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Abstract

Facing the problems of large-scale rapid and disorderly loading, the robotic arm

has the problems of large start-stop impact, easy to shake, and reduced production
efficiency and service life, this paper proposes a robotic arm motion planning method
based on the improved multi-objective algorithm called LNSGA-II. Firstly, the artifi-
cial potential field method is used to plan the shortest path without collision, extract
the key motion sequences, and establish the multi-objective function to improve

the operating efficiency of the robotic arm, the smoothness of the motion trajectory,
and the reduction of energy consumption. Then to solve the nonlinear constraints in
the multi-objective trajectory planning, the infeasibility degree is designed, and the
NSGA-II is improved by using the mutation chaos strategy and the dynamic goal-
oriented development strategy. Numerical and trajectory planning experiments are
conducted successively with the remaining five well-known multi-objective algorithms,
and the experimental results demonstrate the superiority of LNSGA-II. Finally, the
digital twin platform of MATLAB-CoppeliaSim-UR16e verifies the effectiveness of the
method in real grasping tasks.

1. Introduction

The rapid development of technologies such as the Internet of Things, cloud
computing, big data, and mobile Internet has sparked a new wave of industrial
revolution, which highlights the critical importance of the manufacturing industry
[1-4]. Lately, many countries have formulated and implemented their respective
strategies, including the European Union’s “Industry 5.0: A Vision for Change in
Europe” released in early 2022, the German “National Industrial Strategy 2030” and
China’s “Made in China 2025” [5,6]. Along with the trend of the industrial revolution,
the basic industries around the world are developing rapidly, and robotic arms, as

a kind of highly intelligent, integrated and automated machine, are leading the way
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in the manufacturing industry [7-9]. In actual production tasks, factory personnel
usually set the path between the material and the operating table to control the
robotic arm to grasp the goal. In the grasping path, only the three-dimensional
coordinates of the manipulator work domain, the material and the operating table
are often involved, and the completion of the grasping action is only considered,
without involving the compliance of the servo motor driven manipulator. However, in
the case of large-scale rapid and disorderly feeding, the continuous high-intensity
gripping and transportation of materials by the robotic arm can lead to significant
start-stop impact, causing jitter, reducing production efficiency and service life, and
potentially damaging the servo motor. In the gripping process of the robotic arm,
the necessary trajectory planning can make the movement curve of the robotic arm
joints like angular displacement, angular velocity, angular acceleration and so on
smoother and continuous, and at the same time, it can also protect the servo motor
[10,11].

Trajectory planning for robotic arms motion is usually done using polynomial
planning [12,13] and spline curve planning methods [14]. Yongzheng Cong [15]
utilized straight line trajectory interpolation and circular arc interpolation methods
for Cartesian space-based trajectory planning for a two-arm robot and validated
it within a ROS system, proving that the methods are feasible. Xiangfei Li [16]
proposed a robot position and attitude synchronization method with third-order
NURBS curves, which was simulated using blade-type and fan-type robots, and
the results showed that this method was able to satisfy the given constraints.
With the continuous improvement and development of modern industrial technol-
ogy, the production application scenarios of robotic arms have become more and
more extensive and in-depth. Under a number of complicated working conditions
and realistic needs, single-objective trajectory planning algorithms have been
unable to meet the diverse, complex and precise requirements of the production
operations of robotic arms.

Aiming at the multi-objective problem of fast and smooth operation of seg-
mented assembly robots in non-circular shield machines, Sun [17] proposed a
method based on B-spline interpolation and non-dominated sorting evolutionary
algorithm. The experimental results show that the high-order B-spline curve of
this method obtains a lower acceleration peak and a smoother global trajectory,
and achieves the optimal trade-off of multi-objective trajectory planning. In order
to optimize the crane lifting path planning problem in industrial lifting, Panpan Cai
[18] et al. formulated it as a multi-objective nonlinear integer optimization problem
with implicit constraints and designed a master-slave parallel genetic algorithm,
and the experimental results showed that this method can efficiently generate
high-quality lifting paths in complex environments. Wang [19] proposed an optimal
trajectory planning method based on coupling interpolation function selection,
which took the task time and impact of industrial robots as optimization objec-
tives. Under the background of robot stirring operation in the process of auto-
matic block casting loading, the proposed method is used to derive the optimal
trajectory of time and jitter. The experimental results show the effectiveness of the
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proposed method. In multi-objective trajectory planning for robotic arms, researchers mainly use linear weighting to
convert the multi-objective function into single-objective function for solving. Due to the different magnitudes between
different objectives, it is not possible to accurately assign the weights to ensure the effective continuity of the joint
acceleration and jerk, potentially resulting in damage to the high-speed working robotic arm. Although all these
methods can achieve the purpose of trajectory planning, their effectiveness is limited in multi-objective optimization
[20,21].

With the continuous development of intelligent manufacturing, robotic arms gradually replace humans to com-
plete repetitive, dangerous or high-precision work, improving production efficiency and safety [22]. Concurrently,
when the structure and function of the manipulator become more and more complex, the challenges associated with
data collection and processing have also grown. But the emergence of digital twins effectively solves this problem.
Digital twin accelerates the digital transformation of robotic arms, and the twin model can provide the verification
of the feasibility of various schemes, which has great potential and role in the production and assembly process
[23,24].

Aiming at the problems of large start-stop impact, easy jitter, low production efficiency and service life of the manipu-
lator when feeding large-scale, fast and disorderly, this paper delineates the paths between end-effector, materials and
obstacles through artificial potential field (APF) [25,26] regulations. According to the passing time and order of the key
points along the motion path, a multi-objective function is established to improve the operation efficiency of the robot, the
smoothness of the running trajectory and the reduction of the energy consumption of the robot. The LNSGA-II is used to
solve the problem, and the 7-order B-splines curve is used to complete the motion trajectory planning in the joint space of
the manipulator. The section 2 of this paper is the mathematical modeling of robotic arm multi-objective trajectory plan-
ning. In Section 3, a new multi-objective algorithm called LNSGA-II is proposed. In Section 4, the experiment is set up,
which includes the CEC2009 test set experiments and the robotic arm multi-objective trajectory planning experiments. The
Section 5 is the manipulator grasping practice based on digital twin and the Section 6 is the summary. The main contribu-
tions of this study are summarized as follows:

(1) After path planning, a multi-objective function incorporating efficiency, energy consumption, and impact is formulated
based on the passing time and sequence of key points, and a mathematical model for manipulator trajectory planning
is established.

(2) To address issues of uneven initial individual randomization and sensitivity to iteration numbers in NSGA-II, a mutation
chaos strategy and dynamic goal-oriented strategy are introduced, forming an improved LNSGA-II. The infeasibility
metric is also designed to handle nonlinear constraints, and LNSGA-II is ultimately used to optimize the 7th-order
B-spline curve for multi-objective trajectory planning.

(3) Experiments on the CEC2009 test set show that LNSGA-II surpasses the original algorithm in convergence speed and
optimization performance, demonstrating strong competitiveness compared to five other multi-objective optimization
algorithms.

(4) Adigital twin platform is constructed using MATLAB-CoppeliaSim-UR16e, applying the proposed trajectory planning
model to the robotic arm’s actual grasping tasks, verifying its effectiveness.

Section 2 presents the development of the multi-objective trajectory planning model for the manipulator. Section 3
reviews the original NSGA-II algorithm and introduces the motivation and strategies behind the improvement of the
LNSGA-II algorithm. Section 4 discusses the experimental results, including numerical experiments using the CEC2009
benchmark and manipulator trajectory planning results. Section 5 introduces the digital twin platform based on
MATLAB-CoppeliaSim-UR16e, where the digital twin framework and trajectory planning model are validated through a
real grasping task. Section 6 concludes the paper.
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2. Multi-objective trajectory planning modeling of the robotic arm
2.1 Motion path of the robotic arm

Motion planning [27] mainly studies the construction of a collision-free and efficient motion sequence of a robotic arm in
the workspace from the start point to the end. Robotic arm motion planning is usually subdivided into two levels: path
planning [28,29] and trajectory planning [30,31].

In the actual operation space, there are often obstacles between the material and the goal point. Through the neces-
sary path planning, the manipulator can grasp the material more quickly and accurately. In this study, the APF will be used
for path planning of the robotic arm, and a shortest collision-free path will be designed, as shown in Fig 1, which will pave
the way for subsequent trajectory planning.

Aiming at the actual operation task of the manipulator on the target, the path between the end-effector and the target
is planned in the actual space. According to the passing time and sequence of the key points of the motion path, the joint
trajectory planning of the manipulator is carried out by fully considering the path constraints and joint constraints. In the
Table 1, q is the joint position.

2.2 Multi-objective trajectory planning modeling

When the robotic arm goes from the start point to the end in the task space, a series of key points are obtained by inverse
kinematics calculation, "Qs = {("gs, ts), (M =1,2... , s =0,1...n)}, mis the number of robotic arm joints and s is the

Artificial Potential Field

Fig 1. Path planning for the 6-DOF robotic arm.

https://doi.org/10.1371/journal.pone.0324567.9001

Table 1. The joint position sequence of robotic arms.

