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Abstract 

Facing the problems of large-scale rapid and disorderly loading, the robotic arm 

has the problems of large start-stop impact, easy to shake, and reduced production 

efficiency and service life, this paper proposes a robotic arm motion planning method 

based on the improved multi-objective algorithm called LNSGA-II. Firstly, the artifi-

cial potential field method is used to plan the shortest path without collision, extract 

the key motion sequences, and establish the multi-objective function to improve 

the operating efficiency of the robotic arm, the smoothness of the motion trajectory, 

and the reduction of energy consumption. Then to solve the nonlinear constraints in 

the multi-objective trajectory planning, the infeasibility degree is designed, and the 

NSGA-II is improved by using the mutation chaos strategy and the dynamic goal-

oriented development strategy. Numerical and trajectory planning experiments are 

conducted successively with the remaining five well-known multi-objective algorithms, 

and the experimental results demonstrate the superiority of LNSGA-II. Finally, the 

digital twin platform of MATLAB-CoppeliaSim-UR16e verifies the effectiveness of the 

method in real grasping tasks.

1.  Introduction

The rapid development of technologies such as the Internet of Things, cloud 
computing, big data, and mobile Internet has sparked a new wave of industrial 
revolution, which highlights the critical importance of the manufacturing industry 
[1–4]. Lately, many countries have formulated and implemented their respective 
strategies, including the European Union’s “Industry 5.0: A Vision for Change in 
Europe” released in early 2022, the German “National Industrial Strategy 2030” and 
China’s “Made in China 2025” [5,6]. Along with the trend of the industrial revolution, 
the basic industries around the world are developing rapidly, and robotic arms, as 
a kind of highly intelligent, integrated and automated machine, are leading the way 
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in the manufacturing industry [7–9]. In actual production tasks, factory personnel 
usually set the path between the material and the operating table to control the 
robotic arm to grasp the goal. In the grasping path, only the three-dimensional 
coordinates of the manipulator work domain, the material and the operating table 
are often involved, and the completion of the grasping action is only considered, 
without involving the compliance of the servo motor driven manipulator. However, in 
the case of large-scale rapid and disorderly feeding, the continuous high-intensity 
gripping and transportation of materials by the robotic arm can lead to significant 
start-stop impact, causing jitter, reducing production efficiency and service life, and 
potentially damaging the servo motor. In the gripping process of the robotic arm, 
the necessary trajectory planning can make the movement curve of the robotic arm 
joints like angular displacement, angular velocity, angular acceleration and so on 
smoother and continuous, and at the same time, it can also protect the servo motor 
[10,11].

Trajectory planning for robotic arms motion is usually done using polynomial 
planning [12,13] and spline curve planning methods [14]. Yongzheng Cong [15] 
utilized straight line trajectory interpolation and circular arc interpolation methods 
for Cartesian space-based trajectory planning for a two-arm robot and validated 
it within a ROS system, proving that the methods are feasible. Xiangfei Li [16] 
proposed a robot position and attitude synchronization method with third-order 
NURBS curves, which was simulated using blade-type and fan-type robots, and 
the results showed that this method was able to satisfy the given constraints.  
With the continuous improvement and development of modern industrial technol-
ogy, the production application scenarios of robotic arms have become more and 
more extensive and in-depth. Under a number of complicated working conditions 
and realistic needs, single-objective trajectory planning algorithms have been 
unable to meet the diverse, complex and precise requirements of the production 
operations of robotic arms.

Aiming at the multi-objective problem of fast and smooth operation of seg-
mented assembly robots in non-circular shield machines, Sun [17] proposed a 
method based on B-spline interpolation and non-dominated sorting evolutionary 
algorithm. The experimental results show that the high-order B-spline curve of 
this method obtains a lower acceleration peak and a smoother global trajectory, 
and achieves the optimal trade-off of multi-objective trajectory planning. In order 
to optimize the crane lifting path planning problem in industrial lifting, Panpan Cai 
[18] et al. formulated it as a multi-objective nonlinear integer optimization problem 
with implicit constraints and designed a master-slave parallel genetic algorithm, 
and the experimental results showed that this method can efficiently generate 
high-quality lifting paths in complex environments. Wang [19] proposed an optimal 
trajectory planning method based on coupling interpolation function selection, 
which took the task time and impact of industrial robots as optimization objec-
tives. Under the background of robot stirring operation in the process of auto-
matic block casting loading, the proposed method is used to derive the optimal 
trajectory of time and jitter. The experimental results show the effectiveness of the 

design, data collection and analysis, decision to 
publish, or preparation of the manuscript.”

Competing interests: The authors have 
declared that no competing interests exist.



PLOS One | https://doi.org/10.1371/journal.pone.0324567  May 29, 2025 3 / 27

proposed method. In multi-objective trajectory planning for robotic arms, researchers mainly use linear weighting to 
convert the multi-objective function into single-objective function for solving. Due to the different magnitudes between 
different objectives, it is not possible to accurately assign the weights to ensure the effective continuity of the joint 
acceleration and jerk, potentially resulting in damage to the high-speed working robotic arm. Although all these 
methods can achieve the purpose of trajectory planning, their effectiveness is limited in multi-objective optimization 
[20,21].

With the continuous development of intelligent manufacturing, robotic arms gradually replace humans to com-
plete repetitive, dangerous or high-precision work, improving production efficiency and safety [22]. Concurrently, 
when the structure and function of the manipulator become more and more complex, the challenges associated with 
data collection and processing have also grown. But the emergence of digital twins effectively solves this problem. 
Digital twin accelerates the digital transformation of robotic arms, and the twin model can provide the verification 
of the feasibility of various schemes, which has great potential and role in the production and assembly process 
[23,24].

Aiming at the problems of large start-stop impact, easy jitter, low production efficiency and service life of the manipu-
lator when feeding large-scale, fast and disorderly, this paper delineates the paths between end-effector, materials and 
obstacles through artificial potential field (APF) [25,26] regulations. According to the passing time and order of the key 
points along the motion path, a multi-objective function is established to improve the operation efficiency of the robot, the 
smoothness of the running trajectory and the reduction of the energy consumption of the robot. The LNSGA-II is used to 
solve the problem, and the 7-order B-splines curve is used to complete the motion trajectory planning in the joint space of 
the manipulator. The section 2 of this paper is the mathematical modeling of robotic arm multi-objective trajectory plan-
ning. In Section 3, a new multi-objective algorithm called LNSGA-II is proposed. In Section 4, the experiment is set up, 
which includes the CEC2009 test set experiments and the robotic arm multi-objective trajectory planning experiments. The 
Section 5 is the manipulator grasping practice based on digital twin and the Section 6 is the summary. The main contribu-
tions of this study are summarized as follows:

(1)	 After path planning, a multi-objective function incorporating efficiency, energy consumption, and impact is formulated 
based on the passing time and sequence of key points, and a mathematical model for manipulator trajectory planning 
is established.

(2)	 To address issues of uneven initial individual randomization and sensitivity to iteration numbers in NSGA-II, a mutation 
chaos strategy and dynamic goal-oriented strategy are introduced, forming an improved LNSGA-II. The infeasibility 
metric is also designed to handle nonlinear constraints, and LNSGA-II is ultimately used to optimize the 7th-order 
B-spline curve for multi-objective trajectory planning.

(3)	 Experiments on the CEC2009 test set show that LNSGA-II surpasses the original algorithm in convergence speed and 
optimization performance, demonstrating strong competitiveness compared to five other multi-objective optimization 
algorithms.

