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Abstract

Electroencephalography (EEG) is an established method for investigating neuro-
cognitive functions during human development. In cognitive neuroscience, time-
frequency analysis of the EEG is a widely used analytical approach. This paper
introduces WTools, a new MATLAB-based toolbox for time-frequency analysis of
EEG signals using complex wavelet transformation. WTools features an intuitive
GUI that guides users through the analysis steps, focusing on essential parameters.
Being free and open-source, it can be integrated and expanded with new features,
making it a handy tool that is growing its popularity in developmental cognitive neu-
roscience. While the default settings follow established pipelines in developmental
research, the toolbox also provides the flexibility to accommodate settings more
commonly used in adult neuroscience. Here, we provide a detailed description of
the WTools algorithm for wavelet transformation and we compare it with state-of-the-
art methods implemented in EEGLAB. Alongside the official tool release, we offer a
comprehensive, illustrated tutorial with sample infant EEG data designed to support
novice users, enhance accessibility and promote the transparent and reproducible
usage of WTools.

Introduction

Electroencephalography (EEG) is an established and practical tool for studying
brain function and dysfunction across the lifespan. Over the past decades, time-
frequency analysis of the EEG has become increasingly popular in cognitive neu-
roscience. Often implemented via wavelet transformation [2—4], time-frequency
analysis attempts to unfold the EEG signal into the frequency domain. Unlike pure
Fourier transformation, it includes some temporal support, allowing us to see the
frequencies in the EEG signal spread over time relative to a time-locked stimulation.
Consequently, time-frequency analysis can finely characterize the temporal dynam-
ics embedded in EEG oscillations in terms of frequency, power, and phase [4]. This
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analysis provides invaluable information on a variety of cognitive processes such as
attention [5,6], learning and prediction of upcoming information [7,8], memory [9,10],
language [11—-13] and motor activation [14,15], pointing to the centrality of cortical
rhythms in cognition [16,17].

Over the past two decades, time-frequency analysis of the electroencephalo-
gram (EEG) has become increasingly popular in the field of developmental cogni-
tive neuroscience [2,1,18—24]. Yet, most studies in this field currently rely on ERPs
and Fourier-based power, possibly because time-frequency analyses can be both
computationally intensive and analytically complex [25]. Different from event-related
potential (ERP) analysis, time-frequency analysis can be done with many different
mathematical approaches (short-time Fourier transform, Hilbert transformation,
wavelet transformation) and requires the manipulation of several parameters. Dif-
ferent approaches and small changes in the parameters can lead to very different
results.

There is a large number of free software [26—29] and commercial software
(NetStation, Brain Vision Analyzer) to perform time-frequency analysis of the EEG.
However, commercial software does not disclose the exact algorithm for the signal
processing. As a result, it is virtually impossible to understand what the software
does exactly, undermining flexibility, transparency and reproducibility. Free software
on the other hand can be difficult to use because of the lack of a graphic user inter-
face (GUI), or because they require to manually set several parameters. By devel-
oping in complexity and integrating an increasing number of functionalities, these
toolboxes are difficult to use for inexperienced researchers and students, as is often
the case in developmental neuroscience.

This paper presents WTools, a new MATLAB-based toolbox for time-frequency
analysis of the EEG signal. WTools is designed to be very user-friendly through its
simple GUI; it is easy to learn and use because it keeps the number of parameters
to manipulate at a minimum; it is open source and flexible as the code is freely
available. WTools uses wavelet transformation and the algorithm is fully described.
It works in combination with EEGLAB, exploiting its functionalities to import several
different EEG data formats, as well as some of the EEGLAB plotting functionalities.
Its data structure is derived from ERPWAVELAB [27] and therefore WTools files are
fully compatible with ERPWAVELAB. It handles multi-channel time-frequency analy-
sis and multi-subject projects. It computes within-subject time-frequency differences
among conditions and plots the results with time-frequency plots, as well as 2D and
3D scalp maps. It is possible to integrate and extend the toolbox with personalized
configurations for developmental research (i.e., newborn and infant scalp maps).
Finally, WTools includes a function to export numerical datasets into tabulated text
files that can be easily analysed with any statistical software. For these reasons
combined, an increasing number of studies in the field of developmental cogni-
tive neuroscience have adopted beta versions of WTools before its official release
[30-38]. With the present work, we aim to formalize the toolbox, publicly release it
together with a clear, step-by-step user-friendly tutorial and promote its usage from
the wider developmental cognitive neuroscience community and beyond.
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To provide a comprehensive overview of WTools, the paper is structured as follows. First, we describe how WTools
implements wavelet transformation and how the signal is processed. Then, we illustrate the main visualization func-
tionalities of WTools. Finally, we compare its time-frequency functionality with state-of-the-art methods implemented
in EEGLAB, an established popular free software [26]. WTools scripts are made freely available for the users (under
GPL-3.0 license) on GitHub (github.com/cogdevtools/WTools/tree/v2.0). A user-friendly step-by-step tutorial of the entire
pipeline for the use of WTools is provided on GitHub, along with an anonymized example dataset (see Data availability
statement). We strongly encourage readers to refer to the tutorial for complete details and the latest updates on the tool-
box’s functionalities.

