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Abstract

Developing highly efficient electrocatalysts for the oxygen evolution reaction is
hindered by sluggish multi-electron kinetics, poor charge transfer efficiency, and
limited active site accessibility. Transition metal-based electrocatalysts, such as
cobalt oxides, have shown promise. However, poor charge transfer efficiency, lim-
ited active site accessibility, and suboptimal interaction with support materials have
lowered their oxygen evolution reaction performance. Additionally, optimization of
materials remains a complex task, often relying on trial-and-error approaches that
do not clearly understand the key features that govern oxygen evolution reaction
performance. In this study, we have addressed these challenges through machine
learning, which enables the systematic design and optimization of electrocatalysts.
By leveraging machine learning, we have developed a highly effective cobalt oxide
nanocrystal-based electrocatalyst embedded within sulfur and phosphorus-doped
carbon nitride. The homogeneous distribution of cobalt oxide nanocrystals on the sul-
fur and phosphorus-doped carbon nitride substrate further improves the accessibility
of active sites during electrochemical reactions, leading to enhanced oxygen evo-
lution reaction performance. The cobalt oxide sulfur and phosphorus-doped carbon
nitride catalyst has shown promising oxygen evolution reaction activity, characterized
by a low overpotential of 262 mV, a Tafel slope of 66 mV dec-", and a high electro-
chemically active surface area of 140.58 cm?. These results highlight the synergistic
interaction between cobalt oxide and sulfur and phosphorus-doped carbon nitride,
which contributes to the catalyst’s superior electrocatalytic performance and provides
a promising pathway for the design of advanced oxygen evolution reaction catalysts
through machine learning-guided material optimization.
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1. Introduction

Recently, environmental degradation due to the excessive use of fossil fuels to over-
come the energy crisis has driven the scientific community toward the development
of sustainable energy resources [1]. Among renewable energy resources, electro-
chemical water splitting has gained significant attention due to its ability to produce
high-calorific hydrogen [2,3]. Electrocatalytic water splitting, a critical process for
chemical energy conversion, involves two half-reactions: the oxygen evolution reac-
tion (OER) and the hydrogen evolution reaction (HER) [4—6]. The OER is challenging
due to its complex four-electron transfer process, converting two water molecules into
one oxygen molecule [7,8]. Effective OER catalysts must enhance water adsorption,
dissociation, charge transfer, and oxygen release to achieve high reaction rates and
energy efficiency, necessitating low overpotentials for optimal performance [9,10].

Although noble metals such as iridium (Ir) and Ruthenium (Ru) exhibit excellent
OER performance, their high cost has prohibitive widespread application [11]. Con-
sequently, significant research has been directed toward developing cost-effective
yet efficient alternatives [12—14]. In this regard, cobalt oxide (Co,0,) has emerged
as a promising material due to its unique structural and electronic properties. Co,O,
with its mixed-valent spinel structure (Co I, lll)) enhances electron transfer kinetics
during the OER process [15,16]. Compared to other metal oxides (CuO, MnO,, and
NiO), the spinel structure of Co,O, provides a high density of both octahedral and
tetrahedral sites, resulting in a large number of catalytic active sites that facilitate
efficient reactions [17,18]. Its Co(lll) ions in the octahedral sites are particularly
important for activating water molecules, thus promoting efficient OER. Additionally,
Co,0, exhibits high stability under harsh electrochemical conditions, making it more
reliable than other alternatives such as MnO, and NiO. However, challenges such
as aggregation and low conductivity can limit the efficiency of Co,O, by restricting
access to active sites and impeding electron and proton transport during the oxida-
tion process [19].