(4)	 A digital twin platform is constructed using MATLAB-CoppeliaSim-UR16e, applying the proposed trajectory planning 
model to the robotic arm’s actual grasping tasks, verifying its effectiveness.

Section 2 presents the development of the multi-objective trajectory planning model for the manipulator. Section 3 
reviews the original NSGA-II algorithm and introduces the motivation and strategies behind the improvement of the 
LNSGA-II algorithm. Section 4 discusses the experimental results, including numerical experiments using the CEC2009 
benchmark and manipulator trajectory planning results. Section 5 introduces the digital twin platform based on  
MATLAB-CoppeliaSim-UR16e, where the digital twin framework and trajectory planning model are validated through a 
real grasping task. Section 6 concludes the paper.
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2. Multi-objective trajectory planning modeling of the robotic arm

2.1  Motion path of the robotic arm

Motion planning [27] mainly studies the construction of a collision-free and efficient motion sequence of a robotic arm in 
the workspace from the start point to the end. Robotic arm motion planning is usually subdivided into two levels: path 
planning [28,29] and trajectory planning [30,31].

In the actual operation space, there are often obstacles between the material and the goal point. Through the neces-
sary path planning, the manipulator can grasp the material more quickly and accurately. In this study, the APF will be used 
for path planning of the robotic arm, and a shortest collision-free path will be designed, as shown in Fig 1, which will pave 
the way for subsequent trajectory planning.

Aiming at the actual operation task of the manipulator on the target, the path between the end-effector and the target 
is planned in the actual space. According to the passing time and sequence of the key points of the motion path, the joint 
trajectory planning of the manipulator is carried out by fully considering the path constraints and joint constraints. In the 
Table 1, q is the joint position.

2.2  Multi-objective trajectory planning modeling

When the robotic arm goes from the start point to the end in the task space, a series of key points are obtained by inverse 
kinematics calculation, mQs = {(mqs, ts), (m = 1, 2 . . . , s = 0, 1 . . . n)}, m is the number of robotic arm joints and s is the 

Fig 1.  Path planning for the 6-DOF robotic arm.

https://doi.org/10.1371/journal.pone.0324567.g001

Table 1.  The joint position sequence of robotic arms.

Joint position q/(°)

1 2 3 4 5 6

Pos
0

-20.17 -8.05 89.70 8.39 -90.05 -69.88

Pos
1

-34.62 -4.67 104.30 -9.58 -90.05 -55.43

Pos
2

-37.27 0.75 100.92 -11.62 -90.05 -52.77

Pos
3

-49.45 8.65 97.50 -16.10 -90.05 -40.60

Pos
4

-76.38 8.06 97.15 -15.17 -90.05 -13.67

Pos
5

-80.19 13.02 89.92 -12.89 -90.05 -9.86

Pos
6

-93.38 14.49 81.42 -5.87 -90.05 3.33

Pos
7

-109.56 5.76 77.03 7.26 -90.05 19.51

https://doi.org/10.1371/journal.pone.0324567.t001

https://doi.org/10.1371/journal.pone.0324567.g001
https://doi.org/10.1371/journal.pone.0324567.t001
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key point, mf(t) = mqs is obtained through the robotic arm trajectory planning. The trajectory of the robotic arm motion is 
constructed using k-times B-splines curve [32].

	
B(t) =

n∑
j=0

djFj,k(t)
	 (1)

Where dj  is the coordinates of the control point, Fj,k(t) is the k-times B-spline basis function. B(t) refers to the joint 
position at moment t, which is defined by the control point dj  and the node vector T = [t0, t1, ..., tn+2k] together, and the 
canonical definition domain: t0 = t1 = ... = tk = 0, tn+k = tn+k+1 = ... = tn+2k = 1. By inverting the control vertices of the 
B-spline curve, so that each robotic arm joint passes through the key point mqs . Additionally, the segmented connec-
tion points of the trajectory curve correspond to the key nodes, with the starting point and end point being the same. 
The time node tj  is normalized according to the cumulative chord length parameterization method to obtain the inner 
node value.

	

tp = tp–1 +
∆tp–k–1
n–1∑
j=0

∆tj

, p = k+ 1, ...n+ k – 1

∆tj = tj+1 – tj(j = 0, 1, ..., n – 1) 	 (2)

Thus, n-1 equations satisfying the interpolation conditions are obtained as follows.

	

B(tp) =
i+k∑
j=i
djFj,k(tp) = mQS

tp ∈ [tk, tk+n] 	 (3)

Therefore k-1 additional equations need to be added for solving. Assuming that a 7th-order B-splines curve is used with 
inputs of velocity, acceleration and jerk at the start and end points, the additional equations are as follows:

	




B′(t7) = vstart,B′(t7+n) = vend,
B

′′
(t7) = astart,B

′′
(t7+n) = aend,

B
′′′
(t7) = jstart,B

′′′
(t7+n) = jend.	 (4)

Where, B′(t),B
′′
(t),B

′′′
(t) are the 1 ~ 3 derivatives of the B-spline curve respectively, and are the velocity, acceleration and 

jerk of each joint in turn. The derivatives of each order can be derived according to the de Boer recurrence formula:

	

Br(t) =
p∑

j=p–k+r
drj Fj,k–r(t), tp ≤ t < tp+1

drj =





dj, r = 0

(k+ 1 – r)
dr–1j –dr–1j–1

tj+k+1–r–tj
, r = 1, 2...

j = p – k+ r 	 (5)

r is the order of derivation and drj  denotes the formula for the rth order derivative of the jth control node, which in turn 
yields n + k linear equations. By solving the equations, the control vertex vectors of the B-spline trajectory curves for each 
joint are obtained. Based on the normalized time, the position qs passed by each joint at the moment ts can be obtained. 
The trajectory kinematic constraints are converted into constraints on the B-spline control points as follows:
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


∣∣∣d1mj
∣∣∣
max

≤ vmmax, j = 1, 2...n+ k – 1∣∣∣d2mj
∣∣∣
max

≤ ammax, j = 1, 2...n+ k – 1∣∣∣d3mj
∣∣∣
max

≤ jmmax, j = 1, 2...n+ k – 1
	 (6)

where, d1mj, d
2
mj, d

3
mj  denotes the jth control vertex of the mth joint of the velocity, acceleration, and jerk trajectory curve, 

respectively. f1 is the movement time, which measures the efficiency of the robotic arm operation. f2 is the average 
acceleration, measuring the energy consumption of the robotic arm. f3 is joint jerk, which measures the smoothness 
of manipulator motion. It is the objective function with optimal efficiency, optimal energy consumption, and optimal 
impact.

	

min f1 =
s∑

s=0
∆t =

s∑
s=0

(ts+1 – ts)

f2 =
m∑

m=1

√
1
T

∫ T
0
ma2dt =

m∑
m=1

√
1
T

∫ T
0
(
��
q )

2

dt

f3 =
m∑

m=1

√
1
T

∫ T
0
mJ2dt =

m∑
m=1

√
1
T

∫ T
0
(
���
q )

2

dt
	 (7)

With ∆tk = tk+1 – tk  as the optimization variable, the ‘efficiency-energy-impact’ objective function is established under the 
above constraints, and the feasible solution is found by the multi-objective optimization algorithm. In order to verify  
the real-time performance of the algorithm, the time spent on the B-spline trajectories of different orders is tested, and the 
time spent is 27.785s, 53.1529s, and 78.4184s for 105 operations on 3, 5, and 7 B-spline values respectively under the 
same test platform, and the algorithm times are all in the same order of magnitude (10-5s), so that the increase in order 
has little effect on the real-time performance of the system.

