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Abstract 

Overexpression of the polyspecific efflux transporter, P-glycoprotein (P-gp, MDR1, 

ABCB1), is a major mechanism by which cancer cells acquire multidrug resistance 

(MDR), the resistance to diverse chemotherapeutic drugs. Inhibiting drug transport by 

P-gp can resensitize cancer cells to chemotherapy, but there are no P-gp inhibitors 

available to patients. Clinically unsuccessful P-gp inhibitors tend to bind at the pump’s 

transmembrane drug binding domains and are often P-gp transport substrates, result-

ing in lowered intracellular concentration of the drug and altered pharmacokinetics. 

In prior work, we used computationally accelerated drug discovery to identify novel 

P-gp inhibitors that target the pump’s cytoplasmic nucleotide binding domains. Our 

first-draft study provided conclusive evidence that the nucleotide binding domains of 

P-gp are viable targets for drug discovery. Here we develop an enhanced, compu-

tationally accelerated drug discovery pipeline that expands upon our prior work by 

iteratively screening compounds against multiple conformations of P-gp with molec-

ular docking. Targeted molecular dynamics simulations with our homology model of 

human P-gp were used to generate docking receptors in conformations mimicking a 

putative drug transport cycle. We offset the increased computational complexity using 

custom Tanimoto chemical datasets, which maximize the chemical diversity of ligands 

screened by docking. Using our expanded, virtual-assisted pipeline, we identified nine 

novel P-gp inhibitors that reverse MDR in two types of P-gp overexpressing human 

cancer cell lines, reflecting a 13.4% hit rate. Of these inhibitors, all were non-toxic to 

non-cancerous human cells, and six were not likely to be transport substrates of P-gp. 

Our novel P-gp inhibitors are chemically diverse and are good candidates for lead 

optimization. Our results demonstrate that the nucleotide binding domains of P-gp are 

an underappreciated target in the effort to reverse P-gp-mediated multidrug resistance 

in cancer.
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Introduction

Multidrug resistance (MDR) describes the ability of cells to become resistant to 
structurally and chemically diverse drugs [1]. Cancer cells can acquire MDR over 
the course of chemotherapeutic treatment, and MDR therefore is a significant 
obstacle to the successful treatment of human cancers [2]. Cancer cells often 
acquire MDR by overexpressing ATP-binding cassette (ABC) transporters [3]. ABC 
transporters are dynamic, ATP-powered efflux pumps that confer MDR by pumping 
chemotherapeutic drugs out of the respective cancer cell. This transport activity 
lowers the intracellular concentration of the chemotherapeutic, thereby substantially 
reducing the drug’s efficacy [3]. Among the most clinically relevant ABC transport-
ers is P-glycoprotein (P-gp, MDR1, ABCB1), a remarkably promiscuous pump that 
is commonly overexpressed by multidrug resistant cancers [3,4]. P-gp harnesses 
the power of ATP hydrolysis to pump chemically and structurally diverse substrates 
out of the cell. The pump’s cytoplasmic nucleotide binding domains (NBDs) bind 
and hydrolyze ATP, and its membrane-embedded drug binding domains (DBDs) 
recognize and extrude substrates [5]. P-gp’s substrate profile is incredibly diverse, 
ranging from small drugs to bulky amyloid β peptides [6], and importantly, includes 
a staggeringly diverse array of chemotherapeutics. Inhibiting P-gp’s efflux activity 
can resensitize MDR cancers to chemotherapy [7–10], but the search for clinically 
successful P-gp inhibitors has been fraught with failure.

Decades of work have yielded three generations of structurally and chemically 
diverse P-gp inhibitors [1,11] (S1 Table). First and second generation inhibitors were 
often identified by chance, and as such targeted P-gp with relatively low specificity 
[1,11], requiring high therapeutic doses and causing them to fail clinical trials because 
of off-target toxicity. All first and second-generation P-gp inhibitors are thought to bind 
at the DBDs, and many were also shown to be P-gp transport substrates [11,12]. 
Third-generation inhibitors (tariquidar, zosuquidar, and their derivatives) improved on 
earlier generations by targeting the DBDs with a higher affinity, but these inhibitors still 
failed in clinical trials due to toxicity and off-target effects [13,14]. It was initially thought 
that tariquidar and zosuquidar were not P-gp transport substrates, but later work has 
shown otherwise [15,16]. In summary, while P-gp remains a clinically relevant target, 
efforts to discover or design a clinically effective inhibitor have been unsuccessful.

To date, most known P-gp inhibitors, even those with relatively high binding affin-
ities like tariquidar, have been shown to bind at the DBDs. We hypothesize that this 
shared characteristic may contribute to the failure of these inhibitors in clinical trials. 
Treatment with P-gp transport substrates inherently requires a higher therapeutic 
dose – the pump continuously ejects its own inhibitor from the cell, and inhibition is 
only effective while the molecule resides within the DBDs. Thus, if a P-gp inhibitor is 
also a transport substrate, P-gp transport activity inherently lowers the drug’s inhibi-
tory effect. This in turn raises the required dose of inhibitor for patient treatment and 
likely contributes to the adverse side effects observed in clinical trials [16].

A growing body of evidence suggests that the DBDs are no longer suitable targets 
for the design of small molecule inhibitors [11]. P-gp’s substrate profile is so diverse 
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that it is challenging to find a DBD inhibitor that is not a transport substrate [6,15,17,18]. The DBDs of P-gp are key to the 
pump’s promiscuity. The DBDs large, hydrophobic, and flexible. They are large enough to accommodate substrates like 
amyloid-β 42 (4500 Daltons) and to provide multiple residue contact pathways for substrates during transport [6,19]. Com-
bined with the failure of previous generations of P-gp inhibitors, these observations strongly indicate that the DBDs are no 
longer promising targets. However, P-gp’s nucleotide binding domains (NBDs) have not been thoroughly explored.

In previous studies, our group identified novel P-gp inhibitors using a computationally-assisted drug discovery program 
targeting the NBDs. Our early screens successfully identified three inhibitors that reverse MDR in human cancer cells 
with a 7% hit rate [7,8]. A fourth compound was identified that interacts with the NBDs in assays with purified protein, but 
is likely excluded from cells due to its negative charge at neutral pH. This first-draft attempt suggested that the NBDs are 
suitable candidates for more intensive drug screening.

Here we built upon our earlier work by significantly expanding our pilot drug discovery pipeline. First, molecular dock-
ing was used to virtually screen millions of druglike molecules against P-gp. Our first study used only one conformation 
of P-gp for docking [7]. While that study was ultimately successful, we wanted to screen against a more complete sam-
ple of P-gp conformations during transport. Since high-resolution structures of human P-gp were not available when the 
docking presented here was performed, targeted molecular dynamics (TMD) simulations were used to generate dynamic 
P-gp structures for molecular docking. Millions of molecules were then iteratively screened against the NBDs and DBDs of 
each target, with the goal of selecting molecules that were predicted to prefer the NBDs. A subset of molecules was tested 
in vitro for the ability to reverse MDR in two types of P-gp-overexpressing human cancer cell lines. The top hits were 
screened for inherent toxicity with a non-cancerous human cell line, assessed as P-gp transport substrates using LC-MS/
MS, and tested for ability to increase retention of the P-gp substrate and chemotherapeutic daunorubicin.

Using a combination of targeted MD simulations, molecular docking, and cell-based assays, we identified nine novel 
P-gp inhibitors that reverse MDR, reflecting a 13.4% hit rate. These inhibitors were effective against two types of human 
P-gp overexpressing cancer lines: DU145-TXR, a prostate cancer line, and A2780-ADR, an ovarian cancer line. These 
nine inhibitors were found to be non-toxic to non-cancerous human cells, and six were then shown to be unlikely transport 
substrates of P-gp. Four of this final molecule set were found to enhance the intracellular accumulation of daunorubicin. 
In summary, these nine novel P-gp inhibitors are good candidates for lead optimization and further testing. This work 
reinforces the idea that the NBDs are promising targets in the fight against multidrug resistance in cancer. This ‘enhanced 
screening’ approach can be adapted for drug discovery screens that target other clinically relevant ABC transporters such 
as breast cancer resistance protein (BCRP, ABCG2) and MsbA from Escherichia coli.

Materials and methods

Receptor generation for virtual screens against human P-gp

When these docking studies were performed, the available structures of P-gp were extremely limited in conformational 
diversity and resolution, and the highest-resolution structures were primarily of human P-gp homologues. Molecular 
dynamics simulations with a homology model of human P-gp were used to overcome this limitation and generate struc-
tures of P-gp in diverse conformations as follows. Using the homology model of human P-gp from our prior work [20], a 
putative catalytic cycle of P-glycoprotein (P-gp, MDR1, ABCB1) was simulated using Targeted Molecular Dynamics (TMD) 
simulations with NAMD [21], using procedures as described in [19,21].

