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Abstract

The capacity of Amazonian environments to support large indigenous societies prior
to European Contact has long been a contentious area of debate, particularly in
regions where pre-Columbian cultures are known to have constructed large, spatially
complex earthworks. Here, we provide the first range of supported population esti-
mates for the Casarabe Culture of the Bolivian Llanos de Moxos — one of the most
complex pre-Columbian societies yet documented in Amazonia. Between 400 and
1400 CE, the Casarabe Culture inhabited this forest-savanna mosaic landscape,
where they constructed hundreds of monumental habitation mounds, integrated by a
dense network of causeways and canals, suggesting the former presence of a large,
sedentary society. To estimate the population size of this culture, we employed a mul-
tifaceted modelling approach — including architectural energetics, maximum carrying
capacity, and agent-based modelling — which considers: (i) the number of people
needed to build these earthworks; (ii) how many people the local environment could
support; and (iii) how their population grew and spread over time. Our results indicate
that the Casarabe Culture likely grew to a maximum population of between 10,000
and 100,000 people within a 5020 km? quadrant of their former territory, representing
a density of between 2 and 20 people km. These values are considerably larger
than both the modern rural population density and the indigenous carrying capacity
estimates made for Amazonia more widely, and they support previous interpretations
that this culture practiced a form of low-density urbanism.

Introduction

Scholars have long debated whether Amazonian environments were able to sup-
port large, complex societies prior to European Contact [1-4]. Traditionally, these
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environments were thought to restrict human occupation to small, semi-sedentary
communities of <100 people [1,5,6], but multiple lines of evidence now challenge
this perspective [7,8]. In particular, the documentation of numerous complex archae-
ological sites across the basin now suggests that much larger populations existed
within certain localities [9—13]. One such locality is the Llanos de Moxos (LM), a
vast (120,000 km?) seasonally flooded forest-savanna mosaic landscape in north-
ern lowland Bolivia. Today, this region is sparsely populated at an average rural
density of <1 person per km2, with most of its 520,000 inhabitants concentrated in
the towns of Trinidad and Riberalta [14]. However, the LM also contains a variety of
earthworks which provide evidence to suggest that its pre-Columbian population was
much larger [15,16]. Perhaps most well-known are the earthworks found in the LM’s
southeastern sector, where the now-extinct Casarabe Culture constructed at least
189 earthen habitation mounds, interconnected by a dense network of causeways,
canals, and lakes [17]. Reaching up to 20 ha in surface area and 20 m in height, the
size and spatial complexity of these mound structures suggest that the Casarabe
Culture engaged in a form of low-density agrarian urbanism [18]. Exploiting fertile
sediments deposited in the southeastern LM during the late Holocene [19], palaeo-
botanical evidence shows that this culture utilised their causeway-canal system as a
drainage and irrigation network to practice intensive maize monoculture in the open
savannas [17,19-21]. Recent skeletal carbon isotope analyses indicate that this
maize formed a central component of their diet [22].

The presence of these earthworks strongly suggests that the southeastern LM
once supported a large, sedentary population. Many of the mounds are directly
integrated within the causeway-canal network [18], indicating that they were contem-
poraneously occupied. Radiocarbon dates obtained from several of the mounds show
that this culture continuously inhabited the southeastern LM for a whole millennium
between 400 and 1400 CE [23-25]. This evidence implies that, despite reaching a
sufficient population density to simultaneously occupy their network of earthworks,
the Casarabe Culture was still able to support itself here in the long-term. Such a feat
appears incompatible with the <1 person km2 carrying capacity estimates proposed
for Amazonia more widely [26—28]. If the population size of the Casarabe Culture was
indeed large, it raises numerous questions about how they utilised the southeastern
LM to support themselves, as opposed to the cattle ranching and mechanised rice
agriculture strategies employed today [29-31].

To date, no systematic, rigorous attempt has been made to estimate the population
size of the Casarabe Culture. The only published figure proposes that between 500
and 1000 people inhabited the medium-sized mound located close to Ibiato village
(red box, Fig 1) [32]. However, while these figures align with the statements made
in historical European texts, which claim that the LM once contained villages with
as many as 2000 inhabitants [35,36], they are entirely speculative and contain no
supporting evidence. Two unpublished estimates have also been made by co-author
Lombardo [37], but these span multiple orders of magnitude, ranging between 3000
and 250,000 people for a 4500 km? area of the southeastern LM where the Casar-
abe Culture’s earthworks have been mapped in detail [17]. Beyond these, the only
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Fig 1. Map displaying the earthworks of the southeastern LM, set against a land cover classification demarcating areas of tropical forest
(green), savanna (light green), and water (blue). Earthworks are a modified version of the dataset produced in Lombardo and Primers [17]. The
red box highlights the mound site for which population estimates have been proposed [32]. Inset map displays the location of the main map in relation
to central South America, set against a map of terrestrial ecoregions [33], colour-coded into areas dominated by tropical forest (green); savanna (light
green); yungas (dark green); tropical dry forest (gold); altiplano (yellow); and desert (orange). Modified from [34] under a CC BY license. Original copy-
right 2025.

https://doi.org/10.1371/journal.pone.0325104.9001

available estimates are applicable to either the wider LM or Amazonia more generally (Table 1), and these further extend
the lower end of Lombardo’s range down to just 750 people (0.15 people km?) [40]. Such large uncertainties highlight the
difficulties in constraining population estimates with limited archaeological evidence.

Despite the significant challenges involved in calculating palaeopopulation estimates, two unique characteristics can
help constrain these calculations for the Casarabe Culture. Firstly, the atypical dominance (in comparison with most
of Amazonia) of forest-savanna mosaic vegetation in this landscape greatly restricts the availability of various forest
resources, many of which are necessary for survival (e.g., fuelwood). Secondly, unlike many other contemporaneous
pre-Columbian (pre-1492 CE) indigenous groups, the Casarabe Culture intentionally chose to construct and settle atop
earthen mounds, elevated above the seasonal flood waters. This distinctive practice enables us to pinpoint where on the
landscape the members of this culture were once concentrated. Both of these characteristics can be combined to further
parameterise and inform any attempt to model the population size of this culture.
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Table 1. Previous population estimates applicable to the Casarabe Culture sourced from the wider literature. The ‘Projected Population’ vari-
able applies population density estimates to our study area, highlighted in Fig 1 and discussed below.

Author Region Method Population Den- Projected Population
sity Estimate for our study area

Meggers [28] Amazonia Carrying Capacity 0.3 km? 1506

Meggers [27] Amazonia Carrying Capacity 0.2-1.0 km2 1004 - 5020

Denevan [38] Llanos de Moxos Habitat Density 2.0 km?2 10,040

Métraux [39] Llanos de Moxos Jesuit Count 30-100 settlement™ | 3570 - 11,900

Steward [40] Llanos de Moxos Jesuit Count 0.15 km? 753

Steward and Faron [41] Llanos de Moxos Jesuit Count 0.23 km? 1155

Erickson [32] Southeastern LM N/A 500-1000 59,500 - 119,000
settlement”’

Lombardo [37] Region studied in Lombardo and Priimers [17] | Architectural Energetics 0.61 km? 3062

Lombardo [37] Region studied in Lombardo and Priimers [17] | Carrying Capacity 50 km2 251,100

https://doi.org/10.1371/journal.pone.0325104.t001

In this article, we provide the first range of systematically derived population estimates for the Casarabe Culture. We
obtain these estimates by employing a multifaceted modelling approach which combines three distinct methodologies:
architectural energetics, maximum carrying capacity, and agent-based modelling. Our objectives are: (i) to generate initial
upper and lower population boundaries for the Casarabe Culture using the architectural energetics and carrying capac-
ity methods; (ii) to further constrain this range by comparing these boundary estimates with the results generated by our
agent-based model, which we developed to explore the growth of the Casarabe Culture over time; and (iii) to identify
which of the assumptions made during our model experiments most accurately recreate the real landscape. This multi-
faceted approach reduces the influence of limitations and assumptions associated with the above methods [4], allowing
us to generate population estimates for the Casarabe Culture across a range of scenarios. Some of these limitations are
introduced in the methods section, and we explore the limitations of our own approach in greater detail in the ‘Numbers

from Nowhere’ subsection of the discussion.

