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Lung cancer is a major cause of cancer-related deaths, and early diagnosis and treat-
ment are crucial for improving patients’ survival outcomes. In this paper, we propose to
employ convolutional neural networks to model the non-linear relationship between the

E OPEN ACCESS risk of lung cancer and the lungs’ morphology revealed in the CT images. We apply a
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Improving lung cancer diagnosis and survival convexity induced by neural networks, which also enables the training of large data sets.

prediction with deep learning and CT imaging.
PLoS One 20(6):e0323174.
https://doi.org/10.1371/journal.pone.0323174

Additionally, we propose to combine mini-batched loss and binary cross-entropy to pre-
dict both lung cancer occurrence and the risk of mortality. Simulation results demonstrate
the effectiveness of both the mini-batched loss with and without the censoring mecha-
nism, as well as its combination with binary cross-entropy. We evaluate our approach on
the National Lung Screening Trial data set with several 3D convolutional neural network
architectures, achieving high AUC and C-index scores for lung cancer classification and
survival prediction. These results, obtained from simulations and real data experiments,
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1 Introduction
Data availability statement: The dataset used

in this study is publicly available from the Lung cancer is one of the most common causes of cancer-related deaths worldwide. Early
National Lung Screening Trial (NLST) via the diagnosis and treatment are crucial for improving patients’ survival rates [1,2]. Survival anal-
Cancer Data Access System (CDAS). All data ysis, a branch of statistics that has been widely used in public health research, provides valu-

necessary to replicate the findings reported in
this manuscript, including relevant metadata
and documentation, can be accessed without

able insights into the impact of different conditions on the survival time of patients; e.g., [3,4].
In the context of lung cancer, early detection through screening methods helps identify the

restriction at: https://cdas.cancer.qov/nlst/. tumor in its early stage and applying survival analysis to lung cancer patients can aid in early
Reference: National Lung Screening Trial detection and ultimately improve patients’ survival outcomes. Meanwhile, in recent years,
Research Team. “The national lung screening computer-aided diagnosis has gained significant attention, particularly in medical image data
trial: overview and study design.” Radiology analysis [5-9]. Deep learning techniques have been increasingly applied to analyze various

2581 (2011): 243-253 kinds of medical images due to their effectiveness, for example, [10-16].
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Despite the promising results obtained by using these techniques, the accessibility of high-
quality medical images poses a challenge in applying these techniques. For example, Hou et
al. [10] required whole slide tissue images obtained from invasive procedures, Gao et al. [11]
required multiple longitudinal CT images captured over time, and Wang et al. [12] required
both demographic information and chest CT images.

In addition, most of these studies focused on patients already diagnosed, neglecting those
who may be prospective candidates undergoing regular CT screening for early detection. Fur-
thermore, there are few works that have utilized survival analysis, which limits the statistical
efficiency of these methods. Considering the significant impact of early detection on patients’
survival chances [17], there is an urgent need to develop a new approach that can enhance
both the early detection and survival prediction for individuals currently diagnosed and those
potentially at risk of lung cancer, while considering the accessibility of the medical image
data.

This paper introduces a novel deep learning approach that fundamentally advances exist-
ing survival analysis methods for lung cancer. While previous approaches like DeepSurv([18]
were limited to demographic information and DeepConvSurv([19] only utilized 2D patho-
logical images, our method uniquely leverages 3D convolutional neural networks (CNNs) to
capture the complex three-dimensional morphology of lungs from CT images. This repre-
sents a significant methodological advancement as it allows direct modeling of the non-linear
relationship between survival hazards and complete volumetric lung structure. We develop
a specialized mini-batched loss function that not only handles the non-convexity inherent
in neural networks but also efficiently processes large-scale 3D imaging datasets. Further-
more, we innovate beyond existing frameworks by introducing a dual-objective approach
that simultaneously predicts both cancer presence and survival risk through a novel com-
bination of binary cross-entropy and mini-batched loss functions. This unified framework
represents a substantial improvement over previous methods that typically address these
tasks separately. The promising empirical properties of the proposed method are illustrated
by simulation experiments and the application to the National Lung Screening Trial (NLST)
dataset [20].

Our approach advances the state-of-the-art through several key innovations: (i) it pio-
neers the integration of 3D medical image classification with survival analysis, moving
beyond the 2D image analysis of previous methods; (ii) it uniquely addresses both exist-
ing and potential patients through a dual-task framework, enabling earlier detection than
traditional single-task approaches; and (iii) it achieves superior accessibility by requir-
ing only a single raw CT scan, eliminating the dependence on longitudinal data or expert
annotations that limit existing methods. These innovations collectively enable more robust
and widely applicable survival prediction than previous approaches like DeepSurv and
DeepConvSurv.

The rest of this paper is organized as follows: Section 2 introduces related works in
computer-aided diagnosis and basic knowledge about survival data and the Cox proportional
hazards model. Section 3 derives the mini-batched loss function of the extended Cox model
and introduces the idea of the two-task method and corresponding metrics. Section 4 presents
the simulation study of the mini-batched loss based on the MNIST dataset and the simulation
of the two-task method based on the Nodule-CIFAR dataset. Section 5 presents the real data
experiment with the two-task method, which includes CT images from potential lung cancer
patients.
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2 Background
2.1 Related work

The Cox proportional hazards model [21] was first proposed to explore the relationship
between the survival chance of a patient and a group of explanatory variables through the
concept of hazard rate, see Eq 1. Later, Breslow [22] and Cox [23] discussed the estimation
of model parameters, particularly for the baseline hazard function. Despite it being proposed
more than 50 years ago, the Cox model continues to be one of the most widely used models in
medical research for investigating patients” survival chances.

The use of medical images to aid the diagnosis and treatment of diseases has become
increasingly popular. Much research has been conducted on the use of deep learning tech-
niques to analyze medical images as a computer-aided diagnosis. For example, Hou et al.[10]
studied the feature of whole slide tissue image patches with a CNN. Wang et al. [12] detected
lung cancer with CT images and clinical demographics. Ardila et al. [13] proposed a CNN-
based method to predict lung cancer risk. Gao et al. [11] performed research in detecting
lung cancer with long short-term models. Liu et al. [14] studied detecting nodules from
CT images for lung cancer with adversarial attacks. However, some of these images or data
may not be readily available or collected. These methods required whole slide tissue images
from an invasive procedure [10], or longitudinal medical images captured over time [11,

13], or demographic information in addition to medical images [12]. For more details,
refer to [24,25] for a comprehensive review of deep learning techniques applied to medical
images.

