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Abstract
Accurate nuclei segmentation and classification in histology images are critical for can-
cer detection but remain challenging due to color inconsistency, blurry boundaries, and
overlapping nuclei. Manual segmentation is time-consuming and labor-intensive, high-
lighting the need for efficient and scalable automated solutions. This study proposes
a deep learning framework that combines segmentation and classification to enhance
nuclei evaluation in histopathology images. The framework follows a two-stage approach:
first, a SegNet model segments the nuclei regions, and then a DenseNet121 model
classifies the segmented instances. Hyperparameter optimization using the Hyperband
method enhances the performance of both models. To protect data privacy, the frame-
work employs a FedAvg-based federated learning scheme, enabling decentralized train-
ing without exposing sensitive data. For efficient deployment on edge devices, full integer
quantization is applied to reduce computational overhead while maintaining accuracy.
Experimental results show that the SegNet model achieves 91.4% Mean Pixel Accuracy
(MPA), 63% Mean Intersection over Union (MIoU), and 90.6% Frequency-Weighted IoU
(FWIoU). The DenseNet121 classifier achieves 83% accuracy and a 67% Matthews Cor-
relation Coefficient (MCC), surpassing state-of-the-art models. Post-quantization, both
models exhibit performance gains of 1.3% and 1.0%, respectively. The proposed frame-
work demonstrates high accuracy and efficiency, highlighting its potential for real-world
clinical deployment in cancer diagnosis.

1 Introduction
Cancer is a malignant disorder characterized by abnormal growth and proliferation of nuclei,
which can spread to other parts of the body, posing a significant threat to human health.
Medical practitioners have used various imaging techniques for cancer screening for over
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40 years, but biopsy remains the most accurate diagnostic method [1]. During the biopsy,
tissue samples are stained to enhance their microscopic appearance, and histopathology
images are analyzed to identify malignant regions through visual inspection. However, man-
ual evaluation of stained histology slides is time-consuming, labor intensive, and subject to
observer variability [2,3]. Consequently, the field of digital pathology (DP) is gaining atten-
tion by employing computer-assisted diagnosis (CAD) techniques to support pathologists and
improve the efficiency of histopathology image analysis [4]. DP images, generated through tis-
sue slicing, staining, and digitization, are typically high-resolution and may contain tens of
thousands of nuclei with significant variations in color, texture, shape, and morphology [5].
Manual evaluation of such complex images is challenging, highlighting the need for auto-
mated segmentation, localization, and classification of different types of nuclei [6–9]. Nuclei
segmentation is a crucial step in cancer diagnosis and prognosis, as it allows the extraction of
interpretable features [10–14].

Over the past two decades, various nuclei segmentation methods have been proposed,
which can be broadly categorized into a handcrafted feature (HF)-based and deep learn-
ing (DL)-based approaches. HF-based methods involve techniques such as filtering [16],
thresholding [17], marker-controlled watershed, region accumulation [18], morpholog-
ical operations [19], and graph cuts [19]. While these methods require manual feature
design and tuning, they are often limited in effectiveness due to their reliance on prede-
fined features. In contrast, DL-based methods automatically extract relevant features, mak-
ing them more adaptable and effective. However, both HF and DL methods have strengths
and limitations, and the choice depends on the specific dataset and task requirements
(Fig 1).

Deep learning, particularly convolutional neural networks (CNNs), has shown signifi-
cant promise in nuclei segmentation [20,21]. CNN-based methods can be classified into one-
stage and two-stage approaches. Two-stage methods involve first detecting individual nuclei
and then refining the segmentation. For example, Mask R-CNN [16] uses bounding boxes to
locate nuclei instances but struggles with overlapping and occluded instances (Fig 1). SPA-
Net [19] addresses this issue by detecting instance centroids and performing semantic seg-
mentation in two stages. Similarly, BRP-Net [18] generates region proposals based on nuclei
boundaries and refines the foreground mask. However, these two-stage methods often have
high complexity and are not suited for end-to-end training. In contrast, one-stage methods
like U-Net [22] use a single network to predict instance masks directly. Micro-Net [23], an
improved version of U-Net, processes input at different resolutions, making it more robust
for varying nuclei sizes. DCAN [20] generates separate maps for nuclei contours and clusters,
improving boundary detection. BES-Net [24] and CIA-Net [25] further enhance information
flow between decoder layers to refine segmentation quality.