Briefly, using VMD [22] our human P-gp model was inserted into a POPC phospholipid bilayer, solvated with TIP3P 
water, and neutralized with Na+ and Cl- counterions, as in [19]. Nucleotides (ATP) and Mg2+ ions were added into the 
nucleotide binding domains of P-gp. MD simulations were performed at 310 K (37 °C) with Langevin temperature and 
pressure control, particle-mesh Ewald electrostatics, and constant temperature and pressure (NPT) in a periodic cell, 
as in [19]. For TMD, target structures were aligned with the P-gp model using STAMP [23] from the Multiple Alignment 
[24] module included in VMD [22]. The coordinates of homologous pairs of alpha carbon (Cα) atoms (paired Cα atoms 
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between the model and respective target) were used as target coordinates for TMD. TMD simulations were performed in 
NAMD, and forces were applied using in-house Tcl scripts that aimed to gently move the atoms toward the target coor-
dinates, as used by us previously in [6,19]. Force magnitude is calculated to be inversely proportional to the Root Mean 
Squared Deviation (RMSD) of the distance between the paired Cα atoms of model and target.

The following structures of P-gp homologues were used as target structures for TMD: an open-to-the-inside mouse 
P-gp structure with wide separation between the NBDs (PDB entry 4KSB [25]); an open-to-the-inside structure of the 
E. coli homologue MsbA with lesser NBD separation than 4KSB (PDB entry 3B5X [26]); closed-to-the-inside structure 
of MsbA with NBDs engaged (PDB entry 3B5Z [26]); an closed-to-the-inside structure of the Sav1866 transporter from 
Staphylococcus aureus with NBDs engaged (PDB entry 2HYD [27]). It is important to note that these simulations, and 
subsequent molecular docking studies, were performed before high-resolution structures of P-gp, and indeed before any 
structures of human P-gp, were available for use.

TMD simulations were performed sequentially to guide our human P-gp model into the conformation of each structure, 
with the goal of mimicking the conformational transitions of a putative catalytic efflux cycle, and ultimately of producing 
human P-gp conformations for molecular docking screens. From TMD simulations, we isolated ten distinct conformations 
of P-gp for use in molecular docking studies: an approximate 4KSB position, 3B5X position, two 3B5Z positions, two 
2HYD positions, and two positions between 4KSB and 3B5X named the “Transition” position (S1–S2 Figs). Three struc-
tures (4KSB_DBD, Transition_DBD, and 3B5X_DBD) (S1 Fig, Boxes A – C, S2 Fig boxes A – C) were used for docking 
against the drug binding domains (DBD), and five (3B5Z_NBD_1, 3B5Z_NBD_2, 2HYD_NBD_1, 2HYD_NBD_2 and Tran-
sition NBD) were used for docking against the nucleotide binding domains (NBD) (S1 Fig, Boxes D – F; S2 Fig Boxes D 
– E). The NBD search areas shown in S1 Fig D – F were divided into two separate dock boxes, each targeting the respec-
tive individual NBD. Receptor files were prepared as PDBQTs for docking using AutoDock Tools [28].

Ligand selection and preparation for docking

Compounds were taken from the ZINC12 Clean Drug-Like Subset of 13,195,609 molecules (31). Molinspiration (mib) soft-
ware was used to calculate logP, polar surface area, molecular weight, number of hydrogen-bond donors and acceptors 
and number of rotatable bonds for each ligand [29]. To predict the aqueous solubility of our experimental compounds, the 
AMSOL program was used to calculate polar and apolar desolvation energies [30]. The criteria for ligand selection con-
formed to Lipinski-Veber rule for characteristics of drug-like or therapeutic molecules with oral bioavailability [31,32]: (1) 
a molecular weight less than 500 and greater than 150 Daltons; (2) an octanol-water partition coefficient (log P) less than 
5; (3) a topological polar surface area less than 150 Å2; (4) less than 5 hydrogen donors; and (5) less than 10 hydrogen 
acceptors. The number of rotatable bonds was less-than or equal-to 7, and the “clean” designator indicates that aldehydes 
and thiols are filtered out.

Tanimoto sets [33] are used to generate subsets of drug-like molecules that represent the ‘chemical diversity’ of the 
total molecule dataset. First, each molecule in the original dataset is given a unique fingerprint. The components of the fin-
gerprint indicate the presence or absence of specific molecule fragments (such as chemical groups). Then, the Tanimoto 
algorithm computes the similarity between each molecule in the dataset, with the goal of identifying a sub-set of unique 
molecules that represent the chemical diversity in the dataset. The chemical diversity is expressed as a percentage (e.g., 
90%), which indicates that the corresponding Tanimoto set contains 90% of the chemical diversity in that dataset. The 
lower the percentage, the fewer compounds in the Tanimoto set. Dataset size becomes very relevant when considering 
molecular docking against multiple receptors, like the docking screens presented in this study.

The dataset used to identify compounds SMU 58–68 was obtained from a pre-calculated 90% Tanimoto cutoff set 
containing 123,510 “Clean Drug-Like Compounds” from the Zinc12 database [34]. Ligands from the pre-calculated 90% 
Tanimoto set were protonated according to a pH of 7. We found that this subset was not structurally diverse, especially in 
molecular weight, and therefore only 10 compounds were purchased from it. For compounds SMU 68–124, we generated 
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a custom 95% Tanimoto set from the ZINC Clean Drug-Like Subset using cactvs (http://www.xemistry.com/) and SUBSET 
(https://cactus.nci.nih.gov/subset/); this resulted in a final dataset of 158,000 diverse molecules, protonated at pH of 7.

Taken together, the ligands that were selected from Tanimoto sets of the ZINC database encompassed 158,000 com-
pounds in total. In preparation for docking, all ligands (pulled as mol2 files from the ZINC database) were converted to the 
AutoDock-compatible PDBQT format using Open Babel [35]. Open Babel 2.3.2 was used for the Zinc12 90% Tanimoto 
dataset and Open Babel 2.4.0 was used for the custom 95% Tanimoto dataset. Open Babel conversion protonates ligands 
according to specified pH; ligands were protonated to a pH of 7.

Ligand docking and iterative screening with AutoDock Vina

AutoDock Vina was used to dock each molecule against each target, totaling over 4.2 million individual docking experiments. 
Docking experiments AutoDock Vina and the generation of dock boxes with AutoDock 4 were performed as described in [36]. 
Briefly, protein receptor files were converted to PDBQT with AutoDock 4.2. Dock boxes were designed to encompass the 
ligand-binding regions of the DBDs, but included the full structure of the NBDs. Docking grids were created with AutoDock; 
the placement and size of all boxes are shown in S1–S2 Figs and in S2 Table. Docking experiments with AutoDock Vina 
used default settings (9 binding modes, maximum energy difference of 3 kcal/mol) with the exception of exhaustiveness, 
which was set to 128 instead of the default of 8. AutoDock Vina’s scoring function is described in detail in [36].

AutoDock Vina ranks resultant ligand docking poses by predicted affinities/binding energies, and outputs estimated 
binding energy (ΔG, kcal/mol). For each ligand-target combination, we extracted the docking pose with the best estimated 
binding energy (ΔG, kcal/mol) and used that estimated energy to calculate an estimated equilibrium constant of disso-
ciation (K

D
). Estimated K

D
 was calculated at 310 K, to match the temperature of MD simulations, using the quantitative 

relationship between K
D
 and Gibbs free energy (ΔG),

	 ∆G = RTln(KD)	

where “T” is the temperature in degrees kelvin (310 K for our work), R is the gas constant with 1.987 x 10−3 kcal mol-1 K-1, 
and ΔG is estimated free energy of binding (derived from docking calculation) in kcal mol-1. We emphasize that the  
docking-derived binding energies and affinities were treated purely as estimates, for use primarily to calculate a ratio of 
predicted preference for the NBDs of P-gp over the DBDs. Actual measures of binding affinities to either region are out-
side the scope of this work.

The goal of the docking studies was to identify molecules that were predicted to prefer the NBDs instead of the DBDs. 
To make this prediction, the ratio of estimated binding affinities was calculated as follows: K

D
DBD/ K

D
NBD. The smaller the 

value of K
D
, the tighter the affinity, and vice versa. Thus, a molecule with a large estimated K

D
DBD (weak binding) and a 

small estimated K
D

NBD (tight binding) will have a large ratio. A ligand’s respective ratio for each receptor pair (e.g., K
D

NBD of 

3B5X/ K
D

DBD of 3B5X) was calculated and used to select 100 ligands as ‘top hits’ of this first round of screening.
To perform iterative screening, the 100 ligands with the best DBD/NBD ratio were used to find molecules in the original 

ZINC12 Clean, Drug-like database with 99−70% chemical similarity. This approach produced a second dataset of ~100–
10,000 molecules per top ligand. These ligand sets were subsequently docked and analyzed in the same way as the first set 
– by calculating the ratio of estimated affinity to DBD versus NBD. From this second iterative screen, a subset of molecules 
with favorable DBD/NBD ratios were selected for testing in vitro. Examples of ligand docking locations are shown in S3 Fig. 
The estimated DBD/NBD ratio of the seven molecules identified by subsequent in vitro screens are shown in S3 Table.