While these imaging methods have produced excellent results for the tasks that they were
designed for, they did not establish a correlation with patients’ survival. Katzman et al. [18],
for the first time, developed the DeepSurv model to study the non-linear relationship between
survival hazards and clinical features. It replaced the linear part f7x in the Cox proportional
hazards model (1) with multi-layer perceptrons f(x). However, this model has a limitation
in that it can only process clinical information. To address this limitation, DeepConvSurv
was then proposed by Zhu et al. to predict patients’ survival directly from the 2D region of
interests (ROI) of pathological images, using CNNs for f(x).

In this paper, we aim to expand previous research by developing a model that classifies
lung cancer occurrence from potential lung cancer patients with only one 3D CT scan and
further predicts the patient’s relative hazards of dying from lung cancer. Our approach inte-
grates 3D CNNSs, binary classification, and the Cox proportional hazards model. By combin-
ing these techniques, we aim to establish a direct correlation between potential patients’ 3D
medical images and patients’ survival, which could have significant implications for early lung
cancer diagnosis.

2.2 Survival data

Survival analysis typically considers time-to-event data. Let T* = min( T, C) be the observed
time, where T denotes the event time and C denotes the censored time. Here, T is the time
from the beginning of the observation to an event, usually death, disease occurrence, or other
experience of interest, which can be unobserved if censoring occurs first. The censored time C
is the time after which nothing is observed about the object. In addition to observing T*, we
also have the event indicator: §; = 11« that tells us if the i~th observation T; is censored or
not. In our study, T* is the observed time from the beginning of the study to either observed
death or censoring. If death is observed, T* = T'and § = 1, if censoring is observed, T* = C and
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& = 0. The objective is to model the event distribution of T,

t
F(f)=P(T<1) = f fw)du,
0
where the density function f(t) is

P(t<T<t+At)
=lim ————M %,
) = fim =

In survival analysis, it is common to alternatively study the survival function S(¢), or the
hazard function A(t), or the cumulative hazard function A(t), defined respectively as

S(t) = P(T> 1) = [tmf(u)du,

P(t<T<t+At|T>t
A(¢) = lim ( | ),
At—0 AI

and
t
A(D) = f A(u)du.
0
Their relationships can be expressed as

A1) :{;((?),

and

$(t) = exp (-A(1))s

so it’s equivalent to studying either of them. In this paper, we focus on the density function
f(¢) and the corresponding likelihood function.
Given a set of right-censored samples { T}, §;}1 , the likelihood function L is:

L=TLAT)s(r)"*
i=1
. I3}
= [TA(TH)s(T7),
i=1
which can be further used for parameter estimation.

2.3 Cox proportional hazards model and DeepSurv

The Cox proportional hazards model is one of the most used models for exploring the rela-
tionship between the hazards 1(#|x) and the explanatory covariates x. In particular, it assumes
proportional hazards and linear contribution of the covariates to the log relative hazards
function:

A(tx) = 2o(t) exp(B'x), ()

where ¢ represents time, Ao (t) is the baseline hazard function (an infinite dimensional param-
eter), x is a set of covariates, and 8 is the corresponding coefficient that measures the effect
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of the covariates. Cox [21,23] proposed to use the partial likelihood for estimating 8 with the
advantage of circumventing Ao(t). Let R(#) = {i: T} > t} be the risk set at time t; i.e., the set

of all individuals who are "at risk” for failure at time ¢. The partial likelihood is the product of
the conditional probabilities of the observed individuals being chosen from the risk set to fail:

Si
L(ﬁ)partia.l = H lz exp(ﬁTxi) ] >

i=1 JER(TY) exp(B'x;)

where R(T;) denotes the set of individuals that are “at risk” for failure at time T} in the sam-

ple.
The estimate f3 for 8 can be obtained by minimizing the averaged negative partial log-
likelihood £(3), which is convex:

L@ =1 26 ftx-log 3 exp(s)|

JER(T?)
The cumulative baseline hazard function can be estimated with the Breslow estimator:

Ao(8) = D, ARo(T})

JER(2)
- 5 _
j#R(1) Y exp(Blx)
ke

R(T})

The DeepSurv method can be seen as a non-linear version of the Cox model. It replaces the
linear log relative hazards term 87« in the Cox model with a non-linear multi-layer percep-
tron (MLP)f(x;6):

A(t|x) = Ao(2) exp(f(x; 6)),

where f(x;6) is a fully-connected MLP parameterized by 6.

3 Methodology
3.1 Extended Cox model with convolution neural network

In this study, we modeled patients” hazard function of a certain disease based on 3D medi-
cal images. We cannot directly apply the DeepSurv or DeepConvSurv model because MLP
or 2D CNN is deficient for 3D image data. Therefore, we extended the DeepSurv model by
replacing MLP with a 3D convolution neural network f(x; @), which predicted the effects of
a patient’s morphological features x on their hazard rate and parameterized by the weights of
the network ©:

A(t]x) = o(t) exp(f(x; ©)).

3.2 Loss function derivation
Let

A(t) = No(2) exp(f(x; 9))
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and
S(t) = exP(—Ao(t) eXP(f(x;@)))’

so the full likelihood function is

n

L(Ao,©) = H{[/lo(T?) exp(f(x5©))] ' x

i=1

exp(—AO(Tf) exp(f(x,-;@)))}.

Moreover, the negative log-likelihood becomes

n

£(A0,0) =~ Z{ai[f(xi;(a) +logo(T7)]

(2)
—Ao(T;‘)exp(f(xi;@))}>

¢(7o,©) == [8i (f(x:©) +log Ao(T7)) - O Ag(T})],

1

which depends on both A and parameters © in f.

In practice, the prior knowledge of A, is not available. To overcome this issue, we adopted
the non-parametric Breslow estimator, which treated the baseline as a piece-wise constant
between event failure times:

Ao(£0) = >, ARy (T;)

J#R()

_ S

jg(;r)k Y exp(flas©))
€

R(TY)

By plugging it into the negative log-likelihood Eq 2, we derived the partial likelihood with-
out Ao (#):

Ly (0) = —% Z 5i|:f(x,~; Q) -log Z exp (f(x;; G)))] (3)
i JER(TY)

We refer to this as the full-batched loss in this paper. In fact, the procedure of getting partial
likelihood of the Cox proportional model can lead us to the equivalent loss function. Given
the model A(t) = A9(t) exp(f(x; ©)), the partial likelihood now becomes

n exp(fxi; S
[ ST )], @)

L(@)partiéﬂ:H D exp(f(xj;G))

i=1
JER(TY)

The full-batched loss function can be obtained by taking the average of the negative log of
the partial likelihood.