Materials and methods
Study area

The LM is a seasonally-flooded forest-savanna mosaic landscape situated on the southwestern periphery of Amazo-
nia. Up to 80,000 km? of this landscape becomes inundated on a seasonal basis, predominantly from pluvial flooding
[42,43]. This inhibits tree growth in low-lying areas, restricting the establishment of tropical forests to a dendritic
network of palaeoriver levees extending across the landscape [44,45]. Taking advantage of this higher ground, the
Casarabe Culture built a network of settlement mounds atop these levees. The mounds themselves consist of an ele-
vated platform, normally circular or elliptical in shape, and usually topped by a pyramidal structure [17,18]. Archae-
ological excavations show these structures were built in stages from interwoven layers of clay and domestic refuse,
and that their primary use was for habitation [46,47]. Large quantities of ceramics were incorporated into the refuse,
which have subsequently been used to reconstruct a five-stage chronological sequence of occupation spanning from
400 to 1400 CE [23—-25]. The mounds are directly integrated into the wider causeway-canal system, sometimes being
encircled by canals and/or polygonal enclosures [17]. In general, the causeways and canals are constructed adja-
cent to one another [36], with the former being comprised of canal fill, and the latter typically reaching 1 m in depth
[19]. Aside from interlinking the settlement mounds, the canals are connected to nearby rivers and lakes, and have
been proposed to serve multiple functions that include drainage, irrigation, and providing water to the mound settle-

ments [17,20,48].
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The population estimates generated within this study explicitly apply to the 5020 km? quadrant of the southeastern LM
displayed in Fig 1. This quadrant fully encompasses the earthworks which have been mapped in the greatest detail [17],
though note that the area previously occupied by the Casarabe Culture extends beyond these boundaries [18,36].

Palaeopopulation models

The first stage of our multifaceted modelling approach is to generate minimum and maximum population boundary estimates
for the Casarabe Culture. To calculate the minimum population estimate, we employ an architectural energetics approach.
The labour resources required to construct the mounds, causeways, and canals still visible in the southeastern LM today
[17] must have been directly extracted from members of the Casarabe Culture. Architectural energetics aims to quantify the
effort involved in such a task [49,50], providing insight into both the size of the minimum requisite workforce and the popu-
lation needed to sustain it. An important limitation of this method is its reliance on the estimated labour costs of construction
activities, many of which vary between sites [49]. Nevertheless, while a complete range of site-specific cost estimates for
the Casarabe Culture is unavailable, filling these gaps with suitable costs from the wider literature should suffice to produce
an order-of-magnitude estimate of the regional population. Architectural energetics estimates calculated for the Casarabe
Culture should be interpreted as a minimum population estimate because: (i) some earthworks are no longer visible, and (ii)
building these structures represents additional labour on top of normal subsistence activities (e.g., cultivation).

We obtain our maximum population estimates using a maximum carrying capacity approach [51]; whereby we quantify the
largest number of people that our study area could support through maize cultivation and fuelwood extraction. There are a
number of limitations associated with such an approach, including the possibility of capacity growing over time through cultural
and technological innovation [52], as well as the importance of choosing appropriate limiting factors [53]. We selected maize
and fuelwood because maize is ubiquitously present across Casarabe Culture sites [20,47,54] and constitutes a dominant
component of their diet [22], while fuelwood is relatively scarce on the landscape because it can only be extracted from the
limited areas of forested land, spatially constrained by terra firme (non-flooded) micro-topography on palaeoriver levées.

We further constrain these initial boundaries based on the outputs of our agent-based model, MoundSim Population.
Agent-based models are characterised by their focus on the emergent behaviour of individual ‘agents’, resulting from their
interactions with one another and their surrounding environment. In our model, these agents represent household units—
comprising adults and children—that collectively form a representation of the Casarabe Culture within a gridded virtual
landscape. Programmed to subsist (through maize-based agriculture), reproduce, and redistribute themselves across this
virtual landscape, our household agents enable MoundSim Population to function like a ‘virtual laboratory’. The outputs of
our model allow us to explore how the culture could have developed under a range of assumptions [55,56]. In doing so,
we also determine which parameter assumptions most closely recreate the number and spatial distribution of settlement
mounds on the real landscape.

Architectural energetics

To produce energetics-based population estimates for the Casarabe Culture, we first revised previous estimates for the
amount of earth required to build their earthworks [17] to account for: (i) new volumetric data obtained from recent LIDAR
scans [18]; (ii) additional earthworks identified subsequent to previous mapping [17]; (iii) the infilling of canals and borrow
pits; and (iv) earth lost from the settlement mounds due to erosion. Following previous work [17], we estimate the vol-
ume of each mound by using a surface area: volume ratio based on the sites with either existing LIDAR data or a high-
resolution digital elevation model (DEM). For the causeway-canal network, we assumed that 5 m® of earth was excavated
to produce one linear metre of each earthwork [17]. The labour effort required to move this earth was assumed to be
expended linearly over time, with the Casarabe Culture moving 1/1000™ of the total volume annually. We assume that the
earth eroded from these structures represented a consistent proportion of the total earth comprising them.
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To estimate the rate at which earth could be excavated, we utilised an experiment conducted in the LM [57] in which work-
ers were asked to create pond features. The workers were not asked to transport the earth and were paid daily (in 8-hour
workdays), according to the quantity of material excavated. These experiments showed that workers were able to excavate
between 1.7 and 4.7 m? of earth daily, rates that are well within the range for other experiments conducted on dense soils
[49]. However, workers were allowed to complete this task using metal tools. Even stone tools were a scarce commodity for
the Casarabe Culture [47], as the total absence of rock outcrops in the southeastern LM meant that any such tool needed
to be obtained via long-distance trade. We therefore apply the 1:2.7 ratio of Erasmus [58] to account for the decrease in
efficiency from metal tools to digging sticks, reducing the expected excavation efficiency to between 0.3 and 1.4 m? person™
day'. To be comprehensive, we present energetics estimates across the entire range of these assumed values.

Any earth excavated for the causeway-canal network is assumed to have been transported only a short distance (5
m), as these features were constructed adjacent to one another [36]. For the mounds, we assume the earth was obtained
from pits/canals adjacent to the feature, before being transported upslope and deposited on the main mound platform.
These pits were then intentionally infilled as the mound grew. To calculate the earth transportation rate, we employed a
modified version of the formula developed by the United Nations [59,60], which expresses transport rate (E,, m* day™')
in relation to the transported load (Q, kg); distance travelled (L, km); time spent working (H, hours day'); and speed of
travel (V, km hr). Prior to calculation, we convert Q into an estimate for the volume of earth transported, dividing it by the
average density of clay-dominated soil (1500kg m; p). L and V are divided into portions to account for the effort involved
in constructing the mounds (L _, V) and causeway-canal network (L, V), as well as to account for the effort involved in
transporting earth over flat ground (f), upslope (s), and on the return trip without transporting earth (°):

Et: 9* 1 * H

P Lnr Ly’ Lms
me + Vm, + Vins

—+ 9*71 *H
p

L 4 Lo
(ch + Vc’)

We assumed that workers travelled at an unloaded walking speed of 5 km hour’, and that each expended a constant
amount of energy irrespective of external conditions. As such, changes to these conditions (e.g., load carried, slope)
are expected to influence travel speed. To quantify these changes, we employed the formula of Pandolf and colleagues
[61,62], which calculates the metabolic rate of humans relative to body mass (kg, M), Q and V as described above, the
slope gradient (%, G), and a terrain modifier representing the difficulty of traversing an environment (u) [63].