Joint position ql(°)

1 2 3 4 5 6
Pos, -20.17 -8.05 89.70 8.39 -90.05 -69.88
Pos, -34.62 -4.67 104.30 -9.58 -90.05 -55.43
Pos, -37.27 0.75 100.92 -11.62 -90.05 -52.77
Pos, -49.45 8.65 97.50 -16.10 -90.05 -40.60
Pos, -76.38 8.06 97.15 -15.17 -90.05 -13.67
Pos, -80.19 13.02 89.92 -12.89 -90.05 -9.86
Pos, -93.38 14.49 81.42 -5.87 -90.05 3.33
Pos, -109.56 5.76 77.03 7.26 -90.05 19.51

https://doi.org/10.1371/journal.pone.0324567.t001
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key point, Mf(t) = ™qs is obtained through the robotic arm trajectory planning. The trajectory of the robotic arm motion is
constructed using k-times B-splines curve [32].

B(t) = 3 dFyu(t
j=0 (1

Where (] is the coordinates of the control point, Fj,(t) is the k-times B-spline basis function. B(f) refers to the joint
position at moment t, which is defined by the control point d; and the node vector T = [ty, t1, ..., ;1 24] together, and the
canonical definition domain: f{y =t = ... =t = 0, 1k = bpok+1 = ... = throk = 1. By inverting the control vertices of the
B-spline curve, so that each robotic arm joint passes through the key point Mq,. Additionally, the segmented connec-
tion points of the trajectory curve correspond to the key nodes, with the starting point and end point being the same.
The time node ¢; is normalized according to the cumulative chord length parameterization method to obtain the inner
node value.

Aty
fo=toy + L p=k+1,..n+k-1
> A
=0
Atj: j+1—tj(j:0,1,...,n—1) (2)

Thus, n-1 equations satisfying the interpolation conditions are obtained as follows.

i+k
B(t,) = Z diFjk(ty) =" Qs
j=i
tp € [tk tin] (3)

Therefore k-1 additional equations need to be added for solving. Assuming that a 7th-order B-splines curve is used with
inputs of velocity, acceleration and jerk at the start and end points, the additional equations are as follows:

Bil/(t7) = Vstart Bt/(t7+n) = Vend,

B/”(t7) = Qstart, Bm(t7+n) = dend,

B (t7) :jstam B (t7+n) :jend- (4)
Where, B'(t),B" (), B” (t) are the 1~3 derivatives of the B-spline curve respectively, and are the velocity, acceleration and
jerk of each joint in turn. The derivatives of each order can be derived according to the de Boer recurrence formula:

o
B(t)= > dFr(t)tp <t<tpy

J=p—k+r
dj r=20
o /e
G=qkti-ng r=12.
j:p—k—|—r (5)

ris the order of derivation and d/’ denotes the formula for the rth order derivative of the jth control node, which in turn
yields n+k linear equations. By solving the equations, the control vertex vectors of the B-spline trajectory curves for each
joint are obtained. Based on the normalized time, the position g, passed by each joint at the moment {_ can be obtained.
The trajectory kinematic constraints are converted into constraints on the B-spline control points as follows:
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‘d}nj‘ < Vamaxj = 1, 2.0 + k=1
max
d?

mj

S ammax,j: 1, 2...!7-‘1- k_l

max

<jmmax,j =1,2..n+ k-1

ml

(6)

where, d,ln/, dej, d,3nj denotes the jth control vertex of the mth joint of the velocity, acceleration, and jerk trajectory curve,
respectively. f; is the movement time, which measures the efficiency of the robotic arm operation. f; is the average
acceleration, measuring the energy consumption of the robotic arm. f; is joint jerk, which measures the smoothness
of manipulator motion. It is the objective function with optimal efficiency, optimal energy consumption, and optimal
impact.

S

S
min f; = Z At = Z (ts+1 —ts)

s=0 s=0

o
[
NE]
=
S
3
Q
[V)
S
[
NIE
=
S
)
vl\')
Q.
~

m=1 m=1

m T m e 2

= > (/i ymedt= 3\ [ (G) ot

m=1 m=1 (7)

With At = t1 —tx as the optimization variable, the ‘efficiency-energy-impact’ objective function is established under the
above constraints, and the feasible solution is found by the multi-objective optimization algorithm. In order to verify

the real-time performance of the algorithm, the time spent on the B-spline trajectories of different orders is tested, and the
time spent is 27.785s, 53.1529s, and 78.4184s for 10° operations on 3, 5, and 7 B-spline values respectively under the
same test platform, and the algorithm times are all in the same order of magnitude (10%s), so that the increase in order
has little effect on the real-time performance of the system.

3. Multi-strategy improved LNSGA-II algorithm
3.1 Original NSGA-II algorithm

A fast and Elitist Multi-objective Genetic Algorithm (NSGA-II) was first published by Kalyanmoy Deb in 2002 [33]. NSGA-II
involves three key stages: non-dominated sorting, crowding degree calculation, elite selection iteration and crossover and
mutation.

3.1.1 Non-dominated sorting. Find the non-dominated optimal solution of the current population and assign rank 1.
The individuals of rank 1 are removed from the population, and new non-dominated solutions are found in the remaining
individuals, which are assigned rank 2. The non-dominated sorting process of the population is repeated until all
individuals are set corresponding ranks and their crowding distances are calculated.

3.1.2 Elite selection. The selection process makes the optimization towards the Pareto optimal solution and makes
the solution uniformly dispersed. After sorting and crowding distance calculation, each individual i in the population gets
two attributes, the non-dominated ordinal number i and the crowding distance i,. The round-robin selection operator
is used, that is, two individuals are randomly selected. Wheni_ <j . ori . =j . andi, >j, iindividual is better than j
individual. If the non-dominated ordering of the two individuals is different, take the individual with the lower order number;
if the two individuals are at the same level, take the individual with the surrounding i ,>j,. Where j, and j  , are denoted as
the nondominant ordinal number and crowding distance of the jth population individual.

3.1.3 Crossover and mutation. Crossover operation is performed on the parent individual, that is, for a given
random crossover point, the parts of the two parent individuals on both sides of the crossover point are exchanged.

All the individuals of the parent P, and the offspring Q, are synthesized into a unified population R, and the number

rank
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of individuals of R, is 2N. The population R is quickly non-dominated sorted and the local crowding distance of each
individual is calculated. Individuals are selected one by one according to the level of hierarchy. When the number of
individuals reaches N, a new parent population P, is formed. On the basis of the new parent population P, ,, a new round
of selection, crossover and mutation is started to form a new offspring population Q,,,.

The multi-objective trajectory planning problem of manipulator joints is essentially a constraint problem. In order to
speed up the efficiency of NSGA-II, this paper first designs an infeasible degree to deal with multi-objective constraint
problems. Furthermore, due to the random generation of initial individuals in NSGA-Il, a common issue emerges
where individuals cluster in specific regions, leading to limited population diversity. Therefore, this paper proposes
an innovative mutation chaos strategy for population initialization. Lastly, addressing the sensitivity of NSGA-II to the
iteration count, under limitless computation time, NSGA-II consistently converges to the optimal solution. This paper
proposes a dynamic goal-oriented development to expedite individual development towards the target solution in the
later iteration phase.

t+17

3.2 Proposed LNSGA-II algorithm

3.2.1 Design of infeasibility. In dealing with constraint problems, the conventional method is to transform the
transboundary solution into the boundary extreme point. This paper designs a kind of infeasibility degree of the target
solution to address the constraint, which is defined as the sum of squares of all conflicting constraint values.

B
¥(xi) = 3 [Ga(xi)]” + X [minf0, Ty(x)}]”
a=1 b=1 (8)
Here, a and b represent the count of equality and inequality constraints, respectively. The infeasible degree refers to the
distance between the current solution and the feasible region. A solution x; is considered feasible when its infeasibility
degree is 0. The larger the infeasible degree is, the farther x; is from the feasible region. Additionally, an infeasible thresh-

old is set to determine whether x. is accepted for the next genetic operation.

_ Iter_
W = VMaxiter 9)

Here, w is the annealing factor, which increases with the increase of the number of iterations. Iter and Max-iter represent
the current and maximum iterations, correspondingly. Npop is the population size. When the infeasibility of the current solu-
tion is less than the threshold, the solution is accepted, otherwise it is rejected. To maintain a consistent population size,
any rejected solutions are substituted with the solution with the lowest infeasibility.

3.2.2 Mutation chaos strategy. Random generation of NSGA-II individuals during the initial stage results in limited
population diversity, significant boundary clustering, and reduced individual variability. Chaos is mathematically defined
as the randomness generated by a simple deterministic system [34,35]. Due to the ergodicity of chaos, chaos-based
mapping is used to solve the problem of premature convergence of optimization algorithms [36—39]. For the present, it
is often used by scholars as Logistic mapping, Sinusoidal mapping, etc., and the specific expressions of the above two
chaotic mappings are shown in Eq. 10. Where a and yu are the system parameters, when a=4, the Logistic chaotic map
shows complete chaotic behavior within [0, 1]. Similarly, when the value of u is equal to 1, the dynamics of the sinusoidal
chaotic map shows complex and chaotic characteristics.