Even though the full-batched loss is convex in f, due to the non-convexity of the neural
network, the full-batched loss is non-convex. Also, the full-batched loss involves complicated
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sums over the risk set, which can be as large as the full data set, making it computationally
expensive.

To deal with the non-convexity and make it scalable to large datasets, we modified the
full-batched loss by first subsampling the data and collecting them to a batch Q, and then
restricting the risk set R(T; ) only to contain the subsampled data in the current batch:

Zmb(@)):—ﬁ . 8i| (xi©) ~log ) exp (f(x;5©)) ®)

ieQ j

withj€R(TF) N Q. We refer to this expression as the mini-batched loss in the paper. If we
set the batch as the full data set, then the mini-batched loss is equivalent to the full-batched
loss. The batch size can be as small as 2. By restricting data to a randomly sampled batch, we
avoided massive calculations. The mini-batched loss is unlike the minibatch gradient descent
with i.i.d. (independent and identically distributed) data with respect to the full-batched

loss since taking the expectation over random minibatch samples does not give the averaged
negative log-likelihood.

As an aside, we can see that the partial likelihood in (4) is the likelihood of observing the
given order of events, which in this case is the order of individuals’ deaths. By evaluating the
partial likelihood, we are in effect ignoring any information of the timing of the events beyond
just their ordering. This objective and the mini-batch gradient descent described above appear
in recommendation system applications where user preferences are expressed via the rela-
tive ordering of click-through events. The resulting method is called listwise ranking in the
recommendation system literature [26,27].

3.3 Two-task method for disease diagnosis and survival hazard prediction

Lung cancer is one of the most common cancers. Computed Tomography (CT) images, which
include a series of axial image slices that visualize the tissues and nodules within the lung
area, can be extremely useful for diagnostic purposes. When given a patient’s pulmonary
CT images, one objective is to diagnose whether the patient has lung cancer or not, i.e., lung
cancer classification. In addition, we hope to predict the severity of cancer by estimating the
patient’s risk of dying from lung cancer, i.e., survival hazard prediction. Traditionally, to fulfill
the two tasks, one option is to train separate models with different losses, respectively: binary
cross entropy for lung cancer classification and mini-batched loss for survival hazard predic-
tion. However, it raises concerns about divergent predictions, which may result in predicting a
case without lung cancer but with a high risk of mortality of dying from lung cancer.

The link between lung cancer diagnosis and survival prediction is established through the
comprehensive analysis of imaging studies. Extracted information from CT images, such
as the presence of lung nodules and detailed characteristics (including size, shape, location,
and tumor spread), is not only instrumental in confirming the presence of cancer, but also
provides critical details that inform prognosis, guide treatment decisions, and influence sur-
vival predictions for individual patients. The higher the probability of having lung cancer
inferred from CT images, the more likely it is that the cancer exhibits features associated with
an advanced or aggressive nature. These features contribute to an increased risk of mortal-
ity, forming the basis for the correlation between the probability of having lung cancer and
survival prediction. The integration of imaging data into a holistic approach enhances the
precision and personalized nature of lung cancer care.

Recognizing the clinical need to integrate these tasks, we present a novel method capa-
ble of simultaneously performing lung cancer classification and survival hazard prediction
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using the same input--a two-task neural net framework, as illustrated in Fig 1. The output
layer, which predicted the log relative hazards f(x; ©), was also used for lung cancer clas-
sification with sigmoid activation. This choice is intuitive as the function f represents haz-
ard, implying that a higher hazard is indicative of a higher probability of having lung can-
cer. Instead of having separate losses, we defined the loss as the sum of binary cross entropy
and the batched loss. Let y; be the indicator of having lung cancer, x; be the image input to
the deep neural network, and f(x;; ©) be the neural network output for log relative hazards,
P(x;0) = sigmoid(f(xi; @)) is predicted cancer probability:

i€Q

L(O®)=- |—(12| Z {5,-[f(x,—; o) - logz exp (f(xj; G)))]
] (©)
+ [y,- log P(x;;0) + (1 -y;) log(l - P(x,;@))]},

withje R(TF) N Q.

One advantage of this approach is consolidating the goals of cancer classification and sur-
vival hazard prediction into a singular model, motivated by the clinical reality that the CT
image shows information that is critical for both cancer diagnosis and survival prediction.
Training a unified model concurrently for both objectives with shared neural net parame-
ters promises a more comprehensive understanding and superior predictive performance,
while conventional approaches of training separate models with binary cross entropy for can-
cer classification and mini-batched loss for hazard prediction focus exclusively on one aspect.
This two-task method provides a holistic view, bridging the diagnostic and prognostic aspects
of lung cancer, and offers a more clinically relevant perspective for personalized patient care
decisions. Another advantage lies in the dual losses, which enable more comprehensive super-
vision of the neural net’s fit, thereby preventing overfitting during training.

3.4 Evaluation metrics

For the cancer classification task, we used AUC (area under the ROC curve) to evaluate the
model performance. In the hazard prediction task, we employed the concordance index (C-
index) for evaluation. C-index, introduced by Harrell et al. [28], is a goodness of fit measure
for models that produce risk scores for censored data. In our context, it estimates the proba-
bility that, for any random pair of individuals, the predicted survival times would exhibit the

CNN

o el | e—

s
R 2
o

Fig 1. Two-task convolution neural network illustration. The network processes a 3D lung CT mesh through a
shared CNN backbone to extract imaging features. These learned representations are then used to simultaneously
predict both lung cancer classification probability (via sigmoid activation) and survival hazard estimation. The
unified architecture enables joint optimization of both tasks through a combined loss function (Eq 6). This inte-
grated approach leverages the complementary nature of cancer detection and survival prediction tasks, potentially
improving the performance of both predictions compared to separate single-task models.

https://doi.org/10.1371/journal.pone.0323174.9001
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same ordering as their actual survival times. This is equivalent to determining whether, for
any random pair of patients, the predicted hazard has the reverse order in comparison to their
actual survival times, as patients with higher predicted survival times correspond to lower
predicted hazards. The C-index in our context is defined by the following formula:

# concordant pairs

C =
# concordant pairs + # disconcordant pairs

= P{Ti>'f}|Ti>7},5j=1}
~ P{fi<f| T:>T;,6;=1} )

zi¢j1{]?i<fj}1{Ti>Tj}5j

Zi¢j1{Ti>Tj}5j ’

where approximation (7) follows from the argument that a patient with a higher hazard score
should have a shorter survival time.