The proposed framework improves nuclei identification through a two-stage segmentation-
based classification approach. The first stage focuses on detecting nuclei regions using
segmentation models such as Fully Convolutional Networks (FCN), U-Net, SegNet, and
ResUnet. The second stage classifies the segmented instances using models like VGG16,
VGG19, ResNet50, DenseNet121, and InceptionV2. Hyperparameter tuning using the Hyper-
band algorithm optimizes both segmentation and classification performance. To ensure data
privacy, FedAvg is integrated, enabling collaborative training across devices without sharing
raw data. For deployment on edge devices, post-training quantization techniques, including
dynamic range, full integer, and float16 quantization, are applied to improve model efficiency
and reduce computational overhead.

The key objectives of this study are:
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Fig 1. Pre-process PanNuke dataset [15] for nuclei instance segmentation and classification.

https://doi.org/10.1371/journal.pone.0322749.g001

• Refined Nucleus Identification: Develop a two-stage segmentation-based approach to
accurately identify and segment nuclei in stained histopathology images.

• Automated Segmentation and Classification: Use segmentation models (FCN, U-Net,
SegNet, ResUnet) and classification models (VGG16, VGG19, ResNet50, DenseNet121,
InceptionV2) to automate nuclei analysis.

• Performance Optimization: Apply the Hyperband algorithm for hyperparameter tuning to
improve the accuracy and efficiency of both segmentation and classification models.

• Privacy-Preserving Training: Incorporate federated learning to enable collaborative train-
ing without sharing sensitive patient data.

• Edge Deployment: Optimize the model using post-training quantization techniques to
enable efficient real-time performance on resource-constrained edge devices.

The main contributions of this work are:

1. Efficient Fully Automated Framework: A fully automated deep learning framework for
nuclei segmentation and classification that addresses challenges such as color inconsis-
tency, blurry boundaries, and overlapping instances.
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2. Enhanced PerformanceThrough Optimization and Privacy:Hyperband-based tun-
ing enhances performance, while FedAvg ensures data privacy by enabling decentral-
ized training without exposing raw data.

3. Edge Device Deployment:The optimized models are customized for deployment on
edge devices, ensuring real-time performance and efficient resource utilization.

The remainder of the paper is structured as follows: Sect 2 describes the network archi-
tecture and methods used. Sect 3 presents the experimental setup and results, including an
analysis of model performance under different configurations. Sect 6 concludes the paper and
outlines future research directions.

2 Methods & materials
2.1 Methodology overview
The proposed framework consists of two main stages for nuclei segmentation and classifica-
tion. In the first stage, pre-processed datasets are fed into segmentation models to identify
individual nuclei instances. In the second stage, the segmented instances are passed to a clas-
sification model to determine the type of nucleus. Both the segmentation and classification
models are optimized using the Hyperband algorithm for improved performance. After opti-
mization, the models are quantized for efficient deployment on edge devices. The quantized
models are then integrated with a federated learning algorithm to enable privacy-preserving
training without sharing raw data. Fig 2 illustrates an overview of the proposed framework.

2.2 Dataset
The PanNuke Dataset [26] is a comprehensive collection of over 20,000 annotated microscopy
images, including both hematoxylin and eosin (H&E) stained slides and immunofluorescent

Fig 2. An Overview of the proposed framework. Different medical institutions locally train models on private data in two stages: segmentation followed by classifi-
cation, with hyperparameter optimization applied to optimize the performance of both models. The optimized models are then quantized to reduce size and improve
efficiency before being uploaded to a federated server. The server aggregates the quantized models, creating a robust, generalized model. Medical practitioners can
download the aggregated model to improve healthcare insights while ensuring data privacy.

https://doi.org/10.1371/journal.pone.0322749.g002
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images. Curated by researchers at the National Institutes of Health (NIH), this dataset encom-
passes a wide variety of tissue and nuclei types, divided into five main classes: neoplastic,
non-neoplastic epithelial, connective, inflammatory, and dead nucleus. It serves as a valuable
resource for developing and evaluating algorithms for nucleus segmentation and classifica-
tion in diverse biological contexts. The dataset features high-quality annotations that allow for
accurate performance assessments and comparisons with state-of-the-art methods. The distri-
bution of nuclei varies across different tissue types (Fig 3). For instance, breast tissue contains
the highest number of nuclei (51,077), followed by colon tissue (35,711), while bladder tis-
sue has the fewest (2,839). Among the different classes, neoplastic tissue exhibits the highest
total number of nuclei (77,403), followed by connective tissue (50,585), inflammatory tissue
(32,276), and epithelial tissue (26,572). The dead nucleus class has the lowest count with only
2,908 nuclei.