Materials and methods
WTools description

The processing pipeline (Fig 1) consists of a sequence of steps, each controlled through a GUI and executed by an inde-
pendent code module. The paper focuses mainly on the core analytical section of the toolbox. Accordingly, in the following
sections we describe the wavelet transformation implemented in WTools. The description is kept at the minimum possible
complexity to provide a simple and clear explanation of how WTools transforms the EEG signal into the time-frequency
domain.

Morlet complex wavelets. A wavelet (small wave) is a mathematical function of time (f) and frequency (f), with the
following two features. First, its amplitude approaches zero at positive and negative infinity and it differs from zero only
around the origin of the cartesian axes. That is, differently from other mathematical functions such as sinusoidal or infinite
waves, a wavelet has a defined temporal length. Second, the sum of the area of a wavelet above the x axis is equal to the
sum of the area of the wavelet below the x axis, hence the total sum of the area of a wavelet is equal to zero. Therefore,
differently from a filter, a wavelet will not change the power spectrum of a signal. WTools computes Morlet complex
wavelets at a 1 Hz sampling frequency according to:

w(t ) = Axexp (—t?/207) exp (2ir ft)

where o; = n cycles/ (2 © f), n cycles is the temporal duration of the wavelet expressed in cycles of the oscillation fre-
quency f, exp (—t2/2at2) is a Gaussian bell curve, exp (2im ft) is a complex sinusoid. Wavelets are normalized depending
on the time-frequency transformation measure (see next paragraph): the normalization factor A is equal to (o—t\/%)_l/z if
the amplitude is taken, and it is equal to v/2/01/7 if the power is taken [39]. Wavelet normalization is common practice
in time-frequency analysis (e.g., in EEGLAB), which we strongly recommend as it allows direct quantitative comparisons
of frequency content across frequency values. Nevertheless, we still provide the option to omit wavelet normalization for
back-compatibility with previous (beta) versions of WTools. As a sanity check, there is a perfect match between the wave-
lets specified by WTools and EEGLAB once wavelet normalization is applied to the WTools wavelet (Fig 2).

Note that WTools uses a default value of n cycles = 7 for back-compatibility with beta versions of the toolbox and
publications report a value of 3.5 cycles, which translates to 7 in the current version of the toolbox to fully align with the
EEGLAB’s wavelet formula and resulting cycle value, thus avoiding potential confusion. Consequently, the very small
oscillations at the edges of the wavelets are also considered. However, there is no other theoretical reason to choose
this value. WTools implements the possibility to choose the number of cycles one thinks is the most appropriate for their
experimental purposes. Furthermore, the wavelet transformation GUI enables plotting the Full Width at Half Maximum
(FWHM) versus the wavelet frequencies. This feature is particularly useful when determining the appropriate optional
padding to apply to the signals before transformation, as it suggests the minimum acceptable duration for the padding,
helping to avoid the introduction of distortion at the edges of the EEG segments.