When C-index = 1, it indicates that the order of the predictions matches exactly with the
order of the true survival times. On the other hand, C-index = 0.5 suggests that the predic-
tions are random. Generally, a C-index above 0.7 is considered indicative of a good model.
However, for cancer survival analysis, studies such as [29-32] suggest that a C-index between
0.6 and 0.7 is sufficient to provide valuable insights.

4 Simulation studies

This section reports results from three simulation experiments. Both Simulations A and B
focused on the extended Cox model and its prediction of the log relative hazards function

f. Simulation A was under the setting where there were event cases only, while Simulation

B involved both censored and event cases. Both simulations used the same images from the
MNIST dataset and the same generated survival time, but different censoring statuses. We
compared the performance of the oracle loss, full-batched loss, and mini-batched loss under
the settings of Simulations A and B. Simulation C was designed for the two-task framework,
involving both the disease occurrence classification and the survival hazard prediction with
the log relative hazards function. We generated a new dataset from the CIFAR-10 dataset,
called Nodule-CIFAR. We compared the loss function performance of the combination of
binary cross-entropy and full-batched/mini-batched in terms of AUC and C-index.

4.1 Simulations A and B

4.1.1 MNIST dataset and time-to-event data. We used the MNIST image dataset and
generated artificial survival times for digits in our simulations. The MNIST dataset is an
image dataset of handwritten digits from 0 to 9; see [33]. We selected 2 digits from the MNIST
dataset as input images of the neural network with different patterns, w.l.o.g., we selected
zeros and ones. We generated the survival time for each digit using an exponential distribu-
tion with different constant hazards 4; =1 X exp(¢;),j =0, 1, where the baseline hazard A, (t)
was set to 1, and the true log relative hazards was ¢;. In Simulation A, all cases were labeled
as events. In Simulation B, we randomly labeled half of the individuals who lived beyond the
median as censored cases within each digit. The distribution of the test set is shown in Fig 2.

4.1.2 Architecture. Simulations A and B were trained under the same feed-forward con-
volution neural network, which consisted of a stack of convolution and dense layers. The net
structure is listed in Table 1.
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Fig 2. Simulated survival time distributions. (Left) Survival time distributions for the two digits in Simulation A, without the censoring mechanism; (Right) Sur-
vival time distributions for the two digits in Simulation B, with the censoring mechanism. The censored cases are labeled in orange, which overlaps the upper half of
the event cases.

https://doi.org/10.1371/journal.pone.0323174.g002

Table 1. Convolution neural net architecture for simulations A and B.

Layer Type Number of Kernels Kernel Size Output Size
Convolution 32 5%5 28 X 28 X 32
Max Pooling 2% 2, stride =2 14 X 14 X 32
Convolution 64 5% 5 14 X 14 X 64
Max Pooling 2 X2, stride =2 7X7X64
Flatten 3136

Fully Connected 1024

Fully Connected 128

Fully Connected 1

https://doi.org/10.1371/journal.pone.0323174.1001

4.1.3 Results of simulations A and B. We introduced the oracle loss in this section. It
leverages the prior knowledge of the baseline hazard A (#) when compared with the full-
batched loss (Eq 3) and mini-batched loss (Eq 5). In our simulations, w.l.o.g., we set 1o(¢) =1
when generating survival time, so that A (t) = ¢. Plugging the baseline hazard into the aver-
aged negative full log-likelihood (Eq 2) provided us the oracle loss, for which f can be trained:

Lowe(0©) = -% Zn:[dif(x,-;@) - exp(f(xi;@))T;]. (8)

i=1

Due to the non-convexity of neural network f, we used the stochastic gradient descent
(SGD) method to minimize the non-convex loss function. Correspondingly, the batched
version is provided below.

Eo(©) =g 3 [05:0) - explfs:0)) 7 | ©)

where Q is the selected batch for a training iteration. We will later refer to this as the oracle
loss.
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We also calculated the true loss as the baseline for benchmark comparisons. When both
the baseline hazard 4¢(t) and the log relative hazards ¢; were available, we could directly plug
them into the averaged negative full log-likelihood (Eq 2), which gave the true loss.

Results of Simulations A and B are reported in Fig 3 and Table 2. In both simulations,
the oracle loss settled to the true loss, the oracle loss was less than the batched losses, both
batched losses settled to the same value, and the mini-batched loss settled faster than the full-
batched loss. This met our expectations since the oracle loss had access to the base rate. In
addition, due to the extra information, the C-index trained by the oracle loss is expected to

be larger, which was validated in both Simulations A and B, see Table 2. In Simulation A,
though the C-index curve fluctuated after loss converges, it achieved a high value for both

full batched loss and mini-batched loss, showing good rank prediction on the hazards when
there is no censoring. In Simulation B, two C-indexes were calculated: C; involved both cen-
sored and event case, while C, involved event cases only. Here, C; exceeds 0.7, which means
good rank predictions for pairs across censored and event groups and pairs within the event
group. Moreover, the faster convergence and small difference between C,,. and C,,,;, indi-
cated the feasibility of mini-batched loss for training parameters without prior information of

Ao(t).

4.2 Simulation C: nodule-CIFAR simulation with classification and hazard
prediction
4.2.1 Nodule-CIFAR dataset We introduced a new dataset, called Nodule-CIFAR, which

was generated from the CIFAR-10 dataset [34]. Nodule-CIFAR was inspired by Tumor-CIFAR
from Gao et al. [11] and simulated benign and malignant nodules on the CIFAR-10 images.

7 5.5 4
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6 4
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O 5 - o 4.0
= === True F —-=- True
3.5 1
\
Y :
. 3.0 4 “
‘\\ l\
34 - — s 2.54 ——— R - oo - - - - -
0 10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch

Fig 3. Simulation losses by epoch. (Left) Simulation A. (Right) Simulation B.
https://doi.org/10.1371/journal.pone.0323174.9003

Table 2. Simulations A and B: C-indexes under three losses.

Oracle Full-batched Mini-batched
A 0.7268 0.7165 0.7189
B w/ censored (C1) 0.7184 0.7146 0.7166
B w/o censored (C2) 0.6845 0.6770 0.6790

https://doi.org/10.1371/journal.pone.0323174.t002
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In reality, benign nodules typically exhibit smaller sizes with regular round shapes and are
non-cancerous, while malignant nodules tend to be larger in size and exhibit irregular shapes.
Healthy individuals possess benign nodules, but patients may have both benign and malig-
nant nodules. To simulate this, we introduced black and white dots onto CIFAR-10 images to
simulate benign nodules, while dummy nodules were represented as white blobs to simulate
malignant nodules.

