral mucositis, and COVID-19. Herein, brilacidin displayed potent activ-

ity against a panel of 22 drug-resistant strains of N. gonorrhoeae, inhibiting 50% 

of the strains tested (MIC
50

) at the concentration of 4 µg/mL. The peptide exhibited 

rapid bactericidal activity, reducing N. gonorrhoeae high inoculum within two hours. 

Moreover, brilacidin was superior to the drug of choice, ceftriaxone, in eliminating 

the intracellular N. gonorrhoeae harbored within endocervical cells. Additionally, 

brilacidin showed high tolerability in mammalian cells and lacked hemolytic activity in 

human erythrocytes. Altogether, the results demonstrate that brilacidin is a promising 

anti-gonococcal agent that warrants further in-depth investigation.

1.  Introduction

Neisseria gonorrhoeae is the bacterium responsible for gonorrhea, one of the most 
prevalent sexually transmitted diseases [1]. In the United States, the Centers for 
Disease Control and Prevention (CDC) estimates that 1.6 million new gonococcal 
infections occur annually, which results in healthcare costs of about $135 million 
[2,3]. Globally, the World Health Organization (WHO) estimates indicate that over 
82 million people were newly infected with gonorrhea in 2020 [4,5]. Given that many 
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N. gonorrhoeae infections are asymptomatic, reported cases likely represent only a 
fraction of the true prevalence [6–11].

In addition to the high incidence rate of N. gonorrhoeae infections, the uprising 
antibiotic resistance rates in N. gonorrhoeae have become a serious public health 
concern. Hence, N. gonorrhoeae is classified by both the WHO and the CDC as a 
superbug and an urgent threat [12]. N. gonorrhoeae has developed resistance to 
nearly all FDA-approved therapies, including the last resort therapeutic for N. gonor-
rhoeae infections, ceftriaxone [13–16]. Worrisomely, N. gonorrhoeae resistance was 
extended to gepotidacin which is currently in clinical trials and has not been approved 
yet [17,18]. These rising resistance rates underscore the urgent need for novel 
anti-N. gonorrhoeae therapeutics.

Brilacidin is a synthetic peptide with demonstrated antifungal [19,20], antiviral 
[21–24], and antibacterial activity, particularly against the Staphylococcus aureus 
[25–27]. It has completed phase 2 clinical trials for treating S. aureus skin infection 
(NCT02052388), SARS-CoV-2 infections (NCT04784897), and as a rinse to treat 
oral mucositis (NCT02324335). However, brilacidin’s activity has not been evalu-
ated against N. gonorrhoeae. Given the dearth of new anti-gonococcal therapeu-
tics and the increased interest in repurposing brilacidin for treatment of microbial 
infections, the aim of this study is to investigate the anti-N. gonorrhoeae activity of 
brilacidin. We assessed the anti-gonococcal activity of brilacidin against multiple 
multidrug-resistant N. gonorrhoeae strains. Additionally, we examined its killing 
kinetics via a time-kill assay, cytotoxicity on endocervical cells, and hemolytic 
activity on the human red blood cells (RBCs). Brilacidin’s ability to clear intra-
cellular N. gonorrhoeae within endocervical cells was also investigated. Finally, 
its mechanism of action was explored using ATP leakage and propidium iodide 
uptake assays.

2.  Material and methods

2.1.  Bacterial strains and reagents

N. gonorrhoeae strains were obtained from the CDC, the WHO, and the American 
Type Culture Collection (ATCC) (Table 1). The ME-180 cell line (ATCC HTB-33) was 
obtained from the ATCC. Antibiotics used in this work were purchased commercially: 
ciprofloxacin (Sigma-Aldrich, St. Louis, MO, USA), gentamicin (Chem-Impex Interna-
tional, Wood Dale, IL, USA), azithromycin, and ceftriaxone (TCI America, Portland, 
OR, USA), and brilacidin (MedChemExpress, Monmouth Junction, NJ, USA). Media 
and reagents including McCoy’s 5A medium and hematin (Sigma Aldrich, St. Louis, 
MO, USA), triton X-100 (Acros Organics, Fair Lawn, NJ, USA), BacTiter-Glo reagent 
(Promega Corporation, Madison, WI, USA), Propidium iodide (PI) and nicotinamide 
adenine dinucleotide (NAD) (Chem-Impex International, Wood Dale, IL, USA), MTS 
(3-(4,5-dimethylthia- zol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-
tetrazolium) (Abcam, Waltham, MA, USA), and brucella broth, chocolate II agar 
plates, IsoVitaleX and bovine hemoglobin (Becton, Dickinson and Company, Cock-
eysville, MD, USA), were obtained from chemical vendors.
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Table 1.  MICs of brilacidin and control antibiotics against N. gonorrhoeae strains.