2.3 Segmentation models
Fully Convolutional Networks (FCN) FCN [28] are a type of Convolutional Neural

Network (CNN) designed for image segmentation tasks. FCNs replace the fully connected

Fig 3. An overview of the PanNuke nuclei distribution across the nineteen tissue types, sorted by the total num-
ber of nuclei within each tissue.The total number of nuclei for each tissue type is provided in parentheses. Adapted
from [27].

https://doi.org/10.1371/journal.pone.0322749.g003
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layers of traditional CNNs with convolutional layers, allowing them to produce dense
per-pixel predictions, such as segmentation maps. The original FCN architecture used a VGG-
16 network pretrained on ImageNet as the encoder, followed by an upsampling decoder to
generate the final segmentation map. Subsequent improvements included the incorporation
of dilated convolutions [29] and attention mechanisms [30] to enhance performance, partic-
ularly in medical image segmentation. A key feature of FCNs is the use of skip connections
that combine low-level and high-level features through 1x1 convolutions, allowing for better
spatial localization and improved segmentation accuracy.

U-Net U-Net [22] has become a popular model in medical image analysis, especially for
segmentation tasks. The architecture consists of a contracting path, which reduces spatial
dimensions through convolution and pooling layers, and an expanding path, which increases
spatial resolution through upsampling. A defining characteristic of U-Net is its use of skip
connections that link corresponding layers in the contracting and expanding paths, preserv-
ing fine-grained spatial information and enhancing segmentation accuracy. U-Net’s success in
segmenting complex structures, such as neuronal images, has led to its widespread adoption,
including its notable performance in the 2018 Data Science Bowl [31].

SegNet SegNet [32] is another deep learning architecture designed for semantic image
segmentation. It consists of an encoder-decoder structure similar to U-Net but introduces a
unique “decoder index” mapping. This feature stores pooling indices from the encoder and
uses them during decoding to guide the upsampling process, preserving fine-grained spa-
tial details. SegNet has demonstrated efficient real-time processing in applications such as
autonomous driving and medical image analysis, balancing accuracy with computational
efficiency.

ResUnet ResUnet [33] is an extension of the U-Net architecture designed to improve seg-
mentation performance by incorporating residual connections. These connections allow the
network to learn residual functions, helping to mitigate the vanishing gradient problem and
enabling more effective training. The addition of residual connections allows ResUnet to cap-
ture important details that might be lost in deeper layers. This makes ResUnet particularly
suitable for complex image segmentation tasks, such as nucleus segmentation in biomedical
images, where both fine-grained details and high-level semantic information are crucial.

2.4 Classification models
VGG The VGG network [34] is a widely used convolutional neural network (CNN)

architecture for various image classification tasks, including nuclei classification in
histopathology images. It has variants such as VGG-16 and VGG-19, distinguished by the
number of layers—16 layers for VGG-16 and 19 layers for VGG-19. Both variants use small
3x3 convolutional filters to capture local spatial information while maintaining a manage-
able parameter count. VGG networks utilize 2x2 max-pooling layers with a stride of 2 to
downsample feature maps and reduce spatial resolution. This structure enables VGG mod-
els to capture hierarchical features effectively, contributing to strong performance in image
classification tasks, including nuclei classification.

ResNet50 ResNet50 [35] is a variant of the ResNet architecture, designed to address chal-
lenges in training very deep CNNs by introducing skip (residual) connections. Comprising 50
layers, ResNet50 incorporates convolutional layers with 3x3 and 1x1 filters, batch normaliza-
tion layers, and fully connected layers. The skip connections enable the network to bypass cer-
tain layers, facilitating the learning of residual functions and alleviating the vanishing gradient
problem. This architecture improves gradient flow and stabilizes training, making ResNet50
effective for image classification tasks, such as nuclei classification in histopathology images.
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DenseNet121 DenseNet121 [36] is a variant of the DenseNet architecture known for its
dense connectivity between layers, where each layer receives input from all preceding layers.
This design addresses the vanishing gradient problem and promotes feature reuse, allowing
for deeper and more trainable networks. DenseNet121 is composed of 121 layers, including
convolutional and transition layers. The convolutional layers use 3x3 filters to extract features,
while transition layers use 1x1 convolutions and 2x2 average pooling for downsampling.
The dense connections ensure efficient gradient flow and information propagation, making
DenseNet121 a powerful choice for image classification tasks, such as nuclei classification in
histopathology.

InceptionV2 InceptionV2 [37] enhances the original Inception architecture with multi-
scale processing, allowing the network to capture features at various scales. This is achieved
through the use of convolutional filters of different sizes and pooling operations of varying
dimensions. InceptionV2 also incorporates 1x1 convolutional filters, which combine outputs
from multiple filters, enhancing feature learning. These filters are part of the inception mod-
ule, a key building block of the architecture. InceptionV2’s ability to learn multi-scale features
makes it effective for tasks like nuclei detection and classification in histopathological images.