PLOS One | https://doi.org/10.1371/journal.pone.0323179 May 7, 2025 3/15




PLOS Y one

Aeoec wtools B —— Project management ——

New OR Open

N/

Import > EEGLab

|

~— Signal processing functions —

Import -> EEGLab Subjects Manager

Wavelet Transform Chop & Baseline

Wavelet Transform

)

Chop & Baseline

Conditions Diff. Grand Average

Channels Average
Average + StdErr ChansAvg + StdErr l
Conditions Difference
2D Scalp Maps
l if N>1
Expottstatistics Grand Average
\_ J
Configure |
Plots Statistics
functions functions

Fig 1. WTools pipeline. WTools GUI (A) and schematic representation of the processing pipeline (B). The toolbox is divided into five main sections:
Project management (initialize project and import data); Signal processing (run time-frequency analysis); Plots (create time-frequency plots, 2D and
3D scalp maps); Statistics (export numeric values for statistical analyses); Application (configure and monitor the toolbox’s functionalities). The paper
focuses mainly on the core analytical section of the toolbox (i.e., Signal processing); for further details on the remaining sections, please consult the
step-by-step tutorial accessible from the WTools GitHub project website (see Data availability statement).

https://doi.org/10.1371/journal.pone.0323179.9001

PLOS One | https://doi.org/10.1371/journal.pone.0323179 May 7, 2025 4/15



https://doi.org/10.1371/journal.pone.0323179.g001

PLO\Sﬁ\\.- One

WTools wavelets EEGLAB wavelets
10 Hz 20 Hz 30 Hz 10 Hz 20 Hz 30 Hz
0.2 0.2 0.2 0.2 0.2 0.2
0.1 0.1 0.1 0.1 0.1 0.1
-0.1 -0.1 -0.1 -0.1 -0.1 -0.1
-0.2 -0.2 -0.2 -0.2 -0.2 -0.2
010 01 01 0 01 010 01 010 01 01 0 01 010 01
40 Hz 50 Hz 60 Hz 40 Hz 50 Hz 60 Hz
0.2 0.2 0.2 0.2 0.2 0.2
0.1 0.1 0.1 0.1 0.1 0.1
0 0 0 0 0 0
-0.1 -0.1 -0.1 -0.1 -0.1 -0.1
-0.2 -0.2 -0.2 -0.2 -0.2 -0.2
010 01 01 0 01 010 01 010 01 010 01 010 0.1
70 Hz 80 Hz 90 Hz 70 Hz 80 Hz 90 Hz
0.2 0.2 0.2 0.2 0.2 0.2
0.1 0.1 0.1 0.1 0.1 0.1
0 0 0 0 0 0
0.1 -0.1 0.1 -0.1 -0.1 -0.1
-0.2 -0.2 -0.2 -0.2 -0.2 -0.2
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Fig 2. Comparison of complex Morlet wavelets. \WTools wavelets (on the left) and EEGLAB wavelets (on the right) for the frequency range used in
the present work (10-90 Hz; see section “Data analysis”). Please note that the default WTools pipeline computes wavelets with 1 Hz sampling frequency;
here we plot wavelets with 10 Hz sampling frequency for visualization purposes only. The red plots show non-normalized wavelets for WTools. The blue
plots show normalized wavelets for WTools and EEGLAB, with a perfect correspondence between the two. X axis: Time (s); Y axis: Wavelet amplitude
(a.u.).

https://doi.org/10.137 1/journal.pone.0323179.9002

The last term of the equation can be written as a sum of sin and cos waves:

exp (2ir ft) = cos2m ft+isin2r ft

In practice, a wavelet is a complex sinusoidal wave enveloped into a Gaussian bell curve. Because a wavelet is a
function depending on a frequency f, at each fthe corresponding wavelet works as a magnifier that can reveal how much
that frequency is present into the EEG signal. At the same time, because a wavelet has a defined temporal length, it can
preserve some time information after the transformation of the signal.

Wavelets are wide at lower frequencies, that is the temporal information is relatively imprecise, but the frequency
information is preserved. Wavelets become progressively narrower at higher frequencies, that is the time information
is more accurate, but the frequency information is less precise. This creates an important difference with the short-time
Fourier transform (STFT) approach, which is also widely used to uncover oscillatory activity in the EEG signal. During
the STFT computation, the time information is kept fixed for all frequencies of interest, even when it could be higher (i.e.,
at higher frequencies). Conversely, wavelets optimize the window length for each frequency by appropriately scaling a
unique function, the “mother wavelet”, so that it achieves the best possible compromise between uncovering the EEG
oscillatory activity and preserving the maximum possible time information for each frequency of interest. In sum, time
and frequency information respond to Heisenberg'’s indetermination principle: the more accurately we know one of them,
the less accurately we know the other. Given this constraint, wavelet transformation is the most informative approach
for time-frequency analysis, preserving the time information as much as possible while reliably uncovering oscillatory
information.
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Time-frequency transformation. After computing all the wavelets for each frequency in a range of interest, WTools
uses continuous wavelet transformation. By default, all trials are analysed. However, the user can specify a subset of
trials or even a specific single trial, enabling single-trial frequency extraction. By convolving the signal s(t) (cleared of its
DC component) with the wavelet w(t, f) and taking the modulus of the resulting complex coefficients, WTools obtains the
amplitude coefficients (the mean square root) of the wavelet transformation at a specific frequency f. The resulting vector
represents how well the signal fits the wavelet at a the frequency f, that is how much of the frequency fis in that signal
[39]. WTools performs the convolution for each experimental condition and channel, of each EEG segment and subject,
for all frequencies of interest. Transformed segments are then averaged across trials:

avWT (c, f, t) :ENIX(C, f,t,n)/N

where X(c, f, t, n)is the time-frequency coefficient at channel c, frequency f, time t and segment n of the EEG signal
given by X(c, t, n). Following the ERPWAVELAB data structure [27], the resulting MATLAB variable “WT” is a 3D matrix
(Channel x Frequency x Time) that contains the average of the transformed segments. Note that, since WTools by default
takes the modulus of the complex coefficients, the data are expressed in amplitude (uV) rather than power (i.e. pyV?). As
a result, the measure is slightly more sensitive to small frequency changes. However, since other established pipelines
[26,28,29] use the power of the wavelet transform as the time-frequency measure, WTools also provides the option to
compute and analyse the power. Thus, WTools offers flexibility to work with either the amplitude or the power of the wave-
let transform, and users can display the data in dB. Importantly, since wavelet transformation reveals phase information,
WTools provides access to the raw complex data before removing the complex components, allowing users to extract
phase information directly from the transformed data.

WTools allows computing both total-induced and evoked oscillations [40,41]. Total-induced oscillations are computed
by wavelet transformation of each EEG epoch before averaging all of them together (i.e., the pipeline we just described
above): in this way, the oscillatory activity non-phase-locked to the onset of the stimulus is preserved. Total-induced
oscillations are richer measures compared to evoked oscillations. Evoked oscillations are computed by running the
wavelet transformation after averaging all the EEG epochs together, that is the wavelet transformation is performed on the
average (i.e., it is the wavelet transformation of the ERP): in this way, the oscillatory activity that is non-phase-locked to
the stimulus onset is averaged out and lost before the wavelet transformation. Evoked oscillations are poorer measures
compared to total-induced oscillations and are slightly more sensitive to low-level features of the stimulus.

Edges chopping. The continuous wavelet transformation assumes signal continuity, yet EEG segments inherently
lack this continuity: at the segment’s start, a shift from no signal to signal with amplitude occurs, mirrored at the segment’s
ends, causing significant frequency changes. This discontinuity distorts coefficient vectors at the edges, particularly
noticeable at lower frequencies where wavelets are broader (see Fig 2). To address the impact of this distortion on
EEG signal analysis, it is advisable to pre-cut wider segments. Alternatively, WTools offers an edge padding feature to
compensate for signal absence at segment edges. Based on empirical evaluation, the minimally necessary length of extra
signal needed at each edge can be estimated with the current formula (Gergely Csibra, personal communication):

t =2000/min (f)

where fis the frequency range of interest. For instance, if one wants to look at frequencies between 5-15 Hz, then it is
necessary to consider t=400ms of extra signal at both left and right edges of the segment.

Baseline correction. Differently from other toolboxes that adopt a divisive baseline [42], WTools performs by default
a subtractive baseline similarly to baseline correction for ERPs. The average amplitude in a given time window of the
pre-stimulus interval is computed and subtracted from the whole time-varying signal. Notice that there is not a common
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baseline for all frequencies; instead, each frequency of interest has its own baseline value that is used for correction only
for that frequency. This approach makes the resulting spectrograms easy to read and highly comparable to ERPs, which
is particularly handy for developmental research. Furthermore, adopting a divisive baseline assumes a multiplicative
model, in which oscillations and 1/f activity scale by the same factor relative to baseline for each frequency [43]. This
assumption may be incorrect when signal and noise contribute independently to the power spectrum (i.e., additive model;
Gyurkovics et al., 2021), a very common problem in developmental studies for which a subtractive baseline may be more
suitable. Nevertheless, for wider usability of the toolbox, WTools also offers options for subtractive baseline correction with
normalization and divisive baseline correction [42].