To address these limitations, there is a need to integrate Co,O, with conductive
substrates such as carbon nitride (g-C,N,), carbon nanotubes, and graphitic car-
bon [20,21]. This integration not only improves the material’s conductivity but also
optimizes its electronic structure, enhancing charge transfer and stability during the
OER [21]. Moreover, the synergistic effect between Co,O, and doped or supporting
materials can further enhance catalytic performance. The interaction between Co,0O,
and elements like sulfur, phosphorus, or nitrogen in g-C,N, promotes the forma-
tion of Co—N bonds, which are known to enhance catalytic activity. This synergy
significantly improves the electronic properties of Co,0,, making it a more efficient
electrocatalyst for OER. Doping g-C,N, with heteroatoms (e.g., I, P, S, and B) can
improve its conductivity by altering its electronic structure, enhancing charge trans-
fer, and making it a valuable substrate for catalysts in the OER [22]. Additionally, the
high nitrogen content in g-C,N, offers numerous metal ion anchoring sites, which are
beneficial for catalytic applications. Co-N interactions akin to Fe-N bonds have been
shown to enhance photo electrocatalytic water splitting [23]. For example, Zou et al.
demonstrated a significant increase in electrocatalytic activity with the formation of
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Co-N bonds between g-C,N, and Co(OH), [24,25]. Here, sulfur and phosphorus-doped g-C,N, (SP-CN) was employed
as a support framework for Co,O, resulting in highly effective OER electrocatalysts.

Recently, machine learning (ML) has garnered significant attention in materials science and catalysis due to its advanced
predictive capabilities [26]. ML helps the researchers to optimize the material properties such as adsorption energy, and
active sites to design highly efficient electrocatalysts [27,28]. ML’s finely tuned variables and identifying critical factors influ-
encing electrocatalytic activity significantly reduce the time and costs typically associated with conventional trial-and-error
techniques [29,30]. Moreover, ML not only accelerates the discovery and optimization of electrocatalysts but also provides
a more systematic and data-driven approach to understand the underlying mechanisms that govern electrocatalytic reac-
tions [31]. This holistic approach is paving the way for the next generation of electrocatalysts, which are both more efficient
and economically viable, contributing significantly to the advancement of sustainable energy technologies [32,33].

Inspired by the issues mentioned above, we have employed ML as a novel approach to optimize and design a robust
Co,0,/SP-CN-based nanocomposite. This work introduces a novel Co,0,/SP-CN composite with S and P doping and
also highlights ML as an innovative approach to finely tune the material’s properties. The integration of Co,0, with SP-CN
facilitates the formation of Co—N bonds, enhancing charge transfer rates. The designed composite (Co,O,/SP-CN) has
shown high electrocatalytic activity by exhibiting low overpotential (262 mV), and a Tafel slope of 66 mV dec-" that could
be ascribed to the sulfur and phosphorus-doped, defect-rich g-CN structure include its strong interaction with the electrode
and a high density of catalytic active sites. The uniform distribution of Co,O, nanocrystals on SP-CN resulted in a highly
conductive catalyst with minimal Co,O, agglomeration. Consequently, the OER activity of the Co,O,/SP-CN composites
was significantly enhanced. Additionally, the even dispersion of Co,0, nanocrystals on SP-CN increased the availability of
active sites for OER, thereby boosting overall catalytic performance.

2. Experimental section
2.1 Chemicals and reagents

All the chemicals and reagents, i.e., ethylene glycol (99.9%), sodium nitrate (NaNOs, 99.9%), thiourea (99.9%), cobalt(ll)
nitrate hexahydrate (Co(NO,),.6H,0, 99.9%), diammonium hydrogen phosphate (NH,),HPO,, 99%), nitric acid (HNO3,
98%), and ammonium hydroxide (NH,OH, 25-28%) were purchased from Sinopharm Chemical Reagent Co. (Shanghai,
China).

2.2 Synthesis of g-CN and SP-CN

SP-CN was fabricated via a reported approach [34]. In this process, 20mg of (NH,),HPO, was utilized as the phosphorus
source, combined with 5.0g of thiourea in an alumina crucible. The mixture was then subjected to thermal treatment in the
air atmosphere, heating to 550°C at a rate of 10°C/min and maintaining this temperature for one hour; this step induced
ammonia release through thermal polycondensation [35,36]. After the heating phase, the crucible was allowed to cool to
room temperature inside the oven. The obtained product underwent three rinses with distilled deionized water and 100%
ethanol, followed by air-drying at 50°C for 24 hours. Subsequently, the dried material was finely ground using a pestle and
mortar.