3.  Multi-strategy improved LNSGA-II algorithm

3.1  Original NSGA-II algorithm

A fast and Elitist Multi-objective Genetic Algorithm (NSGA-II) was first published by Kalyanmoy Deb in 2002 [33]. NSGA-II 
involves three key stages: non-dominated sorting, crowding degree calculation, elite selection iteration and crossover and 
mutation.

3.1.1  Non-dominated sorting.  Find the non-dominated optimal solution of the current population and assign rank 1. 
The individuals of rank 1 are removed from the population, and new non-dominated solutions are found in the remaining 
individuals, which are assigned rank 2. The non-dominated sorting process of the population is repeated until all 
individuals are set corresponding ranks and their crowding distances are calculated.

3.1.2  Elite selection.  The selection process makes the optimization towards the Pareto optimal solution and makes 
the solution uniformly dispersed. After sorting and crowding distance calculation, each individual i in the population gets 
two attributes, the non-dominated ordinal number i

rank
 and the crowding distance i

d
. The round-robin selection operator 

is used, that is, two individuals are randomly selected. When i
rank

 < j
rank

 or i
rank

 = j
rank

 and i
d
 > j

d
, i individual is better than j 

individual. If the non-dominated ordering of the two individuals is different, take the individual with the lower order number; 
if the two individuals are at the same level, take the individual with the surrounding i

d
 > j

d
. Where j

d
 and j

rank
 are denoted as 

the nondominant ordinal number and crowding distance of the jth population individual.
3.1.3  Crossover and mutation.  Crossover operation is performed on the parent individual, that is, for a given 

random crossover point, the parts of the two parent individuals on both sides of the crossover point are exchanged. 
All the individuals of the parent P

t
 and the offspring Q

t
 are synthesized into a unified population R

t
, and the number 
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of individuals of R
t
 is 2N. The population R

t
 is quickly non-dominated sorted and the local crowding distance of each 

individual is calculated. Individuals are selected one by one according to the level of hierarchy. When the number of 
individuals reaches N, a new parent population P

t+1
 is formed. On the basis of the new parent population P

t+1
, a new round 

of selection, crossover and mutation is started to form a new offspring population Q
t+1

.
The multi-objective trajectory planning problem of manipulator joints is essentially a constraint problem. In order to 

speed up the efficiency of NSGA-II, this paper first designs an infeasible degree to deal with multi-objective constraint 
problems. Furthermore, due to the random generation of initial individuals in NSGA-II, a common issue emerges 
where individuals cluster in specific regions, leading to limited population diversity. Therefore, this paper proposes 
an innovative mutation chaos strategy for population initialization. Lastly, addressing the sensitivity of NSGA-II to the 
iteration count, under limitless computation time, NSGA-II consistently converges to the optimal solution. This paper 
proposes a dynamic goal-oriented development to expedite individual development towards the target solution in the 
later iteration phase.

3.2  Proposed LNSGA-II algorithm

3.2.1  Design of infeasibility.  In dealing with constraint problems, the conventional method is to transform the 
transboundary solution into the boundary extreme point. This paper designs a kind of infeasibility degree of the target 
solution to address the constraint, which is defined as the sum of squares of all conflicting constraint values.

	
ψ(xi) =

A∑
a=1

[Ga(xi)]
2
+

B∑
b=1

[min{0,Tb(xi)}]
2

	 (8)

Here, a and b represent the count of equality and inequality constraints, respectively. The infeasible degree refers to the 
distance between the current solution and the feasible region. A solution xi is considered feasible when its infeasibility 
degree is 0. The larger the infeasible degree is, the farther xi is from the feasible region. Additionally, an infeasible thresh-
old is set to determine whether xi is accepted for the next genetic operation.

	

ψth =
1
ω

Npop∑
i=1

ψ(xi)
Npop

ω = Iter
Max–iter 	 (9)

Here, ω is the annealing factor, which increases with the increase of the number of iterations. Iter and Max-iter represent 
the current and maximum iterations, correspondingly. Npop is the population size. When the infeasibility of the current solu-
tion is less than the threshold, the solution is accepted, otherwise it is rejected. To maintain a consistent population size, 
any rejected solutions are substituted with the solution with the lowest infeasibility.

3.2.2  Mutation chaos strategy.  Random generation of NSGA-II individuals during the initial stage results in limited 
population diversity, significant boundary clustering, and reduced individual variability. Chaos is mathematically defined 
as the randomness generated by a simple deterministic system [34,35]. Due to the ergodicity of chaos, chaos-based 
mapping is used to solve the problem of premature convergence of optimization algorithms [36–39]. For the present, it 
is often used by scholars as Logistic mapping, Sinusoidal mapping, etc., and the specific expressions of the above two 
chaotic mappings are shown in Eq. 10. Where a and μ are the system parameters, when a = 4, the Logistic chaotic map 
shows complete chaotic behavior within [0, 1]. Similarly, when the value of μ is equal to 1, the dynamics of the sinusoidal 
chaotic map shows complex and chaotic characteristics.

	

βt = a · βt–1 · (1 – βt–1)
σt = µ · sin(πσt–1) 	 (10)
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The histograms and frequency plots of the Logistic chaotic mapping and Sinusoidal chaotic mapping after 5000 cycles 
are displayed in Fig 2. From Fig 2a, the histogram of the Logistic mapping shows a distribution pattern with higher at both 
ends and lower in the middle. The frequencies between [0, 0.02] and [0.95, 1] are as high as 700, while the frequencies 
between [0.1, 0.9] are only around 200, indicating that in this mapping, the generated values are more concentrated near 
0 and 1 and less likely in the middle. Meanwhile, the distribution of the point cloud in Fig 2d shows obvious boundary 
aggregation, especially near the ends (such as 0.1 and 0.9) appearing high density of concentrated regions. The histo-
gram of Sinusoidal chaotic mapping shows a non-uniform distribution, with a frequency number as high as 700 between 
[0.9, 1], which appears a higher concentration, as in Fig 2b. The scatter plot of the Sinusoidal map in Fig 2e also shows 
a certain boundary aggregation phenomenon, with concentrated values of [0, 0.1] and [0.9, 1], and a partial blank and 
loosely-distributed distribution between [0.6, 0.8]. In view of this, a new mutation chaotic strategy is proposed in this 
paper to make up for the shortcomings of Logistic and Sinusoidal chaotic map, and then improve the lack of diversity and 
uneven distribution of the original population of NSGA-II. The expression of the mutation chaos strategy is given in Eq. 11. 
In the formula, βt1 ,σt2 is the original sine mapping, mod is the complementary function.

	

βt1 = 4 · βt1–1 · (1 – βt1–1)
σt2 = 0.99 · sin(π · σt2–1)
κt = mod(βt1 + σt2 , 1) 	 (11)

In Fig 2c, the histogram distribution of the mutated chaotic strategy is more uniform, and the frequency is concentrated 
around 250. Compared with the Logistic and Sinusoidal mapping, there is no obvious concentrated area. From Fig 2f, it 

Fig 2.  Sinusoidal chaotic map and its variant.

https://doi.org/10.1371/journal.pone.0324567.g002

https://doi.org/10.1371/journal.pone.0324567.g002
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is found that the mutation chaos strategy has better uniformly distributed random values, and the boundary aggregation 
phenomenon disappears, making the initialized individuals random and uniform.