2.5 Hyperparameter optimization with hyperband
Li et al. [38] introduced the Hyperband algorithm to accelerate the Random Search method
for hyperparameter optimization. Hyperband achieves this by employing adaptive resource
allocation and early-stopping techniques. It reformulates the hyperparameter optimization
problem as a non-stochastic, exploratory infinite-arm bandit problem. Instead of training all
configurations until the final epoch, Hyperband efficiently allocates resources to randomly
selected hyperparameter configurations and discards unpromising ones early on.

Hyperband is an extension of the Successive Halving algorithm [39], which addresses best-
arm identification in multi-armed bandit problems. In Successive Halving, the hyperparam-
eter optimization problem is treated as a non-stochastic best-arm identification problem,
where each arm represents a specific hyperparameter setting. The algorithm begins by allo-
cating a budget, denoted as B, uniformly across n configurations. After a fixed number of
training iterations, the performance of each configuration is evaluated using an intermediate
loss on a holdout set. The worst-performing half of the configurations is discarded, and the
process is repeated until only one configuration remains.

To use the Hyperband algorithm, two input values are required: R and 𝜂. R represents the
maximum resource that can be allocated to a configuration, and 𝜂 indicates the ratio of con-
figurations eliminated in each iteration of Successive Halving. These values combine to guide
the resource allocation and early-stopping decisions in Hyperband.

Smax = logn(R) (1)

2.6 Optimizing model for cloud and edge deployment through
quantization
Quantization is a widely used technique in deep learning that reduces the memory and com-
putational requirements of neural networks by lowering the precision of weights and acti-
vations from the standard 32-bit floating-point representation to lower-bit-width formats.
While this reduction in precision helps alleviate resource constraints, it may lead to accu-
racy degradation due to the information loss during quantization. To mitigate this issue,
post-quantization methods such as post-quantization training have been proposed. In post-
quantization training, the quantized model is fine-tuned on a dataset, where the weights
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and activations are updated to minimize the loss function, improving the model’s accuracy
without sacrificing the benefits of reduced computational and memory requirements.

This is especially important for deploying deep learning models on edge-computing plat-
forms, which face constraints like limited memory, on-chip resources, and battery capac-
ity. To overcome these limitations, the network architecture must be lightweight, ensuring
acceptable accuracy and speed while consuming minimal power.

Two primary approaches for quantizing neural networks are Post-Training Quantization
(PTQ) and Quantization-Aware Training (QAT) [40]. PTQ fine-tunes a pre-trained network
with reduced precision, whereas QAT incorporates the quantization process during training,
enabling the network to learn optimal quantized representations. Both methods are effective
in reducing the memory and computational requirements of neural networks while main-
taining accuracy, making them essential for deploying models on resource-constrained edge
devices.

2.7 Federated learning
Federated learning (FL) [41] has emerged as a promising approach for preserving privacy
when applying machine learning to medical data. It has been successfully applied to various
healthcare tasks, including predicting patient outcomes [42], medication adherence [43], hos-
pital readmission [44], disease risk [45], and detecting chronic diseases such as diabetes [46].
FL has also enabled the creation of large-scale annotated medical datasets [47] and has been
proposed as a solution for safeguarding data privacy in genomics research [48].

In FL, the model is trained on decentralized datasets, meaning that raw data is never trans-
mitted to a central location. Instead, training occurs locally on each participating device
or server, and the locally trained models are then aggregated to form a global model. This
approach ensures that sensitive medical data remains private and confidential, a critical con-
cern in healthcare.

While ensemble learning often uses centralized data and model subsets, raising privacy
concerns, FL offers a more secure alternative. By utilizing distributed data and device-trained
models, FL reduces the risk of privacy breaches and communication overhead. Given the sen-
sitive nature of medical data and the need for collaboration across institutions, we opted for
FL rather than centralized training with ensemble learning.

In typical FL setups, stochastic gradient descent (SGD) is used to train the model. Each
device computes the gradients of the local loss function concerning the model parameters,
and the global model is updated by averaging these gradients across all devices. This decen-
tralized process ensures that privacy is maintained throughout the training.

𝜃t+1 = 𝜃t – 𝜂
1
n

n
∑
i=1
∇fi(𝜃t) (2)

where 𝜃t is the global model parameters at iteration t, 𝜂 is the learning rate, and fi is the local
loss function for the ith participating device.

