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Abstract 

Propolis, a resinous compound produced by bees, possesses diverse medicinal 

properties and has gained significant attention for its potential in cancer therapy. 

This study investigated the therapeutic significance of propolis-derived compounds 

targeting the kinesin-like protein KIFC1, a motor protein overexpressed in various 

cancers, using a multistep computational methodology. Therefore, it is essential to 

utilize different in silico methods to predict their therapeutic potential. A 3D library 

of propolis-derived compounds sourced from previously published literature was 

compiled and screened for physicochemical properties, drug-likeness, and pharma-

cokinetic predictions using the SwissADME and BOILED-Egg permeation predic-

tive model. Pharmacokinetic computations were used to filter out compounds that 

lacked drug-likeness attributes. KIFC1 3D homology model was selected from the 

AlphaFold database, its stereochemical properties were assessed and validated. 

Virtual screening was performed to identify the high-binding affinity-based top-ranked 

compounds. Furthermore, the active residues present in the druggable cavities were 

identified using the Cavity Blind (CB) docking tool to investigate grid-box-based 

residue-specific molecular docking and simulation analysis. We found five common 

propolis-derived compounds following the druglikeness rule, and having HBA (high 

binding affinity) for the KIFC1 protein, were subjected to CB docking to identify 

druggable binding pockets (recognition of consensus residues) on KIFC1 as well as 

residue-specific molecular docking and simulation. Grid-box-based docking experi-

ments for exploring the molecular interactions of the five compounds above validated 

the inhibitory effects of kaempferide (∆G = −7.35 kcal/mol and Ki = 4.12 μM), luteolin 

(∆G = −6.74 kcal/mol and Ki = 11.48 μM), Izalpinin (∆G = −6.33 kcal/mol and Ki = 22.9 

μM), 4’,5,7-Trihydroxy-3,6-dimethoxyflavone (∆G = −6.14 kcal/mol and Ki = 31.71 

μM), and 6-methoxykaempferol (∆G = −6.55 kcal/mol and Ki = 15.81 μM). Molecular 
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dynamics simulation analysis at 100 nanoseconds examined the binding modes of 

five screened compounds and predicted molecular interactions with KIFC1 protein 

residues. Two propolis-derived compounds, 4’,5,7-trihydroxy-3,6-dimethoxyflavone 

and 6-methoxy kaempferol, showed significant interactions with KIFC1 residues and 

exhibited stable binding pattern. MD simulations analysis showed minor variation in 

root-mean-square deviation and fluctuation, confirming their equilibrium with KIFC1 

protein. The study enhances understanding of propolis compounds’ inhibitory effects 

on KIFC1 protein, providing insights for potential treatment approaches and requiring 

further experimental (in vivo and in vitro) as well as clinical validation.

Introduction

The chemical substances obtained from bees, such as honey, royal jelly, and propo-
lis, have innate characteristics that have been involved in the management of count-
less diseases for years[1]. Propolis is a resinous substance formed by honey bees 
and has been used in traditional medicine for its antibacterial, antiviral, antifungal, 
and antiparasitic characteristics. Notably, its antioxidant and antiproliferative proper-
ties offer its role in anticancer therapy[2–6]. Honey bees produce propolis by collect-
ing resins, saps, and other materials from plants and combining them with beeswax 
and other proteins/enzymes[7]. The chemical constituents of propolis differ by plant 
species and are influenced by regional and environmental features[8–10]. More 
than 300 compounds have been identified, including aromatic acids, aliphatic com-
pounds, flavonoids, terpenes, sugars, esters, macro as well as micronutrients, and 
vitamins[3,8,9]. Polyphenols as well as terpenoids are the most active compounds 
in propolis [10] and have been shown to modulate the cell cycle, arrest cancer cell 
proliferation, and inhibit angiogenesis[11]. Certain types of propolis, such as Chinese 
and Brazilian red propolis, have exhibited efficacy against various cancer cell lines by 
inhibiting the pathways linked to inflammation and cell proliferation[11–14]. Globally, 
the burden of cancer incidence and mortality is rapidly growing. According to a World 
Health Organization (WHO) report in 2019, cancer was the most important or second 
leading cause of death in 112 of 183 nations before the age of 70. In 2020, 19.3 mil-
lion new cases were diagnosed worldwide and 10 million cancer-related deaths were 
reported, with 50% of the new cases and 58.3% of cancer-related deaths occurring 
in Asia[15]. By 2040, 28 million new cases of cancer are expected per annum if the 
current trends continue.

Recent studies have reported prominent KIFC1 expression in various cancers, 
including breast, prostate, ovarian, and non-small cell lung cancers, making it a 
promising target for cancer therapy owing to its redundancy in normal somatic 
cells[16,17]. Data indicate that KIFC1 expression correlates with higher Gleason 
scores, increased metastatic potential, and other markers of cancer progression, 
emphasizing its potential as a therapeutic target[18–21]. KIFC1 belongs to the 
kinesin-14 and is a C-terminal kinesin characterized by minus-end motility along 
microtubules[22,23]. It plays a distinctive role in mitosis, meiosis, vesicular and 
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organelle transport, spermiogenesis, and oocyte development[24,25]. Structurally, KIFC1 consists of three domains: a 
motor domain, stalk domain, and a microtubule-binding domain, similar to other motor proteins[26]. The motor contains 
the ATP hydrolysis site and microtubule interaction region, generating the energy required for spindle elongation, stability, 
and organization[27,28]. A fundamental function of KIFC1 is its role in mitotic spindle assembly and chromosomal stability, 
which are critical for cell division and cell survival. During mitosis, proper spindle formation ensures accurate chromo-
somal segregation, thereby preventing aneuploidy and genomic instability. In cancer cells with supernumerary centro-
somes, KIFC1 prevents multipolar mitotic spindle formation, which otherwise leads to mitotic catastrophe and cell death 
[25,29]. This is achieved by crosslinking and sliding microtubules, facilitating centrosome clustering, and stabilizing bipolar 
spindle formation [25,30]. Additionally, KIFC1 interacts with key mitotic regulators, such as cyclins (Cyclin B1, Cyclin D, 
and Cyclin A), spindle assembly checkpoint proteins (MAD1-MAD2), and Aurora B kinase, ensuring successful mitotic pro-
gression and promoting uncontrolled proliferation in cancer cells [25,30–32]. The ability of KIFC1 to rescue chromosomal 
instability in highly proliferative tumor cells further supports its relevance as a cancer therapeutic target [23,25,30,33]. 
Several small-molecule inhibitors that interact with KIFC1 and disrupt its function have been identified, effectively revers-
ing the centrosome clustering phenotype in cancer cells [34,35]. However, obtaining structural data to precisely map the 
binding sites of KIFC1 inhibitors remains a challenge. Further research is required to refine these inhibitors and improve 
their specificity and drug-like properties to enhance their therapeutic potential.

Virtual screening and molecular dynamics simulations have identified a few promising small-molecule inhibitors with 
strong binding interactions with KIFC1[36]. The KIFC1 inhibitors structure and binding data across various small-molecule 
inhibitors remain limited. Therefore, this study used a comprehensive docking analysis of propolis-derived small molecules 
or compounds to computationally target the inhibitory activity of KIFC1 protein expression. This computational analysis 
revealed the binding affinities of propolis-derived compounds at three possible binding sites in the motor domain. Docking 
analysis was also helpful for identifying potential KIFC1 inhibitors and contributing to the drug design process for KIFC1 
inhibitors. Therefore, this study may be fundamental for the development of novel anticancer compounds from propolis- 
derived small molecules with increased potency, improved pharmacological profiles, and low toxicity.

Methodology

Fig 1 shows the step-wise scheme of the present work methodology.

Retrieval of the gene and protein sequence of KIFC1

The gene for the kinesin-like protein (KIFC1) encodes a minus end-directed motor protein was retrieved from the UniProt 
database (https://www.uniprot.org/)[37,38]. The authenticity of the gene sequence was confirmed based on annotation 
status, information gathered from literature and curator-reviewed computational analysis [38]. Gene identifiers and NCBI 
accession numbers were cross-referenced to validate the obtained gene information (https://www.ncbi.nlm.nih.gov/
gene/3833) [39].

The FASTA format of selected gene was obtained from the NCBI database and the Basic Local Alignment Search Tool 
(BLAST) (https://blast.ncbi.nlm.nih.gov/Blast.cgi) compared the human protein sequence (query sequence) against target 
sequences in the database by selecting research collaboratory for structural bioinformatics (RCSB) protein data bank 
(PDB) (https://www.rcsb.org/search/advanced/sequence) as a set parameter to conduct a protein BLAST search of the 
relevant collection[40,41].

3D homology model of the KIFC1 protein and structural validation

The AlphaFold Protein Structure Database, which is accessible via UniProt database (https://alphafold.ebi.ac.uk), 
was employed to select the optimal 3D protein homology model for comprehensive structural coverage of amino 
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acid residues in the canonical protein-coding sequence (canonical) of the KIFC1 gene [42,43]. The purpose of 
employing this strategy was due to the unavailability of complete 3D protein model in PDB. If the sequence query 
coverage was not complete, a 3D model of target protein with complete coverage (amino acid length 673) from the 
canonical sequence was chosen as the preferable option. AlphaFold is recognized as the leading protein structure 
prediction method in the Critical Assessment of Techniques for Protein Structure Prediction (CASP14) by a signif-
icant margin, generating highly accurate predictions. This database is an artificial intelligence (AI)-based system 
established by Google DeepMind and EMBL’s European Bioinformatics Institute (EMBL-EBI), which uses the amino 
acid sequence of protein to predict the 3D structure. This tool regularly achieves accuracy competitive with experi-
ments [44].

After selecting 3D protein model, UCSF Chimera https://www.cgl.ucsf.edu/chimera/ was used to investigate the molec-
ular characteristics and visualize the resulting protein structure [45] while the energy of KIFC1 PDB structure was min-
imized through Swiss PDB Viewer tool (https://spdbv.unil.ch/) [46]. The model built was validated through PROCHECK 
https://www.ebi.ac.uk/thornton-srv/software/PROCHECK/ using an ERRAT quality factor, Ramachandran plot, Prosa-web 
(https://prosa.services.came.sbg.ac.at/prosa.php), and the residual properties of the constructed model [47]. The dihedral 
angles φ against ψ of the possible conformations of amino acids in the protein structure were also studied in the Ram-
achandran plot [48,49]. The structure validation server – SAVES (https://saves.mbi.ucla.edu/) was used to determine the 
probable structural errors and z scores of the selected 3D protein model.