Br=a- fr1-(1—Pr1)
Ut:M'Sin(ﬂ'O't_1) (10)

PLOS One | https://doi.org/10.1371/journal.pone.0324567 May 29, 2025 7127




PLO\Sﬁ\\.- One

The histograms and frequency plots of the Logistic chaotic mapping and Sinusoidal chaotic mapping after 5000 cycles
are displayed in Fig 2. From Fig 2a, the histogram of the Logistic mapping shows a distribution pattern with higher at both
ends and lower in the middle. The frequencies between [0, 0.02] and [0.95, 1] are as high as 700, while the frequencies
between [0.1, 0.9] are only around 200, indicating that in this mapping, the generated values are more concentrated near
0 and 1 and less likely in the middle. Meanwhile, the distribution of the point cloud in Fig 2d shows obvious boundary
aggregation, especially near the ends (such as 0.1 and 0.9) appearing high density of concentrated regions. The histo-
gram of Sinusoidal chaotic mapping shows a non-uniform distribution, with a frequency number as high as 700 between
[0.9, 1], which appears a higher concentration, as in Fig 2b. The scatter plot of the Sinusoidal map in Fig 2e also shows

a certain boundary aggregation phenomenon, with concentrated values of [0, 0.1] and [0.9, 1], and a partial blank and
loosely-distributed distribution between [0.6, 0.8]. In view of this, a new mutation chaotic strategy is proposed in this
paper to make up for the shortcomings of Logistic and Sinusoidal chaotic map, and then improve the lack of diversity and
uneven distribution of the original population of NSGA-II. The expression of the mutation chaos strategy is given in Eq. 11.
In the formula, 5, o1, is the original sine mapping, mod is the complementary function.

B =4 Bna - (1-Pu1)
op = 0.99 - Sin(7r . O’tg_l)
Kt = mod(ﬁ,l —i—UtQ,l) (11)

In Fig 2c, the histogram distribution of the mutated chaotic strategy is more uniform, and the frequency is concentrated
around 250. Compared with the Logistic and Sinusoidal mapping, there is no obvious concentrated area. From Fig 2f, it
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Fig 2. Sinusoidal chaotic map and its variant.

https://doi.org/10.1371/journal.pone.0324567.9002
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is found that the mutation chaos strategy has better uniformly distributed random values, and the boundary aggregation
phenomenon disappears, making the initialized individuals random and uniform.

3.2.3 Dynamic goal-oriented development. NSGA-II individuals evolve through continuous cross and mutation to
maintain population diversity. Given adequate time, satisfactory solutions will always be obtained by preserving superior
individuals. Therefore, NSGA-Il is greatly affected by the number of iterations, and there is a timeliness problem. This
paper proposes a dynamic goal-oriented development method to accelerate the evolution of NSGA-II individuals to the
Pareto front. Here, a dynamic adjustment factor r is used, which not only ensures the population diversity of crossover and
mutation, but also uses goal-directed development to speed up the convergence of the algorithm. In the formula, Ms is a
custom constant.

Ms - Iter
fo=Ms— (Max—iter)
r=2-r.-rand—r, (12)

As shown in Fig 3, after the non-dominated sorting and crowding degree calculation of individuals, the second-ranked
individual with the largest crowding degree begins to evolve toward the first-ranked individual by generating a random
angle from the connection with the target point. Subsequently, the following individuals evolve towards higher-ranked indi-
viduals, thereby reducing the algorithm’s calculation time and iteration count.

Bs = |rand - Bpest(t) = B(t)|

B(t+1) = Bpest(t) —rc - rand - s - cos(0) (13)
4_
TNy
3.5_ N
{ A /‘
/“I\ . g9 7 \\
A —_ \
~ | l‘ |
3 \e;/ V;\f) \\%,\\
e&//”/\\ ":_rf% r/\
[
E 25‘ \\r/ //// \\ e\‘_/
e I.D/ )
\ /
/’T) Rt g N
2+ o 07 ) e "
L 6\// !-\;Er )
o
15~
1 L L I | q i
1 15 2 25 3 35 4
F1

© Rank=1 ¢ Rank=2 O Rank=3 % Rank=4

Fig 3. Dynamic goal-oriented development strategy.

https://doi.org/10.1371/journal.pone.0324567.9003
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Among them, Bpest(t) is the top-ranked individual of the current iteration, 5(t) is the current low-ranked individual with large
crowding degree, and 6 is the angle randomly selected by roulette wheel.

In summary, firstly, the constraint problem is solved by designing the infeasible degree, then the mutation sine chaotic
map is used to initialize the population individual, and finally the dynamic goal-oriented development is used to accelerate
the iterative convergence of the individual, forming a new LNSGA-II algorithm. The specific process of applying LNSGA-II
to solve the multi-objective trajectory optimization problem is shown in Fig 4.

Fig 4 depicts a multi-objective trajectory planning model for the manipulator. Firstly, the time and sequence of the key
nodes of the motion path are calculated by APF in 2.1 to model the manipulator’s trajectory. Then, the LNSGA-II individ-
ual is initialized, and the time of the control node of the 7-order B-splines curve is taken as the independent variable. The
optimization of ‘efficiency-energy-impact’ is defined as the multi-objective function, initiating iterative calculations until the
termination condition is met. Finally, the time of the control node is output to complete the multi-objective trajectory plan-
ning of the manipulator.

| = ! Multi-objective ‘

N trajectory planning

e m—— e .. | Initialize Population Using eq.11
L2

Calculate the multi-objective function
1.Maximum efficiency
2.Lowest energy consumption
3.Minimum impact

L e
I w-iter

ot ¢0)
: Pusiion 1 1 3 4 § 6
I Psy | DT | 805 80 | 839 | 9005 | 6088
; Posy | 462 | 467 | 1M | 95 | 005 | 58
I Posy | 3727 | 075 | 10092 | -1l62 | 4005 | T

Yes
| Non-dominated sort |

Posy ‘-XW 1302 | 890 | 1289 | 005 | 9%

| Path locati - -
I _rahjocation | Eripine cuve . - | Crowding degree calculation |

| Calculate r using eq.12 |

o] % [Ve
<>

Selective v
Updgtmg 1qd1v1dual
locations using eq.13

[

Mutation ¢

—| Calculate the multi-objective function |

Return the top-ranked individual
and its objective function

»i

Fig 4. Trajectory planning model based on LNSGA-II.

https://doi.org/10.1371/journal.pone.0324567.9004
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4. Numerical experiment and trajectory planning experiment
4.1 Numerical experiment

In this paper, LNSGA-II is compared with MODE [40], MOGWO [41], MOPSO [42], NSGA-Il and NSGA-III [43] through the
test set CEC2009. The CEC2009 test set has been used by a wide range of scholars to test the numerical performance of
multi-objective optimization algorithms [44,45], and the specific functions and code have been made publicly available at
https://github.com/P-N-Suganthan/CEC2009-MOEA. Table 2 shows the function names of CEC2009.

The performance of the multi-objective algorithms is evaluated using Inversion Generational Distance (IGD) [47], Spac-
ing (SP) [48] and Maximum Spread (MS) [49], which are mathematically expressed as follows:

= d?
IGD = +=;
K 2
SP=,/-L x> (d-d)
i=1
H
MS = /> max(d(aj, b))
=1 (14)

Where di = min([fi'(x) =/ (x)| + |£'(x) _fQI(X)D, i,j=1,2..., f, f,are the objective functions. a, and b, represent the max-
imum and minimum values of the ith objective, and H represents the number of objective functions. The experiment is
carried out under Windows 11,64-bit operating system, and the MATLAB version is R2023a. The experimental parameters
are set as Table 3 and the N is 30, the max-iteration is 200, the cycle is 30 times, and the variable dimension is 10.

Tables 4-6 is the statistical data of LNSGA-Il and MODE, MOGWO, MOPSO, NSGA-II, NSGA-IIl in UF1-10, including
the three evaluation indexes of IGD, SP, and MS. It can be seen from the table that LNSGA-II occupies the first place
in IGD and MS, and only lags behind NSGA-IIl in SP. For example, the IGD of LNSGA-II in UF3 is 0.2690, which is less
than 0.3803 of NSGA-IIl, and the average value ranks first. However, its standard deviation of 0.0461 is larger than that of
0.0411 of NSGA-IIl, and it ranks the second, and the difference between the two is small. In UF8, the average SP value of
NSGA-IIl is 0.0862 and the standard deviation is 0.0282, which is far more than 0.4754 and 0.2709 of LNSGA-II, and then

Table 2. CEC2009 test set.

CEC2009 [46] No

Unconstrained Problem Function (UF) 1-7 Bi-objective function
810 Triple objective function

Constrained Problem Function (CF) 1-7 Bi-objective function
8-10 Triple objective function

https://doi.org/10.1371/journal.pone.0324567.t002

Table 3. Experimental parameter settings.

Comparison algorithm Parameter settings

MODE Scaling factor=0.5, Crossover probability=0.2
MOGWO B=4,y=2

MOPSO w=04,c,=c,=2

NSGA-II Crossover=0.9, mutation=0.5

NSGA-III Crossover=0.5, mutation=0.5

LNSGA-II Crossover=0.9, mutation=0.5

https://doi.org/10.1371/journal.pone.0324567.t003
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Table 4. Statistical data of the IGD on UF1-10.