2.8 Implementation details
The nuclei segmentation and classification models were developed using TensorFlow 2.2, with
CUDA 10.1 and cuDNN 7.5.0 for GPU acceleration. The training process employed SGD to
achieve faster convergence. For the binary classification task, the segmentation network was
designed to classify individual pixels in the image. It utilized mean squared error (MSE) loss
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for bounding box regression and a cross-entropy loss function for single-pixel binary classi-
fication. The segmentation task involved pixel classification for precise segmentation while
bounding boxes were used for object localization, a common approach in instance segmenta-
tion. Bounding boxes help to identify individual nuclei, and pixel classification refines object
boundaries.

The two networks were trained sequentially: the segmentation network was trained first,
and then the decision network was trained with the segmentation network’s weights frozen.
The decision network only fine-tuned its weights during training, applying transfer learning to
mitigate the risk of overfitting.

Both networks were trained using SGD with a learning rate of 0.001 and a cross-entropy
loss rate of 0.1. Due to GPU memory constraints and the large image size, the batch size was
set to 2. The PanNuke dataset was split into 80% for training and 20% for testing, with 5-fold
cross-validation. To optimize both models, we used the Hyperband algorithm implemented
with Keras Tuner [49], as detailed in Table 1. Additionally, federated learning (FL) algorithms
were implemented using TensorFlow Federated [50].

All experiments were conducted on an Ubuntu 22.04.2 LTS system with an Intel Core i7-
14700KF CPU, 32GB of memory, and an Nvidia RTX 3070 GPU. For deployment on an edge
device, we used the NVIDIA Jetson Nano [51], featuring a quad-core A57 processor, 2GB of
LPDDR4 memory, and a 128-core NVIDIA Maxwell GPU. Before deployment, the model was
quantized using the TensorFlow Lite converter to optimize it for the edge device.

2.9 Evaluation metrics
2.9.1 Segmentation. Nucleus extraction, a type of semantic segmentation, involves pixel-

level classification, where each pixel is assigned to a specific class or category. The perfor-
mance of semantic segmentation models is often quantitatively evaluated using several met-
rics, including Mean Pixel Accuracy (MPA), Mean Intersection over Union (MIoU), and Fre-
quency Weighted Intersection over Union (FWIoU). For nucleus segmentation specifically,
additional metrics like Class Pixel Accuracy (CPA) and Intersection over Union (IoU) are
commonly used to provide a more detailed evaluation.

Pixel Accuracy is one of the most widely used metrics in semantic segmentation. It mea-
sures the accuracy at the pixel level for each class in the segmented image. By computing the
accuracy for each class separately, this metric provides a more nuanced understanding of how
well the model performs for specific categories. This allows for a better assessment of which
classes the model excels at segmenting and which classes it struggles with. Analyzing accuracy
on a per-class basis is invaluable for identifying areas of improvement in the model’s train-
ing process, data augmentation strategies, or architecture. It provides targeted insights into

Table 1. Search space for segmentation and classification models.
Search Space Range Search Space Range
Segmentation Model Classification Model
No. of Filters [32,64,128,256] No. of Units [16, 32,64,128,256]
Filter Length [10,15,20,25,30] Learning Rate [0.0001, 0.001, 0.01]
Filter Width [2,4,8,16] Optimizer [‘Rmsprop’, ‘Adam’, ‘SGD’]
Initialization Mode [‘uniform’, ‘Normal’, ‘zero’, ‘he_uniform’] Regularizer [‘L1’, ‘L2’]
Activation Function [‘softmax’, ‘relu’, ‘sigmoid’, ‘tanh’] Output Activation function [‘softmax’, ‘relu’, ‘tanh’]
Neurons in Fully Connected Layer [16,32,64,128] Dense Units [64,128,256]
Batch Size [32,64,128] Batch Size [32,64,128]
dropout [0.05,0.1,0.15,0.2,0.25] dropout [0,0.2,0.3]

https://doi.org/10.1371/journal.pone.0322749.t001
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the model’s strengths and weaknesses, which can guide efforts to enhance performance for
challenging classes.