Propolis derivatives: three-dimensional compound library compilation

The propolis-derived small molecules were sourced from previously published literature and their three-dimensional con-
figurations were acquired from the PubChem database (https://pubchem.ncbi.nlm.nih.gov) [50] in the Structure Data For-
mat (SDF) format. The SDF-2D format of all compounds were converted into PDB-3D format using Open Babel software 

Fig 1.  Stepwise schematic workflow of the present study.

https://doi.org/10.1371/journal.pone.0324678.g001
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https://openbabel.org/index.html and visualized using the BIOVIA Discovery Studio Visualizer (https://www.3ds.com/prod-
ucts/biovia/discovery-studio)[51].

Assessment of propolis derivatives: physicochemical properties, pharmacokinetics and drug likeness

The propolis derivatives were analyzed to predict their pharmaceutically important descriptors (ADME) and physiochem-
ical attributes. The physicochemical properties of compounds include molecular weight (MW), number of heavy atoms 
(HA), number of aromatic heavy atoms (ARO HA), fraction of carbons in the sp³ hybridization (FCsp³), rotatable bond 
(RB), hydrogen bond acceptor (HBA), hydrogen bond donor (HBD), molar refractivity (MR), topological polar surface 
area (TPSA), pharmacokinetics properties including GI absorption, BBB permeation, P-gp substrate status, cytochrome- 
P enzyme inhibition, and skin permeation (log Kp), for predicting drug absorption and distribution within the body as well 
as drug likeness (based on Lipinski’s rule of five), were predicted using SwissADME (http://www.swissadme.ch/) [52]. 
The physiochemical properties such as lipophilicity (logP), skin permeation and bioavailability score for drug-likeness 
were presented numerically, while the remaining pharmacokinetic and drug-likeness parameters were shown categor-
ically. The solubility parameters of propolis derivatives such as, logP and logS values were predicted using pkCSM 
(https://biosig.lab.uq.edu.au/pkcsm/) [53]. A boiled egg prediction model was constructed using the topological surface 
area (TPSA) and the lipophilicity (logP) of propolis compounds to analyse gastrointestinal tract absorption and blood-
brain barrier penetration [52].

Integrated virtual screening of propolis-derived small compounds: exploring druggable binding pockets with a 
residue-specific grid-box-based molecular docking approach

The KIFC1 protein structure used in this study was obtained from the AlphaFold protein structure database [42–44]. 
However, detailed characterization of the active site residues and binding pockets is not readily available because of the 
inherent limitations of the predicted 3D structural model and the absence of a fully resolved structure in the PDB repos-
itory. Given this constraint, we employed a blind docking approach, a widely accepted computational strategy in drug 
discovery, particularly when the exact binding site is unknown or not well-defined [54–56]. This method allows for unbi-
ased identification of potential binding sites and facilitates the screening of promising inhibitors for further experimental 
validation [55]. Moreover, our primary objective in utilizing this strategy was to enhance the efficiency of propolis-derived 
small molecule screening by rapidly identifying potential candidates (by narrowing the pool of compounds) for subsequent 
validation studies.

Virtual screening of propolis-derived small molecules were conducted through iGEMDOCK (http://gemdock.life.nctu.
edu.tw/dock/igemdock.php) to narrow the number of candidate compounds for further computational validation [54]. 
Blind docking approach was used in this virtual screening because the active site information of a target protein is not 
available. This method of computational analysis aids in the identification of potential binding regions on protein and 
candidate compounds. The identified top-ranked compounds were subjected to hit identification testing using the iGEM-
DOCK graphic automatic drug design system to determine the ligand-protein associations based on the fitness values. 
iGEMDOCK is a graphical-integration platform for virtual screening that employs k-means and hierarchical clustering 
techniques for analyzing compound characteristics and protein-ligand interactions. It provides novel post analysis tools, 
such as atomic composition (AC), which assesses compound similarity by comparing it to the amino acid present in a 
protein sequence [54].

Among the forty screened compounds, the five with the highest binding energies were selected for further optimiza-
tions using cavity detection-guided blind docking https://cadd.labshare.cn/cb-dock2/ approach [55,56]. The cavity binding 
docking (CB dock) method generated consensus interaction cavities within the 3D model of KIFC1 protein after docking 
it with the selected top-ranked screened drug-like compounds of propolis. An automated protein-ligand docking approach 
was used to conduct CB-guided blind docking to examine binding cavities and sites within the homology model. CB Dock 
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utilizes “CurPocket” approach to compare and rank cavities. This method applies protein–ligand binding site prediction 
techniques, using the COACH benchmark set as reference [57]. This utilizes a novel method of cavity detection based 
on their curvature. Moreover, it determines the center and dimensions of the docking box of a potential cavity as a crucial 
parameter of the process. This approach was meticulously optimized, achieving a success rate of 70% in the top-ranking 
poses, with a root mean square deviation (RMSD) within 2 Å from the X-ray pose for a test set of structures, not specifi-
cally for the presently investigated protein [56].

We further scrutinized the cavities with the highest grades reflecting the consensus residues generated after interaction 
of each propolis compound with the KIFC1 protein model for molecular visualization and interpretation of the therapeutic 
intervention using a 2D ligand plot. The consensus-interacting residues identified through CB Dock were documented 
and utilized for grid-box-based AutoDock Vina (version 4.2) https://autodock.scripps.edu/download-autodock4/ analy-
sis of protein‒propolis interactions [58,59]. The polar hydrogen was incorporated, and partial charges were assigned to 
the standard residue using the Gasteiger partial charge method, which assumes that all hydrogen atoms are explicitly 
represented. The most favorable binding interactions were estimated based on the lowest predicted binding free energy 
obtained from the best molecular docking simulation pose [59]. The inhibition constant (Ki) was derived from the binding 
energy (ΔG) using the formula Ki = exp(ΔG/RT), where R is the universal gas constant (1.985 × 10 −3 kcal mol −1 K −1) and T 
is the temperature (298.15 K) [60].

Molecular dynamics simulation

The MD simulations were performed using the Desmond simulation package to further optimize the top five propolis 
compounds as a promising lead compound [61–63] in the physiological environment. The system was constructed 
using the TIP3P (Intermolecular Interaction Potential 3 Points Transferable) tool and the ligands and the protein 
were prepared using an orthorhombic box with the OPLS_2005 force field as the solvent model [64,65]. The simu-
lation was performed at 300 K (temperature) and 1 atm (pressure), and the model was neutralized by adding 0.15 
M sodium chloride. The protein-ligand complex trajectories were saved every 100 picoseconds (ps) and visualized 
using the simulation interaction diagram tool in the Desmond package (Schrödinger Release 2021−2: Desmond 
Molecular Dynamics System DESR. New York). The stability dynamics of the protein‒ligand complex were deter-
mined by measuring the root mean square deviation (RMSD) and root mean square fluctuation (RMSF) over 100 ns 
[66]. In molecular modeling and structural analysis, RMSD is a measure of the average atom displacement between 
two superimposed molecular structures, to evaluate conformational differences [63,66]. Principal Component Anal-
ysis (PCA) was utilized to examine large-scale conformational dynamics in molecular dynamics (MD) simulations 
by reducing the dimensionality of atomic displacement data and extracting dominant motion patterns [67,68]. This 
statistical approach effectively differentiates functionally significant biomolecular motions from random fluctuations, 
providing a comprehensive visualization of the conformational landscape. By identifying key structural transitions, 
PCA facilitates comparative assessments between molecular states, offering insights into protein flexibility, allosteric 
modulation, and ligand-induced conformational changes. The analysis was conducted using the Bio3D package in R 
[69], where a dedicated script written in R was used to compute the principal components and evaluate the essential 
motions of the system [67,68].

MM-GBSA calculations

The Molecular Mechanics Generalized Born Surface Area (MM-GBSA) Gibbs free energy change (ΔGbind) calculations, 
along with molecular docking and MD simulations, were collectively employed to identify the most stable KIFC1 inhibitors 
(propolis-derived small molecules). This approach addressed the limitations of overestimated binding affinities in docking 
studies and the lack of quantitative scoring in MD simulations [70]. The MM-GBSA method was utilized to compute the 
binding free energy (ΔGbind). The ‘MM-GBSA’ module in Maestro 12.3 was used for these calculation, employing the 
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OPLS-2005 force field and the VSGB 2.0 energy model as the solvent model. All other settings were applied using default 
parameters. The resulting binding free energies were measured in kcal/mol. The MM-GBSA binding free energies were 
determined using the following formula:

	 ∆Gbind = Gcomplex –Greceptor –Gligand	

Including all interactions between the ligand and protein, the free energy of the protein-ligand complex is represented 
by the term G

complex
. It considers the contributions of bonded (covalent) and nonbonded interactions, including solvation 

effects, hydrogen bonding, van der Waals forces, and electrostatic interactions. G
receptor

 is the free energy of an unbound 
protein receptor that has been isolated. This signifies the energy linked to the structure of the protein and the interactions 
that occur within the protein, instead of with the ligand. The unbound free energy of the isolated ligand is known as the 
G

ligand
, which refers to the ligand structure and its internal interactions, excluding those with the protein.

Results

KIFC1 gene, protein selection and its 3D structure-template search

The details of the KIFC1 gene and protein were obtained from NCBI and UniProt using gene ID 3833 and accession num-
ber Q9BW19. The reference sequence NC_000006.12 was utilized to select an appropriate protein for molecular docking. 
The KIFC1 gene has four transcripts with a total of 2694 base pairs, situated at 6p21.32 with 13 exons. Notably, the gene 
results were similar to HSET and KNSL2 genes. The molecular weight of KIFC1 protein is 73,748 Da and is made of 673 
amino acids with Leucine being the most abundant amino acid. The protein has net positive charge and half-life in mam-
malian reticulocytes is 30 hours.

The BLAST results of the selected KIFC1 protein sequence identified several sequences that matched the 3D struc-
tures in the PDB database (S1 Table). The crystal structure of PDB ID 5WDH_A was the best match with maximum score 
of 731, a sequence length of 376 residues, 53% query coverage, and 99.72% identity. However, the preference was given 
to selecting a PDB model that provided full coverage and complete residue similarity with the chosen protein sequence. 
Therefore, the AlphaFold database was preferred to obtain a protein sequence specific, complete 3D model. Currently, 
this database is preferred to generate a 3D structure with complete identical sequence information for the protein target. 
Subsequently, the structural identifier ‘AF-Q9BW19-F1’ of the desired protein encoded by the KIFC1 gene was used to 
obtain its 3D model from the AlphaFold database. Before further use, the structure was meticulously cleaned to remove 
any heteroatoms, ions, or other bound molecules. This preparation was essential to enhance the interactions and general-
izability of the ensuing outcomes.