IGD UF1 UF2
MODE |MOGWO | MOPSO | NSGA-II |NSGA-lI |LNSGA-I |MODE |MOGWO |MOPSO | NSGA-II |NSGA-ll |LNSGA-I
Mean |0.0837 |0.1106 0.0997 0.0859 0.1191 0.0418 0.0257 | 0.0546 0.0728 0.0337 0.0606 0.0324
Std 0.0243 | 0.0192 0.0080 0.0276 0.0456 0.0035 0.0030 | 0.0068 0.0083 0.0093 0.0323 0.0069
UF3 UF4
Mean |0.4281 |0.4268 0.4722 0.4400 0.3803 0.2690 0.0502 | 0.0732 0.0571 0.0508 0.6644 0.0426
Std 0.0547 | 0.0889 0.1630 0.0660 0.0411 0.0461 0.0038 | 0.0077 0.0039 0.0043 0.5910 0.0021
UF5 UF6
Mean |0.6392 |1.1344 0.7547 0.5862 0.3984 0.5640 0.8649 | 1.0425 0.9334 0.5901 0.5635 0.3864
Std 0.0624 0.3179 0.2652 0.2121 0.0924 0.1671 0.1004 | 0.3300 0.1739 0.0912 0.1184 0.1168
UF7 UF8
Mean |0.3947 |0.4140 0.4802 0.4323 0.4220 0.2831 0.2178 | 0.4758 0.3122 0.2093 0.7945 0.2010
Std 0.0538 | 0.0790 0.1533 0.0683 0.0562 0.0401 0.0552 | 0.4035 0.0455 0.0326 0.2989 0.0155
UF9 UF10
Mean |0.1899 |0.2887 0.4451 0.2411 0.2658 0.2304 1.2792 | 2.1296 2.8343 0.8819 0.8328 0.5209
Std 0.0219  0.0868 0.0878 0.0765 0.0848 0.0494 0.2335 | 0.5858 0.7249 0.3131 0.1867 0.0623
Rank |2 6 5 4 3 1
https://doi.org/10.1371/journal.pone.0324567.t004
Table 5. Statistical data of the SP on UF1-10.
SP UF1 UF2
MODE |MOGWO |MOPSO | NSGA-ll |NSGA-ll |LNSGA-I |MODE |MOGWO |MOPSO | NSGA-Il |NSGA-lll |LNSGA-I
Mean |0.2255 |0.0463 0.0951 0.2574 0.0241 0.0366 0.0249 | 0.0663 0.0497 0.0598 0.0376 0.0146
Std 0.0635 | 0.0429 0.0924 0.0898 0.0300 0.0098 0.0095 | 0.0294 0.0324 0.0194 0.0215 0.0056
UF3 UF4
Mean |0.1218 |0.2081 0.1518 0.1375 0.0588 0.0803 0.0207 | 0.0290 0.0122 0.0279 0.1949 0.0178
Std 0.0736 | 0.2423 0.1665 0.0675 0.0607 0.0164 0.0050 | 0.0035 0.0029 0.0038 0.1088 0.0053
UF5 UF6
Mean |0.4880 |0.2962 0.3678 0.4618 0.1418 0.1192 0.8242 | 0.2511 0.3100 0.8045 0.1396 0.0982
Std 0.1590 | 0.2256 0.2538 0.1393 0.0342 0.1150 0.3346 | 0.1701 0.3153 0.2901 0.0402 0.1076
UF7 UF8
Mean |0.1057 |0.2865 0.1638 0.1145 0.0552 0.0829 0.1235 | 0.1445 1.1833 0.5743 0.0862 0.4754
Std 0.0372 | 0.3002 0.1600 0.0406 0.0678 0.0151 0.0608 | 0.0763 0.6042 0.5638 0.0282 0.2709
UF9 UF10
Mean |0.1163 |0.1713 1.2314 0.7822 0.0795 0.7899 0.9300 | 0.7422 3.8322 0.8514 0.1559 0.4822
Std 0.0320 0.0813 0.5506 0.4350 0.0653 0.5000 0.9123 | 0.2368 1.9838 0.6286 0.1234 0.1309
Rank |4 5 3 6 1 2

https://doi.org/10.1371/journal.pone.0324567.t005

ranks first. Fig 5 is the visualization result of the normalized statistical data of the above Tables 4—6, in which IGD and SP

are the smaller the better, while MS is the opposite.
Fig 6 shows the set of pareto solutions of the six algorithms on UF1-10. The figure shows that compared with NSGA-II,

the solution set of LNSGA-II is closer to the true pareto frontier and lags behind NSGA-III, which illustrates the competi-

tiveness and advantage of LNSGA-II in solving unconstrained optimization problems.

Tables 7-9 shows the statistical data of CF1-10 of LNSGA-Il and MODE, MOGWO, MOPSO, NSGA-II and NSGA-III
in CEC2009, including the mean value and standard deviation of the three evaluation indicators of IGD, SP and MS. The
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Table 6. Statistical data of the MS on UF1-10.
MS UF1 UF2

MODE |MOGWO |MOPSO | NSGA-ll |NSGA-ll |LNSGA-l |MODE |MOGWO |MOPSO | NSGA-II | NSGA-ll |LNSGA-I
Mean |0.6549 |0.9538 0.8707 1.2447 1.1632 1.2430 0.0249 | 0.7791 0.7556 0.7263 0.7458 0.9162
Std 0.0813 | 0.1787 0.1900 0.0885 0.1820 0.0672 0.0095 | 0.0941 0.0955 0.1509 0.0869 0.1094
UF3 UF4
Mean |0.5608 |0.7320 1.4599 0.7435 1.1702 1.5576 0.7350 |0.8181 0.3469 0.6654 0.6555 0.9086
Std 0.0630 | 0.0820 0.3971 0.0746 0.1380 0.4430 0.0802 |0.1338 0.0486 0.0633 0.0530 0.1471
UF5 UF6
Mean |0.6231 |0.9262 0.9049 0.9264 1.1645 0.9518 0.6669 | 0.9131 0.8725 1.1004 1.1006 1.1289
Std 0.0599 | 0.1463 0.1785 0.0819 0.1448 0.0790 0.0586 | 0.1500 0.1391 0.0993 0.1056 0.1539
UF7 UF8
Mean |0.5742 |0.7156 1.4416 0.7207 1.1488 1.5383 0.6247 | 0.6511 0.9230 0.9036 0.8518 0.9466
Std 0.0633 | 0.0595 0.3591 0.0616 0.1468 0.4247 0.0634 | 0.0903 0.1795 0.1608 0.0859 0.1866
UF9 UF10
Mean |0.6564 |0.6020 0.9163 0.9542 0.8669 0.9634 0.5570 | 0.6741 0.5951 0.5638 1.0465 0.8505
Std 0.0703 |0.0884 0.1654 0.1266 0.1359 0.1097 0.0688 | 0.1075 0.1315 0.1073 0.0911 0.1591
Rank |6 5 2 4 3 1

https://doi.org/10.1371/journal.pone.0324567.t006

normalized visualization results are shown in Fig 7. In CF6, the MS of LNSGA-Il is 1.1707, ranking first, far exceeding the
0.6648 of MODE. The IGD of NSGA-IIl in CF10 is 0.5135, which is more than 0.9630 of LNSGA-II, ranking first. At the
same time, MOPSO'’s 2.6770 ranks last. In general, NSGA-IIl ranks first in the CF1-10 solving process, while LNSGA-II is
followed.

Fig 8 is the Pareto solution set of the above algorithm in CF1-10. It can be seen from the figure that LNSGA-II is obvi-
ously better than NSGA-II, and it is closer to the real Pareto frontier under the same experimental conditions, indicating
the effectiveness and success of the improved strategy in this paper. NSGA-Ill is superior to LNSGA-II only by a slight
advantage in the evaluation index, which highlights that LNSGA-II is highly competitive in constrained multi-objective opti-
mization problems.

4.2 Trajectory planning experiment

In order to meet the actual operation requirements of the manipulator, trajectory planning needs to ensure fast motion
while avoiding the wear of the manipulator caused by motion impact and the reduction of trajectory accuracy. Accordingly,
the shortest movement time, the minimum energy consumption of the overall joint and the smooth control in the motion
performance of the manipulator are taken as the optimization objectives. The 7-order B-splines curve is used to interpo-
late the trajectory to ensure the high-order continuity of the manipulator trajectory and improve the smoothness of the
trajectory. Simultaneously, a multi-objective optimization algorithm is applied to achieve a well-distributed set of Pareto
solutions.

Taking the 6-DOF robotic arm as the experimental object, the sequence of joint positions is obtained through 2.1, as
shown in Table 1. Among them, the kinematic and torque constraints of each joint are shown in Table 10. In the table,
Vmax, @max, Jmax, Tmax are the maximum velocity, acceleration, jerk and torque of the joint respectively.

Fig 9 shows the Pareto front of the multi-objective trajectory planning of the manipulator joint. The optimal energy
consumption and impact optimal performance are in the same direction, which is opposite to the efficiency optimal perfor-
mance. The optimization results of the six points of A-F are shown in Table 11.
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Fig 5. Visualization result of IGD, SP and MS on UF1-10.

https://doi.org/10.1371/journal.pone.0324567.9005

In Fig 9, the Pareto front of LNSGA-II is significantly better than other algorithms, and better efficiency, energy con-
sumption and impact are obtained. Table 12 is the node vector of the B-splines curve after the optimal control of the five
algorithms at the A-F frontier point.

Fig 10 shows the multi-objective trajectory planning results of the six algorithms at six points A-F on the Pareto front,
showing the optimized angle, velocity, acceleration and jerk curves, respectively. The following conclusions can be drawn
from the figure:

(1) From the angle curve of the first column, (a) and (i) indicates that MODE and MOPSO exhibit insufficient smoothness
in their angle curves. There are inflection points in the motion angle, which will cause jitter during the motion of the
manipulator. The angle curves of the other three algorithms are smooth and continuous.