The following formulas are used to calculate these various evaluation metrics:

CPA =
∑n

i=0 Pii
∑n

i=0∑
n
j=0 Pij

(3)

MPA = 1
n + 1

n
∑
i=0

Pij
∑n

j=0 Pij
(4)

IoU =
∑n

j=0 Pii
∑n

i=0∑
n
j=0 Pij +∑

n
i=0∑

n
j=0 Pji – Pii

(5)

MIoU = 1
n + 1

n
∑
i=0

Pii
∑n

j=0 Pij +∑
n
j=0 Pji – Pii

(6)

FWIoU = 1
∑n

i=0∑
n
j=0 Pij

n
∑
i=0

Pii
∑n

j=0 Pij +∑
n
j=0 Pji – Pii

(7)

To ensure a fair evaluation of instance segmentation performance, we utilize the Panoptic
Quality (PQ) as the assessment metric, as recommended in previous studies [15,52]. PQ is a
commonly used evaluation metric for panoptic segmentation tasks. It was initially introduced
for nuclei segmentation, and it is defined as follows:

PQ = |TP|
|TP| + 1

2 |FP| +
1
2 |FN|

×
∑(x,y)∈TP IoU(x, y)

|TP|
(8)

In addition, we provide a breakdown of the Panoptic Quality (PQ) performance for all 19
tissues in terms of multi-class PQs (mPQs) and binary PQs (bPQs). The mPQs represent the
average PQ score for each of the five nucleus categories, while the bPQs calculate the overall
performance on images containing all five categories. We selected an IoU threshold of 0.5 to
determine true positives during the PQ calculation.

2.9.2 Classification. Five performance metrics are commonly used to evaluate the classi-
fication of different nuclei: Sensitivity (SN), Specificity (SP), Accuracy (ACC), F1-Score, and
Matthews Correlation Coefficient (MCC). These metrics are formulated as follows:

SN = TP
TP + FN

(9)

SP = TN
FP + TN

(10)

ACC = TP + TN
TP + FN + FP + TN

(11)

F – Score = 2TP
2TP + FP + FN

(12)

MCC = (TP × TN) – (FP × FN)√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(13)
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3 Result and analysis
3.1 Segmentation model evaluation
The experimental results are based on the 20% testing set. As shown in Table 2, SegNet
achieved the highest scores in MPA (91.4%), MIoU (63.5%), and FWIoU (90.8%). ResUnet
followed closely, with MPA and MIoU scores of 91.2% and 62.6%, respectively. While the per-
formance differences between the models are minimal, other factors such as CPA and IoU
should be considered when selecting the optimal model for nucleus segmentation.

The manual segmentation approach struggles with issues like color inconsistency, blurry
nuclei, and overlapping nuclei, which are common in several images from the Panuke dataset.
In contrast, SegNet, a CNN-based segmentation model, effectively addresses these challenges,
achieving impressive performance metrics: 91.4% MPA, 63.5% MIoU, and 90.8% FWIoU.
These results highlight SegNet’s strong capability in handling typical segmentation issues,
making it a solid choice for nucleus segmentation tasks.

The evaluation metrics used to compare the models in Table 3 are Class Pixel Accuracy
(CPA) and Intersection over Union (IoU). The table indicates that SegNet outperforms the
other models, achieving an average pixel accuracy of 44.7 and an IoU of 35.5. U-Net also
demonstrates strong performance, with an average pixel accuracy of 32.8 and an IoU of 29.7.
FCN and ResUnet exhibit similar performance, with average pixel accuracies of 37.6 and 40.6,
respectively. However, ResUnet has a lower IoU score of 32.8, compared to FCN’s score of
25.4.

For each of the 19 tissues, we calculated both multi-class (mPQ) and binary (bPQ) panop-
tic qualities, which were adopted from [52]. The results of our experiment, as presented in
Table 4, demonstrate that SegNet consistently outperforms ResUnet for both mPQ and bPQ
evaluation metrics. SegNet achieves better overall and tissue-specific performance for the
mPQ metric than any other state-of-the-art model.

Table 5 presents the average PQ for each type of nucleus in the PanNuke dataset. Seg-
Net outperforms all other state-of-the-art models in the neoplastic, connective, and epithe-
lial nuclei categories. However, ResUnet excels in the inflammatory and dead nuclei cate-
gories. Notably, dead nuclei consistently achieve the lowest PQ across all models. This could
be attributed to the class imbalance in the dataset, as the small number and size of dead nuclei
make it difficult to achieve an IoU greater than 0.5 for true positives, leading to poorer perfor-
mance.

Table 2. Quantitative evaluation of different segmentation models.
Models MPA (%) MIoU (%) FWIoU (%)
FCN 90.2 61.2 90.6
U-Net 89.8 59.9 88.7
SegNet 91.4 63.5 90.8
ResUnet 91.2 62.6 90.2

https://doi.org/10.1371/journal.pone.0322749.t002

Table 3. CPA and IoU comparison of different segmentation models.
Models CPA (%) IoU (%)
FCN 37.6 25.4
U-Net 32.8 29.7
SegNet 44.7 35.5
ResUnet 40.6 32.8

https://doi.org/10.1371/journal.pone.0322749.t003
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Table 4. Average mPQ and bPQ of the nuclei labels across the 19 different tissue types in the PanNuke dataset.
Tissue FCN U-Net SegNet ResUNet