KIFC1 3D structure validation and refinement

The 3D structure of KIFC1 protein retrieved from AlphaFold database was downloaded in the PDB format and assessed 
for its stereochemical quality and structural accuracy. The PROCHECK analysis revealed in the Ramachandran plot 
that 91.4% of the residues were in the core region, 6.7% were in the allowed zone (yellow color), and 1.2% were in the 
generously allowed zone (red color). The ERRAT quality factor was 92.5%. The bond/length angle was 10.2, with the 
highest deviation being 18. There was no reported bad contact score according to the 3D structural residue attributes 
(S1 Fig.). The 3D structural G-factor analysis by SAVES showed a total value of −0.01, a dihedral value of −0.12, and 
a covalent value of 0.15. In addition, the planar group analysis revealed that 6.3% of the residues were highlighted and 
93.7% of the residues were within limits. The energy of the KIFC1 protein structure was further refined by minimizing 
it to −37642.84 kJ/mol. This process resulted in 937.473 bonds, 3229.849 angles, and 4133.502 torsion events. Addi-
tionally, the electrostatic energy was −28286.47. The energy minimization of the homology model increased the overall 
quality factor to 94.80%.
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In silico prediction of potential pharmacokinetic and drug-like properties of propolis compounds

The canonical SMILES and structures of propolis compounds were deposited in PDB format in the library for physiochemi-
cal screening (S2 Table). The molecular weight, number of heavy and aromatic heavy atoms, fraction of carbons in the sp³ 
hybridization, rotatable bonds, hydrogen bond acceptor and bond donor, molar refractivity and topological polar surface 
area of compounds were screened and compounds with PUBCHEM IDs 44257510, 5472440, 637125, 336327, 92503, 
72307, and 6549 were identified within the desirable range out of forty compounds (Table 1). The lipophilicity parameters 
such as XLogP3, WLogP and MLogP of thirty propolis compounds were within the desirable limits showing balance of 
hydrophilicity and lipophilicity suggesting that the compounds likely have favorable ADMET properties (Table 2). The solu-
bility (Log S) parameters such as Estimated Solubility (ESOL), solubility methods developed by Ali and SILICOS-IT [Log S 
(Ali) and Log S (SILICOS-IT)] were used to quantify water solubility of propolis compounds and classified them into insolu-
ble, poorly, moderately, soluble, very or highly water soluble. Nine propolis compounds were predicted to likely have desir-
able water solubility by all three solubility parameters suggesting good absorption, bioavailability, and overall efficacy as 
drug candidates (Table 3). The skin permeability, Kp, values predicted for all the propolis compounds were in the range of 
−1.9 to −6.9 cm/s indicating low skin permeability (Table 4). This study found that eleven out of forty propolis compounds 
can act as drug transporters for P-glycoprotein substrate (Table 4) which could potentially result in drug-drug interactions, 
accumulation of drugs or their by-products and toxic or other undesired effects due to reduced clearance. The inhibition 
of CYP enzymes is a common factor in drug interactions. However, CYP3A4 inhibitors have the potential to enhance the 
effectiveness of specific chemotherapy drugs by increasing their plasma concentrations and bioavailability. As indicated 
in Table 4, all propolis compounds exhibited CYP3A4 inhibitory effects except for 11 compounds. Thirteen out of the forty 
propolis compounds violated Lipinski’s rule of five for molecular weight. Overall, twenty-two compounds adhered to all five 
drug-likeness criteria, with a bioavailability score exceeding 0.55, signifying their drug-like molecular nature (Table 5). In 
Fig 2, the prediction of intestinal absorption and blood-brain barrier penetration is given in the form of BOILED egg model. 
The yolk (yellow part) represents the compounds most likely to penetrate the BBB and the white region shows a greater 
propensity for HIA penetration while P-gp-positive and P-gp-negative molecules are denoted by blue and red dots. Of the 
forty compounds, eighteen compounds resided in the blood-brain barrier penetration area and thirty-one compounds were 
located in intestinal absorption area Fig 2. Eleven propolis compounds found to be P-gp positive (blue dots) were elimi-
nated from the brain penetration region which excluded them from further optimization. The drug-likeness criteria (CFDLR) 
and higher binding affinity with the KIFC1 protein (HBA) led to select five promising compounds out of forty: 6-methoxy 
kaempferol, 4’,5,7-Trihydroxy-3,6-dimethoxyflavone, Izalpinin, Kaempferide, and luteolin (Fig 3). Only Izalpinin was pre-
dicted to penetrate the blood-brain barrier and be absorbed in the gastrointestinal tract due to its lower TPSA value. All 
five compounds showed similar bioavailability score (0.55) and were CYPIA2, CYP2D6 and CYP3A4 inhibitors in addition 
to 4’,5,7-Trihydroxy-3,6-dimethoxyflavone that acted as CYP2C9 inhibitor enzyme suggesting as suitable drug candidate 
for KIFC1 inhibition (Table 4).

iGEMDOCK-based virtual screening of propolis-derived compounds and identification of druggable cavities in 
the KIFC1 protein: Insights into key molecular interactions via the cavity-binding docking approach

All the propolis compounds examined in this study exhibited significant binding affinities and interactions with the KIFC1 
protein (S3 Table). The top ten compounds were selected based on their lowest binding affinity scores. These top ten 
compounds were then further analyzed from a pool of twenty-two compounds that met all five drug-likeness rules and 
had a bioavailability score of 0.55. Out of these, the five propolis compounds with the highest binding affinities to KIFC1, 
namely Luteolin (−92.6849 kcal/mol), Kaempferide (−92.4845 kcal/mol), Izalpinin (−98.6709 kcal/mol), 4’,5,7-Trihydroxy- 
3,6-dimethoxyflavone (−91.5905 kcal/mol), and 6-Methoxykaempferol (−91.6742 kcal/mol) met all the drug-likeness crite-
ria and had a bioavailability score of 0.55, were chosen for docking studies (Fig 3).
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Table 1.  The compounds’ identifiers and physicochemical properties of propolis compounds. 

S. No. PubChem ID MW (g/mol) HA ARO HA FCsp3 RB HBA HBD MR TPSA (Å²)

1 44257510 272.3 20 12 0.25 2 4 2 75.62 58.92

2 21721815 324.37 24 12 0.25 4 4 1 92.77 55.76

3 11455669 552.7 40 6 0.61 7 7 3 153.79 121.13

4 11272353 518.68 38 6 0.55 7 5 1 150.95 80.67

5 11114020 518.68 38 6 0.55 7 5 1 150.95 80.67

6 10907594 534.68 39 6 0.48 7 6 3 156.5 111.9

7 10791588 502.68 37 6 0.55 6 4 0 149.79 60.44

8 9984117 518.68 38 6 0.55 7 5 1 150.95 80.67

9 5472440 300.39 22 6 0.32 6 3 2 92.57 57.53

10 5471610 502.68 37 6 0.48 7 4 1 152.45 71.44

11 5377945 316.26 23 16 0.06 2 7 4 82.5 120.36

12 5352032 330.29 24 16 0.12 3 7 3 86.97 109.36

13 5318691 284.26 21 16 0.06 2 5 2 78.46 79.9

14 5281954 268.26 20 16 0.06 2 4 1 76.44 59.67

15 5281787 284.31 21 12 0.12 6 4 2 80.77 66.76

16 5281666 300.26 22 16 0.06 2 6 3 80.48 100.13

17 5281628 300.26 22 16 0.06 2 6 3 80.48 100.13

18 5281616 270.24 20 16 0 1 5 3 73.99 90.9

19 5280681 316.26 23 16 0.06 2 7 4 82.5 120.36

20 5280445 286.24 21 16 0 1 6 4 76.01 111.13

21 5280442 284.26 21 16 0.06 2 5 2 78.46 79.9

22 5280373 284.26 21 16 0.06 2 5 2 78.46 79.9

23 5280343 302.24 22 16 0 1 7 5 78.03 131.36

24 3938139 244.24 18 12 0.07 3 4 2 66.85 66.76

25 3873459 246.26 18 10 0.21 3 4 1 69.75 59.67

26 689043 180.16 13 6 0 2 4 3 47.16 77.76

27 638278 256.25 19 12 0 3 4 3 72.32 77.76

28 637542 164.16 12 16 0 2 3 2 45.13 57.53

29 637541 164.16 12 6 0 2 3 2 45.13 57.53

30 637540 164.16 12 6 0 2 3 2 45.13 57.53

31 637125 302.45 22 0 0.65 4 2 1 93.86 37.3

32 637105 502.68 37 6 0.48 8 4 1 151.88 71.44

33 444539 148.16 11 6 0 2 2 1 43.11 37.3

34 336327 270.28 20 12 0.25 1 4 1 73.17 47.92

35 259846 426.72 31 0 0.93 1 1 1 135.14 20.23

36 238782 256.25 19 12 0.13 1 4 2 69.55 66.76

37 92503 272.3 20 12 0.25 2 4 2 75.62 58.92

38 72307 354.35 26 12 0.4 2 6 0 90 55.38

39 6549 154.25 11 0 0.6 4 1 1 50.44 20.23

40 370 170.12 12 6 0 1 5 4 39.47 97.99

Abbreviations with reference range: MW: molecular weight (≤ 500 gm-1), HA: number of heavy atoms, ARO HA: number of aromatic heavy atoms, 
FCsp³: fraction of carbons in the sp³ hybridization (≥ 0.25), RB: rotatable bond (≤ 10), HBA: hydrogen bond acceptor (≤ 10), HBD: hydrogen bond donor 
(≤ 5), MR: molar refractivity (≤ 130), TPSA: topological polar surface area (≤ 150).

https://doi.org/10.1371/journal.pone.0324678.t001

https://doi.org/10.1371/journal.pone.0324678.t001
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Table 2.  The LogP values for lipophilicity of propolis compounds predicted using different computation methods. 