(1)

Metabolic Rate = 1.5M + 2(M + Q) (2)* + u(M+ Q)(1.5V2 + 0.35VG) )

To calculate the size of the required workforce, we converted the volume of earth needed to build the mounds (T, ) and the
causeway-canal network (T_, m®) into estimates of earth moved per year (T _,, T_,). This was done by dividing total esti-
mates by the assumed number of days worked per year (D; 18) and the duration of mound occupation (Y, years):

I

de = D+Y) (3)
— _TIc

TCd = DY) (4)

Finally, workforce size (P,,) is derived by dividing the total amount of earth needed to be moved daily by the excavation
and transportation rates for both the mounds (E_, E ) and the causeway-canal network (E_, E ):

Pu= () + ()] +[(2)+ (&)] ®)
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This result is converted to a total population estimate by assuming it constitutes between 20 and 50% of the population,
following estimates made at other sites [64]. At lower ratios, this proportion assumes certain people were unable to partic-
ipate (e.g., for being elderly or too young). Meanwhile, higher ratios assume that only adult males took part in earthwork
construction. A full set of calculations for our estimates can be found in the supplementary information (S1 File).

Carrying capacity

Our carrying capacity estimates are based on the per capita quantity of land required by the Casarabe Culture for maize
cultivation and fuelwood extraction. While this culture is known to have utilised the open savannas, it remains unclear
whether they also practiced cultivation in the forests similar to modern indigenous groups [13,17,20]. For this reason, we
calculated the carrying capacity for maize and fuelwood under three different scenarios: (i) cultivation solely occurred in
the open savannas; (ii) maize was grown in both the savannas and the forests; and for comparison, (iii) cultivation was
restricted solely to forested areas. Although the Casarabe Culture may have employed these forests for other types of
resource production (e.g., agroforestry), for simplicity, our carrying capacity model assumes any forested land used for
cultivation was clear-cut and maize monoculture planted. Two sets of population estimates were produced for each of the
above scenarios, one assuming all the resources on the landscape could be exploited, the other restricting accessible
resources to those within daily walking distance of the settlement mounds, defined as 7 km based on the walking dis-
tances recorded for modern Amazonian indigenous groups [65]. Our estimates below assume that the Casarabe Culture
cultivated maize as part of a swidden-fallow system. Please note that this assumption is made for the sake of simplicity, as
little information exists about the Casarabe Culture’s farming practices, especially within the forests.

First, we calculate the per capita land requirement for maize cultivation (L) following the formula developed by Fearn-
side [53,66]. To use this formula, we make assumptions regarding the quantity of maize consumed by an individual per
harvest cycle (Cons,), the yield of maize per hectare (L), and the ‘Cultivation Factor’ (C), a value that varies depending
upon the length of both the fallow period (Falyr) and the crop cycle (Cropyr):

Lpy = Consp x C/ Lg

where:

C = (Falyr/ CrOpyr) + 1 (6)

We also calculate a per capita land requirement for fuelwood extraction (L), using a similar formula that omits C by
assuming a one-year ‘cultivation period’ and no fallow time. To convert this into carrying capacity (k), we estimated the
quantity of forest and savanna available to the Casarabe Culture based upon a land cover dataset that we produced when
developing our agent-based model. The quantity of each land cover type was estimated using the ‘Calculate Geometry’
tool in ArcGIS 2.7.0. To produce k, the amount of available land (L) was divided by the land required per person:

_ L
K= o Ty (7)

Per capita maize consumption was estimated based upon the calorific requirements proposed by the WHO for adults aged
of their dietary requirement [22,70], deriving a demand of 178.1kg person yr' [71,72]. We also derive a fuelwood demand
of 700kg person yr' based upon the consumption of the Tsimane Indigenous group [73], which falls within the expected
demands for other groups in the tropics [74]. As no reliable estimates are available for the per hectare productivity of maize in
the savannas of the LM, we calculated carrying capacity using a range of different maize productivity estimates (300—1800kg
ha). Information on the parameter values selected for the per hectare productivity of fuelwood can be found within the
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supplementary information (S2 File). Under the scenario where maize is solely cultivated in the open savannas, the minimum

k produced between these two resources is selected. Where maize is cultivated in forested areas, the land is optimally distrib-
uted according to per capita resource requirements. If maize can be cultivated in both, we assume that the Casarabe Culture

preferentially cultivated maize in the savannas before encroaching into the forest. A full range of assumptions and calculations
for our carrying capacity estimates can be found within the supplementary information (S3 File).

Agent-based modelling: moundsim population

Our agent-based model, MoundSim Population, builds upon a previous model that we created to explore the environmen-
tal impacts of the Casarabe Culture (MoundSim LandUse), which will be published separately. A full ODD +D (Overview,
Design Concepts, Details and Decision-making) description of MoundSim Population, including these base mechanics,

is provided within the supplementary information (S4 File) [75,76]. Here, we explicitly focus on the aspects of MoundSim
Population that differ between the two models. MoundSim Population has been developed and implemented in NetLogo
Version 6.3.0 [77]. The full model code will also be made available on GitHub (https://github.com/JoeHirst-Reading/
MoundSim_Population.git).

Similar to our prior model, MoundSim Population produces a virtual representation of our study area, comprised of a
657x764 grid of hectare-sized land patches. The model landscape is inhabited by agents, which collectively form an arti-
ficial recreation of the Casarabe Culture. Human behaviour is implemented as a set of simple, logical rules guided by the
principles of bounded rationality [78,79], which are executed by these agents. As our knowledge of the Casarabe Culture
is limited, we inform and parameterise these behavioural rules using ethnographic data sourced from modern indigenous
groups [73,80]. The primary agents of interest are intended to represent household units of adults and children, each
requiring a sufficient quantity of five different resources to survive: Maize; Foraged Tree Crops; Fuelwood; Palm Leaves;
and Animal Protein. Their encoded behaviour enables them to obtain these resources by claiming and modifying land
patches on the model landscape. Each household is assumed to reside atop a mound settlement, implemented within the
model as a second agent-type to which the households are linked. Each timestep equates to a year, with the model being
run for 1000 timesteps to match the known 1000-year occupation period of the mounds [23-25].

Upon initialising the model, 10 settlement agents spawn at suitable locations on the model landscape, each with an
attached number of households. The number of agents at startup is intended to reflect the population density at which
hunter-gatherers become less mobile [81] because our model assumes the Casarabe Culture developed through demo-
graphic expansion. MoundSim Population allows both the total population and the number of adults/children within each
household to grow and change during a simulation. Every household possesses two variables to track the number of
adults/children inhabiting it, with each individual represented as a number reflecting their year of birth. Over time, these
individuals age, can start households of their own, produce children, and die.

During each timestep, new households are created as children age, and start families with other eligible individ-
uals from the same settlement. In our experiments below, a child is considered eligible once they reach 16 years of
age [73,81]. Households that contain two adult inhabitants can produce new children, with the chance dependent on a
user-defined value, controlled by a slider on the model interface (b, ):

Prob(Success) = u(0, 1.00) < by, (8)

Any new child is added to the children list variable of the household that spawned it. Households can only produce a child
if the younger adult, assumed to be female for simplicity, is less than 50 years old [82]. Age-related mortality is handled at
the individual level, with the chance of death being age-specific (Mo), based upon data collected from 18 Tsimane villages
[83]. For simplicity, all individuals aged 80 and older are assumed to die:

Prob(Death) = u(0, 1.00) <= Mo (9)
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Another defining feature of MoundSim Population is that households can move between existing settlements, as well as
start new settlements of their own. In each timestep, there is a chance for an active settlement (defined as possessing at
least one member household) to experience a migration event depending on a user-defined value (Mi ):

Prob(Success) = u(0, 1.00) < min (Miu * (Cz;; > (2 * Miy, )>
t

(10)
This chance is modified based upon the population of the home settlement (P_) relative to its current capacity (cap,),
which increases over time as the mound is assumed to be constructed. While it is possible for the settlement’s popula-
tion to exceed this capacity, doing so further increases the chance of a migration event occurring. Migration events are
only possible if the settlement population exceeds half of its current capacity, and must involve at least five households to
occur.