3.2.3  Dynamic goal-oriented development.  NSGA-II individuals evolve through continuous cross and mutation to 
maintain population diversity. Given adequate time, satisfactory solutions will always be obtained by preserving superior 
individuals. Therefore, NSGA-II is greatly affected by the number of iterations, and there is a timeliness problem. This 
paper proposes a dynamic goal-oriented development method to accelerate the evolution of NSGA-II individuals to the 
Pareto front. Here, a dynamic adjustment factor r is used, which not only ensures the population diversity of crossover and 
mutation, but also uses goal-directed development to speed up the convergence of the algorithm. In the formula, Ms is a 
custom constant.

	

rc = MS – (
MS · Iter
Max – iter

)

r = 2 · rc · rand – rc 	 (12)

As shown in Fig 3, after the non-dominated sorting and crowding degree calculation of individuals, the second-ranked 
individual with the largest crowding degree begins to evolve toward the first-ranked individual by generating a random 
angle from the connection with the target point. Subsequently, the following individuals evolve towards higher-ranked indi-
viduals, thereby reducing the algorithm’s calculation time and iteration count.

	

βs =
∣∣rand · βbest(t) – β(t)

∣∣
β(t+ 1) = βbest(t) – rc · rand · βs · cos(θ)	 (13)

Fig 3.  Dynamic goal-oriented development strategy.

https://doi.org/10.1371/journal.pone.0324567.g003

https://doi.org/10.1371/journal.pone.0324567.g003
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Among them, βbest(t) is the top-ranked individual of the current iteration, β(t) is the current low-ranked individual with large 
crowding degree, and θ is the angle randomly selected by roulette wheel.

In summary, firstly, the constraint problem is solved by designing the infeasible degree, then the mutation sine chaotic 
map is used to initialize the population individual, and finally the dynamic goal-oriented development is used to accelerate 
the iterative convergence of the individual, forming a new LNSGA-II algorithm. The specific process of applying LNSGA-II 
to solve the multi-objective trajectory optimization problem is shown in Fig 4.

Fig 4 depicts a multi-objective trajectory planning model for the manipulator. Firstly, the time and sequence of the key 
nodes of the motion path are calculated by APF in 2.1 to model the manipulator’s trajectory. Then, the LNSGA-II individ-
ual is initialized, and the time of the control node of the 7-order B-splines curve is taken as the independent variable. The 
optimization of ‘efficiency-energy-impact’ is defined as the multi-objective function, initiating iterative calculations until the 
termination condition is met. Finally, the time of the control node is output to complete the multi-objective trajectory plan-
ning of the manipulator.

Fig 4.  Trajectory planning model based on LNSGA-II.

https://doi.org/10.1371/journal.pone.0324567.g004

https://doi.org/10.1371/journal.pone.0324567.g004
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4.  Numerical experiment and trajectory planning experiment

4.1  Numerical experiment

In this paper, LNSGA-II is compared with MODE [40], MOGWO [41], MOPSO [42], NSGA-II and NSGA-III [43] through the 
test set CEC2009. The CEC2009 test set has been used by a wide range of scholars to test the numerical performance of 
multi-objective optimization algorithms [44,45], and the specific functions and code have been made publicly available at 
https://github.com/P-N-Suganthan/CEC2009-MOEA. Table 2 shows the function names of CEC2009.

The performance of the multi-objective algorithms is evaluated using Inversion Generational Distance (IGD) [47], Spac-
ing (SP) [48] and Maximum Spread (MS) [49], which are mathematically expressed as follows:

	

IGD =

√
k∑

i=1

d2i

n

SP =

√
1
n–1 ×

k∑
i=1

(
d̄ – di

)2

MS =

√
H∑
i=1

max(d(ai, bi))
	 (14)

Where di = min(
∣∣f1 i(x) – f1 j(x)

∣∣+ ∣∣f2 i(x) – f2 j(x)
∣∣), i, j = 1,2..., f1, f2 are the objective functions. ai and bi represent the max-

imum and minimum values of the ith objective, and H represents the number of objective functions. The experiment is 
carried out under Windows 11,64-bit operating system, and the MATLAB version is R2023a. The experimental parameters 
are set as Table 3 and the N is 30, the max-iteration is 200, the cycle is 30 times, and the variable dimension is 10.

Tables 4–6 is the statistical data of LNSGA-II and MODE, MOGWO, MOPSO, NSGA-II, NSGA-III in UF1–10, including 
the three evaluation indexes of IGD, SP, and MS. It can be seen from the table that LNSGA-II occupies the first place 
in IGD and MS, and only lags behind NSGA-III in SP. For example, the IGD of LNSGA-II in UF3 is 0.2690, which is less 
than 0.3803 of NSGA-III, and the average value ranks first. However, its standard deviation of 0.0461 is larger than that of 
0.0411 of NSGA-III, and it ranks the second, and the difference between the two is small. In UF8, the average SP value of 
NSGA-III is 0.0862 and the standard deviation is 0.0282, which is far more than 0.4754 and 0.2709 of LNSGA-II, and then 

Table 2.  CEC2009 test set.

CEC2009 [46] No

Unconstrained Problem Function (UF) 1–7 Bi-objective function

8–10 Triple objective function

Constrained Problem Function (CF) 1–7 Bi-objective function

8–10 Triple objective function

https://doi.org/10.1371/journal.pone.0324567.t002

Table 3.  Experimental parameter settings.

Comparison algorithm Parameter settings

MODE Scaling factor = 0.5, Crossover probability = 0.2

MOGWO β = 4, γ = 2

MOPSO w = 0.4, c
1
 = c

2
 = 2

NSGA-II Crossover = 0.9, mutation = 0.5

NSGA-III Crossover = 0.5, mutation = 0.5

LNSGA-II Crossover = 0.9, mutation = 0.5

https://doi.org/10.1371/journal.pone.0324567.t003

https://github.com/P-N-Suganthan/CEC2009-MOEA
https://doi.org/10.1371/journal.pone.0324567.t002
https://doi.org/10.1371/journal.pone.0324567.t003
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ranks first. Fig 5 is the visualization result of the normalized statistical data of the above Tables 4–6, in which IGD and SP 
are the smaller the better, while MS is the opposite.

Fig 6 shows the set of pareto solutions of the six algorithms on UF1–10. The figure shows that compared with NSGA-II, 
the solution set of LNSGA-II is closer to the true pareto frontier and lags behind NSGA-III, which illustrates the competi-
tiveness and advantage of LNSGA-II in solving unconstrained optimization problems.

Tables 7–9 shows the statistical data of CF1-10 of LNSGA-II and MODE, MOGWO, MOPSO, NSGA-II and NSGA-III 
in CEC2009, including the mean value and standard deviation of the three evaluation indicators of IGD, SP and MS. The 

Table 4.  Statistical data of the IGD on UF1-10.