S. No. PubChem ID Log Po/w
(iLOGP)

Log Po/w (XLOGP3) Log Po/w
(WLOGP)

Log Po/w
(MLOGP)

Log Po/w
(SILICOS-IT)

Consensus Log Po/w

1 44257510 2.26 2.94 2.83 1.87 2.89 2.56

2 21721815 3.58 4.7 4.7 2.38 4.24 3.81

3 11455669 4.08 4.42 4.73 1.77 6.05 4.21

4 11272353 4.68 6.71 6.57 3.3 7.43 5.74

5 11114020 4.38 6.77 6.57 3.3 7.43 5.69

6 10907594 4 8.41 7.18 2.95 7.36 5.98

7 10791588 4.58 7.69 7.6 4.13 8.29 6.46

8 9984117 4.6 6.71 6.57 3.3 7.43 5.72

9 5472440 3.06 5.37 4.4 3.75 4.76 4.27

10 5471610 4.16 9.12 7.76 4.06 8.28 6.68

11 5377945 2.1 1.87 2.29 −0.31 2.06 1.6

12 5352032 2.56 2.82 2.59 −0.07 2.59 2.1

13 5318691 2.68 2.58 2.88 0.77 3.03 2.39

14 5281954 2.88 3.85 3.17 1.33 3.52 2.95

15 5281787 2.66 4.15 2.79 2.62 3.26 3.09

16 5281666 2.43 2.22 2.59 0.22 2.55 2

17 5281628 2.27 2.99 2.59 0.22 2.55 2.12

18 5281616 2.08 2.25 2.58 0.52 2.52 1.99

19 5280681 2 2.71 2.29 −0.31 2.06 1.75

20 5280445 1.86 2.53 2.28 −0.03 2.03 1.73

21 5280442 2.56 3.35 2.88 0.77 3.03 2.52

22 5280373 2.55 2.99 2.88 0.77 3.03 2.44

23 5280343 1.63 1.54 1.99 −0.56 1.54 1.23

24 3938139 2.12 3.43 2.34 1.41 2.43 2.34

25 3873459 2.79 3.02 2.84 1.79 3.04 2.7

26 689043 0.97 1.15 1.09 0.7 0.75 0.93

27 638278 2.02 3.18 2.59 1.58 2.48 2.37

28 637542 0.95 1.46 1.38 1.28 1.22 1.26

29 637541 1.14 1.79 1.38 1.28 1.22 1.36

30 637540 1.09 2.03 1.38 1.28 1.22 1.4

31 637125 3.14 5.71 5.37 4.45 4.94 4.72

32 637105 4.87 8.28 7.92 4.06 8.28 6.68

33 444539 1.55 2.13 1.68 1.9 1.7 1.79

34 336327 2.53 2.77 2.69 1.87 1.87 2.52

35 259846 4.68 9.87 8.02 6.92 6.82 7.26

36 238782 2.11 2.88 2.48 1.27 2.55 2.26

37 92503 2.26 2.94 2.83 1.87 2.89 2.56

38 72307 3.46 2.68 2.57 1.98 3.25 2.79

39 6549 2.7 2.97 2.67 2.59 2.35 2.66

40 370 0.21 0.7 0.5 −0.16 −0.2 0.21

The reference ranges: XLogP3: (−2–5), WLogP: (−0.4 to 5.88), and MLogP: (≤ 4.15).

https://doi.org/10.1371/journal.pone.0324678.t002

https://doi.org/10.1371/journal.pone.0324678.t002
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Table 3.  The LogS values for solubility of propolis compounds predicted using different computation methods’. 

S. No. PubChem ID Log S (ESOL) Class Log S (Ali) Class Log S
(SILICOS-IT)

Class

1 44257510 −3.69 Soluble −3.84 Soluble −3.69 Moderately soluble

2 21721815 −4.92 Moderately soluble −5.6 Moderately soluble −5.55 Moderately soluble

3 11455669 −5.7 Moderately soluble −6.68 Poorly soluble −6.78 Poorly soluble

4 11272353 −6.94 Poorly soluble −8.21 Poorly soluble −7.75 Poorly soluble

5 11114020 −6.98 Poorly soluble −8.27 Poorly soluble −7.75 Poorly soluble

6 10907594 −8.11 Poorly soluble −10.63 Insoluble −6.96 Poorly soluble

7 10791588 −7.53 Poorly soluble −8.8 Poorly soluble −8.79 Poorly soluble

8 9984117 −6.94 Poorly soluble −8.21 Poorly soluble −7.75 Poorly soluble

9 5472440 −4.89 Moderately soluble −6.33 Poorly soluble −3.81 Soluble

10 5471610 −8.36 Poorly soluble −10.52 Insoluble −8.15 Poorly soluble

11 5377945 −3.36 Soluble −4.02 Moderately soluble −3.94 Soluble

12 5352032 −3.96 Soluble −4.77 Moderately soluble −4.63 Moderately soluble

13 5318691 −3.66 Soluble −3.91 Soluble −5.1 Moderately soluble

14 5281954 −4.39 Moderately soluble −4.8 Moderately soluble −5.68 Moderately soluble

15 5281787 −4.24 Moderately soluble −5.26 Moderately soluble −4.35 Moderately soluble

16 5281666 −3.51 Soluble −3.96 Soluble −4.52 Moderately soluble

17 5281628 −3.99 Soluble −4.76 Moderately soluble −4.52 Moderately soluble

18 5281616 −3.46 Soluble −3.79 Soluble −4.4 Moderately soluble

19 5280681 −3.89 Soluble −4.89 Moderately soluble −3.94 Soluble

20 5280445 −3.71 Soluble −4.51 Moderately soluble −3.82 Soluble

21 5280442 −4.14 Moderately soluble −4.71 Moderately soluble −5.1 Moderately soluble

22 5280373 −3.92 Soluble −4.33 Moderately soluble −5.1 Moderately soluble

23 5280343 −3.16 Soluble −3.91 Soluble −3.24 Soluble

24 3938139 −3.81 Soluble −4.51 Moderately soluble −3.85 Soluble

25 3873459 −3.48 Soluble −3.94 Soluble −4.05 Moderately soluble

26 689043 −1.89 Very soluble −2.38 Soluble −0.71 Soluble

27 638278 −3.7 Soluble −4.48 Moderately soluble −3.23 Soluble

28 637542 −2.02 Soluble −2.27 Soluble −1.28 Soluble

29 637541 −2.22 Soluble −2.62 Soluble −1.28 Soluble

30 637540 −2.37 Soluble −2.87 Soluble −1.28 Soluble

31 637125 −5.05 Moderately soluble −6.26 Poorly soluble −4.02 Moderately soluble

32 637105 −7.77 Poorly soluble −9.64 Poorly soluble −8.15 Poorly soluble

33 444539 −2.37 Soluble −2.54 Soluble −1.84 Soluble

34 336327 −3.64 Soluble −3.43 Soluble −4.31 Moderately soluble

35 259846 −8.64 Poorly soluble −10.22 Insoluble −6.74 Poorly soluble

36 238782 −3.64 Soluble −3.94 Soluble −4 Soluble

37 92503 −3.69 Soluble −3.84 Soluble −4.23 Moderately soluble

38 72307 −3.93 Soluble −3.5 Soluble −4.6 Moderately soluble

39 6549 −2.4 Soluble −3.06 Soluble −1.84 Soluble

40 370 −1.64 Very soluble −2.34 Soluble −0.04 Soluble

ESOL = Estimated Solubility, Log S (Ali) and Log S (SILICOS-IT)= solubility methods developed by Ali and SILICOS-IT, Reference values: insolu-
ble <−10 < poorly <−6 < moderately <−4 < soluble <−2 < very < 0 < highly

https://doi.org/10.1371/journal.pone.0324678.t003

https://doi.org/10.1371/journal.pone.0324678.t003
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Table 4.  The predicted intestinal absorption, brain permeation and interaction of propolis compounds with cytochromes P450 isoforms’. 

S. 
No.

Pub-
Chem ID

GI 
absorption

BBB per-
meability

P-gp 
substrate

CYP1A2 
inhibitor

CYP2C19 
inhibitor

CYP2C9 
inhibitor

CYP2D6 
inhibitor

CYP3A4 
inhibitor

Log Kp

(skin permeation) cm/s

1 44257510 high yes yes yes no No yes yes −5.87

2 21721815 high yes no yes yes Yes yes yes −4.94

3 11455669 low no yes no no No no yes −6.53

4 11272353 low no yes no no No no yes −4.7

5 11114020 low no yes no no No no yes −4.66

6 10907594 low no yes no no No no yes −3.59

7 10791588 low no yes no no No no yes −3.91

8 9984117 low no yes no no No no yes −4.7

9 5472440 high yes no no yes Yes no no −4.32

10 5471610 low no yes no no No no yes −2.89

11 5377945 high no no yes no No yes yes −6.9

12 5352032 high no no yes no Yes yes yes −6.31

13 5318691 high no no yes no No yes yes −6.2

14 5281954 high yes no yes yes Yes yes yes −5.2

15 5281787 high yes no yes no Yes no no −5.09

16 5281666 high no no yes no No yes yes −6.56

17 5281628 high no no yes no No yes yes −6.01

18 5281616 high no no yes no No yes yes −6.35

19 5280681 high no no yes no No yes yes −6.31

20 5280445 high no no yes no No yes yes −6.25

21 5280442 high no no yes no Yes yes yes −5.66

22 5280373 high no no yes no No yes yes −5.91

23 5280343 high no no yes no No yes yes −7.05

24 3938139 high yes no yes no Yes no yes −5.35

25 3873459 high yes no yes yes No no no −5.66

26 689043 high no no no no No no no −6.58

27 638278 high yes no yes no Yes no yes −5.61

28 637542 high yes no no no No no no −6.26

29 637541 high yes no no no No no no −6.03

30 637540 high yes no no no No no no −5.86

31 637125 high yes no no yes Yes no yes −4.09

32 637105 low no yes no no No no yes −3.49

33 444539 high yes no no no No no no −5.69

34 336327 high yes yes yes yes No yes yes −5.98

35 259846 low no no no no No no no −1.9

36 238782 high yes no yes yes No no no −5.82

37 92503 high yes yes no no No yes yes −5.87

38 72307 high yes no no yes No yes yes −6.56

39 6549 high yes no no no No no no −5.13

40 370 high no no no no No no yes −6.84

P-gp = P-glycoprotein, logKp skin permeation, GI = gastrointestinal, BBB = blood brain barrier

https://doi.org/10.1371/journal.pone.0324678.t004

https://doi.org/10.1371/journal.pone.0324678.t004
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Table 5.  Comparison of drug-likeness of propolis compounds predicted using different methods. 