Dataset description

To examine the time-frequency functionality of WTools, we employed a dataset from a previously published study inves-
tigating EEG responses to multimodal ostensive signals in 5-month-old infants [1]. Eighteen infants (9 females; average
age=148.17 days, range = 136—157 days) were included in this previously published study. All infants were born full-term
(gestational age: 37—41 weeks) and in the normal weight range (>2500g). We provide free access to an anonymized
dataset containing three representative participants from this study (see Data availability statement). The figures con-
tained in the present paper pertain to one of these participants.

The experiment conformed to a 2 x 2 within-subject factorial design, corresponding to the orthogonal crossing of the
factors Modality (visual vs. auditory) and Ostension (ostensive vs. non-ostensive). As a result, the experiment included
four within-subject conditions: ostensive visual stimulus of direct gaze (DG); non-ostensive visual stimulus of averted gaze
(AG); ostensive auditory stimulus of infant-directed speech (IDS); non-ostensive auditory stimulus of adult-directed speech
(ADS).

Visual stimuli (female faces) were presented on a 19-inch CRT monitor operating at 100 Hz refresh rate using Psych-
toolbox (v. 3.0.8) and custom-made MATLAB scripts. Auditory stimuli (a pseudo-word pronounced by a female voice) were
presented by a pair of computer speakers located behind the monitor. A remote-controlled video camera located below
the monitor allowed the recording of infants’ behaviour during the experiment. For further details on the stimuli and setup,
please refer to [1].

Infants sat on their parent’s lap at 70 cm from the monitor. At the beginning of each trial, a dynamic visual stimulus
appeared on top of the face with closed eyes for 600 ms to grab the infant’s attention. Afterwards, the attention grabber
stopped moving and stayed on screen for a random interval between 600 and 800 ms. The attention grabber then dis-
appeared and a visual (DG or AG) or auditory (IDS or ADS) stimulus was presented for 1000 ms. An inter-trial interval
between 1100 and 1300 ms was inserted between trials. Infants were presented with a maximum of 192 trials divided into
4 blocks. The behaviour of the infants was video-recorded throughout the session for offline trial-by-trial editing.

High-density EEG was recorded continuously using Hydrocel Geodesic Sensor Nets (Electrical Geodesics Inc.,
Eugene, OR, USA) at 124 scalp locations referenced to the vertex (Cz). The ground electrode was at the rear of the head
(between Cz and Pz). Electrophysiological signals were acquired at the sampling rate of 500 Hz by an Electrical Geode-
sics Inc. amplifier with a band-pass filter of 0.1-200 Hz.

Data analysis

WTools does not include preprocessing routines, so users can freely choose their preferred pipelines before importing the
data into the toolbox. In the following, we describe the preprocessing steps adopted in the original publication from which
the sample dataset was taken [1]. The authors used state-of-the-art infant EEG methods available at the time of the origi-
nal publication. The digitized EEG was band-pass filtered between 0.3—-100 Hz and was segmented into epochs including
500 ms before stimulus onset and 1500 ms following stimulus onset for each trial. EEG epochs were automatically rejected
for body and eye movements whenever the average amplitude of an 80 ms gliding window exceeded 55uV at horizontal
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EOG channels or 200 uV at any other channel. Additional rejection of bad recording was performed by visual inspection
of each individual epoch. Bad channels were interpolated in epochs in which <10% of the channels contained artefacts;
epochs in which >10% of the channels contained artefacts were rejected. Infants contributed on average 12.11 artefact-
free trials to the DG condition (range: 10-19), 11.67 to the AG condition (10-15), 11.67 to the IDS condition (10-19), 12.61
to the ADS condition (10-22). The artefact-free segments were subjected to time-frequency analysis using WTools and
EEGLAB respectively. For both, we applied the following core parameters: frequency range = [10, 90] Hz; time window =
[-200, 1200] ms; number of wavelet cycles=7.

WTools analysis. To import data into WTools, epochs were transformed from the native EGI format to the MATLAB
format using the appropriate NetStation Waveform export tool by EGI, and then the correspondent EEGLAB import plugin
(v. 2021.1). In general, WTools calls existing EEGLAB plugins to import data. Each plugin takes as input a specific data
format. Users must save the data in a format that is compatible with the EEGLAB plugin of interest, which is called by the
WTools import routine (see: eeglab.org/tutorials/04_Import/Import.html). Note that data to be imported into WTools must
conform to an event-related within-subject design with one single trigger per segment/epoch indicating the onset of the
key event. Epochs were re-referenced to average reference and then subjected to time-frequency analysis. Data were
analysed using both the default WTools pipeline (whose code is released with this publication) and custom pipelines that
allowed a direct comparison with the EEGLAB output, as outlined below.