IGD UF1 UF2

MODE MOGWO MOPSO NSGA-II NSGA-III LNSGA-II MODE MOGWO MOPSO NSGA-II NSGA-III LNSGA-II

Mean 0.0837 0.1106 0.0997 0.0859 0.1191 0.0418 0.0257 0.0546 0.0728 0.0337 0.0606 0.0324

Std 0.0243 0.0192 0.0080 0.0276 0.0456 0.0035 0.0030 0.0068 0.0083 0.0093 0.0323 0.0069

UF3 UF4

Mean 0.4281 0.4268 0.4722 0.4400 0.3803 0.2690 0.0502 0.0732 0.0571 0.0508 0.6644 0.0426

Std 0.0547 0.0889 0.1630 0.0660 0.0411 0.0461 0.0038 0.0077 0.0039 0.0043 0.5910 0.0021

UF5 UF6

Mean 0.6392 1.1344 0.7547 0.5862 0.3984 0.5640 0.8649 1.0425 0.9334 0.5901 0.5635 0.3864

Std 0.0624 0.3179 0.2652 0.2121 0.0924 0.1671 0.1004 0.3300 0.1739 0.0912 0.1184 0.1168

UF7 UF8

Mean 0.3947 0.4140 0.4802 0.4323 0.4220 0.2831 0.2178 0.4758 0.3122 0.2093 0.7945 0.2010

Std 0.0538 0.0790 0.1533 0.0683 0.0562 0.0401 0.0552 0.4035 0.0455 0.0326 0.2989 0.0155

UF9 UF10

Mean 0.1899 0.2887 0.4451 0.2411 0.2658 0.2304 1.2792 2.1296 2.8343 0.8819 0.8328 0.5209

Std 0.0219 0.0868 0.0878 0.0765 0.0848 0.0494 0.2335 0.5858 0.7249 0.3131 0.1867 0.0623

Rank 2 6 5 4 3 1

https://doi.org/10.1371/journal.pone.0324567.t004

Table 5.  Statistical data of the SP on UF1-10.

SP UF1 UF2

MODE MOGWO MOPSO NSGA-II NSGA-III LNSGA-II MODE MOGWO MOPSO NSGA-II NSGA-III LNSGA-II

Mean 0.2255 0.0463 0.0951 0.2574 0.0241 0.0366 0.0249 0.0663 0.0497 0.0598 0.0376 0.0146

Std 0.0635 0.0429 0.0924 0.0898 0.0300 0.0098 0.0095 0.0294 0.0324 0.0194 0.0215 0.0056

UF3 UF4

Mean 0.1218 0.2081 0.1518 0.1375 0.0588 0.0803 0.0207 0.0290 0.0122 0.0279 0.1949 0.0178

Std 0.0736 0.2423 0.1665 0.0675 0.0607 0.0164 0.0050 0.0035 0.0029 0.0038 0.1088 0.0053

UF5 UF6

Mean 0.4880 0.2962 0.3678 0.4618 0.1418 0.1192 0.8242 0.2511 0.3100 0.8045 0.1396 0.0982

Std 0.1590 0.2256 0.2538 0.1393 0.0342 0.1150 0.3346 0.1701 0.3153 0.2901 0.0402 0.1076

UF7 UF8

Mean 0.1057 0.2865 0.1638 0.1145 0.0552 0.0829 0.1235 0.1445 1.1833 0.5743 0.0862 0.4754

Std 0.0372 0.3002 0.1600 0.0406 0.0678 0.0151 0.0608 0.0763 0.6042 0.5638 0.0282 0.2709

UF9 UF10

Mean 0.1163 0.1713 1.2314 0.7822 0.0795 0.7899 0.9300 0.7422 3.8322 0.8514 0.1559 0.4822

Std 0.0320 0.0813 0.5506 0.4350 0.0653 0.5000 0.9123 0.2368 1.9838 0.6286 0.1234 0.1309

Rank 4 5 3 6 1 2

https://doi.org/10.1371/journal.pone.0324567.t005

https://doi.org/10.1371/journal.pone.0324567.t004
https://doi.org/10.1371/journal.pone.0324567.t005
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normalized visualization results are shown in Fig 7. In CF6, the MS of LNSGA-II is 1.1707, ranking first, far exceeding the 
0.6648 of MODE. The IGD of NSGA-III in CF10 is 0.5135, which is more than 0.9630 of LNSGA-II, ranking first. At the 
same time, MOPSO’s 2.6770 ranks last. In general, NSGA-III ranks first in the CF1-10 solving process, while LNSGA-II is 
followed.

Fig 8 is the Pareto solution set of the above algorithm in CF1–10. It can be seen from the figure that LNSGA-II is obvi-
ously better than NSGA-II, and it is closer to the real Pareto frontier under the same experimental conditions, indicating 
the effectiveness and success of the improved strategy in this paper. NSGA-III is superior to LNSGA-II only by a slight 
advantage in the evaluation index, which highlights that LNSGA-II is highly competitive in constrained multi-objective opti-
mization problems.

4.2  Trajectory planning experiment

In order to meet the actual operation requirements of the manipulator, trajectory planning needs to ensure fast motion 
while avoiding the wear of the manipulator caused by motion impact and the reduction of trajectory accuracy. Accordingly, 
the shortest movement time, the minimum energy consumption of the overall joint and the smooth control in the motion 
performance of the manipulator are taken as the optimization objectives. The 7-order B-splines curve is used to interpo-
late the trajectory to ensure the high-order continuity of the manipulator trajectory and improve the smoothness of the 
trajectory. Simultaneously, a multi-objective optimization algorithm is applied to achieve a well-distributed set of Pareto 
solutions.

Taking the 6-DOF robotic arm as the experimental object, the sequence of joint positions is obtained through 2.1, as 
shown in Table 1. Among them, the kinematic and torque constraints of each joint are shown in Table 10. In the table, 
vmax, amax, jmax, τmax are the maximum velocity, acceleration, jerk and torque of the joint respectively.

Fig 9 shows the Pareto front of the multi-objective trajectory planning of the manipulator joint. The optimal energy 
consumption and impact optimal performance are in the same direction, which is opposite to the efficiency optimal perfor-
mance. The optimization results of the six points of A-F are shown in Table 11.

Table 6.  Statistical data of the MS on UF1-10.

MS UF1 UF2

MODE MOGWO MOPSO NSGA-II NSGA-III LNSGA-II MODE MOGWO MOPSO NSGA-II NSGA-III LNSGA-II

Mean 0.6549 0.9538 0.8707 1.2447 1.1632 1.2430 0.0249 0.7791 0.7556 0.7263 0.7458 0.9162

Std 0.0813 0.1787 0.1900 0.0885 0.1820 0.0672 0.0095 0.0941 0.0955 0.1509 0.0869 0.1094

UF3 UF4

Mean 0.5608 0.7320 1.4599 0.7435 1.1702 1.5576 0.7350 0.8181 0.3469 0.6654 0.6555 0.9086

Std 0.0630 0.0820 0.3971 0.0746 0.1380 0.4430 0.0802 0.1338 0.0486 0.0633 0.0530 0.1471

UF5 UF6

Mean 0.6231 0.9262 0.9049 0.9264 1.1645 0.9518 0.6669 0.9131 0.8725 1.1004 1.1006 1.1289

Std 0.0599 0.1463 0.1785 0.0819 0.1448 0.0790 0.0586 0.1500 0.1391 0.0993 0.1056 0.1539

UF7 UF8

Mean 0.5742 0.7156 1.4416 0.7207 1.1488 1.5383 0.6247 0.6511 0.9230 0.9036 0.8518 0.9466

Std 0.0633 0.0595 0.3591 0.0616 0.1468 0.4247 0.0634 0.0903 0.1795 0.1608 0.0859 0.1866

UF9 UF10

Mean 0.6564 0.6020 0.9163 0.9542 0.8669 0.9634 0.5570 0.6741 0.5951 0.5638 1.0465 0.8505

Std 0.0703 0.0884 0.1654 0.1266 0.1359 0.1097 0.0688 0.1075 0.1315 0.1073 0.0911 0.1591

Rank 6 5 2 4 3 1

https://doi.org/10.1371/journal.pone.0324567.t006

https://doi.org/10.1371/journal.pone.0324567.t006
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In Fig 9, the Pareto front of LNSGA-II is significantly better than other algorithms, and better efficiency, energy con-
sumption and impact are obtained. Table 12 is the node vector of the B-splines curve after the optimal control of the five 
algorithms at the A-F frontier point.