N. gonorrhoeae strains and description MIC (µg/mL)

Brilacidin Ciprofloxacin Tetracycline Azithromycin Ceftriaxone

CDC 166
Resistant to tetracycline, penicillin, and ciprofloxacin

8 16 4 1 0.064

CDC 171
Resistant to tetracycline, penicillin, and ciprofloxacin

4 16 4 0.5 0.032

CDC 172
Resistant to tetracycline, penicillin, and ciprofloxacin

4 16 2 1 0.032

CDC 173
Resistant to tetracycline, penicillin, and ciprofloxacin

4 16 4 0.5 0.064

CDC 174
Resistant to tetracycline, penicillin, and ciprofloxacin

4 32 4 2 0.064

CDC 175
Resistant to azithromycin

1 ≤ 0.25 1 8 0.004

CDC 177
Resistant to tetracycline

1 ≤ 0.25 2 1 0.008

CDC 178
Resistant to tetracycline, penicillin, and ciprofloxacin

4 16 8 1 0.032

CDC 181
Resistant to tetracycline and azithromycin

2 ≤ 0.25 2 >64 0.032

CDC 182
Resistant to tetracycline, penicillin, and ciprofloxacin

8 16 4 1 0.032

CDC 194
Resistant to penicillin, not susceptible to ceftriaxone, cefixime and cefpodoxime

2 ≤ 0.25 1 1 0.125

CDC 202
Resistant to azithromycin

8 ≤ 0.25 1 16 0.004

WHO-F
Origin: Canada, 1991

8 ≤ 0.25 0.5 0.125 ≤ 0.004

WHO-K
Origin: Japan, 2003
Resistant to tetracycline, penicillin, and ciprofloxacin

8 >64 2 0.5 0.032

WHO-M
Origin: Philippines, 1992
Resistant to tetracycline, penicillin, and ciprofloxacin

8 2 2 0.25 0.032

WHO-P
Origin: USA, Unknown
Resistant to tetracycline and azithromycin

4 ≤ 0.25 1 4 ≤ 0.004

WHO-U
Origin: Sweden, 2011
Resistant to tetracycline and azithromycin

4 ≤ 0.25 1 4 ≤ 0.004

WHO-V
Origin: Sweden, 2012
Resistant to tetracycline, ciprofloxacin, penicillin, and azithromycin

4 >64 4 >64 0.125

WHO-W
Origin: Hong Kong, 2007

2 >64 4 0.5 0.032

WHO-X
Origin: Japan, 2009
Resistant to tetracycline, ciprofloxacin, penicillin ceftriaxone and cefixime

8 >64 4 0.5 1

WHO-Z
Origin: Australia, 2013
Resistant to tetracycline, ciprofloxacin, penicillin, ceftriaxone and cefixime

8 >64 4 0.5 0.25

(Continued)
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2.2.  Antibacterial susceptibility analysis

The inhibitory activity of brilacidin and standard antibiotic drugs (ciprofloxacin, tetracycline, azithromycin, and ceftriaxone) 
was evaluated against 22 antibiotic-resistant N. gonorrhoeae strains using the broth microdilution method, as described 
elsewhere [28–31]. Briefly, N. gonorrhoeae colonies were collected and diluted in brucella supplemented broth to achieve 
a concentration of ~1 × 106 CFU/mL. Brilacidin and control antibiotics were then serially diluted in brucella supplemented 
broth across 96-well plates. Plates were incubated at 37 °C with 5% CO

2
 for 24 h to determine the minimum inhibitory 

concentrations (MICs).