(2) In the velocity, acceleration and jerk curves of columns 2—4, MOPSO, NSGA-II and LNSGA-I| all meet the basic
requirements of manipulator joint trajectory planning: uniform, smooth and continuous. Despite meeting the basic
criteria, MOPSO and NSGA-II lag significantly behind LNSGA-II in multi-objective function optimization, impacting the
precise attainment of the ‘efficiency-energy-impact’ goal.
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Table 7. Statistical data of the IGD on CF1-10.
IGD CF1 CF2
MODE |MOGWO | MOPSO | NSGA-II |NSGA-ll |LNSGA-I |MODE |MOGWO |MOPSO | NSGA-Il |NSGA-ll |LNSGA-I
Mean |0.0165 |0.0149 0.0260 0.0160 0.0220 0.0158 0.0997 |0.1611 0.0922 0.0989 0.1993 0.0890
Std 0.0035 |0.0031 0.0019 0.0012 0.0039 0.0013 0.0380 | 0.0363 0.0115 0.0499 0.0958 0.0262
CF3 CF4
Mean |1.0416 |1.4533 1.4076 0.7843 0.4465 0.6237 0.1206 | 0.2960 0.4430 0.1392 0.1657 0.1271
Std 0.1168 | 0.6427 0.3139 0.1370 0.0777 0.2519 0.0132 | 0.2439 0.1688 0.0423 0.0588 0.0330
CF5 CF6
Mean |0.8616 |1.7447 2.8608 0.9253 0.3074 0.6838 0.0368 | 0.1238 0.2417 0.0718 0.1301 0.0617
Std 0.3256 | 0.6620 0.9192 0.2849 0.0730 0.1367 0.0058 | 0.0510 0.0676 0.0207 0.0640 0.0111
CF7 CF8
Mean |1.1241 |2.7178 2.9203 0.6411 0.3331 0.6110 0.2720 | 0.7376 0.7129 0.2611 0.6558 0.2594
Std 0.2464 |0.8117 1.0566 0.1942 0.1002 0.1739 0.0366 | 0.8995 0.1920 0.0483 0.3324 0.0326
CF9 CF10
Mean |0.2354 |0.4436 0.3423 0.2378 0.8721 0.2209 1.2419 | 2.0560 2.6770 0.9997 0.5135 0.9630
Std 0.0392 | 0.2587 0.0626 0.0318 0.3062 0.0188 0.2315 | 0.5706 0.6037 0.3805 0.0948 0.2607
Rank |3 5 4 6 1 2
https://doi.org/10.1371/journal.pone.0324567.t007
PLOS One | https://doi.org/10.1371/journal.pone.0324567 May 29, 2025 151727



https://doi.org/10.1371/journal.pone.0324567.g006
https://doi.org/10.1371/journal.pone.0324567.t007

PLO\S\%- One

Table 8. Statistical data of the SP on CF1-10.

SP CF1 CF2
MODE |MOGWO | MOPSO | NSGA-II |NSGA-lI |LNSGA-I |MODE |MOGWO |MOPSO | NSGA-II |NSGA-ll |LNSGA-I
Mean |0.0208 |0.0130 0.0102 0.1173 0.0349 0.1179 0.2723 | 0.0750 0.0715 0.2747 0.0168 0.0376
Std 0.0053 | 0.0026 0.0014 0.0282 0.0142 0.0404 0.0681 | 0.1496 0.0494 0.0839 0.0202 0.0125
CF3 CF4
Mean |0.8548 |0.3199 1.5455 1.0140 0.0936 0.2061 0.0899 | 0.0948 0.8473 0.6359 0.0134 0.5527
Std 0.2431 | 0.2787 1.4758 0.3702 0.1021 0.1021 0.0523 | 0.0759 0.6722 0.2562 0.0258 0.1836
CF5 CF6
Mean |0.5174 |0.4663 2.2951 0.5449 0.0328 0.2273 0.0396 | 0.0328 0.7128 0.1812 0.0426 0.1912
Std 0.1571 | 0.4905 2.2744 0.2058 0.0728 0.0733 0.0117 | 0.0269 0.6586 0.1046 0.0318 0.0963
CF7 CF8
Mean | 1.0564 |0.8127 1.9341 1.1054 0.2828 0.1162 0.2247 | 1.0184 2.3323 0.8309 0.0895 0.3935
Std 0.3398 | 0.7263 1.5152 0.3769 0.0585 0.2145 0.0869 | 1.0064 1.0267 0.6567 0.0540 0.2705
CF9 CF10
Mean |0.1156 |0.1455 1.0037 0.4441 0.4325 0.0888 1.0576 |0.6125 3.7814 1.2329 0.1581 0.4711
Std 0.0275 | 0.0888 0.5505 0.4093 0.3069 0.0422 0.8035 | 0.2520 1.4921 1.3880 0.1023 0.1036
Rank |3 5 4 6 1 2
https://doi.org/10.1371/journal.pone.0324567.t008
Table 9. Statistical data of the MS on CF1-10.
MS CF1 CF2
MODE |MOGWO | MOPSO | NSGA-II |NSGA-ll |LNSGA-I |MODE |MOGWO |MOPSO | NSGA-II |NSGA-ll |LNSGA-I
Mean |0.7075 |0.8258 0.2559 1.0039 0.7249 1.0045 0.6701 | 0.9352 0.8294 1.2589 1.1147 1.2703
Std 0.0715 | 0.1501 0.0425 0.0816 0.0947 0.0967 0.0804 | 0.1907 0.1490 0.0909 0.1377 0.0848
CF3 CF4
Mean |0.7546 |0.9583 1.1093 1.0947 1.1320 1.1037 0.6312 | 1.0615 1.1130 1.2206 1.0692 1.2288
Std 0.0770 | 0.1660 0.2931 0.0989 0.1472 0.0983 0.1119 | 0.1947 0.2698 0.1135 0.0984 0.1060
CF5 CF6
Mean |0.6386 |1.0045 0.7531 0.7628 1.0218 1.0666 0.6648 | 0.9242 1.0031 0.9667 0.9205 1.1707
Std 0.0759 | 0.1625 0.0594 0.0605 0.2684 0.1315 0.0981 | 0.1463 0.0999 0.1035 0.1243 0.2760
CF7 CF8
Mean |0.6397 |0.9130 0.9176 0.9130 1.1947 1.0025 0.6723 | 0.6752 0.8906 0.8564 0.8829 0.9164
Std 0.0542 | 0.1687 0.0744 0.0827 0.2460 0.2163 0.0898 | 0.1194 0.1770 0.1399 0.0984 0.1738
CF9 CF10
Mean |0.6348 |0.6631 0.8770 0.8646 0.8810 0.9079 0.5316 | 0.6307 0.5903 0.6135 0.8802 1.0353
Std 0.0598 | 0.0798 0.1902 0.1955 0.0761 0.1619 0.0429 | 0.0848 0.1099 0.1657 0.1341 0.1130
Rank 6 5 3 4 2 1

https://doi.org/10.1371/journal.pone.0324567.t009

(3) From Figures (b)-(d), MODE exhibits sharp corners and sudden changes in velocity, acceleration, and jerk curves at
inflection points, potentially inducing undesirable impact fluctuation and motor damage.

(4) Analysis of Figures (f)-(h) demonstrates that MOGWO initially experiences minimal fluctuations in speed, accelera-
tion, and jerk during trajectory planning. However, sharp curve fluctuations at 6s result in abrupt changes impacting
the manipulator’s speed, acceleration, and jerk. This is derived from the fact that when MOGWO optimizes the node
variables of the B-spline curve, the subsequent time nodes are too compact and change less.
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Fig 7. Visualization result of IGD, SP and MS on CF1-10.

https://doi.org/10.1371/journal.pone.0324567.9007

(5) Figures (r)-(t) show that the velocity and acceleration curve of NSGA-IIl change dramatically at 5s, because At is 0.03
and the change is too small. Similarly, the jerk curve of the 7s shows sharp changes.

Trajectory planning involves using a 7-order B-splines curve, with LNSGA-II adopted for multi-objective optimization
of the B-spline curve node vector. The velocity, acceleration and jerk of each joint of the manipulator in the start and stop
stages are 0. The overall joint motion trajectory is smooth and continuous, which reduces the vibration of the manipulator
and effectively protects the key components such as motor and reducer.

Taking the time of the control node of the 7th-order B-spline curve as the optimization variable, this paper adopts the
LNSGA-II algorithm to solve the multi-objective function of “optimal efficiency, energy consumption, and impact”, and
completes the multi-objective trajectory planning of the robotic arm. The experimental results show that compared with
similar optimization algorithms, the LNSGA-II algorithm is more successful. In this paper, the order of the B-spline curve is
chosen because in the same experimental platform, the computation time of the B-spline curves of order 3, 5 and 7 are in
the same order of magnitude, so a higher order is chosen. To ensure the reliability of the study, multi-objective trajectory
planning experiments were conducted using the LNSGA-II algorithm to optimize the B-spline curves of orders 3 and 7,
respectively. Fig 11 shows the comparison experiments of 3rd and 7th order B-spline curves.
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Table 10. Joint constraints of the 6-DOF robotic arm.
NO. Joint Voo a_ .. Joan T, (N-m)

(()s) (()s? (()s?)