S. 
No.

Pub-
Chem ID

Lipinski rule Ghose rule Veber 
rule

Egan rule Muegge rule Bioavailabil-
ity Score

1 44257510 Yes Yes Yes Yes Yes 0.55

2 21721815 Yes Yes Yes Yes Yes 0.55

3 11455669 Yes; 1 violation: 
MW > 500

Yes; 1 violation: MW > 500 Yes Yes Yes 0.56

4 11272353 Yes; 1 violation: 
MW > 500

No; 4 violations: MW > 480, 
WLOGP>5.6, MR > 130, #atoms>70

Yes No; 1 violation: 
WLOGP>5.8

No; 1 violation: XLOGP3 > 5 0.56

5 11114020 Yes; 1 violation: 
MW > 500

No; 4 violations: MW > 480, 
WLOGP>5.6, MR > 130, #atoms>70

Yes No; 1 violation: 
WLOGP>5.88

No; 1 violation: XLOGP3 > 5 0.56

6 10907594 Yes; 1 violation: 
MW > 500

No; 4 violations: MW > 480, 
WLOGP>5.6, MR > 130, #atoms>70

Yes No; 1 violation: 
WLOGP>5.88

No; 1 violation: XLOGP3 > 5 0.56

7 10791588 Yes; 1 violation: 
MW > 500

No; 4 violations: MW > 480, 
WLOGP>5.6, MR > 130, #atoms>70

Yes No; 1 violation: 
WLOGP>5.88

No; 1 violation: XLOGP3 > 5 0.85

8 9984117 Yes; 1 violation: 
MW > 500

No; 4 violations: MW > 480, 
WLOGP>5.6, MR > 130, #atoms>70

Yes No; 1 violation: 
WLOGP>5.88

No; 1 violation: XLOGP3 > 5 0.56

9 5472440 Yes; 0 violation Yes Yes Yes No; 1 violation: XLOGP3 > 5 0.85

10 5471610 Yes; 1 violation: 
MW > 500

No; 4 violations: MW > 480, 
WLOGP>5.6, MR > 130, #atoms>70

Yes No; 1 violation: 
WLOGP>5.88

No; 1 violation: XLOGP3 > 5 0.85

11 5377945 Yes Yes Yes Yes Yes 0.55

12 5352032 Yes Yes Yes Yes Yes 0.55

13 5318691 Yes Yes Yes Yes Yes 0.55

14 5281954 Yes Yes Yes Yes Yes 0.55

15 5281787 Yes Yes Yes Yes Yes 0.55

16 5281666 Yes Yes Yes Yes Yes 0.55

17 5281628 Yes Yes Yes Yes Yes 0.55

18 5281616 Yes Yes Yes Yes Yes 0.55

19 5280681 Yes Yes Yes Yes Yes 0.55

20 5280445 Yes Yes Yes Yes Yes 0.55

21 5280442 Yes Yes Yes Yes Yes 0.55

22 5280373 Yes Yes Yes Yes Yes 0.55

23 5280343 Yes Yes Yes Yes Yes 0.55

24 3938139 Yes Yes Yes Yes Yes 0.55

25 3873459 Yes Yes Yes Yes Yes 0.55

26 689043 Yes Yes Yes Yes No; 1 violation: MW < 200 0.56

27 638278 Yes Yes Yes Yes Yes 0.55

28 637542 Yes Yes Yes Yes No; 1 violation: MW < 200 0.85

29 637541 Yes Yes Yes Yes No; 1 violation: MW < 200 0.85

30 637540 Yes Yes Yes Yes No; 1 violation: MW < 200 0.85

31 637125 No; 1 violation: 
XLOGP3 > 5

Yes Yes Yes No; 1 violation: XLOGP3 > 5 0.85

32 637105 Yes; 1 violation: 
MW > 500

No; 4 violations: MW > 480, 
WLOGP>5.6, MR > 130, #atoms>70

Yes No; 1 violation: 
WLOGP>5.88

No; 1 violation: XLOGP3 > 5 0.85

33 444539 Yes No; 2 violations: MW < 160, 
#atoms<20

Yes Yes No; 1 violation: MW < 200 0.85

34 336327 Yes Yes Yes Yes Yes 0.55

35 259846 Yes; 1 violation: 
MLOGP>4.15

No; 3 violations: WLOGP>5.6, 
MR > 130, #atoms>70

Yes No; 1 violation: 
WLOGP>5.88

No; 2 violations: 
XLOGP3 > 5, Heteroatoms<2

0.55

36 238782 Yes Yes Yes Yes Yes 0.55

(Continued)
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The ligand interactions, binding cavities, AutoDock Vina affinity scores, H-bond are summarized in Table 6. The molec-
ular docking results showed significant interactions between the KIFC1 protein and the compounds Luteolin, Kaempferide, 
Izalpinin, 4’,5,7-Trihydroxy-3,6-dimethoxyflavone, and 6-Methoxykaempferol. Notably, Luteolin exhibited the highest binding 
affinity with cavity C4 (−7.7 kcal/mol) and interacted with ARG470, ALA474, and LYS479, forming H-bonds with GLY480, 

S. 
No.

Pub-
Chem ID

Lipinski rule Ghose rule Veber 
rule

Egan rule Muegge rule Bioavailabil-
ity Score

37 92503 Yes Yes Yes Yes Yes 0.55

38 72307 Yes Yes Yes Yes Yes 0.55

39 6549 Yes; 0 violation No; 1 violation: MW < 160 Yes Yes No; 2 violations: MW < 200, 
Heteroatoms<2

0.55

40 370 Yes; 0 violation No; 2 violations: MR < 40, 
#atoms<20

Yes Yes No; 1 violation: MW < 200 0.56

Bioavailability score (compounds satisfying RO5 with a BS of 0.55 are considered to have excellent oral absorbance).

https://doi.org/10.1371/journal.pone.0324678.t005

Fig 2.  BOILED-Egg plot representing the intestinal absorption and brain penetration potential of propolis-derived compounds. The white 
region indicates compounds predicted to be well absorbed in the intestine, while the yellow region signifies those likely to cross the blood-brain barrier. 
Compounds in the gray region are predicted to have poor intestinal absorption and limited brain penetration. Red and blue dots represent P-gp-negative 
and P-gp-positive compounds, respectively.

https://doi.org/10.1371/journal.pone.0324678.g002

Table 5.  (Continued)

https://doi.org/10.1371/journal.pone.0324678.t005
https://doi.org/10.1371/journal.pone.0324678.g002
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GLY482, and ASN523. Similarly, Izalpinin showed strong binding affinity with cavity C4 (−7.2 kcal/mol) and interacted with 
GLU484, CYS485, VAL469, and ARG470, forming H-bond with CYS485 (Table 6). Both compounds interacted with ARG470 
in cavity C4 showing the highest affinities. However, H-bonds in Luteolin were more prevalent compared to Izalpinin in the 
respective cavities. However, the docking data of 4’,5,7-Trihydroxy-3,6-dimethoxyflavone, and 6-Methoxykaempferol exhib-
ited their strongest binding toward the ADP‐binding site of KIFC1 and formed H-bond with THR417.

Residue-specific grid-box docking of KIFC1 protein with top-ranked propolis-derived compounds

The 2D protein-ligand plot analysis identified key consensus-binding residues (LEU321, ARG470, ALA474, LYS479, 
CYS485, and ALA527) present across all five top-ranked propolis-derived compound-based potential druggable cavity 
identification and their residue-specific interactions with the KIFC protein 3D model. The residue-specific grid-box docking 
method was employed to analyze the molecular interactions and binding affinities of the key consensus-binding residues 
within the KIFC1 binding site. A 3D affinity grid box was set with dimensions of 12.34 Å (X), −6.197 Å (Y), and −19.742 Å 
(Z) to ensure optimal coverage of the identified consensus-binding residues.

All five compounds exhibited ΔG
bind

 between −7.35 and −6.14 kcal/mol (Table 7). Figs 4−6 showed the doscking poses 
(3D and 2D ligand interaction plots) of the inhibitors within the KIFC1 consensus-binding sites, including key residues 
involved in propolis inhibitor binding. 3D and 2D interaction plots help in the evaluation of binding interaction, depicting the 
prominent binding modes as well as the different types of molecular bonding and interactions with particular ligands (Fig 
4−6). The compound Kaempferide had the lowest Ki value of 4.12 μM, indicating it is the most potent inhibitor among the 
listed compounds and suggests that it binds most effectively to KIFC1 and inhibits its activity at the lowest concentration 
followed by Luteolin. Both compounds interacted similarly in terms of electrostatic and torsional energies; however, the 
stronger van der Waals and molecular mechanics energies of Kaempferide contributed to its significant binding and inhi-
bition efficiency. The compound 4’,5,7-Trihydroxy-3,6-dimethoxyflavone had the highest Ki value of 31.72 μM, indicating 
it has the less potential of inhibition compared to the rest compounds and requires a higher concentration to achieve the 
same level of inhibition compared to the other compounds (Table 7). Additionally, details of the scientific names along with 

Fig 3.  Venn diagram illustrating the overlap between propolis-derived compounds that comply with the criteria for drug-likeness rules 
(CFDLR) and those exhibiting strong binding energies (HBA) towards the KIFC1 protein.

https://doi.org/10.1371/journal.pone.0324678.g003

https://doi.org/10.1371/journal.pone.0324678.g003
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Table 6.  Analysis of potential druggable cavities in the KIFC1 protein and key molecular interactions with the top-ranked five propolis-derived 
compounds using the cavity-binding docking approach.