Property prediction and selection

The top 100 ligands against each target were subjected to property prediction using the Online Chemical Database 
(OCHEM) [37]. Top hits converted to SMILES (simplified molecular-input line-entry system) strings and processed by 

http://www.xemistry.com/
https://cactus.nci.nih.gov/subset/
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OCHEM, producing predictions for logP and Solubility, Environmental toxicity, Ames test, CYP3A4 inhibition, CYP2D6 
inhibition, CYP2C19 inhibition, CYP2C9 inhibition, CYP1A2 inhibition, Melting Point best (Estate), Pyrolysis OEstate sub-
model, Water solubility (GSE) based on logP and Melting Point, ALOGPS 2.1 logS, ALOGPS 2.1 logP, DMSO solubility, 
and any known toxic effects from literature. Along with the specific docking location to the receptor as visualized in VMD, 
the structural, chemical, and docking information was used to select ligands for purchase and subsequent testing.

Cell lines and cell culture

The chemotherapeutic sensitive DU145 human prostate cancer cells and the multidrug resistant sub-line, DU145-TXR, were 
generous gifts from Dr. Evan Keller (University of Michigan, Ann Arbor, MI) [38]. The MDR, P-gp overexpressing DU145-
TXR cells were maintained under positive selection pressure by supplementing complete medium with 10 nM paclitaxel 
(Acros Organics, NJ). In addition to the aforementioned cell lines, the chemotherapeutic sensitive A2780 ovarian cancer 
cells (93112519, Sigma) and the multidrug resistant A2780-ADR (93112520, Sigma) were maintained in complete RPMI 
media consisting of RPMI-1640 with L-glutamine, 10% fetal bovine serum (FBS; Corning), 100 U/mL penicillin and 100 μg/
mL streptomycin in a humidified incubator at 37 °C and 5% CO2. The MDR, P-gp overexpressing A2780-ADR cell line was 
maintained under positive selection pressure by supplementing complete medium with 100 nM doxorubicin (Fisher Scientific, 
NJ). The non-cancerous HFL1 (human lung fibroblast) cell line cell line was a generous gift from Dr. Robert Harrod (South-
ern Methodist University, Dallas, TX) and was maintained in complete F12K media consisting of F12K with 10% fetal bovine 
serum, 100 U/mL penicillin, and 100 µg/mL streptomycin (Gibco). Flasks and 96 well plates that were used with the non- 
cancerous line HFL1 were pre-treated with 0.1 mg/ml Collagen Type 1 (Gibco) and rinsed with PBS (Fisher).

Testing of experimental compounds in cell culture

Culture of the DU145, DU145-TXR, and HFL1 cell lines was performed as described in [8]. Culture of the A2780 and 
A2780-ADR cell lines was performed as described in [9]. MTT assays were performed as described in [8] with minor modi-
fications. LC-MS/MS accumulation assays were performed as described in {Nanayakkara, 2018 #173} [9] with some modi-
fications. DU145-TXR cells were exposed to 500 nmol/L PTX, a dosage that has been shown to result in greater than 85% 
survival of the multidrug-resistant DU145-TXR cell line, and less than 10% survival of the chemotherapy-sensitive DU145 
parental cell line [8]. A concentration of 15 µM was used because in prior work by us, concentrations of 25 µM were shown 
to robustly inhibit P-gp-catalyzed ATP hydrolysis [7]. The inhibitor concentration was lowered to 15 µM here, as the goal 
of the study was to identify compounds that were effective in reversing MDR at low concentrations, and to determine if 
the expanded virtual-assisted methods improved on our first-draft attempt. Compounds 56–98 were pre-screened using 
Resazurin cell viability assays: cells were incubated with 15 µM compound with or without 500 nM PTX for 48 hours, after 
which cell survival was assessed similar to [39]. Data represent the mean of two separate experiments, with n = 3 samples 
per experiment (n = 6 total) (S4 Table). The top performing compounds from this initial screen were re-tested with MTT 
viability assays against DU145-TXR cells, as described below.

MTT cell viability assays

MTT assays measure the reduction of yellow, water soluble 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 
(MTT) to blue, insoluble formazan crystals by cellular reductase processes in living cells [40]. Cells were trypsinized from 
monolayers and seeded in complete medium in 96 well plates. Cancerous cell lines (DU145, DU145-TXR, A2780, A2780-
ADR) were seeded at 3,000 cells per well in complete RPMI medium. The non-cancerous HFL1 line was seeded at 4,000 
cells per well in complete F12K medium, in collagen-treated plates (Collagen Type 1, Gibco). Cells were incubated with 
experimental compounds for 48 hours at 37 °C and 5% CO

2
 in a humidified incubator. At 48 hours, MTT was added (20 

µL/well of 5 mg/mL MTT in PBS) to each well. After incubation for 4 hours, the media was removed, and the formazan 
crystals were dissolved in 100 µL DMSO per well. Plates containing the semi-adherent A2780 or A2780-ADR lines were 
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spun at 1400 rpm for 3 minutes prior to aspiration of media, and the addition of DMSO. Plates were shaken for 10 minutes 
at 500 rpm on an Orbital shaker (LabDoctor from MidSci, St Louis, MO). The absorbance was measured at 570 nm using a 
Bio-Tek Cytation 5 (Bio-Tek, Winooski, VT). The measured absorbance value was correlated with the number of metabol-
ically active cells in that well, corrected for absorbance of media. The percent of cell viability (termed ‘survival’ here) was 
calculated as a percentage of survival of the control condition, which refers to vehicle-treated (DMSO as vehicle) cells, 
or vehicle-and-chemotherapeutic-treated cells, if testing a compound’s ability to re-sensitize cells to a chemotherapeutic. 
Percent survival was calculated using the following equation:

	
% Survival = 100 × absorbance of experimental cells

mean absorbance of control treated cells	

For DU145-TXR, DU145, HFL1 and A2780 cells – data are the mean ± one standard deviation, 8 samples per compound, 
from at least two independent trials per compound. The semi-adherent A2780-ADR cells exhibited a much higher variabil-
ity in MTT assays, necessitating a larger sample size. For A2780-ADR cells, data are the mean ± one standard deviation 
with 12 samples per compound, from at least two independent trials per compound.

Cell culture for LC-MS/MS intracellular accumulation assays

DU145-TXR cells were seeded at 350,000 cells per well in 6-well plates in complete RPMI medium. After 48 hours, the 
media was replaced with fresh media, and cells were treated with 5 µM of experimental compound with or without 500 nM 
Tariquidar (TQR), as was done previously [9]. This concentration was previously shown by us to be sufficient for inhibit-
ing P-gp-mediated transport activity of a P-gp substrate, and was considered low enough to avoid potential interactions 
with the novel compounds of interest [9]. Experiments were performed in triplicate with two independent trials per com-
pound, 6 samples, or three independent trials per compound, 9 samples total. The P-gp substrate, Daunorubicin (DAU), 
was included in each biological replicate as a qualitative positive control – DAU is red, so the TQR-inhibited sample with 
DAU turns visibly red to the naked eye. A full sample of DAU was also prepared for quantitative analysis. After a 2.5 hour 
incubation with the respective treatment, cells were trypsinized (0.05% Trypsin-EDTA, Gibco, ice-cold), scraped with a cell 
scraper, and spun at 2400 rpm. Media was removed with a glass vacuum aspirator. Cells were re-suspended and washed 
in 2mL of ice-cold Hank’s Balanced Salt Solution (HBSS, Gibco), and spun again at 2400 rpm. Cell lysates were diluted in 
600 µL of ice-cold HBSS, flash-frozen in liquid nitrogen, and stored at −80 °C until analysis.

Relative quantification in LC-MS/MS intracellular accumulation assays

LC-MS/MS intracellular accumulation assays were performed in collaboration with the Pharmacology Core at the University 
of Texas Southwestern Medical Center (UTSW). LC-MS/MS assays were performed as described in [9] with the following 
modification – instead of calculating a quantitative assessment of the absolute amount of compound in each sample, a rela-
tive assessment was performed. This method allowed us to quantify the change – if any – in the relative amount of com-
pound present in the samples when TQR was added. An increase in the relative amount of compound indicates enhanced 
intracellular retention that compound. This quantification method can be described using the following equations:

	
ratio analyte / internal standard (IS) =

analyte peak area (counts)
IS peak area (counts) 	 (1)

	
normalized ratio =

ratio of analyte / IS
sample content (mg / ml)	 (2)

	
mean ratio =

∑n
i=1 ratioi

n samples 	 (3)
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where “Analyte” refers to the experimental compound tested. The “Internal Standard” (IS) is a known substance added 
in a constant amount to each sample. The “Peak Area”, expressed as “counts”, describes the number of MS/MS spec-
tra from the experimental compound and serves as a measure of its relative abundance. For each sample, the relative 
abundance of experimental compound is expressed as a ratio of the Analyte abundance divided by the Internal Standard 
abundance equation (1). To account for any differences in the amount of cell lysate between samples, the ratio of each 
sample is normalized to its respective cell lysate content expressed in mg/ mL, as shown in equation (2). Lastly, as shown 
in equation (3), we average the “Normalized Ratio” of the samples, performed in triplicate, to produce the final values 
shown in S5 Table. These values allow a comparison of the relative abundance of compound between the “- TQR” and “+ 
TQR” samples, and to test for statistically significant differences.