In the following, we describe the default WTools pipeline. We computed complex Morlet wavelets for the frequencies
10-90 Hz in 1 Hz steps. We calculated total-induced oscillations by performing a continuous wavelet transformation of all
the epochs using convolution with each normalized wavelet (number of cycles=7) and taking the absolute value (i.e., the
amplitude) of the results [2]. To remove the distortion introduced by the convolution, we chopped 300 ms at each edge of
the epochs, resulting in 1400 ms long segments, including 200 ms before and 1200 ms after stimulus onset. We used the
average amplitude of the 200 ms pre-stimulus window as baseline, subtracting it from the whole epoch at each frequency.

To compare the WTools output to the EEGLAB output, we carried out a custom analysis that deviated from the default
WTools pipeline in two ways. First, we took the squared value (i.e., the power) of the complex wavelet coefficient, in line
with the EEGLAB pipeline. Second, we skipped baseline correction to avoid a mismatch between the two toolboxes (while
WTools performs a subtractive baseline, EEGLAB implements a divisive baseline).

EEGLAB analysis. Epochs were transformed from the native EGI format to the MATLAB format using the NetStation
export tool and then imported by using the correspondent EEGLAB import plugin (v. 2021.1). Epochs were re-referenced
to average reference and then subjected to time-frequency analysis. Data were analysed using various EEGLAB pipelines
that allowed a direct comparison with the WTools output. Specifically, we carried out a custom analysis that deviated
from the standard EEGLAB pipeline in two ways. First, we did not log-transform the results of the wavelet transformation
(typically done to bring the results to the standard dB scale). Second, we skipped baseline correction to avoid a mismatch
between the two toolboxes. Alongside these custom analyses, we processed the data using the standard EEGLAB
pipeline. Please see the Supporting information (S1 Fig) for a comprehensive review of the analysis pipelines. For all
analyses, we computed Morlet complex wavelets for the frequencies 10-90 Hz in 1 Hz steps. We calculated total-induced
oscillations by performing a continuous wavelet transformation of all the epochs using convolution with each normalized
wavelet (number of cycles =7) and taking the squared value (i.e., the power) of the complex coefficients. Data were
automatically chopped by EEGLAB to remove the distortion introduced by the convolution, resulting in 1400 ms long
segments, including 200 ms before and 1200 ms after stimulus onset. For baseline correction, we entered the 200 ms pre-
stimulus window as baseline.

Ethics statement

This work illustrates a new software toolbox for EEG analysis. As such, the project did not involve the recruitment and
testing of human participants. We utilized anonymized EEG data from a previously published study, which was conducted
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in accordance with the Declaration of Helsinki and approved by the United Ethical Review Committee for Research in
Psychology (EPKEB) at Central European University, where data collection was performed. Written informed consent was
obtained from all subjects involved in the study.

Results
lllustrating WTools

We illustrate the main visualization functionalities available in WTools using results obtained under the default WTools
pipeline. For details of all the available visualization settings, please refer to the step-by-step tutorial of the entire pipe-
line that is provided on GitHub (see Data availability statement). Three main types of plots are available: time-frequency
graphs, 2D scalp maps and 3D scalp maps. For time-frequency graphs, it is possible to plot results from individual chan-
nels, from the average of a desired subset of channels, or from all available channels in a topographical arrangement.
The possibility to average over a desired subset of channels is particularly convenient: researchers often have a priori
hypotheses about which scalp region may show an effect and therefore may be interested in calculating the average over
a specific cluster of EEG channels (S2 Fig). WTools incorporates this important functionality under “Channels Average”.
For all time-frequency graphs, users can also plot the standard error of the effect relative to baseline, which allows a
preliminary descriptive evaluation of the effect size. For 2D and 3D scalp maps, please note that WTools expects to assign
a 2D topoplot configuration to any given dataset during the initial data import routine. Optionally, the user can decide to
additionally select a spline configuration for 3D scalp maps. Currently, WTools offers several 2D and 3D configuration files
(ANT, BIOSEMI, GSN) for 2D and 3D maps of adult and infant data. It is possible to integrate and extend the toolbox with
personalized configurations for developmental research (i.e., newborn and infant scalp maps). For 2D scalp maps, the
user can obtain a plot corresponding to various possibilities: one timepoint at one specific frequency; average of time-
points at a specific frequency; average of a frequency range at one timepoint. It is also possible to plot a series of scalp
maps, either for time or frequency series. This allows the user to create a visualization of time topography over frequency,
and vice versa, frequency topography over time. For 3D scalp maps, the user can similarly obtain a plot corresponding