1 120 45 90 327
2 120 40 80 167
3 180 75 70 167
4 180 70 55 20
5 180 20 60 10
6 180 80 60 10

https://doi.org/10.1371/journal.pone.0324567.t010

As can be seen from Fig 11, the third-order B-spline curve obviously reduces the angular velocity, angular acceleration,
and jerk of joint 1, but leads to sharp changes in the values related to angular velocity, angular acceleration, and jerk of
joints 2 and 4, which may be the result of the trade-off between the third-order B-spline and the seventh-order B-spline
under different objective constraints. Table 13 shows a comparison of the Pareto solution set results for two different
orders of B-spline curves (bold indicates the best result).

The running time of the third-order B-spline curve is 3046s, which is smaller than the 3387s of the seventh-order
B-spline, which is obvious that the increase in the order of the B-spline curve inevitably increases the computation time of
the algorithm, and the difference between the two running times is extremely small. Despite the increase in computation
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Table 11. Optimization results of Pareto frontier points.

Multi-objective optimization algorithm Optimal Results f, (s) f, f, (()s?)
(()s?)

LNSGA-II A 5.003 31.1462 6.4466
MODE B 7.0699 33.9914 19.1328
MOPSO C 22.1769 77.1118 83.2122
NSGA-II D 12.6863 34.8764 102.2870
NSGA-III E 12.7176 33.2282 97.7038
MOGWO F 25.1574 23.2782 28.8125

https://doi.org/10.1371/journal.pone.0324567.t011

Table 12. Node variables after Pareto front point optimization.

Vector of time nodes of the joint trajectories The nodal vector of the B-spline curve
MODE At =10.29,2.60,4.25,0.34,7.46,2.50,3.94] t=10,0,0,0,0,0,0,0,0.0135,0.1353, 0.3339, 0.3498, 0.6989, 0.8157,1,1,1,1,1,1,1,1]
MOGWO | At = [3.04,2.76,1.02,0.26,0.04,0.08,0.07] t=10,0,0,0,0,0,0,0,0.4177,0.7971,0.9375, 0.9375,0.9794,0.9902,1,1,1,1,1,1,1,1]
MOPSO | At= [5.49,4.68, 4.60, 3.13, 2.80, 3.45, 4.89] t=10,0,0,0,0,0,0,0,0.2509, 0.4647,0.5155, 0.6010, 0.7570,0.7962,1,1,1,1,1,1,1,1]
NSGA-Il | At=[0.29,2.60,4.25,0.34,7.46,2.50,3.94] t=10,0,0,0,0,0,0,0,0.2069, 0.3494, 0.5078, 0.6159,0.7123,0.8314,1,1,1,1,1,1,1,1]
NSGA-IIl | At=[3.17,1.12,0.66,2.09,0.03,0.02,0.06] t=10,0,0,0,0,0,0,0,0.4433,0.5998, 0.6921, 0.9847,0.9893,0.9917,1,1,1,1,1,1,1,1]
LNSGA-Il | At = [3.4,0.6,2.75,1.3,2.1,0.85,1.6] t=10,0,0,0,0,0,0,0,0.0135,0.1353, 0.3339, 0.3498, 0.6989, 0.8157,1,1,1,1,1,1,1,1]

https://doi.org/10.1371/journal.pone.0324567.t012

PLOS One | https://doi.org/10.1371/journal.pone.0324567 May 29, 2025 19/27



https://doi.org/10.1371/journal.pone.0324567.g009
https://doi.org/10.1371/journal.pone.0324567.t011
https://doi.org/10.1371/journal.pone.0324567.t012

PLOS

. One

Angle

Velocity

Acceleration

—]
- jon2

jon|
—d
-
— e

Jerk

Angle

MODE (K i

Acceleration

Jerk

Angle

MOGWO

Acceleration

®
0
©
e z H
morso R !
H : i
. £
© E
o
T A o s o 0 = 2
Tine Tine
00 0 w
ot
P — e
“ ons
= 30 ;,’::;
) P o
B <
s 20 H }
NSGA-1I B E 3 3
H $ H
50 <
0 B
0 &
“
»
s s m » w o s w5 »  ® o
Tine Tine
0
0
0

Velocity

Acceleration

100
o 1+ 2 3 4 5 & 1 8 ®
Time.
u
»
00 o
0
)
5
9 z L
LNSGA-II & ¢ g
K

) i,
= 10,
- 5

100 R
o

ES
T — T o s 0 5 » = s o [ ) 0 s x »
Time Time Time Time

Fig 10. Experimental results of multi-objective trajectory planning.

https://doi.org/10.137 1/journal.pone.0324567.9010

PLOS One | https://doi.org/10.1371/journal.pone.0324567 May 29, 2025

20/27


https://doi.org/10.1371/journal.pone.0324567.g010

PLO\S\% One

Angle Velocity Acceleration Jerk

Velocity(“/s)
Jerk(*ls?)

6 8 6 8 6 8
Timel(s) Time(s) Time(s)

Velocity
Acceleration

Fig 11. Comparative experiments on spline curves.

https://doi.org/10.1371/journal.pone.0324567.9011

time, the seventh-order B spline curve obtains more Pareto solution set results. At the same time, in the three evalua-
tion indexes of multi-objective trajectory planning, the values of time and impact of the seventh-order B spline curve are
smaller than those of the third-order B spline curve, and only in the energy consumption indexes, it lags behind that of the
third-order B spline curve, but the gap is smaller. Through the qualitative analysis of trajectory planning experiments, as
well as the quantitative analysis of numerical indexes, this paper chooses the seventh-order B spline curve, by sacrificing
part of the computation time, but obtains a better performance effect in multi-objective trajectory planning of the robotic
arm, which is worthwhile.

5. Digital twin-based UR16e grasping task
5.1 Twin model of the robotic arm UR16e

The concept of digital twin was introduced by GRIEVES at the University of Michigan, then known as ‘Mirrored Spaces
Model’ (MSM) [50], which defined as an object and its digitized mirror image and the connection between the two, and
later in the literature as ‘digital twin’ [51].

A three-dimensional virtual model of UR16e robotic arm is established in this paper. Combined with physical entities, a
digital twin model interaction platform is constructed through MATLAB-CoppeliaSim-UR16e, and trajectory planning model
is applied. It solves the problems of large-scale rapid and disorderly loading process of the robotic arm in the large-scale

Table 13. Comparison of Pareto solution set results.

Number of Pareto Time (s) Energy consumption (- / Impact (- /s®) Running
solution sets s?) time (s)
Minimum Maximum Minimum Maximum Minimum Maximum
value value value value value value
Third order B-splines 21 13.7080 36.7325 1.0446 27.9954 0.8048 68.4718 3046
Seventh-order B-splines 23 5.0035 33.4127 4.6446 35.1462 5.0506 11.4466 3387

https://doi.org/10.1371/journal.pone.0324567.t013
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start-stop impact, easy to jitter, and reduces the efficiency of the production operation and service life, and so on. The
digital twin platform construction process is shown in Fig 12.

5.2 The grasping experiment of UR16e

The digital twin model framework of UR16e grasping material is shown in Fig 13. The framework consists of user layer,
service layer, twin model layer and physical entity layer. Initially, when the user layer receives the robotic arm grasping
task, the task instructions (the starting and ending coordinates of the material, the transportation time, etc.) are transmit-
ted through the portable controller to the service layer. Subsequently, the service layer processes the signal, utilizes the
APF algorithm to determine a collision-free shortest path for grasping, identifies key motion sequences, and solves

the multi-objective motion trajectory (including angle, velocity, acceleration, and jerk motion curves for each joint) through
the trajectory planning model. Then the twin model layer obtains the multi-objective trajectory of the grasping material and
assesses the feasibility of the motion command through virtual model simulation. Finally, the motion command is sent to
the physical entity layer to direct the manipulator in successfully completing the grasping task.

In order to verify the accuracy and reliability of the digital twin framework of UR16e grasping materials proposed in this
chapter, three different mechanical parts (cover, worm, helical gear) are set up in this section with grasping experiments
conducted in a real environment. The grasping process is shown in Fig 14, where the robotic arm UR16e sequentially
grasps the three types of workpieces. The specific experimental results are presented in Table 14, including the number of
successful multi-objective trajectory planning for each experimental group and whether they effectively reached the target
point.

From the table, the following conclusions can be drawn:

(1) The overall success rate for multi-objective trajectory planning across the three experimental groups is 95%, with a
grasping success rate of 91.7%, affirming the feasibility and effectiveness of the inverse solution optimization model
and trajectory planning model in practical applications.

(2) Group 1 demonstrates higher success rates in trajectory planning and grasping for the cover due to its smaller volume
and fewer environmental obstacles.

Control

Feedback

Services Virtual mode[

Fig 12. Digital twin of the UR16e.

https://doi.org/10.1371/journal.pone.0324567.9012
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https://doi.org/10.1371/journal.pone.0324567.9013
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Fig 14. Process of grasping material experiment.
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Table 14. Experimental results of grasping materials.