Fig 10 shows the multi-objective trajectory planning results of the six algorithms at six points A-F on the Pareto front, 
showing the optimized angle, velocity, acceleration and jerk curves, respectively. The following conclusions can be drawn 
from the figure:

(1)	 From the angle curve of the first column, (a) and (i) indicates that MODE and MOPSO exhibit insufficient smoothness 
in their angle curves. There are inflection points in the motion angle, which will cause jitter during the motion of the 
manipulator. The angle curves of the other three algorithms are smooth and continuous.

(2)	 In the velocity, acceleration and jerk curves of columns 2–4, MOPSO, NSGA-II and LNSGA-II all meet the basic 
requirements of manipulator joint trajectory planning: uniform, smooth and continuous. Despite meeting the basic 
criteria, MOPSO and NSGA-II lag significantly behind LNSGA-II in multi-objective function optimization, impacting the 
precise attainment of the ‘efficiency-energy-impact’ goal.

Fig 5.  Visualization result of IGD, SP and MS on UF1-10.

https://doi.org/10.1371/journal.pone.0324567.g005

https://doi.org/10.1371/journal.pone.0324567.g005
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Fig 6.  Pareto solutions for UF1-10.

https://doi.org/10.1371/journal.pone.0324567.g006

Table 7.  Statistical data of the IGD on CF1-10.

IGD CF1 CF2

MODE MOGWO MOPSO NSGA-II NSGA-III LNSGA-II MODE MOGWO MOPSO NSGA-II NSGA-III LNSGA-II

Mean 0.0165 0.0149 0.0260 0.0160 0.0220 0.0158 0.0997 0.1611 0.0922 0.0989 0.1993 0.0890

Std 0.0035 0.0031 0.0019 0.0012 0.0039 0.0013 0.0380 0.0363 0.0115 0.0499 0.0958 0.0262

CF3 CF4

Mean 1.0416 1.4533 1.4076 0.7843 0.4465 0.6237 0.1206 0.2960 0.4430 0.1392 0.1657 0.1271

Std 0.1168 0.6427 0.3139 0.1370 0.0777 0.2519 0.0132 0.2439 0.1688 0.0423 0.0588 0.0330

CF5 CF6

Mean 0.8616 1.7447 2.8608 0.9253 0.3074 0.6838 0.0368 0.1238 0.2417 0.0718 0.1301 0.0617

Std 0.3256 0.6620 0.9192 0.2849 0.0730 0.1367 0.0058 0.0510 0.0676 0.0207 0.0640 0.0111

CF7 CF8

Mean 1.1241 2.7178 2.9203 0.6411 0.3331 0.6110 0.2720 0.7376 0.7129 0.2611 0.6558 0.2594

Std 0.2464 0.8117 1.0566 0.1942 0.1002 0.1739 0.0366 0.8995 0.1920 0.0483 0.3324 0.0326

CF9 CF10

Mean 0.2354 0.4436 0.3423 0.2378 0.8721 0.2209 1.2419 2.0560 2.6770 0.9997 0.5135 0.9630

Std 0.0392 0.2587 0.0626 0.0318 0.3062 0.0188 0.2315 0.5706 0.6037 0.3805 0.0948 0.2607

Rank 3 5 4 6 1 2

https://doi.org/10.1371/journal.pone.0324567.t007

https://doi.org/10.1371/journal.pone.0324567.g006
https://doi.org/10.1371/journal.pone.0324567.t007
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(3)	 From Figures (b)-(d), MODE exhibits sharp corners and sudden changes in velocity, acceleration, and jerk curves at 
inflection points, potentially inducing undesirable impact fluctuation and motor damage.

(4)	 Analysis of Figures (f)-(h) demonstrates that MOGWO initially experiences minimal fluctuations in speed, accelera-
tion, and jerk during trajectory planning. However, sharp curve fluctuations at 6s result in abrupt changes impacting 
the manipulator’s speed, acceleration, and jerk. This is derived from the fact that when MOGWO optimizes the node 
variables of the B-spline curve, the subsequent time nodes are too compact and change less.

Table 8.  Statistical data of the SP on CF1-10.

SP CF1 CF2

MODE MOGWO MOPSO NSGA-II NSGA-III LNSGA-II MODE MOGWO MOPSO NSGA-II NSGA-III LNSGA-II

Mean 0.0208 0.0130 0.0102 0.1173 0.0349 0.1179 0.2723 0.0750 0.0715 0.2747 0.0168 0.0376

Std 0.0053 0.0026 0.0014 0.0282 0.0142 0.0404 0.0681 0.1496 0.0494 0.0839 0.0202 0.0125

CF3 CF4

Mean 0.8548 0.3199 1.5455 1.0140 0.0936 0.2061 0.0899 0.0948 0.8473 0.6359 0.0134 0.5527

Std 0.2431 0.2787 1.4758 0.3702 0.1021 0.1021 0.0523 0.0759 0.6722 0.2562 0.0258 0.1836

CF5 CF6

Mean 0.5174 0.4663 2.2951 0.5449 0.0328 0.2273 0.0396 0.0328 0.7128 0.1812 0.0426 0.1912

Std 0.1571 0.4905 2.2744 0.2058 0.0728 0.0733 0.0117 0.0269 0.6586 0.1046 0.0318 0.0963

CF7 CF8

Mean 1.0564 0.8127 1.9341 1.1054 0.2828 0.1162 0.2247 1.0184 2.3323 0.8309 0.0895 0.3935

Std 0.3398 0.7263 1.5152 0.3769 0.0585 0.2145 0.0869 1.0064 1.0267 0.6567 0.0540 0.2705

CF9 CF10

Mean 0.1156 0.1455 1.0037 0.4441 0.4325 0.0888 1.0576 0.6125 3.7814 1.2329 0.1581 0.4711

Std 0.0275 0.0888 0.5505 0.4093 0.3069 0.0422 0.8035 0.2520 1.4921 1.3880 0.1023 0.1036

Rank 3 5 4 6 1 2

https://doi.org/10.1371/journal.pone.0324567.t008

Table 9.  Statistical data of the MS on CF1-10.