A migrating household group can choose either to join an existing settlement or to start their own. They can only join
an existing settlement with spare capacity, and can only start a new one if there are fewer than a user-defined number
of active settlements within the distance they are willing to travel. Should they fail to meet one of these criteria, they may
change their strategy. If neither requirements are met, the event itself will fail. If a migrating group seeks to join an existing
settlement, they will calculate a habitability score (H_ ) for all eligible candidate settlements within the range they are will-
ing to migrate. If starting their own settlement, they will instead calculate a suitability score (S_ ) for a subset of available
land patches. The optimal location is selected based on the following calculation:

Hsc = Pdsc_Crsc+ Popsc— Dsc + Disc (11)

Ss¢ = Pds¢ — Dsc + Dise (12)

Both scores are comprised of multiple distinct components, each of which can be user-weighted to determine their relative
contribution to overall utility. The first component, Pd_, reflects the location’s productivity. Locations are considered more
productive if they lie atop the fertile sediments deposited in the southeastern LM during the late Holocene [19]:

Pdsc = Pd,, * (100 x Pd) (13)

The second and third components (D
migrating group’s home settlement:

Di_ ) are distance related, changing utility scores relative to their distance from the

The final components (Pop_, Cr_) either increase or decrease utility based upon the population of the candidate settle-
ment relative to its current capacity:

Pops, = Popy, * 100 # -2

cap, (16)
Crsc = Cryy * 100 * cg’;'dQ (17)
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Once a suitable site has been chosen, the migrating group will abandon their existing territory, leave their parent settle-
ment, and attach themselves to the new one.

Model experiments

We conducted experiments on MoundSim Population to explore the growth and maximum size of agent populations under
a range of assumptions. To thoroughly explore our model’s parameter space, we employed a Latin hypercube sampling
framework to identify 40 optimally spaced parameter combinations (Table 2) [84,85]. Each of these combinations was
tested against agents that were programmed to prefer cultivating in elevated areas, but were also dissuaded from claim-
ing land harder to clear of vegetation. 50 simulation runs of 1000 years were performed for each configuration to account
for any potential variability in the resulting agent populations (total: 2000 runs).

A parameter combination was considered ‘successful’ and thus warranted further investigation if, across the 50 simula-
tion runs, it produced an average number of settlements similar to those in the real landscape during at least one time-
step. We defined this number to be within 20% of the 119 mounds identified within our study area (95-143 settlements)
[17]. Crucially, settlement agents did not need to be active at the end of a simulation run for the configuration to be consid-
ered successful.

To investigate which ‘successful’ parameter combination most accurately recreated reality, we compared the spatial
configuration of generated settlement agents to mounds on the real landscape. We produced a distance metric incorporat-
ing a variety of spatial statistics, such as the mean and standard deviation of the distance between settlements, to aid in
this comparison. The full range of statistics considered within this metric are described within Fig 2.

Results
Architectural energetics

Our minimum population estimates for the Casarabe Culture, as generated by the architectural energetics approach,
indicate that an average workforce of between 4500 and 12,000 people was needed to construct the earthworks of the
southeastern LM (Table 3). The majority of these estimates fall between 5000 and 8000 people, only exceeding this under
the assumption of very low excavation rates (<0.5 m® day™'). These estimates account for all the mounds, causeways,
and canals currently mapped within our study area, revising upwards of the previous 20,000,000 m? earth estimated to
be necessary for their construction [17] to 49,250,000 m?. Approximately three quarters of this value (36,000,000 m?3) is
attributed to mound construction, but the largest increase was associated with the causeway-canal network, which more
than doubled to account for infilling and the identification of new earthworks. As the volumetric estimates are based on the
mounds for which DEM/LIDAR data is available, they also incorporate any structures which form part of the main mound
platform (e.g., pyramidal structures). However, while this also includes other identified structures (e.g., polygonal enclo-
sures [17]), note that (i) their presence varies between mounds and (ii) our study area may still contain as-yet unidentified
earthworks. For this reason, and given the incomplete mapping of the causeway-canal network (Fig 1), these estimates
should be treated as conservative (Tables 3 and 4).

Assuming a workforce: population ratio of between 1:2 and 1:5, our calculations indicate the Casarabe Culture reached
a minimum population of between 9000 and 60,000 people within our 5020 km? study area. Most of our results vary
between 10,000 and 30,000 people, the latter threshold only being exceeded if excavation rates are low (<0.7 m® day')
and if we assume that there are 4-5 dependents per worker. Assuming that the mounds are simultaneously active, this
would equate to an average settlement population of between 120 and 200 people. Due to the numerous assumptions
made within our energetics approach, these results should not be interpreted as precise; rather they should be viewed as
order-of-magnitude approximations for the population size of the Casarabe Culture. Additionally, while these calculations
assume a constant amount of earth was excavated and transported during each workday, the Casarabe Culture almost
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Table 2. Parameter combinations used in MoundSim Population Experiments. The full range of parameter combinations for each configura-
tion can be found within the supplementary information (S6 File).

Continuous Variables Minimum Maximum
max-set-density 1.37 17.96
mig-dist-cost 0 1
mig-lobe-bonus 0 1
mig-pop-bonus 0 1
mig-pop-cost 0 1
mig-dist-bonus 0 1
migration-distance 11.38 196.65
migration-rate 0.01 0.20
new-settlement-prob 0.11 0.89
prob-household-birth 0.12 0.30
protein-modifier 0.06 0.40
settlement-base-capacity 23.22 492.56
start-population-modifier 0.50 1.50
yr-10% 13.52 197.04
Boolean Variables Case 1 Case 2
forage-die TRUE FALSE
forest-restrict TRUE FALSE
fuelwood-die TRUE FALSE
intentional-agroforestry TRUE FALSE
lobe-restrict TRUE FALSE
maize-die TRUE FALSE
palm-die TRUE FALSE
protein-die TRUE FALSE
Case Switch Variables Options
land-for-cultivation Forest Only

Savanna Only

Forest and

Savanna

https://doi.org/10.1371/journal.pone.0325104.t002

certainly grew in size over time. As such, the estimates quoted in Table 3 should be treated as conservative relative to the
peak population actually reached.

Maximum carrying capacity

Out of our initial 5020 km? study area, approximately 2.65% (133 km?) is classified as water unsuitable for either fuelwood
extraction or maize cultivation, and has thus been excluded from our carrying capacity estimates. From the remaining
terrestrial land (4887 km?), approximately 39.9% (1950 km?) is classified as forest and 75.6% (3694 km?) is located within
daily walking distance (7 km) of one of the Casarabe Culture’s settlement mounds. In this restricted range, the percent-
age cover of forest reduced to 35.2% (1300 km?). Our maximum carrying capacity estimates assume that all of the land
suitable for each of these activities was fully utilised, factoring in the required fallow period for maize cultivation. These
estimates suggest that the southeastern LM could have sustainably supported between 60,000 and 350,000 people
(Table 5). While these figures decrease to between 41,000 and 225,000 if the available resources were restricted to those
within daily walking distance of a settlement mound, they still imply that the Casarabe Culture was capable of sustaining a
large sedentary population on the basis of potential maize and fuelwood supplies.
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Fig 2. Graphic displaying the spatial components incorporated into our distance metric. These metrics include: the mean and standard deviation
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tion of the mean distance between settlement agents and the mean xy position of mounds; and the standard deviation of the mean distance between a

mound and all other mounds on the landscape.
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Mean distance between a settlement and its nearest neighbour
Standard deviation of the mean distance between a settlement and its
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Mean distance between an individual settlement and the mean xy
coordinate of all settlements on the landscape

Standard deviation of the mean distance between an individual settlement
and the mean xy coordinate of all settlements on the landscape

Standard deviation of the mean distance between an individual settlement
and all other settlements on the landscape
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Table 3. Architectural Energetics calculations to estimate the size of the labour force and population of the Casarabe Culture. This includes
the number of people needed to excavate and transport the earth needed to build each feature type, as well as total labour force and popula-
tion estimates.