Compound Cavi-
ties ID

Affinity score
(kcal/mol)

Cavity vol-
ume (Å3)

Center 
(x, y, z)

Docking 
size (x, y, z)

Ligand interactions H-bonds

Luteolin C4 −7.7 679 2, −2, 
−31

21, 21, 21 ARG470, ALA474, LYS479, GLY480, 
GLY482, CYS485, ASN523, ALA527

GLY480, 
GLY482, ASN523

C2 −7.4 725 15, −7, 
−20

21, 21, 21 LEU321, GLY413, SER414, LYS416, 
THR417, PHE418

LYS416

C1 −7.3 957 −1, 11, 
−12

21, 21, 21 GLU496, GLY629, SER631 GLU496, 
GLY629, SER631

Kaempferide C1 −7 957 −1, 11, 
−12

21, 21, 21 GLU496, SER547, CYS557, 
GLY558, ASN626, LYS673

SER547, 
ASN626

C4 −7 679 2, −2, 
−31

21, 21, 21 ALA474, ARG478, LYS479, 
CYS485, ASN501

CYS485

C2 −6.9 725 15, −7, 
−20

21, 21, 21 ARG318, PRO319, LEU321, 
GLY413, GLY415, PHE418

GLY413, GLY415

Izalpinin C4 −7.2 679 2, −2, 
−31

21, 21, 21 GLU484, CYS485, VAL469, 
ARG470, ALA474, ALA527

CYS485

C2 −7.1 725 15, −7, 
−20

21, 21, 21 ARG318, PRO319, LEU321, 
GLY413, PHE418, GLY422, PRO424

GLY413

C1 −6.9 957 −1, 11, 
−12

21, 21, 21 GLU496, GLN545, PRO560, 
ASN671

GLN545, 
ASN671

4’,5,7-Trihydroxy-3,6- 
dimethoxyflavone

C3 −7 685 26, 3, 
−29

21, 21, 21 GLU533, ARG537, LEU572, 
ARG585, THR589,
ILE592,
ASN593

ARG585, 
ASN593

C2 −6.9 725 15, −7, 
−20

21, 21, 21 LEU321, THR417, PHE418, SER535 THR417

C4 −6.9 679 2, −2, 
−31

21, 21, 21 ARG470, ASP471, ALA474, 
ARG478, LYS479, CYS485, 
ASN523, VAL526,
ALA527

ASP471, ASN523

6-Methoxykaempferol C2 −7 725 15, −7, 
−20

21, 21, 21 LEU321, GLY415, THR417, PHE418 THR417

C1 −6.9 957 −1, 11, 
−12

21, 21, 21 GLU496, GLN545, PRO560, 
ASN671

GLN545, 
ASN671

C4 −6.9 679 2, −2, 
−31

21, 21, 21 ARG470, ASP471,ALA474, ARG478, 
LYS479, GLY480, VAL526, ALA527

ASP471, 
ARG478, VAL526

https://doi.org/10.1371/journal.pone.0324678.t006

Table 7.  Residue-specific grid-box docking of KIFC1 protein with top-ranked propolis-derived compounds and estimation of inhibition con-
stant for protein-ligand complexes.

Compounds ΔGbind 
(kcal/mol)

Ligand 
efficiency

Inhibition 
constant (μM)

ΔEvdw ΔEele ΔEMM ΔE(un-

bound)

ΔE(tor-

sional)

ΔE(total 

internal)

ΔE(inter-

molecular)

Luteolin −6.74 −0.32 11.48 −7.67 −0.44 −8.11 −1.77 1.37 −1.77 −8.11

Kaempferide −7.35 −0.33 4.12 −8.27 −0.44 −8.71 −1.32 1.37 −1.32 −8.72

Izlapinin −6.33 −0.3 22.9 −7.24 −0.18 −7.46 −1.05 1.1 −1.05 −7.43

4’,5,7-Trihydroxy-3,6-dimethoxyflavone −6.14 −0.26 31.72 −7.56 −0.23 −7.79 −1.72 1.65 −1.72 −7.78

6-Methoxykaempferol −6.55 −0.28 15.81 −8 −0.2 −8.2 −1.71 1.65 −1.71 −8.2

ΔG
bind

 = Binding Affinity, ΔE
vdw

 = van der Waals energy, ΔE
ele 

= electrostatic energy, = ΔE
MM =molecular mechanics energy

https://doi.org/10.1371/journal.pone.0324678.t007

https://doi.org/10.1371/journal.pone.0324678.t006
https://doi.org/10.1371/journal.pone.0324678.t007
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relevant plant or herbal sources, providing insights into the natural origins and potential therapeutic relevance of the five 
selected propolis-derived compounds based on their docking scores for their selection, are presented in Table 8.

Molecular dynamics simulation

Molecular dynamics (MD) simulations were conducted for 100 ns to evaluate the stability and binding interactions of KIFC1 
in complex with Luteolin, Kaempferide, Izalpinin, 4’,5,7-Trihydroxy-3,6-dimethoxyflavone, and 6-Methoxykaempferol. Each 
system consisted of approximately 58,260 atoms, including a well-hydrated environment, to ensure the system stability. The 
respective numbers of water molecules were 17,389 for Luteolin, 17,388 for Kaempferide, 17,386 for Izalpinin, 17,384 for 
4’,5,7-Trihydroxy-3,6-dimethoxyflavone, and 17,386 for 6-Methoxykaempferol. The solvation process ensured a biologically 
relevant environment throughout the simulations.

The average atom displacement between two superimposed molecular structures is measured quantitatively by RMSD 
(root mean square deviation), which is frequently used in molecular docking and structural biology to evaluate conforma-
tional differences. Fig 7 shows the time-dependent changes in the root-mean-square deviation (RMSD) values for the 
C-alpha atoms of ligand-bound KIFC1, confirming the structural stability of the complexes. The fluctuations remained 
within an acceptable range of ~1.2 to 3.5 Å. In the Luteolin-bound system, the protein remained stable throughout the 
simulation, except for a minor fluctuation observed at 75 ns, which quickly stabilized at approximately 80 ns. The  
Kaempferide-KIFC1 complex exhibited RMSD values within ~1.8 to 4.2 Å, with a stable pattern emerging at 10 ns and 
persisting throughout the simulation. The Izalpinin-protein complex remained stable within a ~ 2–3.5 Å range with some 
minor fluctuations at 60 ns, which became stable immediately, with the ligand RMSD remaining relatively stable across 
the trajectory, indicating an equilibrated system. The 4’,5,7-Trihydroxy-3,6-dimethoxyflavone-KIFC1 complex maintained a 
stable RMSD range of 2 to 3.5 Å, demonstrating that the ligand remained firmly bound to the druggable binding site. The 

Fig 4.  Three dimensional (3D) representations illustrating the binding interactions of the top five propolis-derived compounds with key resi-
dues of the KIFC1 protein.

https://doi.org/10.1371/journal.pone.0324678.g004

https://doi.org/10.1371/journal.pone.0324678.g004
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6-Methoxykaempferol complex exhibited fluctuations within ~1.8 to 3.6 Å, with a minor variation observed after 20 ns that 
quickly stabilized. This consistency confirms the stability of the ligand within the druggable binding site (Fig 7).

The RMSF values of the ligands were further analyzed to evaluate their stability in druggable binding modes of the 
protein (Fig 8). The peaks indicate the protein regions that fluctuated the most during the simulation, and the green 
vertical bars show ligand contacts with KIFC1 protein residues that interact with the ligands. Analysis of the RMSF MD 
trajectories showed high fluctuations in the loop region or the N- and C-terminal zones of the protein (Fig 8). The low 
RMSF values of the binding site residues indicate a stable ligand-protein complex. The RMSF plots of 4’,5,7- 
Trihydroxy-3,6-dimethoxyflavone and 6-methoxykaempferol revealed structural stability variations with varying flexibilities 
at different residue indices. Luteolin, Kaempferide and Izalpinin showed significant deviations at specific residues, affect-
ing overall stability of ligands in binding mode (Fig 8).

To assess the structural stability, the secondary structure elements (SSE) were analyzed over the simulation period 
(Fig 9). The SSE content remained consistent, with minor deviations: luteolin, 50.16% (29.61% helices, 20.56% strands); 
Kaempferide, 47.20% (27.18% helices, 20.02% strands); Izalpinin, 47.88% (28.84% helices, 19.04% strands); 4’,5,7- 
Trihydroxy-3,6-dimethoxyflavone: 47.64% (27.76% helices, 19.88% strands), 6-Methoxykaempferol: 47.16% (28.31% heli-
ces, 18.85% strands) (Fig 9). These findings indicated that ligand binding does not induce significant structural distortions 
in KIFC1.

The key molecular interactions identified through MD simulations are illustrated in Fig 10, detailing the hydrogen bonds, 
hydrophobic contacts, and water-mediated interactions. Luteolin formed stable hydrogen bonds with SER569, GLU570, 
LEU572, LEU586, THR589, GLN590, GLU649, and ASN652. Hydrophobic interactions with ARG571, PRO574, LEU586, 
and ARG655 further reinforce ligand stability. Water-mediated hydrogen bonding significantly contributed to ligand 

Fig 5.  2D interaction diagrams depicting the binding modes of the top five propolis-derived compounds with the KIFC1 protein, highlighting 
different types of ligands atoms interactions with key protein residues.

https://doi.org/10.1371/journal.pone.0324678.g005

https://doi.org/10.1371/journal.pone.0324678.g005
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retention. Kaempferide forms hydrogen bonds with ARG316, ARG318, PRO380, SER382, PHE418, GLN429, ASN532, 
and GLU570. Hydrophobic contacts with ARG318, PRO319, LEU321, PHE418, and LEU430 stabilized the ligand within 
the pocket, while water bridges enhanced binding stability. Izalpinin-KIFC1 interactions established hydrogen bonds 
with ARG316, VAL317, PRO380, GLY381, SER382, and GLN429, which contributed to ligand stability. Hydrophobic 

Fig 6.  2D interaction diagrams illustrating the binding modes of the top five propolis-derived compounds with the KIFC1 protein, detailing 
ligand atom interactions with key protein residues. Color scheme: red represents negatively charged residues, light blue indicates polar residues, 
gray denotes solvent exposure, light green highlights hydrophobic interactions, and dark green signifies Pi-Pi stacking interactions.

https://doi.org/10.1371/journal.pone.0324678.g006

Table 8.  Top-ranked propolis-derived compounds from molecular docking: Scientific names, natural sources, and therapeutic significance.

Compound 
Name

Scientific Name Compound Natural and Source Potential Therapeutic Relevance Refer-
ences

Kaempferol 3,5,7-trihydroxy-2-(4-
hydroxyphenyl)-4H-
1-benzopyran-4-one

Flavonoid – found in propolis, tea, broc-
coli, apples, kale, beans, tomato, straw-
berries, grapes and medicinal herbs

Cardio-protective, anticancer, antidiabetics, anti- 
inflammatory, Osteo-protective.

[71–73]

Luteolin 3′,4′,5,7- 
tetrahydroxyflavone

Flavonoid -Present in propolis, celery, 
spinach, lettuce, sweet and chili 
peppers

Known for its anticancer, anti-inflammatory, anti-oxidant, 
and neuroprotective effects. It interferes with key signaling 
pathways involved in tumor growth and metastasis.