Sample preparation and analysis with LC-MS/MS

LC-MS/MS quantification was performed as follows. Cell lysate was aliquoted into Eppendorf tubes. In contrast to [9], 
blank cell lysates were not spiked with varying concentrations of each compound to create a standard curve, since 
compound amounts were normalized to abundance of the internal standard. Instead, after the initial aliquot step, 
MeOH containing 50 ng/mL N-Benzylbenzamide was added to each sample. Samples were vortexed briefly, incubated 
at 27 °C for 10 minutes, and spun at 13,200 RPM for 5 minutes. The supernatant was transferred to a new Eppendorf 
tube and spun once more at 13,200 RPM for 5 minutes. The supernatant was then transferred to an HPCL vial, and 
subsequently analyzed using LC-MS/MS using a Sciex 4000QTRAP mass spectrometer coupled to a Shimadzu Prom-
inence LC.

Chromatography conditions were as follows: Buffer A contained water + 0.1% formic acid, and Buffer B contained meth-
anol + 0.1% formic acid. The column flow rate was 1.5 ml/min using an Agilent C18 XDB, 5 micron packing 50 × 4.6 mm 
column. After the addition of the organic solvent, the remaining cell lysate was resuspended in 0.1 M NaOH, boiled for 
5 min, and mixed with 1:50 B:A reagent (Thermofisher BCA Kit) to determine the cell lysate concentration in each sample. 
A BSA standard curve was then prepared in water and mixed using the same ratio. The samples were incubated 30 min at 
37 °C and read at 562 nm. The ratio of Analyte to Internal Standard was normalized to the lysate content for each individ-
ual sample. The data for each trial are shown in S5 Table. Statistical significance was determined using a Student’s T Test 
in GraphPad Prism.

Daunorubicin accumulation assays

These assays are based upon those reported in [9]. DU145-TXR cells were seeded in 96 well plates in complete 
RPMI medium at 15,000 cells per well. Cells were allowed to grow for 48 hours in a humidified incubator at 37 °C 
and 5% CO

2
. After 48 hours, media was replaced with fresh complete RPMI medium. Cells were treated with 10 µM 

of experimental compound with or without 10 µM daunorubicin (DAU). After a 2-hour incubation at 37 °C and 5% CO
2
 

in a humidified incubator, media was removed with a vacuum aspirator, and cells were washed twice with ice-cold 
phosphate buffered saline (PBS) solution. Cells were lysed in PBS containing 0.5% SDS and 0.5% Triton X-100 and 
shaken on an Orbital Shaker for 10 min at 500 rpm. DAU fluorescence was read using the Cytation5 plate reader 
at excitation/emission 488 nm/ 575 nm. Data are the mean ± one standard deviation from three independent experi-
ments, 3 samples per experiment. Statistical significance was determined with a Student’s T test in GraphPad prism. 
None of the experimental compounds exhibited significant background fluorescence at the tested excitation and 
emission range.

	
∆ DAU Fluorescence =

Fluorescence of (Compound+ DAU) treated cells
Fluorescence of DAU treated cells 	
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Results

Computational screens identify putative P-gp inhibitors for testing

We used molecular docking to computationally screen thousands of molecules for their potential binding affinity to P-gp. 
Docking screens were specifically designed to select for molecules that preferentially bind to the nucleotide binding 
domains, and that do not strongly interact with the drug binding domains. In previous work by us [7,8], molecules were 
docked to a model of human P-gp that was in an closed-to-the-inside conformation [7,20], where the nucleotide binding 
domains are closely engaged and the drug binding domains are widely open to the extracellular side of the membrane. 
Molecules that were predicted to preferentially bind the transmembrane drug binding domains were not taken into consid-
eration for future studies.

A limitation of this earlier approach was that the closed-to-the-inside structure represents the end of the transport cycle, 
where pump substrates likely are released to the cell exterior. It therefore may not represent the best conformation for 
screening for P-gp inhibitors that are not transport substrates themselves. To identify inhibitors that are not P-gp transport 
substrates, it was deemed important to screen for affinity of binding to the DBD conformation at the beginning of a trans-
port cycle, where the DBDs are open to the cytoplasm and ready to capture substrates. However, suitable open-to-the- 
inside structures were (and are still) not available for human P-gp. To overcome this limitation, we used targeted Molecular 
Dynamics (TMD) simulations to guide a model of human P-gp through conformational changes that are likely represen-
tative of a drug transport cycle [19]. These MD trajectories were then used to generate a number of open-to-the-inside 
and closed-to-the-inside conformations for molecular docking experiments (Fig 1). Docking search boxes were designed 
to sample the small molecule binding of five nucleotide binding and three drug binding domain conformations of P-gp 
(S1–S2 Figs). The goal was to identify small drug like compounds that prefer the NBDs over the DBDs.

AutoDock Vina [36] was used to screen molecules from the ZINC12 clean, drug-like (CDL) library against dynamic P-gp 
structures from TMD simulations. Our previous computational screen targeted only one conformation of P-gp; here we 
expand the screening to 14 different structures and locations. This increase in the number of times each molecule is itera-
tively screened necessitated to find a more efficient way to screen the drug libraries in an acceptable time frame. Tanimoto 
sets are a useful tool for reducing a molecule dataset to a more tractable size [41]. The Tanimoto algorithm determines the 
similarity between molecules in a dataset and uses that metric to select molecules that are representative of the chemical 
diversity in that dataset. In the experiments described here, Tanimoto sets were used to trim the original CDL library from 
~13 million compounds to 123,000–158,000 molecules (see Methods). If a molecule from the Tanimoto set performed well 
in docking screens, similar molecules were collected from the CDL dataset and screened against the same P-gp targets.

Using this iterative approach, 95% of the chemical diversity within the CDL library was efficiently screened for estimated 
affinity to the DBDs and the NBDs of P-gp. Molecules with low estimated affinities at the DBDs and high estimated affini-
ties at the NBDs were retained during each iterative round of molecular docking, as described in [7]. After the final docking 
screen, the top 100 molecules against each P-gp target structure were subjected to quantitative structure-activity relation-
ship (QSAR) predictions using the Online chemical database (OCHEM) [37]. The QSAR data, select predicted chemical 
properties, and estimated binding affinities were used to select 67 compounds for testing with cell-based assays. The 
experimental compounds were numbered 58–124 in order of arrival to the laboratory.

Potential P-gp inhibitors reverse MDR in P-gp-overexpressing prostate cancer cells

The computationally identified compounds were screened for the ability to re-sensitize P-gp overexpressing DU145-
TXR cancer cells to paclitaxel (PTX), a chemotherapeutic drug and transport substrate of P-gp [38]. DU145-TXR cells 
greatly overexpress P-gp relative to the DU145 parental cells and exhibit a 34-fold increase in the IC

50
 of PTX relative 

to that of DU145 cells [38]. In the described experiments, re-sensitization was defined as a 30% or greater decrease 
in cell viability between cells treated with PTX alone, or with a combination of PTX and the experimental compound. 
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DU145-TXR cells were exposed to compounds 58–124 at 15 µM, with or without 500 nM PTX, for 48 hours. Cell via-
bility was then assessed with MTT viability assays as previously described [9]. Tariquidar and verapamil were included 
as positive controls for P-gp inhibition, and the BCRP inhibitor Ko143 was included as a negative control for P-gp inhi-
bition [18]. Treatment with 11 compounds (61, 68, 70, 78, 96, 97, 101, 103, 111, 122, 124) re-sensitized DU145-TXR 
cells to PTX (Fig 2A, S4 Table). The remaining compounds were eliminated from further consideration as potential 
P-gp inhibitors.

The 11 compounds that re-sensitized DU145-TXR cells to PTX (Fig 2A) were then tested for their ability to sensi-
tize the parental line DU145 cells to PTX [38]. Our hypothesis was that since DU145 cells do not overexpress P-gp, a 
compound that enhances PTX toxicity in DU145 cells is unlikely to act solely by inhibiting P-gp transport, but may have 
a different cellular target. In these experiments, DU145 cells were exposed to the experimental compounds at 15 µM in 
the presence or absence of PTX and cell viability was assessed using MTT assays. Nine of the 11 compounds tested 
(compounds 70, 78, 96, 97, 101, 103, 111, 122, and 124) were observed to insignificantly sensitize DU145 cells to PTX 
(Fig 2B) as compared to exposing the cells to PTX alone, see dotted line and PTX toxicity in the absence of com-
pounds. Except for compound 68, the top hits were not observed to exhibit significant intrinsic toxicity against DU145 
cells.