The dataset inherently followed a 10:1 train/test split of CIFAR-10, consisting of 10,000
training samples and 1,000 testing samples, with no additional custom splitting applied. We
randomly assigned images to non-cancerous and cancerous groups with equal probability, so
that cancer prevalence was 50% in both training and test sets. Among the cancerous cases, we
randomly labeled 50% as censored, and the remaining were labeled as events, the events of
failure of dying from cancer. For the non-cancerous cases, they would not die of cancer, so all
of them were labeled as censored. Next, we incorporated simulated nodules, either benign or
malignant, onto CIFAR-10 images based on their assigned group. The non-cancer images yet
featuring benign nodules, displayed numerous small black and white dots distributed across
the image to simulate benign nodules. In contrast, the images in the cancer groups had two
additional big white patches randomly located in the images, mimicking malignant nodules.
Within the cancer group, the censored had relatively smaller white patches compared to the
event, because the censored group had not yet reached a deadly stage. The original image cat-
egories from the CIFAR-10 dataset were irrelevant in this context; the distinctions between
cancer and non-cancer were determined by the presence of simulated white patches. More-
over, within the cancer group, the censoring status was solely associated with the sizes of the
simulated white patches. Fig 4 is an example of images in the Nodule-CIFAR dataset.

Time-to-event data corresponding to Nodule-CIFAR images were generated based on the
largest size of simulated nodules in each image. The recorded time followed an exponential
distribution with a parameter of 1 = 1 X exp(¢), where ¢  size, the largest size of simulated
nodules in each image. This was consistent with our expectation that the larger the nodule
size, the larger the hazards, and the smaller the survival time.

Fig 5 shows the distribution of nodule size and survival time for each group. The non-
cancer group had smaller nodules on average compared to the cancer group. Within the
cancer group, those event cases (eventually died of cancer in simulation) had larger malig-
nant nodules. The time-to-event for the non-cancer group was larger than the cancer group.
Within the cancer group, the time-to-event of censored cases was larger than the event cases.

4.2.2 Architecture. Like Simulations A and B, Simulation C was trained under a feed-
forward convolution neural network, which consisted of a stack of convolution and dense
layers. The output was used for both disease occurrence classification and hazard prediction
evaluation. See Table 3 for the structure of the neural network.

4.2.3 Results of simulation C. The loss function for the two-task network was the sum
of the binary cross entropy and the full-batched/mini-batched loss. To compare the model
performance trained with different losses under the same network architecture, see Fig 6 for
the epoch-wise losses, AUC, and C-index, and Table 4 for their stabilized values after the
losses converge. As shown in Fig 6 (top-left panel), the one with mini-batched loss (blue) con-
verged much faster than the one with full-batched loss (red); it reached a minimum after a
few epochs and stabilized. Fig 6 (top-right) showed that both losses outperformed the base-
line AUC 50% significantly, which was achieved by predicting all cases as non-cancer, and the
model trained with mini-batched loss achieved a slightly higher AUC. As for the hazard pre-
diction evaluation, we calculated two C-indexes C1 and C2, where C1 was for all cases (cancer
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Benign

Malignant

Fig 4. Example images from nodule-CIFAR dataset showing the addition of simulated nodules. Top row
(Benign): Original CIFAR-10 image (left) and the same image with added small black and white dots simulating
benign nodules (right). Bottom row (Malignant): Original image (left) and the same image with both small dots and
larger white patches (right), where the small dots represent benign nodules and the larger white patches simulate
malignant nodules. Both malignant and benign cases contain the small dots to reflect the real-world scenario where
both types of nodules can coexist, with malignant cases distinguished by the additional larger white patches. Note
that these artificial features are distinct from natural white areas in the original images.

https://doi.org/10.1371/journal.pone.0323174.g004
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Fig 5. Nodule size and survival time distribution by group. (Left) Nodule size distribution by group. The non-cancer group has smaller nodules on average when
compared with the cancer group. Within the cancer group, event cases (those who eventually die of cancer in simulation) have larger malignant nodules. (Right)
Survival time distribution by group in Nodule-CIFAR. The time-to-event for the non-cancer group is larger than the cancer group. Within the cancer group, the
time-to-event of censored is larger than that of the event cases.

https://doi.org/10.1371/journal.pone.0323174.g005

and non-cancer, Fig 6 (bottom-left panel)) and C2 was for the cancer group (Fig 6 (bottom-
right panel)). Both losses achieved competitive C1 and C2 values, especially within the can-
cer group, where C1 exceeded 0.75 for both losses. Comparing Fig 6 (bottom-left panel) and
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Table 3. Convolution neural net architecture for simulation C.
Layer Type Number of Kernels Kernel Size Output Size
Convolution 32 5%5 28 X 28 X 32
Max Pooling 2 X% 2, stride =2 14 x 14 X 32
Convolution 64 5%5 14X 14 X 64
Max Pooling 2 X 2, stride =2 7 X7 X 64
Flatten 3136
Fully Connected 100
Fully Connected 10
Fully Connected 1
https://doi.org/10.1371/journal.pone.0323174.1003
N --- Mini-batched cmemm e AN ———— a———— me—————
E 0.775 - onme
27 \ --- Full-batched el AN m AT
\ I el
0 -
! 07501 ¥ o
[N ! o
201 4 : ’
! ' 07254 | ]
1 \ i /
@ ! ! ! !
259 | \ g 07004 ! !
i : \\ 2 : ,’
[ | \ ] /
] 4 0.6751 | |
' A 1
244 | . ! "
'“'“\\.. 0.650 i /
: “h, B
2.3 5‘% N NN ) N 1o b4 AN V110 1 e 1A VIS (I
lj\ oy 06254 ) == Mini-batched
- vh/,~\.A\N¢A\,'\DM,‘,.,,,M,,~,~‘,~»a~.~.ﬁ-—-\4~-vh f‘." —==Full-batched
T T T T T T 0.600 T T T T T T
0 50 100 150 200 250 0 50 100 150 200 250
Epoch Epoch
o684 e oo o e e o e e e e o e e c——————-
"~_,,,_,_'-—-—-—" ’.41"‘"“" ______________
/" 07751 tpaemmm e
’ Ros
0664 1 T ! N
i ot 07504 | A
H el 1 /!
] .,'AI” 1 ’
064 | r 07251 I I
1 / 1 J
] 1 ; b} 1 f
1 ! 2 4
2 i J T 07004 | /
O 0629 ! d O ! ;!
! ‘,.' 06759 | 1
by by
o0 I 06501 | !
1
Vo v
- e 0625{ \ 4§ e
0.58 - \‘ A === Mini-batched . \‘ ,1 === Mini-batched
v --- Full-batched v -—- Full-batched
T T T T T T 0.600 T T T T T T
0 50 100 150 200 250 0 50 100 150 200 250
Epoch Epoch