Excavation Total Canal/Cause- | Total Mound | Total Canal/Cause- K Total Mound | Total Labour | Workforce: Pop-
Rate (m?® day') | way Excavators Excavators | way Transporters | Transporters | Force ulation Ratio:
1:2 1:3 1:4 1:5

14 521 1,460 22 2,783 4,786 9,571 14,357 | 19,143 | 23,929
1.3 561 1,572 22 2,783 4,938 9,876 14,814 | 19,752 | 24,690
1.2 608 1,703 22 2,783 5,116 10,232 15,348 | 20,463 | 25,579
1.1 663 1,858 22 2,783 5,326 10,652 15,978 | 21,304 | 26,630
1.0 729 2,044 22 2,783 5,578 11,156 16,734 | 22,312 | 27,890
0.9 810 2,271 22 2,783 5,886 11,772 17,658 | 23,545 | 29,431
0.8 912 2,555 22 2,783 6,271 12,543 18,814 | 25,085 | 31,357
0.7 1,042 2,920 22 2,783 6,767 13,533 20,300 | 27,066 | 33,833
0.6 1,215 3,406 22 2,783 7,427 14,854 22,280 | 29,707 | 37,134
0.5 1,458 4,088 22 2,783 8,351 16,702 25,053 | 33,405 | 41,756
0.4 1,823 5,110 22 2,783 9,738 19,475 29,213 | 38,951 | 48,688
0.3 2,431 6,813 22 2,783 12,049 24,097 36,146 | 48,194 | 60,243

https://doi.org/10.1371/journal.pone.0325104.t003

Table 4. Architectural Energetics calculations to estimate the number of person days needed to construct the earthworks of the southeastern
LM.

Total Person-days Value Metric
Minimum Excavation 36,548,467 person-days
Maximum Excavation 154,025,682 person-days
Transport 50,489,047 person-days
Minimum Canals/Causeways 10,013,452 person-days
Mounds 77,024,062 person-days
Total: 87,037,514 person-days
Maximum Canals/Causeways 40,905,636 person-days
Mounds 163,609,093 person-days
Total: 204,514,729 person-days

https://doi.org/10.1371/journal.pone.0325104.t004

The extent to which each of these resources constrained the Casarabe Culture’s population size depends upon the
assumed productivity of maize. Using a cultivation model with a 3-year cultivation period and 10-year fallow period, similar
to modern indigenous groups [65,86], each individual member of the Casarabe Culture would have required between 0.43
and 2.57 hectares of land for maize cultivation and 0.58 hectares of forested land for fuelwood production. Given that the
land required per capita to produce fuelwood is normally smaller, it only becomes the primary resource limiting population
size under specific conditions. These conditions include scenarios where maize productivity is high (>900kg ha™) or if
members of the Casarabe Culture were forced to cultivate maize solely in forested areas, forcing them to choose which
resource to produce.

Our results emphasise the substantial benefits of cultivating in the open savannas; 50% reductions in carrying capacity
are recorded when maize is grown solely in forested areas. This reduction is driven by the mutually exclusive practices
of maize monoculture and fuelwood extraction from the same parts of the landscape. By contrast, strategies that exploit
the open savanna are able to support far greater populations because maize can be cultivated in areas where fuelwood
extraction is impossible. Mixed cultivation strategies are particularly effective, as they provide further flexibility if the
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Table 5. Maximum carrying capacity population estimates for the Casarabe Culture based upon maize production and the sustainable
extraction of fuelwood. Estimates are provided in number of people. Upper table calculates estimates for all resources within our study
region. Lower table calculates estimates for all land within daily walking distance (7 km) from all mounds on the landscape.

Carrying Capacity assuming all resources can be exploited

Maize Productivity (kg/ha) Forest Maize Cultivation Savanna Maize Cultivation Mixed Maize Cultivation
300 61,734 114,214 154,839

600 104,209 228,428 261,371

900 135,220 334,019 334,019

1200 158,857 334,019 334,019

1500 177,470 334,019 334,019

1800 192,508 334,019 334,019

Total Area 4887 km?

Forest 39.87 %

Carrying Capacity assuming resources are restricted to within daily walking distance (7 km)

Maize Productivity (kg/ha) Forest Maize Cultivation Savanna Maize Cultivation Mixed Maize Cultivation
300 41,163 93,081 117,040

600 69,484 186,161 197,566

900 90,161 222,717 222,717

1200 105,922 222,717 222,717

1500 118,333 222,717 222,717

1800 128,360 222,717 222,717

Accessible Area 3694 km?

Forest % 35.17 %

https://doi.org/10.1371/journal.pone.0325104.t005

system is maize-limited. At maize productivity levels of 300 and 600kg ha', approximately 66 and 33.3% of forested areas
respectively remain unused if only the savannas are used to cultivate maize (41.6 and 83.1% respectively when cultiva-
tion is restricted to within walking distance). By encroaching into forested areas, mixed strategies are able to increase the
population capacity by up to 35.6% for the entire landscape, and 25.7% within walking distance of the mound settlements.
When maize productivity exceeds 900kg ha”', no difference is observed between savanna and mixed strategies because
population becomes fuelwood-limited.

It should be noted that these carrying capacity estimates reflect a theoretical maximum population that can indefinitely
be sustained. As such, it is possible that the Casarabe Culture could also have temporarily exceeded the capacities
quoted in Table 5.

MoundSim population

The 40 parameter combinations generated by our Latin hypercube sampling framework produced a wide range of max-
imum population estimates. The lowest value (configuration 21) reached just 1000 people, far below the minimum work-
force size produced by our energetics estimates. By contrast, four combinations (configurations. 13, 20, 32, and 39) could
not be completed because their households faced so few demographic restrictions that their population rapidly exceeded
500,000. Of the combinations that could be completed, the largest (configuration 7) produced an estimate of 270,000,
reflecting a hundredfold increase compared with the starting population. The majority of combinations produce populations
ranging between 5000 and 100,000 people, depending upon which resources are limited (Fig 3A; also see S7 File). The
most restrictive resource was animal protein, which rarely allowed populations to exceed 10,000 even though households
never relied on it for more than 40% of dietary requirements. By contrast, simulations restricted solely by foraged tree
crops regularly exceeded populations of 100,000.
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Irrespective of the restricting resource(s), every parameter combination exhibited a similar pattern of population growth,
characterised by expansion for the first few hundred timesteps, before transitioning to follow a logistic growth pattern. This
sometimes culminated in the establishment of a population equilibrium, but the time taken to reach it varied substantially.
In many cases (e.g., configuration 7), the population began to stabilise within centuries. However, others still continued
to exhibit consistent growth even after 1000 timesteps (e.g., configuration 19). Some ensemble members would even
overshoot, reaching a population peak, before subsequently exhibiting signs of decline. These patterns are driven by
multiple interrelated processes that increase pressure on the finite resources available within localised parts of the model
landscape. Even when populations were undergoing exponential growth, small numbers of deaths were still recorded due
to localised resource shortages (see S7 File). These are further exacerbated under low migration rates (e.g., configura-
tion 18), as households were unable to escape from the highly stressed localities possessing high populations and low
resource availability.