2.3.  Time-kill kinetics

The bactericidal activity of brilacidin against N. gonorrhoeae FA1090 was evaluated by assessing bacterial growth kinet-
ics, as previously described [32,33]. Briefly, a logarithmic phase bacterial culture was diluted in the supplemented bru-
cella broth to a final concentration of ~1 × 106 CFU/mL. Brilacidin and azithromycin were each added at 4 × MIC. Bacteria 
treated with dimethyl sulfoxide (DMSO) served as the negative control, while azithromycin served as a control antibiotic. 
Cultures were incubated with test agents at 37 °C for 24 h, with aliquots taken after 0, 2, 4, 6, 8, 10, 12, and 24 h, diluted 
and plated on chocolate II agar plates to determine the CFU.

2.4.  Intracellular bacterial clearance assay

The intracellular bacterial clearance assay was performed to assess brilacidin’s ability to penetrate endocervical cells 
and eliminate the intracellular N. gonorrhoeae, as described elsewhere [29,34,35] with modifications. Briefly, the human 
endocervical epithelial cells (ME-180) were seeded into 96-well plates with McCoy’s 5A medium supplemented with 10% 
fetal bovine serum. ME-180 monolayers were then infected with N. gonorrhoeae FA1090 (multiplicity of infection (MOI) = 
10) and incubated at 37°C with 5% CO

2
 for 24 h. Then, the phosphate-buffered saline (PBS) containing 320 μg/mL gen-

tamicin was used to wash the wells three times before incubating with media containing gentamicin for one hour to kill 
the extracellular bacteria. Thereafter, PBS was utilized to wash the cells and they were subsequently treated with 4 × MIC 
of brilacidin, ceftriaxone, azithromycin, or DMSO (negative control). Plates were incubated at 37°C with 5% CO

2
 for 24 h. 

After incubation, the wells were washed with PBS and lysed with 2 mM EDTA and 0.5% saponin for one minute to release 
the intracellular bacteria for quantification.

2.5.  Cytotoxicity and hemolysis assays

The potential toxic effect of brilacidin was evaluated using the ME-180 cell line, as described elsewhere [36–38]. Briefly, 
ME-180 cells were seeded and incubated with brilacidin at various concentrations (in triplicates) for 24 h. Cell viability was 
measured by monitoring the change of MTS color due to NADH reduction in viable cells, recorded at an absorbance of 
490 nm (OD

490
).

N. gonorrhoeae strains and description MIC (µg/mL)

Brilacidin Ciprofloxacin Tetracycline Azithromycin Ceftriaxone

FA1090
Isolated from patient with disseminated gonococcal infection
Resistant to streptomycin

1 ≤ 0.25 ≤ 0.5 0.125 ≤ 0.004

MIC50 4 16 2 1 0.032

MIC90 8 >64 8 >64 1

https://doi.org/10.1371/journal.pone.0325722.t001

Table 1.  (Continued)

https://doi.org/10.1371/journal.pone.0325722.t001
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Brilacidin’s hemolytic activity was evaluated following previously described methods [39,40]. Single-donor human 
RBCs (Innovative Research, MI, USA) were suspended in PBS at the concentration of 4% v/v. Brilacidin (in triplicate) 
was serially diluted in PBS to final concentrations of (16, 32, 64 and 128 μg/mL) and incubated with RBCs suspension at 
37°C for one hour. Triton X-100 (0.1%) was used as a positive control to induce complete hemolysis, while PBS served 
as a negative control. After incubation, the erythrocytes were centrifuged at 800 × g for 10 min, and the absorbance of the 
supernatant was measured at 540 nm to assess hemolysis.

2.6.  Permeability assays

Propidium iodide (PI) fluorescence assay was used to assess brilacidin’s ability to damage bacterial cytoplasmic mem-
branes [41,42]. Briefly, N. gonorrhoeae (1 × 107 CFU/mL) was incubated with brilacidin (5× and 10 × MIC), azithromycin 
(10 × MIC), or triton X-100 (0.1%) in the presence of 10 μM PI for 1 hour. DMSO-treated N. gonorrhoeae served as a 
negative control. After incubation, the bacterial pellet was washed with PBS, and PI uptake was measured using a plate 
reader (excitation at 585 nm and emission at 620 nm).

In addition, an ATP leakage assay was used to assess the membrane integrity by measuring luminescence using the 
Luminescent ATP Detection Assay Kit according to the manufacturer’s instructions [43].