2.3 Synthesis of Co,0, nanoparticles (Co,O, NPs)

Cobalt oxide nanoparticles (Co,O, NPs) were synthesized via a conventional hydrothermal method [37,38]. First, 1.5 g of
cobalt chloride hexahydrate (CoCl,-6H,0) was dissolved in 30 mL of deionized water. The CoCl, solution was mixed with
the ammonium hydroxide solution while stirring continuously at 250-350 rpm. This mixture was transferred to an autoclave
and subjected to hydrothermal treatment at 160°C for 8 hours. Following the reaction, the autoclave was allowed to cool
to 25°C. The resulting product was a dark powder comprising Co,0, NPs.
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2.4 Synthesis of cobalt oxide (Co,0,) entrapped in SP-CN (Co,0,/SP-CN)

Co,0,/SP-CN was synthesized according to the previously reported approach [34]. Briefly, 50 mg of SP-CN and 50 mg of
Co,0, NPs were dissolved in ethanol. The solution was then subjected to continuous magnetic stirring and heating until
the solvent was fully evaporated. After drying at 50°C for 24 hours, the remaining residue was subjected to heat treatment
at 550°C for three hours. The resulting product was a brown composite of Co,0,/SP-CN.

3. Results and discussion

The surface morphology of SP-CN and Co,O,/SP-CN composite was examined using scanning electron microscopy
(SEM) (Fig 1). SEM images of SP-CN showed the presence of two-dimensional (2D) sheets with an irregular, flat struc-
ture and numerous wrinkles (Fig 1A). In contrast, SEM images of Co,0,/SP-CN (Fig 1B) revealed well-dispersed Co,O,
nanoparticles (NPs) across the 2D sheets, with sizes ranging from 20 to 40nm in diameter. The size of Co,O, nanocrys-
tals plays a significant role in the OER, as smaller NPs with their high surface-to-volume ratio tend to have higher surface
area, enhancing their catalytic activity in electrochemical reactions. Additionally, SEM images highlight the homogeneous
dispersion of Co,O, NPs on SP-CN sheets. This homogeneous dispersion will ensure optimal exposure of active sites
leading to efficient electron transfer kinetics. Additionally, EDX mapping (Fig 1C-1F) confirms the successful fabrication of
the Co,0,/SP-CN composite. The EDX mappings for Co (Fig 1C), O (Fig 1D), C (Fig 1E), and N (Fig 1F) indicate a homo-
geneous distribution of these elements across the surface.

The surface elemental composition and chemical states of the Co,O,/SP-CN composite were analyzed using X-ray
photoelectron spectroscopy (XPS). The XPS spectra showed the presence of P, S, C, N, O and Co without any other
contaminants (Fig 2). The Co 2p spectra displayed peaks for Co®**and Co?* at 781.1 & 797.5eV, and 782.7 & 801.3 eV,
respectively, along with satellite peaks at 804.1 and 786.5eV (Fig 2A), indicating higher binding energies. Peaks at 779.6
and 795.0eV were assigned to the Co-Nx structure in Co,0,/SP-CN (Fig 2A). The O 1s spectra showed peaks at 530.1,
531.3, and 532.1eV, corresponding to surface H,0O, adsorbed oxygen, and lattice oxygen in Co,O,, respectively (Fig 2B).
The P 2p spectra indicated binding energy maxima for P-O, P=N, and P-N bonds at 133.2, 134, and 135¢eV, respectively.