Fig 6. Result of simulation C. (Top-left): test loss by epoch; (Top-right): test AUC by epoch; (Bottom-left): test c-index C1 of all cases by epoch; (Bottom-right): test
c-index C2 of the cancer group by epoch. The sum of binary cross entropy and mini-batched loss performed better in both classification and hazard prediction by

achieving higher stabilized AUC, C1, and C2 within fewer epochs.

https://doi.org/10.1371/journal.pone.0323174.g006
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Table 4. Simulation C: AUC and C-index under two losses.

Full-batched Mini-batched
AUC 0.770 0.783
Cl 0.661 0.677
C2 0.779 0.785

https://doi.org/10.1371/journal.pone.0323174.t004

Fig 6 (bottom-right panel), we noticed the C-index decreased to around 0.65 when it involved
the non-cancer group, which was caused by the trade-off between the classification and haz-
ard prediction tasks. Overall, the sum of binary cross entropy and the mini-batched loss per-
formed better in both classification and hazard prediction by achieving higher stabilized AUC
and C-index values within fewer epochs.

5 Real data experiment
5.1 NLST dataset

The National Lung Screening Trial (NLST) collected medical images and survival informa-
tion from potential lung cancer patients during 2002-2009, see [20]. It was a randomized con-
trolled trial to determine whether screening for lung cancer with low-dose helical computed
tomography (CT) reduced mortality from lung cancer in high-risk individuals relative to
screening with chest radiography (X-ray). Participants were randomly assigned to two study
arms in equal proportions. One arm received low-dose helical CT, while the other received
single-view chest radiography.

CT images are a set of axial slice images of the human body. They can reveal both normal
and abnormal tissues inside the organs. The abnormal tissues of the lungs are called nodules.
Nodules usually are spherical but may have other shapes. Each sub-type of nodules has a dif-
ferent cancer probability. Hence, doctors take into consideration all nodules when diagnosing
lung diseases with CT images.

In our experiment, we chose 991 patients who developed cancer during the trial period
from a pool of 15,000 patients who received CT imaging. Subsequently, we collected the most
recent CT images from these 991 patients confirmed to have lung cancer, among whom 427
passed away due to lung cancer. For the classification task, we similarly gathered the most
recent CT images from an equal number of potential patients who did not have lung can-
cer. Among the total of 1882 patients, those with confirmed lung cancer cases were assigned
a label of y; = 1, while all others were labeled as y; = 0. In addition, those who experienced
lung cancer-related mortality were categorized as events of failure (non-censored) with §; =1,
whereas the rest were considered censored with J; = 0. Each patient’s most recent CT exam-
ination was utilized as the input image denoted as X. Furthermore, we collected patients’
survival time T* by subtracting their latest exam date from the date they were last known
alive.

5.2 Preprocessing

In terms of preprocessing the CT images from NLST datasets, we utilized the open-source
code [35] to segment the lungs from the CT images and applied the nodule detection method
described in [36] to obtain the top 5 suspicious nodule crops as input. For completeness, we
provide a brief summary of their method below.

5.2.1 Lung segmentation. The CT images are a set of cross-sectional images of the body.
Preprocessing for lung segmentation was required before they were ready for the CNN. First,
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the CT scans should be resampled to 1 X 1 X 1 mm?® isotropic resolution, then the resampled
CT scans were preprocessed with the following main steps:

i. Mask extraction: The first step was to extract the lungs’ mask by converting the image to
Hounsfield unit (HU) and binarizing the image with the lungs’ HU values. HU is a stan-
dard quantitative scale for describing radiodensity. Each organ has a specific HU range,
and the range remains the same for different people. Here, we used a -320 HU value as
the threshold for the lungs. The largest connected component located in the center of
the image was extracted as the lungs’ mask.

ii. Convex hull computation: The second step was to compute the convex hull of the lungs’
mask. Because some nodules might be connected to the outer lung wall and might
not be covered by the mask obtained in the previous step, a preferred approach was to
obtain the convex hull of the mask. However, it could include other unrelated tissues
if one directly computes the convex hull of the mask. To overcome this issue, we first
divided the mask into left and right lung masks, then computed their respective convex
hulls, and lastly merged them to form the final, whole lungs’ convex hull.

iii. Lung segmentation: We obtained a segmentation of the lungs by first multiplying the
CT image with the mask and then filling the masked region with tissue luminance.

After completing these three steps, 3D segmented lungs can be extracted. An example is
shown in Fig 7.

5.2.2 Nodule detection. The sizes of the segmented lung images varied for each patient,
which went against the requirement for identical image sizes in CNNs to work properly. To
resolve this, the segmented images were resampled to the same resolution and fixed slice dis-
tance. Although the size of each cropped image might differ due to varying lung sizes among
patients, zero padding was used if the image size is less than 224 X224 X 224 X 1; otherwise, the
central 224-width cubes were extracted. An attempt was made to directly input this prepro-
cessed 224-cube into a 3D network for lung cancer classification and hazard prediction. Still,
it was computationally time-consuming, and the results were unsatisfactory due to the large
size of 3D images and potential memory issues. To address the issue, we followed Liao et al’s
nodule detection process [36]. The nodule detector took in the 3D segmented lung CT image
and output predicted nodule proposals with their center coordinates, radius, and confidence.
The five most suspicious lung proposals were selected as input X for our network, as Liao et al.
determined that k = 5 was sufficient for recall when different top k proposals with the highest
confidence were selected for inference [36]. For each selected proposal, a 96X 96 X 96 X 1 patch
centered on the proposed nodule was cropped, resulting in an input size of 5X96X 96X 96X 1,
where one channel represented the number of channels.

5.3 Network structure

The top five regions with the highest nodule confidence were considered for cancer occur-
rence classification and hazard prediction tasks for each patient. The network had two phases:
feature extraction from each lung crop using convolutional layers, and feature combina-

tion through integration, as shown in Fig 8. The final output f was evaluated with AUC and
C-index metrics.