[74,75]

Kaempferide Kaempferol 
4’-O-methyl ether

Flavonoid - Found in propolis and vari-
ous medicinal plants such as Kaempfe-
ria species

Demonstrates anticancer activity by targeting multiple signaling 
pathways involved in cancer progression. Anti-inflammatory, 
anti-adipogenic, antioxidant, immune modulation, etc

[76]

Izalpinin 3,5-Dihydroxy-7- 
methoxyflavone

Flavonoid - Found in propolis and 
medicinal plants such as Alpinia species

Exhibits antimicrobial, anti-inflammatory, and anticancer 
properties.

[77,78]

4’,5,7- 
Trihydroxy-3, 
6-imethoxyflavone

6-Methoxykaempferol 
3-methyl ether

Flavonoid - Isolated from propolis and 
selected medicinal herbs

Potential anticancer agent with reported inhibition of cancer 
cell migration and proliferation. Also known for its antioxi-
dant, antiepileptic and anticholinergic effects.

[11,79]

https://doi.org/10.1371/journal.pone.0324678.t008

https://doi.org/10.1371/journal.pone.0324678.g006
https://doi.org/10.1371/journal.pone.0324678.t008
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Fig 7.  Time dependent variation in the root mean square deviation (RMSD) between the C-alpha atoms (in blue) of proteins and ligands fit on 
proteins (red) over time of top-ranked propolis compounds with KIFC1 protein. The protein RMSD shifts over time are plotted on the left Y axis. 
Differences in the ligand root-mean-square distance (RMSD) over time are plotted along the right Y-axis.

https://doi.org/10.1371/journal.pone.0324678.g007

Fig 8.  The root mean square fluctuation (RMSF) plot of protein (KIFC1) and ligands (top-ranked propolis compounds) based on C α atoms of 
receptor proteins. Protein residues that interacted with the propolis compounds are marked with green vertical bars.

https://doi.org/10.1371/journal.pone.0324678.g008

https://doi.org/10.1371/journal.pone.0324678.g007
https://doi.org/10.1371/journal.pone.0324678.g008
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Fig 9.  The distribution of secondary structure elements (SSE) across the protein-ligand complexes is illustrated for  (A) Luteolin, (B) Kaemp-
feride, (C) Izalpinin, (D) 4’,5,7-Trihydroxy-3,6-dimethoxyflavone, and (E) 6-Methoxykaempferol, mapped against the residue index. Alpha-helices 
are depicted as red columns, while beta-strands are shown in blue, highlighting the structural organization within each complex.

https://doi.org/10.1371/journal.pone.0324678.g009

https://doi.org/10.1371/journal.pone.0324678.g009
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interactions with ARG318, PRO319, LEU321, PRO322, PHE418, and LEU430 provided additional support, whereas water 
bridges reinforced the retention of the ligand in the active site. 4’,5,7-Trihydroxy-3,6-dimethoxyflavone-KIFC1 interactions 
formed stable hydrogen bonds with ARG318, GLY381, SER382, GLY413, PRO424, and ASP427. Hydrophobic interac-
tions with ARG316, ARG318, PRO319, LEU321, PRO322, PHE418, and LEU430 stabilized the ligand with minimal ionic 
interactions observed. Water-mediated hydrogen bonding further reinforced this complex. 6-Methoxykaempferol-KIFC1 
interactions exhibited hydrogen bonds with ASN466, THR468, VAL469, ASP471, ARG478, LYS479, GLY480, GLN481, 
GLY482, GLY483, GLU484, and ASN501, ensuring stable ligand retention. Hydrophobic interactions with LYS479 and 
CYS485 contributed to ligand stability, whereas water-mediated hydrogen bonds maintained strong binding (Fig 10).

Overall, MD simulation experiments confirmed that all five ligands established stable interactions with KIFC1, demon-
strating strong binding affinity without inducing significant structural distortions. These findings provide valuable insights 
into the molecular mechanisms governing ligand binding, and highlight the potential of these compounds for further exper-
imental validation.

Principal component analysis

Principal Component Analysis (PCA) is an essential technique used in molecular dynamics (MD) simulations to analyze 
the collective motions of proteins. It reduces the complex motion of atoms into selective principal components (PCs) to 
recognize the dominant conformational changes occurring during the simulation. In this study, PCA was performed on 
KIFC1-ligand complexes to evaluate the structural stability, flexibility, and dynamic behavior of the system when bound to 
luteolin (A), kaempferide (B), Izalpinin (C), 4’,5,7-Trihydroxy-3,6-dimethoxyflavone (D), and 6-Methoxykaempferol (E) (Fig 
11). The collective motions of the protein were analyzed throughout the MD simulation to capture dynamic fluctuations 
over the trajectory. The eigenvalue plots against the eigenvector index (eigenmode) confirm the stability of the system 
(Fig 11). The PCA trajectories of ligands A, B, C, D, and E demonstrated distinct influences on the conformational land-
scape of KIFC1, highlighting the variations in structural flexibility. Fluctuations in hyperspace eigenvectors were observed 
within the eigenvalues, where higher eigenvalues were correlated with increased protein mobility. Eigenvector analysis 
indicated that dominant motions were present across all the selected complexes, with higher eigenvalues reflecting sig-
nificant conformational shifts. To interpret these variations further, three principal components (PC1, PC2, and PC3) were 
extracted and plotted. PC3 exhibited the least variability (Fig 11), suggesting a more compact and stabilized protein- 
ligand complex. PC1 clusters of Kaempferide (B) compound had exhibited the highest variability (35.43%), PC2 showed 

Fig 10.  Heat-map representation of protein-ligand interactions throughout the simulation trajectory for  (A) Luteolin, (B) Kaempferide, (C) 
Izalpinin, (D) 4’,5,7-Trihydroxy-3,6-dimethoxyflavone, and (E) 6-Methoxykaempferol, mapped against the residue index.

https://doi.org/10.1371/journal.pone.0324678.g010

https://doi.org/10.1371/journal.pone.0324678.g010
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variability (15.46%), and PC3 had the lowest variability (7.68%). Overall, the reduced variability in PC3 cells supports the 
understanding that ligand binding reinforces structural integrity, limiting excessive motion. Additionally, the color-coded 
PCA plot provided a visual representation of protein flexibility: blue areas corresponded to high mobility, white areas indi-
cated intermediate motion, and red areas represented minimal flexibility (Fig 11).

MM-GBSA binding free energy analysis of KIFC1 with propolis-derived compounds

MM-GBSA is a widely used computational approach to estimate the binding free energies (ΔG Bind) of protein-ligand 
complexes. In this case, computation with lower ΔG Bind values indicated stronger binding affinities between the ligand 
and the target protein. The MM-GBSA binding free energies (ΔG Bind) of the KIFC1-ligand complexes showed signifi-
cant pattern of energetic estimation like KIFC1-Luteolin, i.e., −39.8675 kcal/mol, KIFC1-Kaempferide, i.e., −33.8669 kcal/
mol, KIFC1-Izalpinin, i.e., −44.4599 kcal/mol, KIFC1–4’,5,7-Trihydroxy-3,6-dimethoxyflavone, i.e., −42.003 kcal/mol and 
KIFC1–6-Methoxykaempferol, i.e., −53.0327 kcal/mol (Table 9). Among these five compounds, 6-Methoxykaempferol 

Fig 11.  Principal Component Analysis (PCA) plot illustrating the percentage of variance across different principal components (PC1, PC2, and 
PC3). Three distinct sections were generated to observe variations in molecular dynamics. The analysis was performed for (A) Luteolin, (B) Kaemp-
feride, (C) Izalpinin, (D) 4’,5,7-Trihydroxy-3,6-dimethoxyflavone, and (E) 6-Methoxykaempferol.

https://doi.org/10.1371/journal.pone.0324678.g011

https://doi.org/10.1371/journal.pone.0324678.g011
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exhibited the strongest binding affinity (−53.0327 kcal/mol), followed by Izalpinin (−44.4599 kcal/mol), and 4’,5,7- 
Trihydroxy-3,6-dimethoxyflavone (−42.003 kcal/mol). Luteolin (−39.8675 kcal/mol) and Kaempferide (−33.8669 kcal/mol) 
also showed favorable interactions but with slightly weaker binding affinities compared to the other top-ranked propolis- 
derived compounds (Table 9).

The MM-GBSA binding free energy is influenced by several contributing factors, including Coulombic interactions, 
covalent binding energy, hydrogen bonding, lipophilic interactions, solvation energy, and van der Waals (vdW) forces, 
which were also computed. The strongest electrostatic contribution was observed for 6-Methoxykaempferol (−28.2251 
kcal/mol), followed by 4’,5,7-Trihydroxy-3,6-dimethoxyflavone (−17.9378 kcal/mol). In contrast, Izalpinin (−0.77943 kcal/
mol) had significantly lower Coulomb interactions, suggesting a lower contribution from electrostatic forces. The highest 
hydrogen bonding energy was recorded for 6-Methoxykaempferol (−3.48526 kcal/mol), followed by luteolin (−0.91523 
kcal/mol), and Izalpinin (−0.76707 kcal/mol). Izalpinin (−10.0106 kcal/mol) and 4’,5,7-Trihydroxy-3,6-dimethoxyflavone 
(−12.0955 kcal/mol) showed strong lipophilic interactions, which can enhance ligand retention in the binding pocket. Kae-
mpferide (−6.16688 kcal/mol) had the weakest lipophilic contribution among the five ligands. Izalpinin (−36.2582 kcal/mol) 
exhibited the strongest vdW interactions, followed by 6-Methoxykaempferol (−33.2059 kcal/mol) (Table 9). These interac-
tions play a crucial role in maintaining ligand stability within the KIFC1 binding pocket.

Discussion

Kinesin family member C1 (KIFC1) is crucial for cell division and highly expressed in cancer cells. KIFC1 plays an essen-
tial role in centrosome clustering, a process that allows cancer cells to bypass multipolar divisions and maintain genomic 
stability. By crosslinking microtubules and facilitating bipolar spindle formation, KIFC1 prevents chromosomal missegrega-
tion, which is a key factor in tumor survival. Additionally, its interactions with mitotic regulators, such as cyclins and spindle 
checkpoint proteins, further underline its importance in sustaining the proliferative potential of malignant cells. Given that 

Table 9.  MM-GBSA binding free energies computations of the top-ranked docked KIFC1-ligand (propolis-derived small molecules) complexes.