MS CF1 CF2

MODE MOGWO MOPSO NSGA-II NSGA-III LNSGA-II MODE MOGWO MOPSO NSGA-II NSGA-III LNSGA-II

Mean 0.7075 0.8258 0.2559 1.0039 0.7249 1.0045 0.6701 0.9352 0.8294 1.2589 1.1147 1.2703

Std 0.0715 0.1501 0.0425 0.0816 0.0947 0.0967 0.0804 0.1907 0.1490 0.0909 0.1377 0.0848

CF3 CF4

Mean 0.7546 0.9583 1.1093 1.0947 1.1320 1.1037 0.6312 1.0615 1.1130 1.2206 1.0692 1.2288

Std 0.0770 0.1660 0.2931 0.0989 0.1472 0.0983 0.1119 0.1947 0.2698 0.1135 0.0984 0.1060

CF5 CF6

Mean 0.6386 1.0045 0.7531 0.7628 1.0218 1.0666 0.6648 0.9242 1.0031 0.9667 0.9205 1.1707

Std 0.0759 0.1625 0.0594 0.0605 0.2684 0.1315 0.0981 0.1463 0.0999 0.1035 0.1243 0.2760

CF7 CF8

Mean 0.6397 0.9130 0.9176 0.9130 1.1947 1.0025 0.6723 0.6752 0.8906 0.8564 0.8829 0.9164

Std 0.0542 0.1687 0.0744 0.0827 0.2460 0.2163 0.0898 0.1194 0.1770 0.1399 0.0984 0.1738

CF9 CF10

Mean 0.6348 0.6631 0.8770 0.8646 0.8810 0.9079 0.5316 0.6307 0.5903 0.6135 0.8802 1.0353

Std 0.0598 0.0798 0.1902 0.1955 0.0761 0.1619 0.0429 0.0848 0.1099 0.1657 0.1341 0.1130

Rank 6 5 3 4 2 1

https://doi.org/10.1371/journal.pone.0324567.t009

https://doi.org/10.1371/journal.pone.0324567.t008
https://doi.org/10.1371/journal.pone.0324567.t009
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(5)	 Figures (r)-(t) show that the velocity and acceleration curve of NSGA-III change dramatically at 5s, because ∆t  is 0.03 
and the change is too small. Similarly, the jerk curve of the 7s shows sharp changes.

Trajectory planning involves using a 7-order B-splines curve, with LNSGA-II adopted for multi-objective optimization 
of the B-spline curve node vector. The velocity, acceleration and jerk of each joint of the manipulator in the start and stop 
stages are 0. The overall joint motion trajectory is smooth and continuous, which reduces the vibration of the manipulator 
and effectively protects the key components such as motor and reducer.

Taking the time of the control node of the 7th-order B-spline curve as the optimization variable, this paper adopts the 
LNSGA-II algorithm to solve the multi-objective function of “optimal efficiency, energy consumption, and impact”, and 
completes the multi-objective trajectory planning of the robotic arm. The experimental results show that compared with 
similar optimization algorithms, the LNSGA-II algorithm is more successful. In this paper, the order of the B-spline curve is 
chosen because in the same experimental platform, the computation time of the B-spline curves of order 3, 5 and 7 are in 
the same order of magnitude, so a higher order is chosen. To ensure the reliability of the study, multi-objective trajectory 
planning experiments were conducted using the LNSGA-II algorithm to optimize the B-spline curves of orders 3 and 7, 
respectively. Fig 11 shows the comparison experiments of 3rd and 7th order B-spline curves.

Fig 7.  Visualization result of IGD, SP and MS on CF1-10.

https://doi.org/10.1371/journal.pone.0324567.g007

https://doi.org/10.1371/journal.pone.0324567.g007
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As can be seen from Fig 11, the third-order B-spline curve obviously reduces the angular velocity, angular acceleration, 
and jerk of joint 1, but leads to sharp changes in the values related to angular velocity, angular acceleration, and jerk of 
joints 2 and 4, which may be the result of the trade-off between the third-order B-spline and the seventh-order B-spline 
under different objective constraints. Table 13 shows a comparison of the Pareto solution set results for two different 
orders of B-spline curves (bold indicates the best result).

The running time of the third-order B-spline curve is 3046s, which is smaller than the 3387s of the seventh-order 
B-spline, which is obvious that the increase in the order of the B-spline curve inevitably increases the computation time of 
the algorithm, and the difference between the two running times is extremely small. Despite the increase in computation 

Fig 8.  Pareto solutions for CF1-10.

https://doi.org/10.1371/journal.pone.0324567.g008

Table 10.  Joint constraints of the 6-DOF robotic arm.

NO. Joint vmax 
((。)∙s-1)

amax 
((。)∙s-2)

Jmax 
((。)∙s-3)

Tmax (N ∙ m)

1 120 45 90 327

2 120 40 80 167

3 180 75 70 167

4 180 70 55 20

5 180 90 60 10

6 180 80 60 10

https://doi.org/10.1371/journal.pone.0324567.t010

https://doi.org/10.1371/journal.pone.0324567.g008
https://doi.org/10.1371/journal.pone.0324567.t010


PLOS One | https://doi.org/10.1371/journal.pone.0324567  May 29, 2025 19 / 27

Fig 9.  Pareto solution set for multi-objective trajectory planning.

https://doi.org/10.1371/journal.pone.0324567.g009

Table 11.  Optimization results of Pareto frontier points.

Multi-objective optimization algorithm Optimal Results f1 (s) f2 
((。)∙s-2)

f3 ((
。)∙s-3)

LNSGA-II A 5.003 31.1462 6.4466

MODE B 7.0699 33.9914 19.1328

MOPSO C 22.1769 77.1118 83.2122

NSGA-II D 12.6863 34.8764 102.2870

NSGA-III E 12.7176 33.2282 97.7038

MOGWO F 25.1574 23.2782 28.8125

https://doi.org/10.1371/journal.pone.0324567.t011

Table 12.  Node variables after Pareto front point optimization.

Vector of time nodes of the joint trajectories The nodal vector of the B-spline curve

MODE  ∆t = [0.29,2.60,4.25,0.34,7.46,2.50,3.94]  t = [0, 0, 0, 0, 0, 0, 0, 0, 0.0135, 0.1353, 0.3339, 0.3498, 0.6989, 0.8157, 1, 1, 1, 1, 1, 1, 1, 1]

MOGWO  ∆t = [3.04,2.76,1.02,0.26,0.04,0.08,0.07]  t = [0, 0, 0, 0, 0, 0, 0, 0, 0.4177, 0.7971, 0.9375, 0.9375, 0.9794, 0.9902, 1, 1, 1, 1, 1, 1, 1, 1]

MOPSO  ∆t = [5.49, 4.68, 4.60, 3.13, 2.80, 3.45, 4.89]  t = [0, 0, 0, 0, 0, 0, 0, 0, 0.2509, 0.4647, 0.5155, 0.6010, 0.7570, 0.7962, 1, 1, 1, 1, 1, 1, 1, 1]

NSGA-II  ∆t = [0.29,2.60,4.25,0.34,7.46,2.50,3.94]  t = [0, 0, 0, 0, 0, 0, 0, 0, 0.2069, 0.3494, 0.5078, 0.6159, 0.7123, 0.8314, 1, 1, 1, 1, 1, 1, 1, 1]

NSGA-III  ∆t = [3.17,1.12,0.66,2.09,0.03,0.02,0.06]  t = [0, 0, 0, 0, 0, 0, 0, 0, 0.4433, 0.5998, 0.6921, 0.9847, 0.9893, 0.9917, 1, 1, 1, 1, 1, 1, 1, 1]

LNSGA-II  ∆t = [3.4, 0.6, 2.75, 1.3, 2.1, 0.85, 1.6]  t = [0, 0, 0, 0, 0, 0, 0, 0, 0.0135, 0.1353, 0.3339, 0.3498, 0.6989, 0.8157, 1, 1, 1, 1, 1, 1, 1, 1]

https://doi.org/10.1371/journal.pone.0324567.t012

https://doi.org/10.1371/journal.pone.0324567.g009
https://doi.org/10.1371/journal.pone.0324567.t011
https://doi.org/10.1371/journal.pone.0324567.t012
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Fig 10.  Experimental results of multi-objective trajectory planning.

https://doi.org/10.1371/journal.pone.0324567.g010
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time, the seventh-order B spline curve obtains more Pareto solution set results. At the same time, in the three evalua-
tion indexes of multi-objective trajectory planning, the values of time and impact of the seventh-order B spline curve are 
smaller than those of the third-order B spline curve, and only in the energy consumption indexes, it lags behind that of the 
third-order B spline curve, but the gap is smaller. Through the qualitative analysis of trajectory planning experiments, as 
well as the quantitative analysis of numerical indexes, this paper chooses the seventh-order B spline curve, by sacrificing 
part of the computation time, but obtains a better performance effect in multi-objective trajectory planning of the robotic 
arm, which is worthwhile.