1.0 pm ————————10m

Fig 1. SEM images of (A) SP-CN, (B) Co304/SP-CN. EDX mapping of (C) Co, (D) O, (E) C, and (F) N.
https://doi.org/10.1371/journal.pone.0324357.9001
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Fig 2. Representing XPS spectra of Co304/SP-CN (A) Co, (B) O, (C) P, (D) C, (E) N, and (F) S.

https://doi.org/10.1371/journal.pone.0324357.9002

While higher binding energies for P=N, and P-N bonds compared to P-C coordination suggested phosphorus substitution
for carbon in the triazine rings [39,40] (Fig 2C). Deconvolution of the C 1s XPS spectra for Co,0,/SP-CN identified peaks
at 284.6, 286.3, 288.1, and 289.0eV, corresponding to C-N, and Sp?-bonded C in N-C=N, respectively [41] (Fig 2D). The
N 1s XPS spectra for SP-CN displayed peaks at 397.8, 400.4, and 402.01eV for C=N-C, N-C,, and C-NH,, respectively,
with an additional peak at 399.1eV indicating the Co-N bond in Co,0,/SP-CN (Fig 2E). Fig 2F confirms the presence of
S with different binding interactions. These findings align with the literature, confirming the successful synthesis of the
Co,0,/SP-CN composite [34].

X-ray diffraction (XRD) was used to assess the crystallinity and phase purity of Co,O, and Co,0O,/SP-CN [34] (Fig 3A).
The XRD pattern confirmed the presence of Co,0,, with diffraction planes at 26 angles of 31.37°, 36.87°, 38.67°, 44.87°,
55.62°, 59.56°, 65.47°, and 77.41° corresponding to the (220), (311), (222), (400), (442), (511), (440), and (533) planes,
respectively, in agreement with JCPDS# 74—2120 [34]. The presence of SP-CN was confirmed by peaks at 20 of 13.0°
and 27.7°, corresponding to the (002) diffraction plane (Fig 3B). Sulfur and phosphorus in CN caused a positive shift in the
26 value, attributed to increased interplanar distance and lattice distortions (Fig 3C) [42,43].
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Raman spectroscopy was employed to analyse the graphitic carbon content in Co,O,/SP-CN and SP-CN. The Raman
spectra (Fig 3D) showed two prominent bands: the G-band at approximately 1590 cm-*, indicative of quasi-graphitic
carbon layers, and the D-band at around 1354 cm-*, indicative of disordered carbon. The D-band represents structural
disruptions, while the G-band corresponds to sz-hybridized graphitic layers [44,45]. The degree of graphitization is often
quantified by the intensity ratio of the D-band to the G-band (ID/IG). Co,O,/SP-CN exhibited a higher ID/IG ratio of 1.39
compared to SP-CN, indicating increased graphitization and surface defects. The presence of a 2D band suggested that
co-doping with sulfur and phosphorus promoted Sphybridization in some graphitic layers, enhancing conductivity and
electron transport [46,47].

The Fourier transform infrared (FTIR) spectroscopy was carried out to study the stretching and bending vibrational
modes of Co,0, and Co,0,/SP-CN (S1 Fig). FTIR spectrum of Co,0O, has shown two prominent bands at 571 cm-" and
664 cm-", which are attributed to the stretching vibrations of Co*" and oxygen, confirming the presence of spinel Co,O,.
In the case of Co,0,/SP-CN, a band at 1630 cm~" corresponding to C=N stretching, along with absorption peaks in the
1250-1400 cm-" range, indicate C—N stretching typical of tertiary amines. These features suggest the presence of a
conjugated C-N framework within graphitic carbon nitride (g-C,N,), confirming the formation of an extended m-conjugated
structure. Furthermore, peaks in the 1280-1350 cm-" are attributed to P=N bonds, while those between 1050-1150 cm-"
correspond to C—S or S—N bonds, confirming the successful integration of S and P into the material’s structure.

The BET surface analysis of Co,0,/SP-CN and SP-CN was carried out using nitrogen (N,) adsorption-desorption iso-
therms to evaluate its surface area and pore volume (S2 Fig). The N, adsorption-desorption isotherm displayed a typical
IV-type isotherm with a distinct hysteresis loop, indicating mesoporous characteristics. The Co,0,/SP-CN has shown a
high specific surface area of 141 m?/g compared to SP-CN (81 m?/g). This high surface area of Co,0,/SP-CN with porosity
will facilitate better electron and ion transport leading to fast OER reaction kinetics.