Potential P-gp inhibitors are not specific to one cancer cell line

To test if the potential P-gp inhibitors were specific to DU145-TXR cancer cells, the top compounds (70, 78, 96, 97, 101, 
103, 111, 122 and 124) were tested with second set of paired cancer cell lines – the P-gp overexpressing, doxorubicin 
resistant A2780-ADR ovarian cancer cell line, and the parental, non-P-gp overexpressing A2780 line [9,43,44]. Doxorubi-
cin is both a chemotherapeutic and a P-gp transport substrate. Since it is possible that the resistance of the A2780-ADR 
cell line to Doxorubicin involves mechanisms other than P-gp overexpression, assays used PTX to test for the potential 
to reverse MDR. Tariquidar and verapamil were used as positive controls for P-gp inhibition, with the BCRP inhibitor, 

Fig 1.  Conformations of our human P-gp model used for molecular docking screens. P-gp adopts several dynamic conformations during the 
substrate transport cycle. The cytoplasmic NBDs bind and hydrolyze ATP, while the membrane-embedded DBDs capture and transport substrates. P-gp 
switches from ‘open-to-inside/cytoplasm’ to ‘closed-to-inside’ conformation during transport, thereby alternating substrate access from the cytoplasm to 
the extracellular space. Search boxes for docking experiments were designed to sample the NBDs or DBDs of human P-gp in each of these conforma-
tions. The source PDB ID for each target conformation shown is in parentheses above each conformation [25,26,42].

https://doi.org/10.1371/journal.pone.0325121.g001

https://doi.org/10.1371/journal.pone.0325121.g001
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Ko143, as a negative control. Compound 59 was used as an additional negative control because it did not reverse MDR 
in DU145-TXR cells (Fig 2A). Of the nine compounds tested against DU145-TXR, each compound (70, 78, 96, 97, 101, 
103, 111, 122, and 124) also reversed MDR in A2780-ADR cells (Fig 3A), but did not greatly increase the toxicity of PTX 
against the parental A2780 cells (Fig 3B, dashed line represents the effect of 500 nM PTX alone). These nine compounds 
(70, 78, 96, 97, 101, 103, 111, 122, and 124) were therefore considered to be good candidates for further toxicity testing 
and for evaluation as potential P-gp pump substrates.

Fig 2.  Potential P-gp inhibitors reverse MDR in P-gp overexpressing DU145-TXR cancer cells. 67 compounds were chosen from computational 
screens for testing in vitro. A) DU145-TXR cells were exposed to 15 µM experimental compound with or without 500 nM of the P-gp substrate and 
chemotherapeutic paclitaxel (PTX). Tariquidar (TQR) and verapamil (VPL) at 15 µM were used as positive controls for P-gp inhibition, while Ko143 at 
1 µM and DMSO vehicle control were used as negative controls for P-gp inhibition. Percent (%) survival is calculated as the percent survival relative to 
that of the vehicle control (DMSO-treated) cells (see Methods). Starred compounds are considered ‘top hits’. B) Top compounds were tested for inherent 
toxicity with the non-P-gp overexpressing DU145 parental line. Cells were exposed to 15 μM compound with or without 500 nM PTX for 48 hours, after 
which cell viability was assessed using the MTT viability assay. Data represent the mean ± one standard deviation from the mean (n = 8 total samples per 
compound, from two independent trials).

https://doi.org/10.1371/journal.pone.0325121.g002

https://doi.org/10.1371/journal.pone.0325121.g002
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Compounds are not substantially toxic to non-cancerous human cells

If a P-gp inhibitor is intrinsically toxic to non-cancerous cells, it is more likely to be participating in undesirable off-target 
interactions. The top compounds from the screens shown above were screened for inherent toxicity using the non- 
cancerous HFL1 (human lung fibroblast) cell line [45]. HFL1 cells were incubated with 15 µM compound for 48 hours, after 
which cell viability was assessed using MTT cell viability assays. A 20% reduction in cell viability (compared to DMSO-
treated cells) was considered the maximum acceptable toxicity (see dotted line). The chemotherapeutic daunorubicin was 
included as a positive control for toxicity. Nine compounds (70, 78, 96, 97, 101, 103, 111, 122 and 124) were deemed by 
us as either ‘non-toxic’ or ‘within acceptable limits’ of toxicity (Fig 4).

Potential P-gp inhibitors are not transport substrates of P-gp

We aimed to identify P-gp inhibitors that are not transport substrates of the pump itself. To that end, our subtractive 
docking methods selected molecules that were predicted to favor the NDBs over the DBDs. To test these predictions in 
vitro, liquid chromatography with tandem mass spectrometry (LC-MS/MS) was used to assess the intracellular accumu-
lation of experimental compounds as described in [9]. The P-gp overexpressing DU145-TXR cells were exposed to 5 µM 
compound with or without 500 nM tariquidar for 2.5 hours. At 500 nM concentration, tariquidar should strongly inhibit P-gp 
while not being transported itself [16]. The relative intracellular accumulation of each experimental compound was then 
assessed using LC-MS/MS. If the compound is a P-gp transport substrates, it should accumulate intracellularly in the 
presence of tariquidar (P-gp inhibited), while the intracellular concentration should be lower in the absence of tariquidar 
(P-gp active). The P-gp substrate and chemotherapeutic daunorubicin (DAU) was used as a positive control for P-gp- 
mediated transport. Six of the compounds that reversed MDR in DU145-TXR and A2780-ADR cells (70, 78, 96, 97, 101, 
and 111) were deemed unlikely to be transport substrates of P-gp (Table 1 and S5 Table). Three compounds (103, 122 
and 124) were found to be potential P-gp transport substrates.

Fig 3.  Putative P-gp inhibitors reverse MDR in P-gp-overexpressing A2780-ADR cancer cells. The top 10 compounds from screens with DU145 
and DU145-TXR were tested at 15 μM concentration against A) the chemotherapy-resistant, P-gp overexpressing A2780-ADR line and B) the  
chemotherapy-sensitive, non-P-gp overexpressing parental A2780 line. Cells were exposed to compounds with or without 500 nM Paclitaxel (PTX) for 48 
hours. The vehicle (DMSO) control represents PTX toxicity in the absence of compound (dotted line). Cell viability was assessed using the MTT viability 
assay. Data represent the mean ± one standard deviation from the mean, 8 replicates per compound, from at least two independent trials. Compounds 
59 and 89 were used as internal negative controls for compounds that did not reverse MDR in DU145-TXR cells (Fig 2A). Starred compounds in panel 
A) were considered to be the top hits.

https://doi.org/10.1371/journal.pone.0325121.g003

https://doi.org/10.1371/journal.pone.0325121.g003
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Experimental compounds inhibit the transport of a P-gp substrate

To ensure that the top candidates from our previous studies were indeed targeting and inhibiting P-gp activity, we tested 
these compounds for their ability to enhance intracellular accumulation of the P-gp substrate, daunorubicin (DAU). 
These assays used the P-gp highly overexpressing DU145-TXR cell line. In this assay, the intrinsic fluorescence of DAU 
was used to quantify its relative concentration in the cell. An increase in fluorescence correlates with an increase in the 

Fig 4.  Evaluating the inherent toxicity of potential P-gp inhibitors. The top compounds from previous screens were tested against the non- 
cancerous HFL1 cell line. HFL1 cells were exposed to 15 µM of experimental compound. Daunorubicin (DAU) was used as a positive control for inherent 
toxicity. Cells were exposed to the experimental treatments for 48 hours, after which cell viability was assessed using MTT viability assays. Data repre-
sent the mean ± one standard deviation from the mean, 8 samples per compound, from at least two independent experiments. The dashed line marks 
80% viability of DMSO-treated cells. All of the experimental compounds were deemed to have tolerable toxicity.

https://doi.org/10.1371/journal.pone.0325121.g004

Table 1.  Intracellular accumulation of compounds measured by LC-MS/MS.

Trial 1 Trial 2 Trial 3

- TQR + TQR P - TQR + TQR P - TQR + TQR P

DAU 0.014 ± 0.001 0.216 ± 0.002 <1x10-6 (****) 0.017 ± 0.001 0.232 ± 0.016 2x10-5 (****)

70 0.93 ± 0.15 0.93 ± 0.07 >1 (N.S.) 0.56 ± 0.11 0.55 ± 0.15 0.9 (N.S.)

78 0.001 ± 0.000 0.001 ± 0.000 -- 0.001 ± 0.000 0.001 ± 0.000 --

96 0.087 ± 0.009 0.092 ± 0.036 0.8 (N.S.) 0.121 ± 0.005 0.163 ± 0.032 0.09 (N.S.)

97 0.07 ± 0.02 0.08 ± 0.03 0.7 (N.S.) 0.10 ± 0.02 0.10 ± 0.02 > 1 (N.S.)

101 11.86 ± 1.16 12.03 ± 2.45 0.9 (N.S.) 21.17 ± 3.59 22.88 ± 2.92 0.6 (N.S.)

103 5.13 ± 0.6 5.61 ± 1.34 0.6 (N.S.) 2.63 ± 0.52 3.75 ± 0.34 0.04 (*) 3.21 ± 0.23 3.73 ± 0.15 0.03 
(*)

111 0.012 ± 0.002 0.013 ± 0.004 0.7 (N.S.) 0.011 ± 0.002 0.013 ± 0.001 0.2 (N.S.)