mPQ bPQ mPQ bPQ mPQ bPQ mPQ bPQ
Adrenal 0.273 0.468 0.287 0.451 0.303 0.498 0.289 0.478
Bile Duct 0.312 0.457 0.321 0.425 0.333 0.512 0.312 0.492
Bladder 0.322 0.431 0.314 0.471 0.349 0.501 0.304 0.487
Breast 0.286 0.426 0.289 0.465 0.311 0.471 0.297 0.468
Cervix 0.333 0.487 0.324 0.493 0.325 0.508 0.314 0.486
Colon 0.312 0.486 0.301 0.432 0.319 0.472 0.298 0.461
Esophagus 0.298 0.451 0.311 0.441 0.306 0.492 0.279 0.483
H&N 0.354 0.487 0.334 0.472 0.359 0.511 0.311 0.492
Kidney 0.322 0.462 0.317 0.456 0.327 0.489 0.321 0.463
Liver 0.312 0.432 0.322 0.441 0.331 0.478 0.300 0.453
Lung 0.307 0.478 0.298 0.422 0.317 0.511 0.305 0.486
Ovarian 0.293 0.464 0.299 0.431 0.308 0.498 0.299 0.468
Pancreatic 0.302 0.457 0.312 0.446 0.337 0.510 0.311 0.502
Prostate 0.311 0.495 0.297 0.472 0.322 0.521 0.313 0.502
Skin 0.276 0.431 0.299 0.421 0.314 0.467 0.307 0.431
Stomach 0.297 0.421 0.301 0.431 0.327 0.479 0.311 0.453
Testis 0.267 0.412 0.287 0.403 0.297 0.467 0.290 0.449
Thyroid 0.302 0.436 0.299 0.441 0.312 0.498 0.316 0.477
Uterus 0.312 0.425 0.311 0.431 0.338 0.511 0.324 0.501

https://doi.org/10.1371/journal.pone.0322749.t004

Table 5. Average PQ of each nucleus category.
Models Neoplastic Inflammatory Connective Dead nuclei Epithelial
FCN 0.412 0.431 0.337 0.121 0.471
UNet 0.451 0.446 0.434 0.231 0.421
SegNet 0.512 0.487 0.511 0.333 0.441
ResUnet 0.498 0.501 0.486 0.356 0.432

https://doi.org/10.1371/journal.pone.0322749.t005

3.2 Classification model evaluation
In Table 6, DenseNet121 achieved the highest values across all evaluation metrics, including
Sensitivity (0.84), Specificity (0.86), F1-Score (0.83), and MCC (0.67). It also had the highest
accuracy at 0.83. VGG19 closely followed, with Sensitivity of 0.81, Specificity of 0.83, and an
F1-Score of 0.81. InceptionV2 also performed well, achieving a Sensitivity of 0.82, Specificity
of 0.85, and an F1-Score of 0.81. VGG16 had an F1-Score of 0.80, while ResNet50 recorded
the lowest values for all metrics: Sensitivity (0.79), Specificity (0.80), F1-Score (0.79), MCC
(0.61), and accuracy (0.75).

Table 6. Specificity (SP), sensitivity (SN), F1-Score, Matthews correlation coefficient (MCC), and accuracy (ACC)
for classification of nuclei types.
Models SP SN F1 MCC ACC
VGG16 0.79 0.81 0.80 0.63 0.77
VGG19 0.81 0.83 0.81 0.66 0.79
ResNet50 0.79 0.80 0.79 0.61 0.75
DenseNet121 0.84 0.86 0.83 0.67 0.83
InceptionV2 0.82 0.85 0.82 0.66 0.81

https://doi.org/10.1371/journal.pone.0322749.t006
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DenseNet121 outperformed the other models in all evaluation metrics, making it the most
effective model for the task at hand. VGG19 and InceptionV2 also performed well, achieving
high scores across most metrics. In contrast, ResNet50 consistently had the lowest perfor-
mance across all evaluated criteria. Fig 4 provides a visual representation of the class-wise
performance of the classification models.

3.3 Hyperparameter optimization
TheHyperband algorithm is employed for hyperparameter optimization to identify the opti-
mal architecture for both the segmentation and classification models. This is implemented
using Keras Tuner [49], which efficiently searches for the best hyperparameter configurations.
The search space for both Segmentation and Classification models is provided in Table 1. The
performance of various architectures is illustrated in Fig 5. While many architectures per-
formed similarly, some did not converge during the search process. The best combination of
hyperparameters was selected based on Mean Pixel Accuracy (MPA) for the SegNet model
and Accuracy for the DenseNet121 model. Both models showed an improvement of 2% with
the selected hyperparameters.