5.  Digital twin-based UR16e grasping task

5.1  Twin model of the robotic arm UR16e

The concept of digital twin was introduced by GRIEVES at the University of Michigan, then known as ‘Mirrored Spaces 
Model’ (MSM) [50], which defined as an object and its digitized mirror image and the connection between the two, and 
later in the literature as ‘digital twin’ [51].

A three-dimensional virtual model of UR16e robotic arm is established in this paper. Combined with physical entities, a 
digital twin model interaction platform is constructed through MATLAB-CoppeliaSim-UR16e, and trajectory planning model 
is applied. It solves the problems of large-scale rapid and disorderly loading process of the robotic arm in the large-scale 

Fig 11.  Comparative experiments on spline curves.

https://doi.org/10.1371/journal.pone.0324567.g011

Table 13.  Comparison of Pareto solution set results.

Number of Pareto 
solution sets

Time (s) Energy consumption (。/
s2)

Impact (。/s3) Running 
time (s)

Minimum 
value

Maximum 
value

Minimum 
value

Maximum 
value

Minimum 
value

Maximum 
value

Third order B-splines 21 13.7080 36.7325 1.0446 27.9954 0.8048 68.4718 3046

Seventh-order B-splines 23 5.0035 33.4127 4.6446 35.1462 5.0506 11.4466 3387

https://doi.org/10.1371/journal.pone.0324567.t013

https://doi.org/10.1371/journal.pone.0324567.g011
https://doi.org/10.1371/journal.pone.0324567.t013
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start-stop impact, easy to jitter, and reduces the efficiency of the production operation and service life, and so on. The 
digital twin platform construction process is shown in Fig 12.

5.2  The grasping experiment of UR16e

The digital twin model framework of UR16e grasping material is shown in Fig 13. The framework consists of user layer, 
service layer, twin model layer and physical entity layer. Initially, when the user layer receives the robotic arm grasping 
task, the task instructions (the starting and ending coordinates of the material, the transportation time, etc.) are transmit-
ted through the portable controller to the service layer. Subsequently, the service layer processes the signal, utilizes the 
APF algorithm to determine a collision-free shortest path for grasping, identifies key motion sequences, and solves  
the multi-objective motion trajectory (including angle, velocity, acceleration, and jerk motion curves for each joint) through 
the trajectory planning model. Then the twin model layer obtains the multi-objective trajectory of the grasping material and 
assesses the feasibility of the motion command through virtual model simulation. Finally, the motion command is sent to 
the physical entity layer to direct the manipulator in successfully completing the grasping task.

In order to verify the accuracy and reliability of the digital twin framework of UR16e grasping materials proposed in this 
chapter, three different mechanical parts (cover, worm, helical gear) are set up in this section with grasping experiments 
conducted in a real environment. The grasping process is shown in Fig 14, where the robotic arm UR16e sequentially 
grasps the three types of workpieces. The specific experimental results are presented in Table 14, including the number of 
successful multi-objective trajectory planning for each experimental group and whether they effectively reached the target 
point.

From the table, the following conclusions can be drawn:

(1)	 The overall success rate for multi-objective trajectory planning across the three experimental groups is 95%, with a 
grasping success rate of 91.7%, affirming the feasibility and effectiveness of the inverse solution optimization model 
and trajectory planning model in practical applications.

(2)	 Group 1 demonstrates higher success rates in trajectory planning and grasping for the cover due to its smaller volume 
and fewer environmental obstacles.

Fig 12.  Digital twin of the UR16e.

https://doi.org/10.1371/journal.pone.0324567.g012

https://doi.org/10.1371/journal.pone.0324567.g012
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Fig 13.  The digital twin frame of the robotic arm UR16e grasping the material.

https://doi.org/10.1371/journal.pone.0324567.g013

https://doi.org/10.1371/journal.pone.0324567.g013


PLOS One | https://doi.org/10.1371/journal.pone.0324567  May 29, 2025 24 / 27

Table 14.  Experimental results of grasping materials.

Number of 
experiments

The number of successful 
multi-objective trajectory planning

Planning 
success rate

The number of 
successful grasps

Success 
rate

Group 1 Cover 20 20 100% 20 100%

Group 2 Worm 20 19 95% 18 90%

Group 3 Helical gear 20 18 90% 17 85%

Total 60 57 95% 55 91.7%

https://doi.org/10.1371/journal.pone.0324567.t014

Fig 14.  Process of grasping material experiment.

https://doi.org/10.1371/journal.pone.0324567.g014

https://doi.org/10.1371/journal.pone.0324567.t014
https://doi.org/10.1371/journal.pone.0324567.g014
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(3)	 Within Group 2, the trajectory planning success rate is 95%, indicating the successful resolution of trajectory motion 
curves for multiple targets with LNSGA-II. However, due to the length of the worm, instances of obstacle contact 
during grasping result in decreased success rates.

(4)	 In the third group of experiments, due to the increase of the complexity of obstacles, the success rate of multi- 
objective trajectory planning decreases, resulting in touching obstacles during the grasping process.

6.  Conclusion

For the large-scale rapid and disorderly loading, the robotic arm has the problems of large start-stop impact, easy to 
shake, and reduced production efficiency and service life, etc. In this paper, the artificial potential field method is use to 
obtain the shortest collision-free gripping path, extract the key motion sequences, and use the B-spline curve to math-
ematically model the trajectory planning problem. The multi-objective function of “efficiency, energy consumption and 
impact optimization” is established. Secondly, considering the poor diversity of the initial population of NSGA-II and the 
problem of being greatly affected by the number of iterations, this paper proposes a new mutation chaos strategy and a 
dynamic goal-oriented development strategy. At the same time, aiming at the constraint problem of multi-objective trajec-
tory planning of manipulator, an infeasible degree solution is designed, and a new multi-objective optimization algorithm 
LNSGA-II is formed. Through the CEC2009 test set experiment, compared with MODE, MOGWO, MOPSO, NSGA-II and 
NSGA-III, LNSGA-II has faster convergence speed and optimization ability, which shows the effectiveness and success of 
the improved strategy. Then, the time variable of the control node of the 7-node B-spline curve is used as the independent 
variable, and the LNSGA-II algorithm is utilized to solve the problem under the constraints of multi-objective function and 
joint conditions to complete the multi-objective trajectory planning in the joint space of the robotic arm. Finally, through 
MATLAB-CoppeliaSim-UR16e, the digital twin model of UR16e is built, and the above motion planning model is inte-
grated, and then applied to the actual grasping task of UR16e after validation by the twin.

Although the LNSGA-II algorithm has a fast convergence speed, it still cannot meet the requirements of real-time 
motion planning for robotic arms, and real-time is one of its limitations. Future work will consider the deep learning 
approach for real-time motion planning of robotic arms. Meanwhile, this paper validates the application of the digital twin 
framework through a physical platform, but it is limited to the experimental environment. Applying it to real production 
operations will be a future research direction.
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