5.3.1 Convolution phase. We had three different convolution structures to extract fea-
tures from the top five nodule crops: Alex3D, VGG163D, and Res-net18. Each took a nod-
ule proposal as input and output a 128-D feature. We also adopted the pre-trained cancer
classifier from Liao et al. [36] as a performance benchmark.
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Fig 7. An example for 3D segmented lungs from CT images.
https://doi.org/10.1371/journal.pone.0323174.9007

5.3.2 3D Alex Net. Table 5 lists layers in Alex 3D. The network was based on the classic
2D Alex Net architecture with modifications specifically tailored for the NLST dataset.

5.3.3 3D VGG16. Table 6 lists the layers in 3D VGG16 developed from 2D VGG16 [37],
with modifications specifically tailored for the NLST dataset.

5.3.4 3D ResNet-18. Table 7 lists the layers in 3D ResNet-18 developed from a 2D resid-
ual network [38]. Downsampling was performed by Res-block2_1, Res-block3_1, and Res-
block4 1 with a stride of 2.

5.3.5 Pretrained cancer classifier. We adopted the pre-trained cancer classifier from Liao
etal. [36] as a performance benchmark. Liao et al. [36] propose a 3D deep neural network
based on U-net for cancer probability reference, which has 2 modules: a nodule detection
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Feature Extraction — Feature Combination

bV ]} @

Fig 8. Network structure with 2 phases. Convolution and integration phases.

https://doi.org/10.1371/journal.pone.0323174.g008

Table 5. 3D Alex Net architecture for lung CT images.

Layer Type Number of Kernels Kernel Size Output Size
Convolution 96 3X3X3 48 X 48 X 48 X 96
Max Pooling 3X3x3 23X 23X23X96
Convolution 256 5X5X5 23 X 23 X 23 X 256
Max Pooling 3XxX3%3 11X 11X 11 X256
Convolution 384 3X3X3 IX9IX9 X384
Convolution 256 3XxX3%3 9X9X9X256
Max Pooling 3X3x3 4X4X4X%X256
Flatten 16384

Fully Connected 4096

Fully Connected 128

https://doi.org/10.1371/journal.pone.0323174.t005

module and a cancer classification module. Because of the limited data size, the classification
module (called N-net) integrates the pre-trained detection module as part of the classifier.

We followed Liao et al. ’s process to obtain the features from image patches: For each selected
crop, we fed it to the N-net and obtained the last convolutional layer of the nodule classifier,
whose size is 24 X 24 X 24 X 128. The central 2 X 2 X 2 voxels of each proposal feature were
extracted and max-pooled, resulting in a 128-D feature, as shown in Fig 9.

5.3.6 Integration phase. After the convolution phase, the network had five 128D features
for each patient. To obtain a single output from these multiple nodule features, three integra-
tion methods were explored. The best-performing integration method is shown in Table 8,
and its graphical representation can be found in Fig 10. The features from the top five nodules
were individually input into a fully connected layer with 32 hidden units. The maximum value
of each feature was considered for the final result after concatenating into a single 5D feature,
and following a fully connected layer generated the final output f.

5.4 Results

The performance of our proposed deep learning frameworks was evaluated using AUC for
lung cancer occurrence classification and C-index for survival hazard prediction, as shown
in Table 9. We compared four different models: our baseline N-net [36] and three advanced
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Table 6. 3D VGG Net architecture for lung CT images.

Layer Type Number of Kernels Kernel Size Output Size
Convolution 64 3X3X%X3 96 X 96 X 96 X 64
Convolution 64 3X3x%3 96 X 96 X 96 X 64
Max Pooling 3X3x%x3 48 X 48 X 48 X 64
Convolution 128 3X3X%X3 48 X 48 X 48 X 128
Convolution 128 3X3x%X3 48 X 48 X 48 X 128
Max Pooling 3X3X%X3 24 X 24 X24 X128
Convolution 256 3X3X3 24 X 24 X 24 X 256
Convolution 256 3X3X%X3 24 X 24 X 24 X 256
Convolution 256 3X3X3 24 X 24 X 24 X 256
Max Pooling 3X3x%X3 12X 12 X 12 X 256
Convolution 512 3X3x%X3 12X 12X 12X 512
Convolution 512 3X3X%3 12X 12X 12X 512
Convolution 512 3X3X%X3 12X 12X 12 %512
Max Pooling 3X3x3 6X6X6X512
Convolution 512 3X3x%X3 6X6X6X512
Convolution 512 3X3X3 6X6X6X512
Convolution 512 3X3X%3 6X6X6X512
Max Pooling 3x3x3 3X3%x3x512
Flatten 13824

Fully Connected 4096

Fully Connected 4096

Fully Connected 128

https://doi.org/10.1371/journal.pone.0323174.t006

Table 7. 3D ResNet-18 architecture for lung CT images.

Layer Name 3D Resnet-18 Output Size

Convl 7 X 7 X 7,64,stride 2 48 X 48 X 48 X 64

Max pooling 3 X 3 X 3, stride 2 24X 24 X 24 X 64
3X3%3,64

Res-blockl 2 24 X 24 X 24 X 64
3X3X3,64
3X3x%x3,128

Res-block2 : 2 12X 12X 12X 12

es-bloc 3% 33,128 X 12 %12 %128
3% 3X3,256
-block 2 2

Res-block3 3% 3% 3,256 6X6X6X256
3X3x%x3,512

Res-block4 3x3%3.512 2 3X3X3X%x512

Average-pool 512

Fully Connected 128

https://doi.org/10.1371/journal.pone.0323174.t007

architectures (AlexNet, ResNet, and VGG). The C-index calculations incorporated both can-
cer and non-cancer groups, as the non-cancer cohort in the NLST dataset consisted of indi-
viduals with potential risk of developing cancer.

All three advanced architectures demonstrated statistically significant improvements over
the baseline N-net model (all p-values <0.001). For cancer classification, ResNet achieved the
highest AUC of 0.6885, representing a 26.8% improvement over the baseline’s 0.5428. Simi-
larly, for survival prediction, VGG yielded the best C-index of 0.6036, an 18.6% improvement
compared to the baseline’s 0.5088. Despite falling below the conventional 0.7 threshold, these
results should be interpreted within the challenging context of survival prediction for lung
cancer. As noted by prior studies in cancer prognostication [29-32] , C-index values between
0.6 and 0.7 can still provide valuable clinical insights, particularly when dealing with complex
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Fig 9. Feature extraction. Using a pre-trained classifier to get features from the top five suspicious crops.

https://doi.org/10.1371/journal.pone.0323174.g009

Table 8. Integration phase structure.