- 5 Coo, 3
© Co,0/SP-CN | &
2 sla 2
‘@ Sl S = h
c ale s < 9 c
9 g ez _|Qo SP-CN
-— = = |
= 3 B |5
20 40 60 80
(20)°
FE) —~|D B 9
3 3 |co,0,/SP-CN I/l = 1.39
©
- e
2D
2} n
c c
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Fig 3. Representing XRD pattern of (A) Co304 and Co304/SP-CN, (B)SP-CN, (C) SP-CN, CN and (D) Raman spectra of g-CN, Co,0,/SP-CN.

https://doi.org/10.1371/journal.pone.0324357.9003
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3.1. Optimization of material composition to minimize the overpotential through ML

Several ML regression models were employed to design highly efficient electrocatalysts with minimized overpotential.
These models included linear regression (LR), K-nearest neighbors regression (KNNR), random forest regression (RFR),
ridge regression (RR), gradient boosting regression (GBR), and extreme gradient boosting regression (XGBR). The
ML models were trained on the experimental dataset to optimize the concentration of Co, P, S-CN, and the amount of
material deposited, aiming to predict overpotential. Each ML model was trained on preliminary experimental dataset to
effectively minimize overpotential as a function of the variables mentioned. The predictive capabilities of each ML model
are illustrated in Fig 4A. Among these models, the XGBR model stands out, showing the most effective optimization and
prediction of low overpotential, with a high coefficient of regression (R>=94.25%). This model’s strength lies in its ability to
handle complex, nonlinear relationships and interactions between experimental variables, without assuming linearity, mak-
ing it well-suited for modeling intricate experimental data and accurately predicting overpotential in electrocatalyst design.
The RFR and GBR models also demonstrated strong predictive performance, with R? values of 92.31% and 91.79%,
respectively, highlighting their robustness in capturing nonlinear relationships. In contrast, models like LR, RR, and KNNR
exhibited higher Root Mean Square Errors (RMSEs) and lower R? values, suggesting potential overfitting and reduced
predictive accuracy (S1 Table). These findings emphasize the XGBR model’'s capability to generalize effectively across
various scenarios, making it a powerful tool for optimizing material composition and enhancing electrocatalyst efficiency
(S3 Fig).

Moreover, the Pearson correlation matrix provides further insight into the relationships between Co, P, S-CN, deposited
material, and overpotential, which is crucial for designing efficient electrocatalysts (Fig 4B). The analysis reveals a strong

5.2E-16 2.8E-17 5.18E-17
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285
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3
2695
2823
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Q
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Co P

Fig 4. Comparative analysis of electrocatalyst performance. (A) Bar chart showing key experimental variables affecting OER activity. (B) Correlation
matrix heatmap with color-coded strengths. (C) importance feature graph, and (D) 3D scatter plot linking SP-CN doping levels to OER efficiency, indicat-
ing variable influence.

https://doi.org/10.1371/journal.pone.0324357.9004
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negative correlation between Co and overpotential (—0.84), indicating that higher concentrations of Co significantly reduce
overpotential. P shows a moderate negative correlation with overpotential (-0.38), suggesting a decrease in overpoten-
tial with increasing P concentration. Meanwhile, S-CN and the material deposited exhibit weak negative correlations with
overpotential (-0.23 and -0.08, respectively), indicating their minimal impact on overpotential. These results highlight the
significant role of Co in lowering overpotential, while P and S-CN have relatively minor effects.

Furthermore, feature importance analysis identifies Co as the most critical factor in controlling overpotential, followed
by P, with S-CN having the least influence (Fig 4C). A 3D scatter plot has been utilized to determine the optimal combina-
tion of Co, P, S-CN, and deposited material that minimizes overpotential, thereby enhancing the catalytic efficiency of the
synthesized materials (Fig 4D). This data-driven approach refines the synthesis process by providing precise control over
material properties, significantly advancing catalyst performance in OER applications. The method not only simplifies the
optimization process but also establishes a solid foundation for the rational design of high-performance catalytic material.
The 3D scatter plot specifically identifies the optimal concentrations of Co (1.5), P (0.02), S-CN (5), and deposited mate-
rial (1.5), corresponding to a minimum overpotential of 262 mV. This ML-driven analysis underscores the importance of
optimizing Co, P, S-CN and depositing material concentrations for OER applications.