Of the 36 parameter combinations that could be simulated, only 10 were able to produce a similar number of mound
settlements as compared with the real landscape (Fig 3B). No single factor was consistently found to prevent a combi-
nation from achieving this goal. Certain constraints were common among the successful combinations, such as all pos-
sessing fertility rates exceeding 0.15, almost all (9/10) being fatally restricted by palm leaf resources, most (7/10) being
restricted by fuelwood, and agents never preferring to start new settlements close to their former home. However, these
constraints were insufficient to guarantee success, with configuration 6 failing despite possessing all of them. Further-
more, many ‘failed’ combinations still produced a substantial number of settlements, with 13 combinations generating
between 50 and 80 settlement sites. However, it remains unclear whether these combinations could eventually reach the
threshold, even with substantial additional time, due to the logistic patterns of population growth observed in Fig 3.

Successful parameter combinations were observed to produce a wide variety of population estimates, ranging between
3000 and 200,000 people when the number of settlement agents matched the number of mounds on the real landscape
(Fig 4). The majority reached populations of between 8000 and 20,000, with only configurations 11, 17, and 4 falling out-
side this range. Configuration 4 produced populations far larger than any other successful combination, a pattern driven
by few resource restrictions (agents were only constrained by maize and palm leaf supplies), low migration rates, and a
relative intolerance towards establishing new settlements. Contrastingly, configurations 11 and 17 were heavily resource
restricted, such that they could only reach populations of between 3000 and 4000 people.

Multiple different strategies enabled households to produce a similar number of settlement agents compared with mounds
on the real landscape. Under low agent populations (e.g., configurations 11, 17), the number of households was often insuf-
ficient to occupy every settlement site simultaneously. This forced households to jump between active and abandoned sites,
resulting in a significant number of empty settlements (empty rate=20-60%; Fig 4). By contrast, when agent populations
experienced few demographic restrictions (e.g., configurations 14, 15, 22, and 28), the number of settlements grew to vastly
exceed the number identified on the real landscape, sometimes reaching 500 before stabilising. A third strategy was also
observed in configurations 4 and 24, where households prioritised large migration distances and possessed a limited toler-
ance to any new settlements within the local environment. The differences between these strategies are most evident through
their ability to reproduce the spatial configuration of mounds in the southeastern LM. Although the distance scores for each
parameter configuration were minimally affected by the number of settlement agents (Fig 5A), they do exhibit substantial
differences depending on the strategy executed by household agents (Fig 5B). Parameter configurations where a greater
number of settlement agents were tolerated typically produced greater distance scores than other combinations; under these
parameter configurations, it was unlikely that the agent population could fully disperse across the landscape before a sufficient
number of sites was produced. This likelihood was further reduced if the maximum migration distance was below 7 km, with
the extremely short distances in some configurations forcing MoundSim Population to produce localised clusters of settle-
ments and leave large portions of the landscape untouched (Fig 6). Combinations that imposed more significant restrictions on
the number of settlements more closely reflected the real landscape, even if short migration distances were employed.
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Fig 3. Graphs displaying the outputs of our agent-based model, MoundSim Population. (A) Graph displaying the average population estimates
during each timestep for parameter combinations tested in MoundSim Population. Each estimate reflects an average of 50 simulation runs. (B) Graph
displaying the average number of settlements during each timestep for parameter combinations tested in MoundSim Population. Each estimate reflects
an average of 50 simulation runs. Dashed black line reflects the identified number of mounds in the southeastern LM. Solid black lines reflect the 20%
settlement threshold required for parameter combinations to be considered successful.

https://doi.org/10.1371/journal.pone.0325104.9003
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Two characteristics were also found to reduce distance scores regardless of the adopted strategy. Restricting new set-
tlement sites to where nutrient-rich fluvial sediments are located [19] was found to almost eliminate the distance compo-
nent attached to the mean Y coordinate of settlements on the landscape (see configurations 8, 11, and 17). This indicates
our model better approximates the spatial configuration of real mounds if the areas away from this fertile sediment are
excluded as suitable settlement sites. Furthermore, the two configurations with the largest migration distances (configura-
tions 4 and 24) produced very low scores for the mean and standard deviation of the distance between a settlement and
its nearest neighbour. This indicates that larger migration distances more closely approximate the real landscape.

Discussion
Minimum population size

Our energetics estimates demonstrate that the earthworks present in the southeastern LM could have plausibly been con-
structed by a workforce containing as few as 4500 people. Multiple factors contribute to explaining this surprisingly small
value. First, while the largest mounds cover over 20 ha and reach up to 20 m high [18], only 119 of these structures have
been identified within our 5020 km? study area. For comparison, over 16,000 raised fields have been identified in a region
of the northwestern LM less than 1/10" of this size (416 km?) [87]. Thus, while each raised field is considerably smaller
than a settlement mound [13], the amount of earth mobilised per square kilometre (13,000 m® km) is significantly higher
than in our study area (9800 m® km2). Second, the task of constructing these earthworks was made considerably less
labour intensive by building them gradually over the 1000-year period they were occupied [23—25,88]. This occupation
period is so long that, even if the earthworks are treated as a community project for which little time is available outside
of normal subsistence activities (following [73]), they still would have only required a relatively small workforce. Based on
our calculations, and assuming a workforce-to-population ratio of 1:2, it is conceivable that a population of just 9400 could
have been responsible for constructing these earthworks. Under this scenario, the Casarabe Culture would have been
thinly dispersed across the southeastern LM, with each of the mounds in our study area inhabited, on average, by just 79
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people. This echoes previous claims that the culture might have practiced a form of low-density agrarian urbanism [18].
While our results do suggest that a much larger population (up to 60,000) would have been needed if excavation rates
were extremely low (<0.5 m?® day'), such a scenario is unlikely given the rates recorded at other sites where dense soll
was mobilised commonly exceed 1 m® day' [49,64].

The outputs of MoundSim Population show that a sufficient number of settlements could have been produced by fewer
people than our minimum energetics estimate of 4500, suggesting that populations as low as 3000 could produce a
similar number of settlements to the real landscape. However, these outputs also show that such a low population would
be insufficient to inhabit every settlement simultaneously. Instead, household agents were observed to abandon up to
65% of settlement sites, with the remainder being inhabited by between 50 and 60 people. While it has previously been
suggested that the mounds were constructed in a spatiotemporally discontinuous fashion [89], inhabited by sedentary
communities on a cyclical basis [28], the plausibility of this hypothesis is undermined by the earthworks themselves. The
simultaneous occupation of the mounds is clearly demonstrated through them being interconnected by the causeway-
canal network [17] and their contemporaneous radiocarbon dates [23—25]. Additionally, it is important to consider the prac-
tical benefits of these earthworks. The causeway-canal system, which accounts for one quarter of the mobilised earth, is
known to have served an agricultural purpose [17,20]. Modern indigenous groups often arrange themselves into commu-
nities larger than the minimum sizes produced by both our energetics model and by MoundSim Population, and yet none
construct earthworks. Instead, they practice slash-and-burn forest cultivation and avoid the savannas due to poor drain-
age and weed competition [13,73,80]. Slash-and-burn forest cultivation would have presented significant challenges for
the Casarabe Culture, especially given their lack of access to metal tools [90], but it remains difficult to imagine that these
challenges exceeded those associated with constructing and maintaining such a large canal network. We therefore con-
sider the notion that an indigenous population of between 3000 and 6000 people was willing and able to construct these
earthworks to be unreasonable. Instead, we follow our energetics estimates in arguing the Casarabe Culture grew to a
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population of at least 10,000. At this size, the outputs of MoundSim Population show that more than 70% of settlements
were contemporaneously active, providing an explanation for why they would be integrated into the wider causeway-
canal system. As shown in configuration 24, reaching a population of 10,000 was also easily achievable within the known
mound occupation period [23-25].