to various possibilities: one timepoint at one certain frequency; average of timepoints at a certain frequency; average of

a frequency range at one timepoint. Finally, all types of graphs allow plotting results of individual conditions or results of
user-defined pair-wise differences between conditions.

For illustrative purposes, we show the time-frequency plots and 2D scalp maps for one representative participant and
channel both for individual conditions and for their difference (Fig 3). Furthermore, we show the 3D infant scalp map
of the same difference (Fig 4). Results show a higher synchronization for Condition 1 (DG) than Condition 2 (AG) in
the gamma frequency-band at 250-350 ms post-stimulus. This result is representative of the final finding of the original
paper [1], which replicates and extends previous work [44]. Time, frequency and scale ranges are user-defined before all
plotting.

Finally, WTools has a built-in functionality that allows exporting summary data for later statistical inference. Specifi-
cally, users can extract numeric values for each desired subject, condition and channel, computing the average value
both in a time window and in a frequency range (via a double average). To retrieve averaged values from an area of
interest (e.g., the one highlighted with dashed lines in Fig 3A), the user must enter the desired time range (here, [250
350] ms) and frequency range (here, [30 40] Hz), and then select the desired subjects and conditions (by default, all
subjects and conditions are included). Values are stored in a text-tabulated (.tab) file (saved into the project’s “Statistics”
subfolder), where rows correspond to subjects, and columns correspond to conditions and channels. Please note that
we do not provide statistical results in this paper, since the aim is to illustrate the toolbox’s functionalities using a repre-
sentative subject from the openly available sample data (see Data availability statement). Once users have extracted the
numerical values of interest from their empirical dataset, they can compute statistical analyses using third-party statisti-
cal packages.
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Fig 3. WTools time-frequency plots and 2D scalp maps. Time-frequency plots (A) and 2D scalp maps (B) for one representative participant (“04”)
and channel (“22”, corresponding to Fp2) for individual conditions (“DG”, “AG”) and for their difference (‘DG — AG”), under the default WTools pipeline.
For all time-frequency analyses, we applied the following core parameters: frequency range = [10, 90] Hz; time window = [-200, 1200] ms; number of
wavelet cycles=7. Scalp maps show the topographies of the time-frequency results in the 250-350 ms time window and 30-40 Hz frequency window (as
highlighted with dashed lines in panel A).

https://doi.org/10.1371/journal.pone.0323179.9003
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Fig 4. WTools 3D scalp maps. Infant scalp maps for the pair-wise condition difference “DG — AG” of one representative participant (“04”) under the
default WTools pipeline. Scalp maps show the topographies of the time-frequency results in the 250-350 ms time window and 30-40 Hz frequency win-
dow (as highlighted in Fig 3A). In the GUI, users can rotate scalp maps in any directions to optimize scalp visualization as desired.

https://doi.org/10.1371/journal.pone.0323179.9004

Comparison with EEGLAB

This section aims at examining the time-frequency functionality of WTools via comparison with state-of-the-art methods
implemented in EEGLAB, an established popular free software [26]. First, we report the time-frequency results for one
representative participant (“04”), channel (“22”, corresponding to Fp2) and condition (“DG”) under the custom pipelines
that allowed a direct comparison of the WTools and EEGLAB outputs. Second, we report the time-frequency results under
the standard WTools and EEGLAB pipelines, which are practically used in real research settings.