122 0.049 ± 0.005 0.146 ± 0.018 0.0008 (***) 0.058 ± 0.018 0.209 ± 0.014 0.0003 (***)

124 0.006 ± 0.001 0.061 ± 0.011 0.001 (**) 0.007 ± 0.002 0.055 ± 0.009 0.0008 (***)

The intracellular accumulation of each experimental compound was assessed in P-gp overexpressing DU145-TXR cells using LC-MS/MS with or 
without 500 nM Tariquidar. Significance was determined using a Student’s T test of the mean; P > 0.05 = not significant (N.S.), P < 0.05 = *, P < 0.01 = **, 
P < 0.001 = ***, P < 0.0001 = ****. A statistically significant difference indicates that the experimental compound accumulated intracellularly in the pres-
ence of tariquidar, and is therefore likely to be transport substrate of P-gp. Samples were prepared in triplicate, in two independent trials. Compounds 
78 and 103 were tested in triplicate, with three independent trials). The P-gp substrate and chemotherapeutic daunorubicin (DAU) was included as a 
positive control for transport by P-gp.

https://doi.org/10.1371/journal.pone.0325121.t001

https://doi.org/10.1371/journal.pone.0325121.g004
https://doi.org/10.1371/journal.pone.0325121.t001
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intracellular accumulation of DAU. Compounds 70, 78, 96, 97, 101, 103, 111 were assessed for the ability to increase 
the intracellular retention of DAU. Compound 59 was included as a negative control for P-gp inhibition, tariquidar and 
verapamil were included as positive controls for P-gp inhibition. Cells were treated with 10 µM of experimental compound 
with or without 10 µM DAU. After a 2-hour incubation, cells were washed and lysed, and the total fluorescence of DAU 
in each well was quantified. Treatment with compounds 70, 96, 97, and 101, and 103 significantly increased the DAU 
fluorescence in DU145-TXR cells, indicating an increase in the intracellular retention of DAU (Fig 5, S4 Fig, and S6 Table). 
As expected, treatment with compound 59 did not significantly increase fluorescence of DAU. The results of these assays 
suggest that compounds 70, 96, 97, 101, and 103 significantly inhibited transport of DAU by P-gp. Compounds 78 and 111 
did not cause an increase in intracellular DAU retention. Together with LC-MS/MS data, our results suggest that com-
pounds 70, 96, 97, and 101 are not P-gp substrates, and therefore are more likely to bind at the cytoplasmic NBDs, which 
were targeted our docking studies.

Discussion

The search for P-gp inhibitors to treat multidrug resistant cancer

Multidrug resistance is a major obstacle to the treatment of human cancer. As prominent agents of multidrug resistance, 
ABC transporters like P-gp are clinically-relevant targets and the focus of decades of study [2]. However, P-gp has proven 
notoriously difficult to target in drug discovery, and the pump’s dynamic conformational changes lie at the heart of the 
difficulty. During transport, P-gp undergoes substantial conformational changes that significantly rearrange the nucleotide 
binding domains (NBDs) and drug binding domains (DBDs) (Fig 1). These conformational changes cause the ‘topology’ 
or structural landscape of P-gp – and thus, the binding sites for potential inhibitors – to change dynamically during trans-
port. Adding to the difficulty, knowledge of P-gp’s transport cycle remains limited because it is not possible to observe the 
conformational changes of the protein directly. Recent cryo-EM work has provided unprecedented insight into the confor-
mational changes of P-gp [5,16], but these structures were not available when our docking studies and simulations were 

Fig 5.  Change in fluorescence of DAU in the presence of experimental compounds. Fold change in fluorescence of the P-gp substrate Daunorubi-
cin (DAU) in the presence or absence of experimental compounds or known P-gp modulators. Cells were treated with 10 µM compound in the pres-
ence or absence of 10 µM DAU. After washing and lysing the cells, the intracellular DAU fluorescence was measured and expressed as a fold change 
relative to the fluorescence of DU145-TXR cells treated with DAU alone. The P-gp inhibitors, VPL and TQR, were included as positive controls for P-gp 
inhibition, and compound 59 was included as a negative control for P-gp inhibition. Three samples per trial, three independent trials. Significance was 
determined using a Student’s T test of the mean by comparing fluorescence of DAU and compound to that of DAU alone; P > 0.05 = N.S., P < 0.05 = *, 
P < 0.01 = **, P < 0.001 = ***, P < 0.0001 = ****. Data also shown in S4 Fig.

https://doi.org/10.1371/journal.pone.0325121.g005

https://doi.org/10.1371/journal.pone.0325121.g005
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performed. Our drug discovery pipeline was successful regardless, and we expect that future efforts will only be enhanced 
by the availability of higher-resolution structures.

The search for P-gp inhibitors has historically targeted the drug binding domains

Efforts to target and inhibit P-gp have historically focused on the pump’s transmembrane drug binding domains (DBDs). 
The DBDs are hydrophobic, flexible, and large enough to accommodate molecules as bulky as the Alzheimer’s associated 
amyloid β peptides (~4000 Daltons) [6]. In prior work, we also showed that the DBDs are large enough to allow substrates 
to take multiple paths through the protein during transport [19], indicating that binding sites for small molecule inhibitors in 
the DBDs are both abundant and variable. Indeed, some of the best-characterized P-gp inhibitors (see S1 Table), including 
Tariquidar and Verapamil, bind P-gp at the DBDs [16,46]. Interestingly, Tariquidar and Verapamil have been shown to be 
P-gp transport substrates, and both compounds failed clinical trials due to off-target toxicity exacerbated by high therapeutic 
doses. Drug discovery screens targeting P-gp are fraught with failure, leading to alternative approaches such as the testing 
of natural compounds [47–49] as P-gp inhibitors. Despite the difficulty in designing effective inhibitors, P-gp remains an 
important target in the fight against multidrug resistance, and an active subject of drug discovery screens [2,50–52].

For P-gp inhibitors, poor performance in clinical trials appears to be correlated with binding at the DBDs, and most 
notably, with being a transport substrate of the pump itself (S1 Table). If an inhibitor is a transport substrate of P-gp, the 
required therapeutic dose is higher than for a non-substrate because the pump actively effluxes its own inhibitor from the 
cell. We speculate that the combination of these two factors – preferential binding to the DBDs, and being transported by 
P-gp – are a major factor in why previous generations of P-gp inhibitors have failed in clinical trials.

The nucleotide binding domains of P-gp are an underappreciated target

In earlier work we demonstrated that the pump’s cytoplasmic NBDs are viable targets for drug discovery [7,8]. Our first-
draft attempt used molecular docking to screen for molecules that were predicted to prefer the NBDs over the DBDs. Even 
though this study used a homology model of human P-gp, and only one conformation of the pump, the pipeline success-
fully identified four compounds that reversed MDR in cancer cells, with an impressive ~ 7% hit rate [7,8]. Subsequent work 
by us showed that chemical and structural optimization of one compound, SMU 29, yielded more even novel P-gp inhibi-
tors that reversed MDR in cancer cells [10,53]. In addition to our work, a recent study used a similar technique to identify 
more novel inhibitors that target the NBDs [54]. Taken together, these results demonstrate that the NBDs of P-gp are 
viable targets for drug discovery.

Our enhanced, computationally-assisted drug discovery pipeline

Here we aimed to identify novel, chemically-diverse P-gp inhibitors that reverse MDR in human cancers. To do so, we built 
upon the success of our earlier work and designed an enhanced computationally-accelerated pipeline with the following 
features. First, our original pipeline used a model of human P-gp in only one conformation. To better capture the confor-
mational complexity of P-gp during transport, we used TMD simulations with our P-gp model to generate a suite of confor-
mations for molecular docking. Second, the original screen used a limited molecule dataset. Here we iteratively screened 
millions of compounds against the NBDs and DBDs of each dynamic structure, using Tanimoto sets to enhance com-
putational efficiency while maximizing the chemical diversity of screened ligands. Third, our original approach used one 
pair of resistant and non-resistant cancer cell lines and did not consider toxicity to non-cancerous cells. Here we tested 
compounds against two pairs of resistant/non-resistant human cancer cell lines, and screened for inherent toxicity with a 
non-cancerous human cell line. Finally, we incorporated assays to test whether our compounds are likely to be transport 
substrates of P-gp. Using this combination of in silico and in vitro techniques, the pipeline presented here aims to identify 
putative inhibitors of P-gp that preferentially target the NBDs over the DBDs.
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Success of the pipeline in identifying novel inhibitors of P-gp

The validity of our computationally-accelerated approach is demonstrated by its success: of the 67 compounds identi-
fied through docking, nine reversed MDR in human cancer cell lines, a 13.4% hit rate for compounds that reverse MDR. 
These compounds were shown to be non-toxic to non-cancerous cells, and all were effective in the 15 µM range. Of the 
nine compounds, six were shown to be unlikely transport substrates of P-gp. Each compound is a good candidate for lead 
optimization and testing (Fig 6).

Comparison to other computationally-assisted screens targeting P-gp

Our pipeline has a 13.4% success rate for compounds that reverse multidrug resistance, but importantly, these compounds 
are effective at 15 µM. Combined with the 13.4% hit rate, an effective dose of 15 µM represents an enhancement of traditional 
computational screening methods by a significant factor. For identification of lead compounds that are effective at sub– 100 
μM concentrations (6-fold greater than 15 µM reported here), the median hit rate of virtual-assisted efforts is approximately 
13% [55]. 103 studies reported hit rates greater than 25%; however, 75% of these studies tested fewer than 20 compounds 
and used a sub-100 μM dose as the minimal dose cutoff [56]. These trends of small sample size and very high dose con-
centration cut-offs have been observed in other virtual-assisted studies [57–59]. In a recent computationally-assisted study 
targeting the P-gp NBDs, the effective dose of novel compounds ranged from ~300–1033 µM [54].