2.7.  Statistical analyses

Each experiment was repeated at least twice. The GraphPad Prism 9.0 (Graph Pad Software, La Jolla, CA, USA) was 
used to generate the graphs and statistical analysis was conducted using one-way ANOVA (analysis of variance). Results 
were considered statistically significant if P-values < 0.05, and data are presented as means ± standard error of the mean.

3.  Results and discussion

3.1.  Anti-gonococcal activity of brilacidin

The anti-gonococcal activity of brilacidin was assessed against 22 multidrug-resistant N. gonorrhoeae isolates, including 
nine WHO reference strains with diverse resistance profiles and known phenotypic and genetic markers [44]. Brilacidin 
showed MIC values ranging from 1 to 8 µg/mL, inhibiting 90% of the strains (MIC

90
) at 8 µg/mL and 50% of strains (MIC

50
) 

at 4 µg/mL (Table 1). These strains showed high resistance levels to some control antibiotics. As illustrated in Table 1, cip-
rofloxacin had MIC

50
 and MIC

90
 values of 16 and >64 μg/mL, respectively, while tetracycline showed MIC

50
 of 2 and MIC

90
 

of 8 μg/mL. Additionally, azithromycin displayed MIC
50

 of 1 and MIC
90

 of >64 μg/mL, and ceftriaxone presented MIC
50

 and 
MIC

90
 values of 0.032 and 1 μg/mL, respectively. These MICs for tetracycline, ciprofloxacin, azithromycin, and ceftriaxone 

align with previously reported values for these strains [44,45].

3.2.  Killing kinetics of brilacidin

Brilacidin’s killing kinetics against N. gonorrhoeae WHO-X was evaluated in a time-kill assay. Remarkably, brilacidin (at 
4 × MIC) demonstrated a rapid killing activity outperforming the control antibiotic azithromycin. As depicted in Fig 1, the 
burden of N. gonorrhoeae WHO-X was completely eradicated within 2 hours of treatment with brilacidin. However, azith-
romycin (at 4 × MIC) needed 6 hours to completely eradicate the N. gonorrhoeae burden. This rapid antibacterial activity of 
brilacidin is a highly desirable trait for treating N. gonorrhoeae, as it offers benefits such as limiting infection spread, reduc-
ing the likelihood of resistance development, shortening treatment duration and preventing disease progression which are 
key factors for controlling N. gonorrhoeae infections [46,47].

3.3.  Cytotoxicity and intracellular clearance activity of brilacidin

The ectocervical and endocervical cells in the female reproductive tract can be infected with N. gonorrhoeae, allowing 
the bacteria to survive intracellularly. N. gonorrhoeae has the ability to transmigrate across mucosal epithelial cells post 
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invasion, potentially leading to disseminated infections. It can also inhibit the autophagy process during the invasion 
[48–50]. Most antibiotics are ineffective at reducing the burden of intracellular bacterial infections. For instance, ceftriax-
one, the drug of choice, has limited activity against intracellular bacteria due to its high molecular weight (554.58 g/mol), 
low active transport, and high hydrophilicity (logP = 0.6) [51]. Given these limitations, we sought to evaluate the intracellu-
lar clearance activity of brilacidin using infected human endocervical epithelial cells (ME-180).

Initially, we tested the toxicity of brilacidin to endocervical epithelial cells, and found out it was well tolerated at a con-
centration up to 64 μg/ mL, with nearly 100% cell viability (Fig 2A). Hemolytic activity was also evaluated using human 
RBCs. Brilacidin showed an HC

90
 value (concentration causing 90% hemolysis) exceeding 128 μg/mL (Fig 2B), under-

scoring human cells’ tolerability to brilacidin. This broad therapeutic window, with minimal toxicity to mammalian cells and 
strong bactericidal activity, suggests brilacidin’s selectivity against N. gonorrhoeae.

Subsequently, we evaluated brilacidin’s ability to clear the burden of intracellular N. gonorrhoeae within infected mam-
malian cells. As represented in Fig 3, brilacidin (at 4 × MIC) completely eradicated intracellular N. gonorrhoeae within 24 
hours. Interestingly, brilacidin was superior to ceftriaxone, which showed a lower level of intracellular reduction for N. gon-
orrhoeae FA1090. These findings indicate that brilacidin can effectively penetrate host cells and eliminate N. gonorrhoeae 
at a rate superior to the drug of choice, ceftriaxone.