3.2 . Electrocatalytic activity of Co,0, and Co,0,/SP-CN

The electrocatalytic performance of the synthesized materials was assessed using a three-electrode setup, comprising a
Pt wire as the counter electrode, an Ag/AgCl electrode as the reference, and a customized nickel foam electrode as the
working electrode. Linear sweep voltammetry (LSV) and cyclic voltammetry (CV) were performed at a scan rate of 100
mV/s in 1 M KOH, covering a potential range from 0 to 2 V vs. RHE, to determine the onset potential for each material
(Fig 5A, 5B). The LSV results revealed that Co,0,/SP-CN exhibited a lower onset potential of 1.43 V vs. RHE compared
to Co,0,, which had an onset potential of 1.52 V vs. RHE. Moreover, at a current density of 10 mA/cm?, Co,0,/SP-CN
demonstrated a reduced overpotential of 262 mV vs. RHE, in contrast to 303 mV vs. RHE for Co,O,. The occurrence of
swirling at the electrode surface during LSV further indicated the activation. For a deeper understanding of the reaction
kinetics, the Tafel slope was derived by plotting the logarithm of current density (log j) against overpotential (Fig 5C). The
data indicated that Co,0,/SP-CN had a lower Tafel slope of 66 mV/dec compared to Co,O,, which had a Tafel slope of
80.3 mV/dec. The results indicate that Co,0,/SP-CN promotes significantly faster and more efficient OER kinetics com-
pared to other comparable electrocatalysts (S2 Table). This enhanced electrocatalytic performance can be attributed to
the effective stabilization and facilitation of intermediate species at the uniformly distributed Co,O, active sites.

Electrochemical impedance spectroscopy (EIS) was carried out to investigate the electron transfer resistance associ-
ated with the OER process. EIS data was fitted using a Randles equivalent circuit consisting of solution resistance (Rs),
charge transfer resistance (Rct), and double-layer capacitance (Cdl), providing insight into electrochemical behavior. The
EIS-fitted Nyquist plot (Fig 5D) of Co,0,/SP-CN had shown the lowest Rct (3.8 Q) as compared to Co,O, (4.4 Q). This
enhanced performance can be attributed to S and P co-doping, which introduces structural defects in g-CN. These defects
not only improve electrical conductivity but also strengthen the interaction between SP-CN, Co,0,, and the electrode
surface. Additionally, the defect-rich structure increases the density of exposed catalytic active sites, collectively promoting
faster reaction kinetics and enhancing the overall OER activity.

The electrocatalytic active surface area of the electrode was determined by evaluating the double-layer capacitance
(Cdl) within the non-faradaic region through the CV performed in 0.1 M PBS at varying scan rates from 5 mV/s to 25 mV/s
(Fig 6A). A linear correlation was observed between the current density and the scan rate (Fig 6B). The electroactive sur-
face area and Cdl, calculated from the slope in Fig 6A, were 140 cm? and 5.6 mF/cm?, respectively. These results indicate
that SP-CN enhances the electrocatalytic performance of Co,O, by increasing the number of accessible catalytic sites and
facilitating rapid charge transfer. The improved activity is attributed to the strong Co-N binding interactions between Co,0,
and g-CN, as well as the surface charge defects introduced by sulfur and phosphorus doping.
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https://doi.org/10.1371/journal.pone.0324357.9006

3.3. Reaction kinetics and mechanistic investigations

The number of electrons involved in the OER was calculated by analyzing the relationship between the applied potential
and the natural logarithm of the scan rate, which varied from 5 to 50 mV/s (Fig 6C). This evaluation was conducted follow-

ing the Laviron equation (Eq. 1).
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RT anF RT
Ec=E,)- (anF) *In (RTks) - (anF) xIn(v) (1)
Slope = 2.303RT/anF )

In this analysis, Ec represents the reduction potential, while E,, denotes the formal potential of the metal redox
process. R, T, F, and ks correspond to the gas constant, absolute temperature, Faraday constant, and average rate
constant for the redox reaction, respectively. The electron transfer coefficient and the number of electrons transferred
are denoted by a and n, respectively. Using Eq. 2, the electron transfer and the number of electron-proton transfers
were calculated to be 3.89 and 0.812, respectively (Fig 6D). To investigate the reaction kinetics, the Laviron equation
(Eq. 1) was applied to determine the ks values, providing insights into the adsorption properties of the newly devel-
oped electrodes.