Success of pipeline despite lack of high-resolution structures of P-gp

Many virtual-assisted studies benefited from high-resolution structures of the target proteins, frequently including co- 
crystallized inhibitors. It is crucial to note that, when the docking studies presented here were performed, high resolution 
crystal or cryo-EM structures of human P-glycoprotein at multiple stages of transport were not available. Even to date, a 
complete suite of structures encompassing the full catalytic transport cycle of human P-glycoprotein is not available. As an 
additional factor, when our docking studies were performed, the available structures of P-gp homologues were limited in both 

Fig 6.  Structures of novel P-gp inhibitors identified by virtual-assisted drug discovery. Chemical structures of the nine best P-gp inhibitors 
identified in this study (panels A through I) with our laboratory name (SMU-) above, and the MolPort identification number below. The ZINC identification 
number, IUPAC International Chemical Identifier (InChI) key, and the Simplified Molecular Input Line Entry System (SMILES) code for each molecule are 
listed in S7 Table.

https://doi.org/10.1371/journal.pone.0325121.g006

https://doi.org/10.1371/journal.pone.0325121.g006
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resolution and conformational diversity. To overcome this limitation and produce suitable structures for molecular dock-
ing, we built a homology model of human P-gp and used targeted MD simulations to generate structural ‘snapshots’ of the 
transporter throughout a putative catalytic drug transport cycle [19,20]. Our first-draft virtual screening pipeline with our P-gp 
homology model resulted in a 7% hit rate for compounds that reverse multidrug resistance in P-gp-overexpressing cancer 
cells [7,8]. We also provided evidence that these small molecules inhibited substrate-stimulated ATPase activity of P-gp, 
suggesting interactions with the NBDs – the overall goal of the docking screens [7]. Despite the limited access to conforma-
tionally diverse and high-resolution structures of human P-gp when our docking studies were performed, the work presented 
here shows a two-fold increase (13.4%) in hit rate for compounds that reverse multidrug resistance in P-gp-overexpressing 
cancer cells, thereby validating the use of our P-gp model to virtually screen small molecules with molecular docking, and the 
use of counter-selective docking to target the NBDs.

Validation and testing of the SWISS-ADME computational chemical analysis

Identifying P-gp inhibitors that are not transport substrates remains inherently challenging. To that end, computational 
tools such as the SWISS-ADME server attempt to use a molecule’s unique chemical and structural characteristics to 
predict whether it is likely to be a P-gp transport substrate [60]. Our LC-MS/MS assays allowed us to retroactively test the 
validity of predictions from SWISS-ADME. Of 13 compounds assayed in total using LC-MS/MS, only four were correctly 
predicted to be P-gp transport substrates (Table 2). This discrepancy underscores the inherent difficulty of computationally 
predicting transport substrates of this dynamic ABC transporter. We have also included the SWISS-ADME analyses of 
molecular weight, topological polar surface area, Log P

oct/wat
 (hydrophobicity), and Log S (water solubility) for our top hits 

from this work, as well as for several compounds that did not reverse MDR, in hopes that these data can be used to guide 

Table 2.  Computational analysis of compounds and comparison to in vitro data.

# MW (g/
mol)

TPSA 
(Å2)

Log 
Poct/wat

LogS Correct Water Sol-
ubility Prediction?

Predicted to be 
P-gp Substrate

Correct P-gp Sub-
strate Prediction?

MolPort # Top 
Hit

59 323 189 −0.59 Soluble Yes Yes ND 002-662-098 No

60 522 146 3.88 Poorly No Yes No 000-779-897 No

61 480 164 0.3 Soluble No Yes Yes 001-984-582 No

66 411 121 1.74 Soluble Yes Yes No 005-923-195 No

70 430 120 3.23 Poorly Yes Yes No 005-927-826 Yes

71 455 104 3.74 Poorly Yes Yes No 005-926-380 No

78 425 113 3.28 Moderate Yes Yes No 016-063-650 Yes

79 342 64 3.62 Moderate Yes Yes ND 005-914-703 No

89 354 167 0.42 Soluble Yes Yes ND 005-754-407 No

96 407 94 4.49 Poorly No No Yes 027-713-270 Yes

97 427 81 3.8 Moderate Yes No Yes 005-655-142 Yes

101 494 88 3.28 Moderate Yes Yes No 007-744-469 Yes

103 490 111 4.11 Poorly No No No 007-796-163 No

111 385 100 2.97 Moderate Yes Yes No 009-271-065 Yes

122 496 145 2.65 Moderate Yes Yes Yes 020-179-929 No

124 392 116 2.38 Moderate Yes No No 005-930-433 No

The top performing compounds from in vitro assays against DU145-TXR were subjected to post-hoc analysis with SWISS-ADME [60]. Compounds 
59 and 89 were included as examples of compounds with significantly different properties that did not reverse MDR; 59 and 89 were used as internal 
negative controls for P-gp inhibition with the A2780-ADR and A2780 cell lines. The predicted aqueous solubility was compared to that observed in the 
laboratory. The predicted classification as a P-gp substrate was compared to the LC-MS/MS intracellular accumulation data, if available. ND = no data. 
LogP

oct/wat
 and LogS are reported as the Consensus values calculated with SWISS-ADME. Top Hits are compounds that 1) reverse MDR, 2) do not 

increase PTX toxicity in chemo-sensitive cancer cells, 3) are non-toxic to noncancerous cells, and 4) are not P-gp substrates.

https://doi.org/10.1371/journal.pone.0325121.t002

https://doi.org/10.1371/journal.pone.0325121.t002
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selection of future P-gp inhibitors for screening (Table 2). Alternative identifiers for the molecules identified in this study 
are shown in S7 Table.

Adapting this pipeline to target other ABC transporters

The ABC transporter superfamily contains many proteins that undergo similar conformational dynamics to P-gp [2,3]. One 
of the most clinically-relevant is breast cancer resistance protein (BCRP, ABCG2), which confers MDR to several types of 
human cancers [61–63]. Similar to P-gp, BCRP also consists of cytoplasmic NBDs and membrane-embedded DBDs, and 
previous drug discovery efforts have focused on the DBDs [64]. DBD-targeted BCRP inhibitors have exhibited problems with 
poor solubility, principally because molecules that bind to the DBDs tend to be hydrophobic [64]. The NDBs of BCRP have 
not been thoroughly explored in drug discovery, and our results suggest that the NBDs are good candidates for virtual- 
assisted screening and the pipeline presented here. High-resolution structures of BCRP are increasingly available in sev-
eral conformations, which will enhance drug discovery efforts [65–68]. As an additional factor, paired resistant/non-resistant, 
BCRP-overexpressing human cancer cell lines are available, which will facilitate in vitro testing of compounds [9].

In addition to conferring MDR to cancers, ABC transporters like MsbA from E. coli also perform essential functions in 
pathogenic bacteria [42,69,70]. Targeting bacterial ABC transporters like MsbA with the NBD-targeting docking methods 
presented here could identify novel drug candidates to aid in the fight against drug resistant bacterial infections [69]. The 
nucleotide-binding region of ABC transporters contains several conserved residues, specifically those that are involved in 
ATP binding and hydrolysis [42]. While this conservation might cause an NBD-targeting P-gp inhibitor to bind other ABC 
transporters, one might argue that this ‘off-target’ activity against other ABC transporters is acceptable within the con-
text of multidrug resistant cancer – for these patients, chemotherapy has failed, options are limited, and more than one 
ABC transporter is potentially at play in conferring multidrug resistance. P-gp is not the only ABC transporter that confers 
multidrug resistance [62,71], and the chemotherapy substrate profiles of ABC transporters often overlap. Therefore, it is 
possible that targeting several ABC transporters could be effective within the context of drug resistant cancer. This idea 
remains to be tested, as there are currently no NBD inhibitors available to patients, but future efforts should consider activ-
ity against other ABC transporters.

In summary, the methodology presented here, particularly the use of counter-selective docking methods that target the 
NBDs over the DBDs, can be readily adapted to target other members of the ABC transporter family. Following recent 
advances in cryo-EM, high-resolution structures of ABC transporters are increasingly available for use in drug discovery 
screens [5,16]. We emphasize that these high-resolution structures were not available when the simulations and docking 
for this study were performed. Our computationally-assisted pipeline was successful despite the lack of high-resolution 
structures, which underscores the untapped potential of our approach, and of the NBDs as underappreciated targets in 
the fight against multidrug resistance – where treatment options are few and limited. Future drug discovery screens target-
ing P-gp (and other ABC transporters) will benefit immensely from the growing body of high-resolution structures, particu-
larly those derived by cryo-EM.