3.4.  Mechanistic insights of brilacidin

The mechanism of action of drugs with rapid bactericidal activity, particularly antimicrobial peptides, is often mediated by 
disrupting the bacterial membrane [52]. Since brilacidin is a peptide mimetic with rapid bactericidal activity, we sought to 
investigate its membrane disruption activity against N. gonorrhoeae. Membrane disruption was evaluated by monitoring 
the fluorescence intensity of propidium iodide (PI) in N. gonorrhoeae FA1090. As illustrated in Fig 4A, the untreated bacte-
ria or those treated with azithromycin had no significant difference in the fluorescence intensity, indicating no disruption of 
the cytoplasmic membrane integrity. In contrast, brilacidin’s treatment led to a significant fluorescence increase (intensity 
of ~1446 and 1787 at 5× and 10 × MIC, respectively), suggesting significant membrane disruption.

Fig 1.  Time-kill curve illustrating the bactericidal effect of brilacidin and azithromycin (both at 4 × MIC) against N. gonorrhoeae WHO-X over a 
24-hour period. Each point is the mean of Log

10
 CFU/mL, and the error bars in each point are for the standard deviation of the mean.

https://doi.org/10.1371/journal.pone.0325722.g001

https://doi.org/10.1371/journal.pone.0325722.g001
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Additionally, intact bacterial cells normally retain ATP, and extracellular ATP leakage indicates membrane disruption 
[53,54]. To verify the findings of the PI uptake assay, we measured the intracellular ATP level in N. gonorrhoeae cells 
after being treated with brilacidin compared to untreated bacteria. Triton X-100 (0.1%) was used as a positive control 
(considered as 100% ATP leakage). As demonstrated in Fig 4B, the supernatant of brilacidin-treated cells had a signifi-
cant increase in the luminescent intensity compared to the untreated control, indicating a significant ATP leakage (~74% 
leakage).

These results align with previous reports demonstrating brilacidin’s membrane disruptive effect on various bacteria and 
fungi, including S. aureus, Aspergillus fumigatus, Cryptococcus gattii and C. neoformans [19,26,55].

4.  Conclusion

This work demonstrated the anti-gonococcal activity of the peptide mimetic, brilacidin. Brilacidin displayed potent effi-
cacy against multiple multidrug-resistant clinical isolates of N. gonorrhoeae with an MIC

50
 value of 4 µg/mL. In addition, 

Fig 2.  The high safety profile of brilacidin. (A) ME-180 cell viability of after incubation with different concentrations of brilacidin for 24 h. Results are 
shown as a percentage of cell viability relative to negative control (DMSO). (B) Hemolytic activity of brilacidin against human RBCs. The results are 
shown as percentage of RBCs hemolysis for each concentration of brilacidin relative to 0.1% Triton X-100 (positive control with complete hemolysis of 
RBCs). Error bars represent the standard deviation of the mean. **** (P < 0.0001), ns stands for not significant.

https://doi.org/10.1371/journal.pone.0325722.g002

Fig 3.  Intracellular clearance activity of ceftriaxone, azithromycin, and brilacidin (at 4 × MIC) against N. gonorrhoeae FA1090 in infected 
ME-180 cells. DMSO served as a negative control. Asterisks (*) denote statistically significant differences between test agents and DMSO (untreated) 
(P < 0.05). Pound signs (#) indicate statistically significant differences (P < 0.05) between brilacidin and azithromycin in comparison to ceftriaxone.

https://doi.org/10.1371/journal.pone.0325722.g003

https://doi.org/10.1371/journal.pone.0325722.g002
https://doi.org/10.1371/journal.pone.0325722.g003
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brilacidin showed rapid bactericidal activity against the ceftriaxone-resistant strain WHO-X, outperforming azithromycin. It 
also outperformed ceftriaxone in clearing the burden of N. gonorrhoeae FA1090 inside infected mammalian cells. Mecha-
nistically, brilacidin disrupted the gonococcal membrane, leading to ATP leakage and influx of propidium iodide inside the 
cells. These findings highlight the promising potential of brilacidin as a novel peptide mimetic to combat multidrug-resistant 
N. gonorrhoeae.
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