Number of The number of successful Planning The number of Success

experiments multi-objective trajectory planning success rate successful grasps rate
Group 1 Cover 20 20 100% 20 100%
Group 2 Worm 20 19 95% 18 90%
Group 3 Helical gear 20 18 90% 17 85%
Total 60 57 95% 55 91.7%
https://doi.org/10.1371/journal.pone.0324567.t014
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(3) Within Group 2, the trajectory planning success rate is 95%, indicating the successful resolution of trajectory motion
curves for multiple targets with LNSGA-II. However, due to the length of the worm, instances of obstacle contact
during grasping result in decreased success rates.

(4) In the third group of experiments, due to the increase of the complexity of obstacles, the success rate of multi-
objective trajectory planning decreases, resulting in touching obstacles during the grasping process.

6. Conclusion

For the large-scale rapid and disorderly loading, the robotic arm has the problems of large start-stop impact, easy to
shake, and reduced production efficiency and service life, etc. In this paper, the artificial potential field method is use to
obtain the shortest collision-free gripping path, extract the key motion sequences, and use the B-spline curve to math-
ematically model the trajectory planning problem. The multi-objective function of “efficiency, energy consumption and
impact optimization” is established. Secondly, considering the poor diversity of the initial population of NSGA-II and the
problem of being greatly affected by the number of iterations, this paper proposes a new mutation chaos strategy and a
dynamic goal-oriented development strategy. At the same time, aiming at the constraint problem of multi-objective trajec-
tory planning of manipulator, an infeasible degree solution is designed, and a new multi-objective optimization algorithm
LNSGA-II is formed. Through the CEC2009 test set experiment, compared with MODE, MOGWO, MOPSO, NSGA-II and
NSGA-III, LNSGA-II has faster convergence speed and optimization ability, which shows the effectiveness and success of
the improved strategy. Then, the time variable of the control node of the 7-node B-spline curve is used as the independent
variable, and the LNSGA-II algorithm is utilized to solve the problem under the constraints of multi-objective function and
joint conditions to complete the multi-objective trajectory planning in the joint space of the robotic arm. Finally, through
MATLAB-CoppeliaSim-UR16e, the digital twin model of UR16e is built, and the above motion planning model is inte-
grated, and then applied to the actual grasping task of UR16e after validation by the twin.

Although the LNSGA-II algorithm has a fast convergence speed, it still cannot meet the requirements of real-time
motion planning for robotic arms, and real-time is one of its limitations. Future work will consider the deep learning
approach for real-time motion planning of robotic arms. Meanwhile, this paper validates the application of the digital twin
framework through a physical platform, but it is limited to the experimental environment. Applying it to real production
operations will be a future research direction.

Author contributions
Conceptualization: Yinan Peng.

Data curation: Yangin Fan, Jianlin Liu.
Formal analysis: Yinan Peng, Jianlin Liu.
Funding acquisition: Yanqgin Fan.
Investigation: Yinan Peng.

Resources: Yinan Peng.

Software: Yangin Fan, Yinan Peng.
Supervision: Yangin Fan, Jianlin Liu.
Validation: Jianlin Liu.

Visualization: Yanqin Fan, Yinan Peng.
Writing — original draft: Yangin Fan, Yinan Peng, Jianlin Liu.

PLOS One | https://doi.org/10.1371/journal.pone.0324567 May 29, 2025 25127




PLO\Sﬁ\\.- One

Writing — review & editing: Yanqgin Fan.

References

1. Ma S, Ding W, Liu Y, Zhang Y, Ren S, Kong X, et al. Industry 4.0 and cleaner production: A comprehensive review of sustainable and intelligent
manufacturing for energy-intensive manufacturing industries. J Cleaner Prod. 2024;467:142879. https://doi.org/10.1016/j.jclepro.2024.142879

2. El-Breshy S, Elhabashy AE, Fors H, Harfoush A. Resiliency of manufacturing systems in the Industry 4.0 era - a systematic literature review. J
Manufacturing Technol Manag. 2024. http://doi.org/10.1108/jmtm-04-2022-0171

3. Wang B, Zheng L, Wang Y, Fang W, Wang L. Towards the industry 5.0 frontier: Review and prospect of XR in product assembly. Journal of Manu-
facturing Systems. 2024;74:777-811. https://doi.org/10.1016/j.jmsy.2024.05.002

4. LengJ, Zhu X, Huang Z, Li X, Zheng P, Zhou X, et al. Unlocking the power of industrial artificial intelligence towards Industry 5.0: Insights, path-
ways, and challenges. Journal of Manufacturing Systems. 2024;73:349-63. https://doi.org/10.1016/j.jmsy.2024.02.010

5. Frank AG, Dalenogare LS, Ayala NF. Industry 4.0 technologies: Implementation patterns in manufacturing companies. International Journal of
Production Economics. 2019;210:15-26. https://doi.org/10.1016/}.ijpe.2019.01.004

6. CohenY, Naseraldin H, Chaudhuri A, Pilati F. Assembly systems in Industry 4.0 era: a road map to understand Assembly 4.0. Int J Adv Manuf
Technol. 2019;105(9):4037-54. https://doi.org/10.1007/s00170-019-04203-1

7. PupaA, Minelli M, Secchi C. A Dynamic Planner for Safe and Predictable Human-Robot Collaboration. IEEE Robot Autom Lett. 2024;9(1):507-14.
https://doi.org/10.1109/Ira.2023.3334977

8. Huang HL, Cheng MY. A New Closed-Loop Input Error Approach for Industrial Robot Manipulator Identification Based on Evolutionary Algorithms.
IEEE Trans Contr Syst Technol. 2024;32(4):1196—211. https://doi.org/10.1109/tcst.2024.3356391

9. Samuel K, Haninger K, Oboe R, Haddadin S, Oh S. A Perturbation-Robust Framework for Admittance Control of Robotic Systems With High-
Stiffness Contacts and Heavy Payload. IEEE Robot Autom Lett. 2024;9(7):6432-9. https://doi.org/10.1109/Ira.2024.3406055

10. Zhou Y, Chen C-Y, Yang G, Zhang C. Direct trajectory optimization of macro-micro robotic system using a Gauss pseudospectral framework.
Robotics and Autonomous Systems. 2024;175:104676. https://doi.org/10.1016/j.robot.2024.104676

11. Liu H, Duan J, Shao Z, Caro S. Torque Resistance Analysis and Dynamic Trajectory Planning for 3-DOF Cable Suspended Parallel Robot With
Parallelogram Cable Loops. IEEE Robot Autom Lett. 2024;9(7):6296—303. https://doi.org/10.1109/Ira.2024.3402190

12. Han S, Bauchau OA. On the global interpolation of motion. Computer Methods in Applied Mechanics and Engineering. 2018;337:352-86. htips://
doi.org/10.1016/j.cma.2018.04.002

13. Weil, Wang Q, Niu K, Bai S, Wei L, Qiu C, et al. Design and Test of Seed-Fertilizer Replenishment Device for Wheat Seeder. Agriculture.
2024;14(3):374. https://doi.org/10.3390/agriculture 14030374

14. Ban C, Fu B, Wei W, Chen Z, Guo S, Deng N, et al. A multi-objective trajectory planning approach for vibration suppression of a series—parallel
hybrid flexible welding manipulator. Mechanical Systems and Signal Processing. 2024;220:111678. https://doi.org/10.1016/j.ymssp.2024.111678

15. Cong Y, Jiang C, Liu H, Du H, Gan Y, Jiang C. Research on trajectory planning method of dual-arm robot based on ROS. In: 2020 Chinese Auto-
mation Congress (CAC). IEEE; 2020. p. 2616-21.

16. Li X, Zhao H, He X, Ding H. A novel cartesian trajectory planning method by using triple NURBS curves for industrial robots. Robotics and
Computer-Integrated Manufacturing. 2023;83:102576. https://doi.org/10.1016/j.rcim.2023.102576

17. SunH, Tao J, Qin C, Dong C, Xu S, Zhuang Q, et al. Multi-objective trajectory planning for segment assembly robots using a B-spline
interpolation- and infeasible-updating non-dominated sorting-based method. Applied Soft Computing. 2024;152:111216. https://doi.org/10.1016/].
aso0c.2023.111216

18. Cai P, CaiY, Chandrasekaran I, Zheng J. Parallel genetic algorithm based automatic path planning for crane lifting in complex environments. Auto-
mation in Construction. 2016;62:133—47. https://doi.org/10.1016/j.autcon.2015.09.007

19. Wang S, Zhang B, Zhou J, Yang B, He Y. Time—jerk optimal trajectory planning for industrial robots with coupled interpolation function selection.
Journal of Field Robotics. 2024;41(4):917—41. https://doi.org/10.1002/rob.22298

20. CuiY, Geng Z, Zhu Q, Han Y. Review: Multi-objective optimization methods and application in energy saving. Energy. 2017;125:681-704. https://
doi.org/10.1016/j.energy.2017.02.174

21. Sharma S, Kumar V. A Comprehensive Review on Multi-objective Optimization Techniques: Past, Present and Future. Arch Computat Methods
Eng. 2022;29(7):5605-33. https://doi.org/10.1007/s11831-022-09778-9

22. Torzoni M, Tezzele M, Mariani S, Manzoni A, Willcox KE. A digital twin framework for civil engineering structures. Computer Methods in Applied
Mechanics and Engineering. 2024;418:116584. https://doi.org/10.1016/j.cma.2023.116584