Conclusion

By targeting the NBDs with molecular docking screens, we have identified several P-gp inhibitors that are less likely to 
be transport substrates of the pump itself (Fig 6, Table 1). This was the goal of the counter-selective docking techniques, 
where the ratio of estimated affinities to the DBDs and NBDs was used to select molecules that potentially preferred the 
NBDs. The predicted binding affinity ratios of DBD-to-NBD for the top compounds identified in this work are shown in 
S4 Table. For our expanded virtual-assisted drug discovery pipeline, the hit rate for compounds that reverse MDR while 
less likely to be P-gp transport substrates is 7% (70, 78, 96, 97, 101, 111). However, the remaining top hits (103, 122, 
and 124) may still be considered successful even though they tested likely to be P-gp transport substrates, because 
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lead-optimization could potentially produce variants that are less likely to be substrates. Thus, we feel that the nine 
compounds identified in this work are good candidates for lead optimization, and could potentially form the basis for a 4th 
generation of P-gp inhibitors [72–76]. Our work synergizes with recent work by Moesgaard et al, where a similar method-
ology was used to identify novel P-gp inhibitors that target the NBDs [54]. Taken together, these results demonstrate that 
the NBDs of P-gp are a viable target for drug discovery.

Supporting information

S1 Fig.  Target structures for docking studies. Panel 1: A. 4KSB_DBD, B. Transition_DBD, C. 3B5X_DBD, D. 3B5Z_
NBD_1 and 3B5Z_NBD_2, E. 2HYD_NBD_1 and 2HYD_NBD_2, F. 3B5X_NBD. The NBD of the Transition structure in B 
was also sampled. NBD dock boxes for the 2HYD and 3B5Z structures were designed to sample each NBD individually. 
A-F are human P-gp structures. Boxes correspond to the region targeted using AutoDock Vina with an exhaustiveness of 
128.
(TIF)

S2 Fig.  Dock boxes and receptors for docking. The conformations of the human P-gp model, and the corresponding 
dock boxes used, are shown in A – E. The first picture in each panel shows the receptor, with the PDB ID. The following 
pictures with red and green boxes show the docking boxes for the DBD or NBD of each receptor. Pictures generated 
using AutoDock. Note that the “Transition” structure is a conformation in-between 4KSB and 3B5X and is derived from 
TMD simulations performed for this study.
(TIF)

S3 Fig.  Ligand docking locations to each P-gp structure. The docking positions of the top hits to the NBDs of A) 
2HYD and B) 3B5Z were mostly located within the ATP-binding site, with the exception of a few positions above the 
ATP-binding site in 2HYD. The docking positions of top hits to the DBDs of C) 4KSB and D) 3B5X were near the middle 
or the bottom of the drug binding region, respectively. Ligands were docked to both the E, top box) NBDs and E, bottom 
box) DBDs of the “Transition” structure, which was generated from MD simulation trajectories that transitioned the protein 
from the 4KSB to the 3B5X conformation. It is notable that several hits were predicted to bind near the ATP-binding sites, 
even though, when the NBDs are disengaged, the catalytic configuration for ATP hydrolysis is incomplete.
(TIF)

S4 Fig.  Alternative representation of daunorubicin fluorescence testing of novel inhibitors. An alternative repre-
sentation of the data in Fig 5. Fold change in fluorescence of the P-gp substrate Daunorubicin (DAU) in the presence or 
absence of experimental compounds or known P-gp modulators. Cells were treated with 10 µM compound in the pres-
ence or absence of 10 µM DAU. After washing and lysing the cells, the intracellular DAU fluorescence was measured and 
expressed as a fold change relative to the fluorescence of DU145-TXR cells treated with DAU alone. The P-gp inhibitors, 
VPL and TQR, were included as positive controls for P-gp inhibition, and compound 59 was included as a negative control 
for P-gp inhibition. Three samples per trial, three independent trials. Significance was determined using a Student’s T 
test of the mean by comparing fluorescence of DAU and compound to that of DAU alone; P > 0.05 = N.S., P < 0.05 = *, 
P < 0.01 = **, P < 0.001 = ***, P < 0.0001 = ****. Note that for compound 78, the significance denotes a significant decrease in 
fluorescence.
(TIF)

S1 Table.  Known P-gp Inhibitors and Predicted Chemical Properties. A non-exhaustive list of known P-gp inhibitors 
and their selected chemical properties [72,73]. Clinical trial outcomes were adapted from [1,11]. Compounds were evalu-
ated using the SWISS-ADME server [60]. RO5: Rule of 5, MW: Molecular Weight, TPSA: Topological Polar Surface area, 
LogP: Average of 5 calculations of LogP

oct/wat
, LogS: Average of 3 calculations to determine aqueous solubility – Insoluble, 

http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0325121.s001
http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0325121.s002
http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0325121.s003
http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0325121.s004
http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0325121.s005
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Poorly soluble (Poor), Moderately Soluble (Moderate), Soluble. “Predicted P-gp Substrate” – predicted by SWISS-ADME 
to be a transport substrate of P-gp. “Known P-gp Substrate” – In addition to being P-gp inhibitors, these molecules are: 
known transport substrates of P-gp, known non-transport substrates of P-gp, unknown whether it is a transport substrate 
of P-gp [74–76]. If the molecule is designated in a specific generation of P-gp inhibitors – First Generation P-gp inhibitors, 
Second generation P-gp inhibitors, Third generation P-gp inhibitors.
(DOCX)

S2 Table.  Parameters of dock boxes used for docking screens. 
(DOCX)

S3 Table.  Ratio of estimated affinities (KD
estimate) for the top hits. Ratios are calculated as the estimated DBD affin-

ity (K
D

DBD) divided by the estimated NBD affinity (K
D

NBD). Ratios are listed by compound, and then organized by receptor 
structure. Three DBD docking boxes and five NBD boxes were used (Supplemental Figure 1). Each NBD of the 2HYD 
and 3B5Z structures was given its own docking box, hence the labels “nbd_1” and “nbd_2”. Molecules with a high ratio of 
DBD/NBD affinities are the most desirable, as this indicates that the K

D
estimate to the DBDs is much larger (and thus lower 

affinity) than the K
D

estimate to the NBDs.
(DOCX)

S4 Table.  Pre-screening of compounds 56–98 against DU145-TXR cells with resazurin assays. DU145-TXR cells 
were incubated with 15 µM compound with or without 500nM PTX for 48 hours; survival was subsequently determined 
with the Resazurin viability assay [39]. Data represent the mean of two separate experiments performed in triplicate, 
and shows viability of cells treated with 15 µM compound alone, 15 µM compound and 500 nM PTX, and the difference 
between survivability measurements of each treatment. Percent re-sensitization is defined as the percent change in 
viability between cells treated with compound and PTX, versus cells treated with PTX alone. In some instances, the 
assay reported an increase in viability with compound + PTX, and no percent sensitization is reported. ‘Follow-up Testing’ 
compounds were re-assessed with MTT assays (Figure 1). Compounds 59 and 89 (*, ‘Follow-up Testing’) were used as 
negative controls in follow-up MTT assays to test for consistency of results, e.g., to confirm that molecules eliminated in 
Resazurin assays were justifiably eliminated from later screening with MTT assays. Tariquidar was included as a positive 
control for P-gp inhibition.
(DOCX)

S5 Table.  Normalized ratio of compound to internal standard using LC-MS/MS. DU145-TXR cells were exposed to 
5 µM compound with or without 500 nM tariquidar (TQR) as described in [9]. Samples were prepared in triplicate and 
two or three independent trials were performed; data represent the mean ± one standard deviation (std. dev). In contrast to 
the methods used in [9], these LC-MS/MS trials measured the normalized ratio of analyte (i.e., compound) to the internal 
standard (i.e., unique performance of mass spectrometer on date of analysis); thus the data represent the relative quantifi-
cation of compound per sample and explain the variability between independent trials (see Methods).
(DOCX)

S6 Table.  Fold Accumulation of Daunorubicin fluorescence in DU145-TXR cells. Here we show the fold fluores-
cence of the P-gp substrate Daunorubicin (DAU) in the presence or absence of experimental compounds or known P-gp 
modulators. Cells were treated with 10 µM compound in the presence or absence of 10 µM DAU, after which cells were 
washed and lysed; the resultant DAU fluorescence was measured on the Cytation 5 (excitation/emission 488 nm/ 575 nm). 
The resultant DAU fluorescence is expressed as a fold change relative to the fluorescence of DU145-TXR cells treated 
with DAU alone. The P-gp inhibitors VPL and TQR were included as positive controls for P-gp inhibition, and compound 
59 was included as a negative control for P-gp inhibition. Three samples per trial, three independent trials. Statistical 
significance determined using GraphPad Prism, Student’s T test of the mean, by comparing the mean fluorescence of 

http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0325121.s006
http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0325121.s007
http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0325121.s008
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DAU + compound to that of DAU alone. Significance was determined using a Student’s T test of the mean; P > 0.05 = N.S., 
P < 0.05 = *, P < 0.01 = **, P < 0.001 = ***, P < 0.0001 = ****.
(DOCX)

S7 Table.  Alternative identifiers for molecules identified in this study. ZINC IDs are shown if available. Molecular 
structures are translated into SMILES, and the corresponding InChl keys are provided as well.
(DOCX)

S8 File.  Cell culture testing data. We have provided the full datasets for all cell culture studies presented in this paper, 
as defined by the journal’s definition of a complete minimal dataset.
(XLSX)

S9 File.  Docking data receptors ligands. We have provided the full dataset for the docking studies presented in this 
paper, as defined by the journal’s definition of a complete minimal dataset.
(ZIP)
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