CV experiments were performed for Co,0,/SP-CN and Co,0, in 1 M KOH at scan rates ranging from 5 to 50
mV/s. The data revealed that both Co,0,/SP-CN and Co;0, exhibited stable redox currents, with a linear correlation
between the applied potential and the natural logarithm of the scan rate. Notably, the ks value for Co,0,/SP-CN
(0.73s7") was higher than that of Co,0, (0.44s™"), suggesting more efficient metal binding to “OH species on the
electrode surface. These findings align with the proposed OER mechanism, which is supported by literature and
involves a four-electron-proton transfer process accompanied by oxo-intermediate formation (Eqn. 3—6) on the elec-
trode surface.

Co*24270H — Co(OH), (3)
Co(OH), +OH™ — Co—OOH+H,0+€" 4)
Co—OOH + OH™ — Co— 00 +H,0 (5)
Co-—00 — Co+ 0O, +6€ (6)

Briefly, Co undergoes the oxidation from Co?* to Co®* on exposure to alkaline media (KOH), resulting in the formation of
OER different intermediates (Co(OH), Co-OOH, Co-O0). These intermediates finally result in the evolution of O, at the
electrode surface [48]. This mechanism aligns with existing literature [49]. The efficient and fast production of O, is sup-
ported to high surface-to-volume ratio and homogeneous dispersion of Co,0, NPs on SP-CN sheets. This homogeneous
dispersion enhnced OH- adsorption due to strong interactions between the metal and the OH- intermediate leading to
efficient electron transfer kinetics.

Chronoamperometric tests conducted at 1.40 V vs. RHE over 24 hours in a 1 M KOH solution showed that Co,O,/
SP-CN sustained a current density above 35 mA/cm? with minimal performance degradation (Fig 7A). However, after the
stability test, the XRD pattern revealed a slight decline in peak intensity and broadening of the diffraction peaks (red),
suggesting a partial loss of crystallinity (Fig S4). This change is indicative of phase instability, reflecting the material’s
degradation over time. Furthermore, XPS has been carried out to investigate the structural integrity of Co,O,/SP-CN fol-
lowing the stability test. XPS spectra has shown minimal variations in binding energy and peak intensities, indicating that
each element chemical state almost remains the same (Fig S5). Contact angle measurements of Co,0O, (Fig 7B) indicate
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a higher binding energy as compared to Co,0O,/SP-CN (Fig 7C). The lower binding energy observed in Co,0,/SP-CN
contributes to improved stability of the system. This reduction in binding energy is attributed to the strong cohesive inter-
actions within the Co,0O,/SP-CN nanocomposite, as supported by prior studies [26]. Furthermore, the OER performance of
this electrocatalyst, particularly in terms of onset potential, is comparable to or exceeds that of various chalcogenides and
MOF-based metal electrocatalysts reported in the literature.

4. Conclusions

In this study, we synthesized ML-optimized novel and cost-effective Co,0,/SP-CN-based nanocomposite by pyrolyzing
thiourea and subsequently combining it with cobalt salt and diammonium phosphate. The designed composite (Co,0O,/
SP-CN) has shown high electrocatalytic activity by exhibiting low overpotential (262 mV), and a Tafel slope of 66 mV dec-*
that could be ascribed to the sulfur and phosphorus-doped, defect-rich g-CN structure include its strong interaction with
the electrode and a high density of catalytic active sites. ML has identified Co as the key element controlling OER efficacy
followed by P, S-CN. Additionally, chronoamperometric measurements confirmed the high stability and durability of the
catalyst, further validating its potential for long-term use in OER applications.
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