Energies KIFC1-Luteolin KIFC1- Kaemp-
feride

KIFC1- Izalpinin KIFC1–4’,5,7-Trihydroxy- 
3,6-dimethoxyflavone

KIFC1–6- 
Methoxykaempferol

MM-GBSA
ΔG Bind (kcal/mol)

−39.8675 −33.8669 −44.4599 −42.003 −53.0327

MM-GBSA ∆G
Bind Coulomb (kcal/mol)

−12.4349 −14.6728 −0.77943 −17.9378 −28.2251

MM-GBSA ∆G
Bind Covalent
(kcal/mol)

1.583922 0.439944 −0.22495 1.896344 0.84432

MM-GBSA ∆G
Bind H-bond
(kcal/mol)

−0.91523 −0.0000921 −0.76707 −0.38889 −3.48526

MM-GBSA
∆G Bind Lipo
(kcal/mol)

−5.07359 −6.16688 −10.0106 −12.0955 −7.51317

MM-GBSA
∆G Bind Solv
GB (kcal/mol)

10.44199 19.53683 9.145694 21.87094 21.01219

MM-GBSA
∆G Bind
vdW (kcal/mol)

−27.8384 −27.5436 −36.2582 −31.2444 −33.2059

The description of above energies are indicated as Coulomb—Coulomb energy; Covalent—Covalent binding energy; H-bond—Hydrogen-bonding; 
Lipo—Lipophilic energy; Solv GB—Generalized Born electrostatic solvation energy and vdW—Van der Waals energy.

https://doi.org/10.1371/journal.pone.0324678.t009

https://doi.org/10.1371/journal.pone.0324678.t009
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normal somatic cells do not rely on KIFC1 for spindle organization, its targeted inhibition presents a promising strategy 
for selectively disrupting cancer cell [18,25,30–35,80]. However, drugs targeting KIFC1 inhibition remain limited. Propolis 
is known to inhibit cancer cell proliferation, angiogenesis, metastasis and as adjunct chemotherapeutic agent [25,80,81]. 
This study was designed to explore propolis-derived small molecules as KIFC1 inhibitors for cancer therapy using an in 
silico approach.

Protein homology modeling predicts a protein’s three-dimensional structure using amino acid sequences and reduces 
the time, labor, and cost associated with traditional experimental techniques used for drug design[80]. The results of 
KIFC1 protein sequence alignment methods provided models with less than 60% coverage in the Protein Data Bank 
(PDB). Therefore, AlphaFold 3D model was preferred to achieve accurate protein structure prediction because the  
AlphaFold-generated models undergo rigorous energy minimization, structural assessment, and validation processes, 
ensuring their precision and reliability [42,44]. In the Critical Assessment of Techniques for Protein Structure Prediction 
(CASP14), AlphaFold was the top-ranked protein structure prediction method by a large margin, producing predictions 
with high accuracy established by Google DeepMind and EMBL’s European Bioinformatics Institute (EMBL-EBI) [42]. Fur-
thermore, the stereo-chemical assessment and validation for selected AlphaFold 3D model further provided a justification 
of KIFC1 for subsequent experiment [48]. It is established that computer aided pharmacokinetics predictions are cost- 
effective and save resources in the new drug design and development in contrast to experimental studies. The study used 
Lipinski’s rule of five which is critical for rational drug design and low permeability or poor absorption of a specific molecule 
occurs when it violates one of Lipinski’s rule of fives [82,83]. The molecular weights of the most propolis- 
derived compounds were less than 500 and TPSA was less than 150 predicting adequate absorption. The lipohilicity and 
water solubility parameters of these compounds showed a balance of lipohilicity and hydrophilicity indicating favorable 
ADME properties. These findings are in agreement with the studies that predicted the ADMET properties and conducted 
in vivo/ in vitro experiments for further validation of outcomes [82]. The CYP3A4 inhibitors have the potential to enhance 
the effectiveness of specific chemotherapy drugs by increasing their plasma concentrations and bioavailability [52,82]. 
The top ten conformations for each compound (ligand) based on binding affinity energy were saved and the top‐5 binding 
poses were selected from an initial set of forty compounds. Based on drug-likeness criteria and binding affinity with the 
KIFC1 protein, 6-methoxy kaempferol, 4’,5,7-Trihydroxy-3,6-dimethoxyflavone, Izalpinin, Kaempferide, and luteolin were 
identified as the best candidates. All the five compounds showed a similar bioavailability score (0.55) and inhibited the 
enzymes CYPIA2, CYP2D6, and CYP3A4, with 4’,5,7-Trihydroxy-3,6-dimethoxyflavone also inhibiting CYP2C9, indicating 
their potential as drug candidates for KIFC1 inhibition. Kaempferol, Luteolin, Kaempferide, Izlapinin and 4’,5,7- 
Trihydroxy-3, 6-dimethoxyflavone are flavonoid known to inhibit tumor growth by targeting various cellular processes such 
as apoptosis, angiogenesis, migration, and cell cycle progression [42,62,73,84,85].

Residue-specific grid-box based cavity binding (docking) allowed precise identification and evaluation of the interaction 
sites between the five propolis-derived compounds and KIFC1. This method helps predict the binding affinity and stability 
of drug candidates [58,86]. The molecular docking results revealed significant interactions between the KIFC1 protein and 
the five selected compounds. Notably, Luteolin demonstrated the highest binding affinity to cavity C4, closely followed by 
Izalpinin. Both Luteolin and Izalpinin displayed the highest affinity for ARG470 in cavity C4. Luteolin, in particular, formed 
more hydrogen bonds compared to Izalpinin in the respective cavities. These interactions with ARG470 in both com-
pounds highlight its critical role in binding efficacy, indicating its potential as a key target for designing KIFC1 inhibitors. 
These results reinforce the significance of hydrogen bonding and specific residue interactions in enhancing binding affinity 
and stability, in agreement with previous studies [87–89]. However, the grid-box molecular interactions and binding anal-
ysis predicted Kaempferide, with a Ki of 4.12 μM, and binding energy of −7.35 kcal/mol as the most significant inhibitor 
which was comparable to the most effective KIFC1 inhibitor AZ82 (binding energy of −7.26 kcal/mol) [36].

Molecular dynamics (MD) simulations are important for designing novel drugs because they provide insights into the 
behavior and interactions of drug molecules with target proteins or biological systems [90]. We employed this method 
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to analyze the five commonly interacting top-ranked docked complexes to understand the function of small molecules 
derived from propolis in inhibiting the KIFC1 protein, thus controlling the KIFC1 pathway to regulate cancer expres-
sion. The general stability of the protein-ligand complexes was evaluated by calculating the root‐mean‐square deviation 
(RMSD). The RMSDs for both 4’,5,7-trihydroxy-3,6-dimethoxyflavone and 6-methoxy kaempferol complex with KIFC con-
verged during the 100 ns in a range of 1.5–3.9 Å. These findings represent quality predictions based on a critical assess-
ment of the prediction of interaction criteria, and demonstrate high stability. The observed minor time interval-associated 
variations in RMSD values are common in molecular dynamics simulations and may not necessarily impact the overall 
stability or efficacy of the complexes [91,92].

RMSF analysis provides dynamic perspective on protein flexibility and focuses on the regions that are crucial for 
conformational changes and binding events, whereas the distribution of secondary structure elements (SSEs) helps 
to understand how ligand binding affects the overall structure and stability of proteins [93]. The RMSF analysis of 
two selected protein-ligand complexes in this study showed that upon binding to the 4’,5,7-trihydroxy-3,6- 
dimethoxyflavone and 6-methoxy kaempferol, the highest molecular motion was observed in residues that were not 
present in the active site or substrate-binding region of KIFC1 protein. These RMSF results indicate that the prop-
olis compounds are stabilized in the protein-binding regions. SSE analysis revealed that the structural integrity of 
KIFC1 was preserved by both ligands, although minute differences in the strand and helix composition may have 
an effect on biological activity. It was specifically observed that after simulation, PHE418 formed hydrophobic and 
water bridges with 4’,5,7-trihydroxy-3,6-dimethoxyflavone in addition to its binding to the ADP site of KIFC1. This 
binding combined with the highest docking score improves the potency and physicochemical properties of the com-
pound and fits it well into the binding pocket through Pi-Pi stacking interactions with PHE418. Therefore, this study 
suggests that 4’,5,7-trihydroxy-3,6-dimethoxyflavone, a natural compound with drug-likeness and favorable physico-
chemical properties, is a promising lead for further optimization; however, further cell assays and clinical validation 
studies are needed.

MM-GBSA analysis provided a detailed understanding of the binding energetics of the five propolis-derived 
ligands with KIFC1 [70]. 6-Methoxykaempferol has emerged as the most promising inhibitor, exhibiting the stron-
gest binding affinity (−53.0327 kcal/mol) due to its high electrostatic, hydrogen bonding, and van der Waals 
contributions. Izalpinin (−44.4599 kcal/mol) and 4’,5,7-Trihydroxy-3,6-dimethoxyflavone (−42.003 kcal/mol) also 
demonstrated favorable interactions, making them strong candidates for further experimental validation. Luteolin 
(−39.8675 kcal/mol) and Kaempferide (−33.8669 kcal/mol) showed moderate binding affinities, suggesting poten-
tial for structural optimization to improve their interactions with KIFC1. These findings emphasize the potential of 
6-Methoxykaempferol, Izalpinin, and 4’,5,7-Trihydroxy-3,6-dimethoxyflavone as possible lead compounds for the 
synthesis of similar drug-like bio-active compounds having optimal physicochemical properties and bioavailabil-
ity for targeting KIFC1 inhibition, paving the way for further refinement and in vitro validation of anticancer drug 
development.

Conclusion

KIFC1 is crucial for centrosome clustering, prevention of chromosomal missegregation, and maintenance of genomic 
stability. It interacts with mitotic regulators to sustain the proliferative potential of malignant cells. Targeting KIFC1 inhi-
bition could disrupt cancer cell division, and propolis-derived small molecules are being explored as potential inhibitors. 
The present computational analysis of selected propolis-derived compounds as potential KIFC1 inhibitors revealed that 
4’,5,7-trihydroxy-3,6-dimethoxyflavone and 6-methoxy kaempferol may be promising candidates for cancer therapy. This 
study attempted to provide a thorough analysis of propolis-derived compounds using computational benchmarking for 
KIFC1 inhibition. This may help overcome the challenges of transitioning these compounds from bench to bedside, reduce 
toxicity, and improve patient outcomes in cancer therapy after clinical validation.
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