Our minimum population estimate of 10,000 people represents a thirteenfold increase on the smallest population esti-
mate currently available for an equivalent area of the LM (750 people) [40]. This exceeds the 0.2—1 people km carrying
capacity estimates applicable to wider Amazonia, though it should be noted that the population densities of some modern
indigenous groups have also exceeded this threshold [26—28]. Our estimates broadly align with the 2 people km2 density
proposed by Denevan for the wider LM [38] and, in doing so, vindicate his concerns around the intra-regional variability of
population estimates [91,92]. Although his figures were intended to reflect an average population density, they fall on the
conservative end of our estimates.

Maximum carrying capacity and resource restriction

Maximum carrying capacity estimates show that our study area could have plausibly supported up to 334,000 people

on the basis of maize and fuelwood production. This value is multiple orders of magnitude greater than other published
density estimates applicable to the region, and suggests that the southeastern LM was capable of supporting a dense
sedentary population prior to European Contact [18,93,94]. Nonetheless, we stress that the maximum carrying capacity of
a given environment does not inherently equate to the equilibrium population density actually reached there [95,96]. This
notion is supported by the results produced by MoundSim Population; of the 40 parameter combinations tested during our
experiments, only eight consistently generated population estimates exceeding 100,000 people. Just one of these (config-
uration 4) also produced a final number of settlements approximating the number of mounds identified on the real land-
scape. The rarity of our model runs generating populations that exceeded less than one third the size of those produced
by our carrying capacity approach, especially given that nearly all terrestrial land patches (97.7%) were within 3 km of a
site designated suitable for settlement, suggests that this discrepancy was significant for the Casarabe Culture.

Myriad factors can prevent the population density from reaching this theoretical maximum limit. For instance, we
recorded 33% relative reductions in carrying capacity simply by restricting the available resources to those within daily
walking distance of the settlement mounds (7 km) [65]. As the mounds are unevenly distributed across our study area,
doing this renders 24.4% of the terrestrial land surface inaccessible. It also causes a 4% relative reduction in forested
land, which is more valuable given that it can be used both for cultivation and fuelwood extraction. Environmental con-
straints and preferences can also widen this discrepancy; the clear benefits of open savanna cultivation [20] are exem-
plified by the doubling of carrying capacity when the savannas are farmed, compared with when cultivation is restricted
solely to forested areas. Conversely, forest cultivation forces the choice between exploiting land for agriculture versus
fuelwood, given that at least some degree of forest clearance, or thinning, would be necessary due to maize being shade
intolerant [97].

It is possible that the values we used to parameterise both our carrying capacity model and MoundSim Population may
simply underestimate resource supplies on the real landscape. For example, while we calculated palm leaf supplies in
MoundSim Population based upon the abundant Motacu palm (Attalea phalerata) [94,98], other palms found on this land-
scape, including the spiny palm Murumuru (Astrocaryum murumuru), have been used for construction on rare occasions [99]
(though this palm is far more commonly exploited for its fruit [73,80,100]). Equally, we must recognise that the real Casarabe
Culture may have managed their resources more efficiently than is implemented in MoundSim Population. While our model
incorporates intra-settlement resource exchange [101], it is likely that the causeway-canal network facilitated inter-settlement
trade, which may explain some of the discrepancy between carrying capacity and the actual population reached.

Nonetheless, it is also important to consider our estimates in relation to logistical constraints. Assuming each mound
structure possessed an average 5.5-ha surface area [17], the settlement mounds in our study area could collectively

PLOS One | https://doi.org/10.1371/journal.pone.0325104 May 30, 2025 20/29




PLO\Sﬁ\\.- One

provide a population of 334,000 with just 19.6 m? of space per person. It is physically possible to live within such a con-
fined space, but there would be little reason for the Casarabe Culture to impose such severe restrictions on themselves
instead of further expanding their mounds, particularly given the available labour force. When this is considered alongside
the variety of factors that may have prevented the Casarabe Culture from reaching ‘maximum’ resource use efficiency, we
believe it is unlikely that this culture’s population exceeded 100,000, and probably reached no more than 50,000 people.
Such a population is far more consistent with the existing earthworks, as the mounds within our study area could collec-
tively provide 65.5-130.9 m? person' of space. Most of the mound’s surface would be occupied under this scenario, but it
would also provide sufficient space for communal functions, such as the ceremonial pyramid observed atop some mounds
[17,18]. Our model also shows that such a population could be reached within the known occupation period. We therefore
consider 50,000—100,000 people to be a reasonable maximum population range for our 5020 km? study area.

Representing a density of between 10 and 20 people km, our maximum population estimates broadly align with Clark
Erickson’s claim that the medium-sized settlement mound close to Ibiato village was inhabited by between 500 and 1000
people [32]. These values are also similar to the estimates of 6-12.5 people km? proposed for the pre-Columbian settle-
ments of the Upper Xingu [11] and fall on the lower end of population estimates made for the earthworks produced by the
Marajoara culture at the mouth of the Amazon [12,102]. More widely, the Casarabe Culture’s maximum population is sim-
ilar to, and even potentially greater than, that of the Mississippian culture of greater Cahokia [103,104], but is much lower
than that of the regional-scale urban polities developed by the Maya in Mesoamerica and Greater Angkor in Cambodia,
where population density could attain several hundred people per square kilometre [105,106].

Spatial configuration

The outputs of MoundSim Population show that the Casarabe Culture could have employed multiple migration strategies
to produce the number of mound settlements seen on the real landscape. These include small, cyclical reoccupation by
sedentary communities, rapid expansion driven by a large, unrestricted population, and a gradual deterioration in the
creation of new settlements as the settlement density becomes saturated. The first strategy can immediately be excluded
given the highly interconnected nature and contemporaneous radiocarbon dates of the mounds [17,23-25]. However, the
other strategies cannot be discounted based on the data presented here; both approaches successfully reproduced the
number of real settlements, aligning with the concept of equifinality [107,108]. Nonetheless, the distance metric we used
to evaluate each successful combination enable us to identify which assumptions produce a more realistic recreation of
the southeastern LM.

Chief among these assumptions is migration distance. Although the average distance between a mound and its nearest
neighbour on the real landscape is just 2.69 km [17], the two parameter combinations which most accurately reproduced
these spatial characteristics (configurations 4, 24) possessed: (i) the largest migration distances of all successful combi-
nations (13.0 and 19.5 km respectively); (ii) agents that prefer to migrate larger distances from their home settlements;
and (iii) growth strategies intolerant of large numbers of settlements within the local environment. Combining these
characteristics produced average distances of 2.25 and 2.36 km respectively. By contrast, shorter migration distances
produced much lower values (lowest=0.8 km), even if the agents preferred migrating large distances. From these obser-
vations, we infer that even though the mounds are densely packed, their inhabitants still viewed retaining sufficient land
within their local environment as an important priority. This is unsurprising given even small indigenous communities still
operate several kilometres away from their home settlement [73,80]. Thus, the outputs of MoundSim Population imply that
contrary to the strategies characterised by rapid, unrestricted expansion, the mounds in the southeastern LM are likely to
have already reached their maximum density. This notion is particularly striking, as previous mapping shows a number
of mounds being located in close proximity to one another, with some just 420 m apart [17,18]. Such a small distance
raises questions around whether these mounds were simultaneously occupied [89], or why the Casarabe Culture chose
to start building a new mound despite an abandoned one being in such close proximity. Our model treats each mound as

PLOS One | https://doi.org/10.1371/journal.pone.0325104 May 30, 2025 21/29




PLO\Sﬁ\\.- One

an individual settlement, but it is also possible that multiple habitation mounds may form part of a single, larger settlement
complex.