23. Hu W, Wang C, Liu F, Peng X, Sun P, Tan J. A grasps-generation-and-selection convolutional neural network for a digital twin of intelligent robotic
grasping. Robotics and Computer-Integrated Manufacturing. 2022;77:102371. https://doi.org/10.1016/j.rcim.2022.102371

24. Yang X, Zhou Z, Sgrensen JH, Christensen CB, Unalan M, Zhang X. Automation of SME production with a Cobot system powered by
learning-based vision. Robotics and Computer-Integrated Manufacturing. 2023;83:102564. https://doi.org/10.1016/j.rcim.2023.102564

PLOS One | https://doi.org/10.1371/journal.pone.0324567 May 29, 2025 26 /27



https://doi.org/10.1016/j.jclepro.2024.142879
http://doi.org/10.1108/jmtm-04-2022-0171
https://doi.org/10.1016/j.jmsy.2024.05.002
https://doi.org/10.1016/j.jmsy.2024.02.010
https://doi.org/10.1016/j.ijpe.2019.01.004
https://doi.org/10.1007/s00170-019-04203-1
https://doi.org/10.1109/lra.2023.3334977
https://doi.org/10.1109/tcst.2024.3356391
https://doi.org/10.1109/lra.2024.3406055
https://doi.org/10.1016/j.robot.2024.104676
https://doi.org/10.1109/lra.2024.3402190
https://doi.org/10.1016/j.cma.2018.04.002
https://doi.org/10.1016/j.cma.2018.04.002
https://doi.org/10.3390/agriculture14030374
https://doi.org/10.1016/j.ymssp.2024.111678
https://doi.org/10.1016/j.rcim.2023.102576
https://doi.org/10.1016/j.asoc.2023.111216
https://doi.org/10.1016/j.asoc.2023.111216
https://doi.org/10.1016/j.autcon.2015.09.007
https://doi.org/10.1002/rob.22298
https://doi.org/10.1016/j.energy.2017.02.174
https://doi.org/10.1016/j.energy.2017.02.174
https://doi.org/10.1007/s11831-022-09778-9
https://doi.org/10.1016/j.cma.2023.116584
https://doi.org/10.1016/j.rcim.2022.102371
https://doi.org/10.1016/j.rcim.2023.102564

PLO\Sﬁ\\.- One

25.

26.

27.

28.

29.

30.

31.

32.
33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.
48.
49.

50.
51.

Wu X, Wu Y, Tang Z, Kerekes T. An adaptive power smoothing approach based on artificial potential field for PV plant with hybrid energy storage
system. Solar Energy. 2024;270:112377. https://doi.org/10.1016/j.solener.2024.112377

Sun M, Xiao X, Luan T, Zhang X, Wu B, Zhen L. The path planning algorithm for UUV based on the fusion of grid obstacles of artificial potential
field. Ocean Eng. 2024;306:118043. https://doi.org/10.1016/j.oceaneng.2024.118043

Bilal H, Yin B, Kumar A, Ali M, Zhang J, Yao J. Jerk-bounded trajectory planning for rotary flexible joint manipulator: an experimental approach. Soft
Comput. 2023;27(7):4029-39. https://doi.org/10.1007/s00500-023-07923-5

Shen H, Xie W-F, Zhu N. Degeneracy-aware full-pose path planning strategy for robot manipulator. IEEE Trans Syst Man Cybern Syst.
2024;54(8):4955-65. https://doi.org/10.1109/tsmc.2024.3391800

Cheng B, Deng L. Vision detection and path planning of mobile robots for rebar binding. Journal of Field Robotics. 2024;41(6):1864—86. https://doi.
org/10.1002/rob.22356

Fang W, Tian X. A novel model-based welding trajectory planning method for identical structural workpieces. Robotics and Computer-Integrated
Manufacturing. 2024;89:102772. https://doi.org/10.1016/j.rcim.2024.102772

Ding F, Wang R, Zhang T, Zheng G, Wu Z, Wang S. Real-time Trajectory Planning and Tracking Control of Bionic Underwater Robot in Dynamic
Environment. Cyborg Bionic Syst. 2024;5:0112. https://doi.org/10.34133/cbsystems.0112 PMID: 38725972

Farin GE. Curves and surfaces for CAGD: a practical guide. Morgan Kaufmann Publishers; 2002.

Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Computat. 2002;6(2):182—
97. https://doi.org/10.1109/4235.996017

Tavazoei MS, Haeri M. Comparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithms. Applied Mathe-
matics and Computation. 2007;187(2):1076-85. https://doi.org/10.1016/j.amc.2006.09.087

Rezaee Jordehi A. A chaotic-based big bang—big crunch algorithm for solving global optimisation problems. Neural Comput & Applic.
2014;25(6):1329-35. https://doi.org/10.1007/s00521-014-1613-1

Li'Y, Peng Y. Research on Information Identification of Chaotic Map with Multi-Stability. Fractal Fract. 2023;7(11):811. https://doi.org/10.3390/
fractalfract7110811

He S, Fu L, LuY, Wu X, Wang H, Sun K. Analog Circuit of a Simplified Tent Map and its Application in Sensor Position Optimization. IEEE Trans
Circuits Syst II. 2023;70(3):885-8. https://doi.org/10.1109/tcsii.2022.3217674

Mehmood K, Chaudhary NI, Khan ZA, Cheema KM, Raja MAZ, Shu C-M. Novel knacks of chaotic maps with Archimedes optimization para-
digm for nonlinear ARX model identification with key term separation. Chaos, Solitons & Fractals. 2023;175:114028. https://doi.org/10.1016/].
chaos.2023.114028

Toktas A, Erkan U, Ustun D, Wang X. Parameter optimization of chaotic system using Pareto-based triple objective artificial bee colony algorithm.
Neural Comput Applic. 2023;35(18):13207-23. https://doi.org/10.1007/s00521-023-08434-y

Abbass HA, Sarker R, Newton C. PDE: a Pareto-frontier differential evolution approach for multi-objective optimization problems. In: Proceedings
of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546). Vol. 972. 2001. p. 971-8.

Mirjalili S, Saremi S, Mirjalili SM, Coelho L dos S. Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization. Expert Sys-
tems with Applications. 2016;47:106—19. https://doi.org/10.1016/j.eswa.2015.10.039

Coello CAC, Lechuga MS. MOPSO: a proposal for multiple objective particle swarm optimization. In: Proceedings of the 2002 Congress on Evolu-
tionary Computation CEC’02 (Cat. No.02TH8600). Vol. 1052. 2002. p. 1051-6.

Deb K, Jain H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving
problems with box constraints. IEEE Trans Evol Computat. 2014;18(4):577-601. https://doi.org/10.1109/tevc.2013.2281535

Gezici H, Livatyali H. An improved Harris Hawks Optimization algorithm for continuous and discrete optimization problems. Engineering Applica-
tions of Artificial Intelligence. 2022;113:104952. https://doi.org/10.1016/j.engappai.2022.104952

Abualigah L, Almotairi KH, Al-qaness MAA, Ewees AA, Yousri D, Elaziz MA, et al. Efficient text document clustering approach using multi-search
Arithmetic Optimization Algorithm. Knowledge-Based Systems. 2022;248:108833. https://doi.org/10.1016/j.knosys.2022.108833

Zhang Q, Zhou A, Zhao S-Z, Suganthan PN, Liu W, Tiwari S. Multiobjective optimization test instances for the CEC 2009 special session and com-
petition. 2009.

VanD.A, Gary V, Lamont B. Multiobjective evolutionary algorithm research: a history and analysis. Evol Comput. 1998;8.

Schott JR. Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. 1995.

Zitzler E, Thiele L. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Computat.
1999;3(4):257-71. https://doi.org/10.1109/4235.797969

Grieves MW. Product lifecycle management: the new paradigm for enterprises. I[JPD. 2005;2(1/2):71. https://doi.org/10.1504/ijpd.2005.006669
Grieves M. Virtually perfect: driving innovative and lean products through product lifecycle management. 2011.

PLOS One | https://doi.org/10.1371/journal.pone.0324567 May 29, 2025 27127



https://doi.org/10.1016/j.solener.2024.112377
https://doi.org/10.1016/j.oceaneng.2024.118043
https://doi.org/10.1007/s00500-023-07923-5
https://doi.org/10.1109/tsmc.2024.3391800
https://doi.org/10.1002/rob.22356
https://doi.org/10.1002/rob.22356
https://doi.org/10.1016/j.rcim.2024.102772
https://doi.org/10.34133/cbsystems.0112
http://www.ncbi.nlm.nih.gov/pubmed/38725972
https://doi.org/10.1109/4235.996017
https://doi.org/10.1016/j.amc.2006.09.087
https://doi.org/10.1007/s00521-014-1613-1
https://doi.org/10.3390/fractalfract7110811
https://doi.org/10.3390/fractalfract7110811
https://doi.org/10.1109/tcsii.2022.3217674
https://doi.org/10.1016/j.chaos.2023.114028
https://doi.org/10.1016/j.chaos.2023.114028
https://doi.org/10.1007/s00521-023-08434-y
https://doi.org/10.1016/j.eswa.2015.10.039
https://doi.org/10.1109/tevc.2013.2281535
https://doi.org/10.1016/j.engappai.2022.104952
https://doi.org/10.1016/j.knosys.2022.108833
https://doi.org/10.1109/4235.797969
https://doi.org/10.1504/ijpd.2005.006669