Layer Type Output Size
Convolutional Phase Output 128 X5
Fully Connected 32X5

Max Pool 1x5

Fully Connected 1

https://doi.org/10.1371/journal.pone.0323174.t008

diseases like lung cancer where numerous factors influence survival outcomes. The statisti-
cal significance of our improvements (p < 0.001) compared to the baseline indicates that our
approach captures meaningful prognostic information from CT images.

The narrow confidence intervals observed for most models indicate high stability in both
cancer classification and survival prediction performance. Interestingly, while ResNet demon-
strated superior classification performance (highest AUC), VGG achieved the best survival
prediction (highest C-index), suggesting that different architectural characteristics may be
optimal for different predictive tasks in lung cancer analysis.

These results highlight both the promise of our approach and the inherent challenges in
lung cancer survival prediction from imaging data alone, pointing to opportunities for further
refinement by potentially incorporating additional clinical variables or more sophisticated
modeling techniques.

PLOS One | https://doi.org/10.1371/journal.pone.0323174 June 11, 2025 20/ 25



https://doi.org/10.1371/journal.pone.0323174.g009
https://doi.org/10.1371/journal.pone.0323174.t008
https://doi.org/10.1371/journal.pone.0323174

PLOS One

Improving lung cancer diagnosis and survival prediction with deep learning and CT imaging

128 32

‘* ”

-1\

Sudl Badl Badl Bagh

~1-1/

— | —

Fig 10. Feature integration.. Graphical representation of feature integration process.

https://doi.org/10.1371/journal.pone.0323174.g010

Table 9. Model performance and statistical significance compared to baseline N-net.

Model AUC C-index
Score (95% CI) p-value Score (95% CI) p-value

N-net [36] 0.5428 ref 0.5088 ref
(0.5423-0.5438) (0.5082-0.5094)

AlexNet 0.6441 <0.001 0.5823 <0.001
(0.6329-0.6553) (0.5754-0.5891)

ResNet 0.6885 <0.001 0.5987 <0.001
(0.6881-0.6890) (0.5981-0.5993)

VGG 0.6790 <0.001 0.6036 <0.001
(0.6788-0.6793) (0.6033-0.6039)

ref: reference baseline

https://doi.org/10.1371/journal.pone.0323174.t009
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6 Discussion

The results of our study demonstrate that combining binary cross-entropy and mini-batched
loss, obtained by extending the Cox proportional hazards model with 3D CNNSs, can signifi-
cantly improve lung cancer diagnosis and survival prediction. Our approach achieves an AUC
of 0.6885 for lung cancer classification and a C-index of 0.6036 for survival prediction on the
NLST dataset, substantially outperforming the baseline method [36] which obtained an AUC
of 0.5428 and C-index of 0.5088. These improvements were found to be statistically significant
(p<0.001), indicating robust performance enhancements.

Our approach features three key strengths. First, the use of mini-batched loss effectively
handles the non-convexity induced by neural networks, enabling efficient training on large
datasets. The combination with binary cross-entropy allows joint optimization of both classi-
fication and hazard prediction tasks, providing a more comprehensive understanding of lung
cancer compared to training separate models for diagnosis and prognosis.

Second, our framework offers exceptional generalizability, providing a versatile blueprint
that can be adapted to various diseases and imaging modalities. A significant advantage is its
applicability to any medical image—whether 3D or 2D—requiring survival prediction. The
architectural flexibility allows the model to be tailored based on unique image characteris-
tics, disease pathology, and data availability. This versatility positions our method as a broadly
applicable tool across diverse medical imaging contexts.

Third, our unified framework provides a flexible architecture for integrating multiple data
modalities beyond imaging. While our current implementation focuses on CT image features,
the model’s structure inherently supports the incorporation of additional clinical variables
such as patient demographics, smoking history, genetic markers, and other relevant clinical
metadata. We can integrate these linear features alongside medical images within the mini-
batched loss framework. This multi-modal approach directly addresses potential confounding
factors that could lead to misclassification or overdiagnosis. By allowing seamless integration
of diverse data types, our method can provide a more nuanced and comprehensive risk assess-
ment that transcends the limitations of single-modality analysis. The ability to incorporate
contextual clinical information represents a significant advancement in personalized medical
risk prediction, enabling a more holistic approach to understanding disease progression and
individual patient outcomes.

Despite these advances, our approach has some limitations that suggest directions for
tuture work. First, while 3D CNNs enable capturing complex patterns in CT scans, their
black-box nature makes it challenging to interpret the features driving predictions. Develop-
ing techniques to improve CNN interpretability, such as visual explanations of informative
regions [39], would help build clinician trust. Second, potential biases could arise if the NLST
data does not fully represent the target screening population. Evaluating on additional diverse
datasets and employing bias mitigation methods are important future steps.

Taken together, our work demonstrates the significant potential of deep learning-based
survival models for improving medical image analysis across multiple clinical applications.
While our implementation focused on lung cancer, the fundamental integration of CNN
architectures with survival analysis provides a versatile framework applicable to numerous
diseases and imaging modalities. The statistical improvements over baseline methods under-
score the value of our unified approach to diagnosis (disease occurrence classification) and
prognosis (survival hazard prediction). As we continue to refine these methods through clin-
ical validation across different medical contexts, we envision this technology becoming an
increasingly valuable complement to expert assessment, ultimately contributing to more
precise and personalized healthcare.
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7 Conclusion

In this paper, we presented a novel deep learning-based method that integrates lung cancer
classification and survival prediction into a unified framework. Our approach extends the
Cox proportional hazards model with 3D CNNs and leverages a combination of binary cross-
entropy and mini-batched loss to efficiently train on large-scale CT datasets. Empirical results
on the NLST dataset demonstrate statistically significant improvements over prior methods,
with our best models achieving an AUC of 0.6885 (ResNet) and C-index of 0.6036 (VGG).

Our framework makes important strides towards harnessing the power of deep learning
and medical imaging for advancing healthcare. The approach is particularly valuable for its
generalizability across different medical imaging contexts—capable of handling both 2D and
3D images while providing robust survival predictions. This versatility positions our method
as a broadly applicable tool in medical image analysis beyond just lung cancer.

The significant statistical improvements over baseline methods underscore the value of
our unified approach to classification and prognosis. As we continue to refine these meth-
ods through clinical validation across different medical contexts, we envision this technology
becoming an increasingly valuable complement to expert assessment, ultimately contributing
to more precise and personalized healthcare across multiple diseases and imaging modalities.
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