By removing baseline correction and taking the squared value of the complex wavelet coefficient (see section “Data
analysis” for further details), the WTools output perfectly matched the EEGLAB output (Fig 5A). This analysis confirms
that WTools produces time-frequency results in line with state-of-the-art EEGLAB outputs (our gold standard for the
present work), representing an important sanity check. Then, as expected, the standard pipelines generated slightly
different results across WTools and EEGLAB (Fig 5B). Importantly, the two toolboxes still showed qualitatively com-
patible results, with a pronounced increase of induced gamma-band activity over the forehead (channel 22, corre-
sponding to Fp2) in the 250-350 ms time window, and 30—40 Hz frequency window [1]. Please see the Supporting
information (S1 Fig) for a comprehensive review of the results under additional analyses pipelines, which derived from
the orthogonal crossing of the settings being manipulated (i.e., baseline correction, complex wavelet manipulation,
log-transformation).
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Fig 5. Comparison of WTools and EEGLAB. Time-frequency plots for one representative participant (“04”), channel (“22”, corresponding to Fp2) and
condition (“DG”) under the custom pipelines that allowed a direct comparison of the WTools and EEGLAB outputs (A) and under the standard WTools

and EEGLAB pipelines (B).

https://doi.org/10.137 1/journal.pone.0323179.9005

Discussion

This paper introduced WTools, a new MATLAB-based toolbox for time-frequency analysis of the EEG signal that imple-
ments complex wavelet transformation. We provided a detailed description of the WTools algorithm for wavelet transfor-
mation, as well as an overview of the main visualization functionalities for data exploration and characterization. Crucially,
we compared WTools with state-of-the-art methods implemented in EEGLAB [26]. Finally, we created a step-by-step
illustrated and user-friendly tutorial of the entire processing pipeline for easy and transparent access to the toolbox’s func-

tionalities (see Data availability statement).

In terms of usability, WTools features a straightforward, transparent and user-friendly GUI that is particularly handy
for non-advanced users (with little to no experience in coding). Furthermore, WTools guarantees high flexibility in data
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handling, since it takes a huge range of input formats thanks to its direct compatibility with EEGLAB: any dataset that can
be imported into EEGLAB can also be imported into WTools.

In terms of data analysis, WTools produces time-frequency results in units of yV and it performs a subtractive baseline
correction, very similar to baseline correction for ERPs. This approach makes the resulting spectrograms easy to read and
highly comparable to ERPs, which is particularly handy for developmental research. Plotting functions allow for a straight-
forward visualization and evaluation of the data in terms of time-frequency graphs, 2D and 3D scalp maps (including both
infant and adult 3D configurations). Users can also plot the standard error of an effect relative to baseline, which allows
a preliminary descriptive evaluation of the effect size. To ensure broad usability within the EEG community, WTools offers
options for the main alternative approaches to time-frequency analysis commonly found in the literature, including power
computation, divisive baseline correction, and dB visualization. Finally, WTools features a built-in tool for exporting numeri-
cal data that can be treated directly by third-party statistical packages.

For these reasons combined, an increasing number of studies in the field of developmental cognitive neuroscience
have adopted beta versions of WTools [30-38]. With the current official release, we further foster the transparent and
reproducible usage of WTools by the developmental cognitive neuroscience community and beyond.

Supporting information

S$1 Fig. Comprehensive time-frequency results. We show a comprehensive overview of results under all analyses
pipelines, which derived from the orthogonal crossing of the manipulated settings (i.e., baseline correction, complex
wavelet manipulation, log-transformation). We ran four time-frequency analyses in WTools corresponding to the orthog-
onal crossing of 1) baseline correction (with or without subtractive baseline) and 2) complex coefficient transformation
(absolute or squared value). We ran four time-frequency analyses in EEGLAB corresponding to the orthogonal crossing of
1) baseline correction (with or without divisive baseline) and 2) log-transformation of the time-frequency results to con-
vert them to the standard dB scale (with or without log-transformation). For all time-frequency analyses, we applied the
following core parameters: frequency range = [10, 90] Hz; time window = [-200, 1200] ms; number of wavelet cycles=7.
Time-frequency plots correspond to one representative participant (“04”), channel (“22”, corresponding to Fp2) and condi-
tion (“DG”).

(TIF)

S2 Fig. Averaging over channels of interest. Time-frequency plots averaged over all EEG channels (A) compared to
averaging over a desired subset of EEG channels (B). These are the same three frontal channels of interest (“9”, “15”,
and “22”, corresponding to Fp1, Fpz, and Fp2, respectively) used in the original publication from which the empirical data
were taken [1]. Results were obtained using the “Channels Average” functionality for one representative participant (“04”)
and condition (“DG”), under the default WTools pipeline.

(TIF)
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