Another important characteristic identified within our experiments is whether settlements were restricted only to
spawning on the fertile sediments deposited during the late Holocene [19,109]. Under parameter combinations allow-
ing agents to spread unhindered, the mean Y (north-south) position of settlements was 5 km further south than when
restricted, causing the ‘distYcorMean’ component of our distance score to quadruple in value (restricted distance from true
value=1.13 km (n=3), unrestricted distance 5.66 km (n=7) respectively). The settlements also dispersed more widely
when unrestricted, quintupling the ‘distXYcorMean’ component score (restricted difference=0.4 km (n=3), unrestricted
distance =2.54 km (n=7) respectively). On this basis, our results corroborate proposals that the Casarabe Culture devel-
oped by exploiting these fertile sediments [110]. The spatial configuration cannot be explained through elevation because
the southern part of our study area possesses more than sufficient elevated land to enable the Casarabe Culture to settle
(see Fig 6). Neither can lower forest cover because, although the proportion of forested land is lower in the south, house-
hold agents were restricted to settling in forested locations during 60% of successful parameter combinations. This does
not imply that the Casarabe Culture was bound by insurmountable environmental limitations [1,5,6], especially given that
some mounds have been found outside the boundaries of the fertile deposits [18]. However, it does suggest that this cul-
ture considered the fertile sediment to be an important factor in determining where to settle.

Although we cannot determine the migration strategy used by the Casarabe Culture to settle this landscape, the out-
puts of our agent-based model suggest that the thousand-year occupation period of the southeastern LM [23—-25] was
more than sufficient to enable this culture to develop into a large, sedentary society. Household agents were easily capa-
ble of producing a sufficient number of settlements to match the real landscape and, in several model runs (e.g., config-
uration 14), were able to produce enough to surpass this value multiple times over. This prompts the question of whether
the final number of settlements on the landscape may have been curtailed in some way. As shown by MoundSim Popu-
lation, internal behavioural factors—such as the desire to migrate larger distances—could certainly have prevented the
establishment of settlement mounds. The highly integrated nature and close spacing of the Casarabe Culture’s mounds
[17] clearly highlights the society’s emphasis on internal cooperation, but this does not imply that new settlements in close
proximity to existing ones would be tolerated, nor does it rule out the possibility of inter-settlement conflict. The moat and
rampart features identified around some of the Casarabe Culture’s mounds [18] indicate that, at the very least, defensive
structures were necessary to deter conflict.

It is also important not to overlook the potential impacts of external forcing factors. While beneficial for resource
exchange, the Casarabe Culture’s integrated canal-causeway network [17] would have simultaneously made them more
susceptible to epidemic-related depopulation events than other, more dispersed pre-Columbian communities [111,112].
Additionally, as the development of this culture spans the medieval climate anomaly [113,114], it is quite conceivable that
climate perturbations either directly or indirectly influenced demographic trends [115,116]. The potential impacts of such
drivers have not yet been incorporated into our agent-based model, and is something we plan to address in future work.

Numbers from nowhere: A note on model limitations

The problems associated with generating past population estimates are well-known and documented [91,92,117,118]. As
with all such attempts [4], estimating the Casarabe Culture’s population required making numerous assumptions about
their behaviour and activities. Some of these assumptions are reasonable even with the limited availability of empirical
evidence; for example, the rarity of stone tools [47] and lack of domesticated animals in lowland South America [119,120]
makes it safe to assume any earth mobilised by the Casarabe Culture was excavated by wooden digging stick and trans-
ported by hand. We can also reasonably estimate the efficiency of these activities because their work rate is very likely

to fall within the existing range of values collected from experimental archaeology studies [49]. In other cases, however,
we are forced to make assumptions for which no supporting evidence is available. For example, implicit within MoundSim
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Population is the assumption that the Casarabe Culture’s growth and spread was driven by demographic expansion. The
1000-year occupation window employed within this study is based upon the radiocarbon dates obtained from just three
mounds [23—-25] and the regional population size prior to this, between 2000 BCE and 400 CE, is even less certain given
much of the region remains unexplored archaeologically [19,109]. A new range of possibilities opens up depending upon
the population size during this interim period. The presence of numerous villages would imply the practice of mound build-
ing may have spread through cultural diffusion rather than demographic expansion. Alternatively, the absence of prior set-
tlements and the rapid establishment of the Casarabe Culture would point towards them having migrated from elsewhere.

We raise this example to emphasise that the population estimates presented here should be treated as just an initial
step to determining the true size of the Casarabe Culture. Much remains to be learned about how this culture operated in
terms of practice and behaviour, which could further constrain our models. Unknown factors, such as the initial population
size, can substantially influence the resulting trends in population growth, and further empirical research should be under-
taken to fill these gaps. For example, it is important to identify how much of each mound was occupied at any one time,
how densely packed the people were on these structures, and whether the existing window of mound occupation is truly
representative of earthworks in the wider area [23—25]. Moreover, our agent-based model does not yet attempt to recreate
the four-stage mound settlement hierarchy identified from recent LIDAR scans [18], additional evidence that may help to
determine how the Casarabe Culture spread over time. Nonetheless, despite these acknowledged limitations and cave-
ats, our multifaceted approach has produced the first ever set of plausible, supported population estimates for this culture.
We have explicitly defined and quantified the assumptions associated with our methods throughout this article to ensure
transparency, and we recommend that any future studies estimating pre-Columbian population sizes are similarly upfront
with their inherent assumptions and limitations.

Conclusions

Our multifaceted modelling approach has enabled us to tentatively constrain the population of the Casarabe Culture to
between 10,000 and 100,000 people within a 5020 km? area of Amazonian Bolivia. This reflects a substantial improve-
ment upon the existing range of regional estimates (Table 1) that span four orders of magnitude (<1000 to >100,000
people) for our study area [37,40]. Representing a density of between 2 and 20 people km, our population estimates are
similar in magnitude to the claims made for other complex pre-Columbian Amazonian earthmoving cultures, such as those
in the Upper Xingu [11] and the Marajoara culture at the Amazon’s mouth [12,102]. The latter comparison is especially
noteworthy given that the Marajoara are similarly known for constructing large mound earthworks within a forest-savanna
mosaic environment [12], though their subsistence strategy, focusing on aquatic resources, stands in contrast to the
maize monoculture practiced by the Casarabe Culture in the open savannas [20,102]. However, while the pre-Columbian
population density of the southeastern LM was significantly larger than it is today (<1 person km?) [14], the Casarabe
Culture remained an order of magnitude smaller than major pre-colonial tropical forest polities beyond Amazonia, such as
the Classic Maya and Greater Angkor [105,106]. In fact, at the lower end of our estimated population range, each of the
119 mounds within our study area would have, on average, been inhabited by fewer than 100 people. This population size
is smaller than that of some indigenous villages present on the modern landscape [73], corroborating previous claims that
this culture might have practiced a form of low-density agrarian urbanism [18,121].

We reiterate that the population estimates presented within this article represent an initial exploratory step to deter-
mining the true population size of the Casarabe Culture. Producing these estimates involved making myriad assumptions
about the Casarabe Culture’s behaviour and agricultural practices. Given that only two mounds have been excavated in
any detail [23,47,122] and just two palaeoecological records are currently available for the region [20,21], the models pre-
sented here will greatly benefit from additional empirical research as it becomes available. It is also important to empha-
sise that these estimates solely pertain to the confines of our study area (Fig 1). Scholars have highlighted the challenges
of applying population estimates calculated for specific regions to broader areas [91,92,123], and it would be particularly
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inappropriate to extrapolate estimates calculated for unique regions, like the one inhabited by the Casarabe Culture, to
other parts of the Amazon basin. The seasonally-flooded forest-savanna mosaic vegetation and younger, fertile sediments
characteristic of this location significantly influence the demographic trajectory of the populations inhabiting it [19,109,110],
but these features are highly atypical of Amazonia as a whole. Nonetheless, we believe that future studies aiming to
estimate pre-Columbian population sizes would greatly benefit from adopting a similar kind of transparent, multifaceted
approach to the one employed within this article.
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