3.4 Quantization
Following the optimization process, we performed quantization of the SegNet and
DenseNet121 models using FP16, dynamic range, and INT8 techniques. We then evaluated

Fig 4. Class-wise performance of the classification models for categorizing nucleus.

https://doi.org/10.1371/journal.pone.0322749.g004
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Fig 5. Performance of the different combinations for the SegNet and the DenseNet121 models.

https://doi.org/10.1371/journal.pone.0322749.g005

the models’ inference latency, model size, accuracy, and energy consumption, as shown in
Fig 6. The results reveal that both models experienced reduced latency, smaller model sizes,
and lower energy consumption when quantized using the INT8 technique, though at the cost
of a slight reduction in accuracy. Notably, INT8 quantization resulted in the smallest model
size.

To further assess the impact of quantization, we deployed the models on the Nvidia
Jetson Nano, utilizing the MAXN (10 Watt) power mode on the Jetson Nano board. No exter-
nal I/O or peripherals were connected during the measurements. Since the Jetson Nano

Fig 6. Performance analysis of different quantization techniques on latency, energy consumption, and size.

https://doi.org/10.1371/journal.pone.0322749.g006
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(2 GB version) does not have an INA3221 power monitoring interface, we measured energy
consumption using a digital multimeter. As shown in Fig 6, INT8 quantization led to lower
energy consumption with only a minor decrease in accuracy. This reduction in energy con-
sumption is particularly significant, as high energy usage is a key limitation for edge devices.

3.5 Federated learning
To compare the performance of two models that underwent quantization using INT8 tech-
niques, a distributed learning approach was employed. Various state-of-the-art Feder-
ated Learning (FL) algorithms, including FedAvg, FedProx, and FedBN, were selected for
comparison against centralized learning. The results of these experiments are presented in
Table 7.

From the table, it is evident that FedAvg outperformed the other FL algorithms in both
models. Specifically, FedAvg achieved a 4% increase in accuracy compared to FedProx and a
2% increase compared to FedBN. Additionally, FedAvg demonstrated a 1% and 2% increase
in Mean Pixel Accuracy (MPA) over FedBN and FedProx, respectively. These results suggest
that FedAvg may be the most effective FL algorithm for nucleus segmentation in the given
models.

We also analyzed the impact of the number of clients during decentralized training. A
larger number of clients can introduce conflicts among local gradients, which presents a sig-
nificant challenge to the practicality of FL. To further investigate the efficacy of FedAvg com-
pared to other FL algorithms in scenarios with varying numbers of clients, we simulated
training with six smaller dataset partitions and five different client configurations: 10, 15, 20,
25, and 30 clients. The results, shown in Fig 7, reveal a consistent decline in testing accuracy as
the number of clients increases. However, FedAvg exhibited a slower decline in accuracy com-
pared to the other FL algorithms, demonstrating the robustness and scalability of FedAvg in
scenarios with a higher number of clients.

3.6 Discussion and comparison with state-of-the-art frameworks
Table 8 summarizes the performance metrics of the proposed framework alongside other
state-of-the-art models, providing insights into the strengths and weaknesses of each
approach. We compare the performance of different segmentation models to evaluate their
effectiveness.

Among the compared models, the W-Net model from [53] achieved an average pixel-
wise precision of 65%, which, while reasonable, falls short compared to our proposed Seg-
Net, which achieved an impressive Mean Pixel Accuracy (MPA) of 91.4%. This substantial

Table 7. Performance comparison of federated learning algorithms for nucleus segmentation with INT8
quantized models.
FL Methods SegNet DenseNet121

MPA CPA ACC F1
Centralize Learning 91.4 44.7 0.83 0.83
Centralize Learning (Optimized) 92.7 44.9 0.84 0.83
Centralize Learning (Quantized) 83.7 38.2 0.78 0.77
FedAvg 79.9 36.3 0.71 0.70
FedProx 77.8 33.2 0.67 0.68
FedBN 78.5 34.6 0.69 0.69

https://doi.org/10.1371/journal.pone.0322749.t007
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Fig 7. Performance analysis of different FL algorithms on both models.

https://doi.org/10.1371/journal.pone.0322749.g007

Table 8. Compare the performance of the proposed framework with other state-of-the-art frameworks.
Reference Year Segmentation Model Classification Model Metrics
[53] 2020 W-Net SC-CNN a-PQ : 65%
[54] 2018 Trapezoidal LSTM Trapezoidal LSTM Precision : 96.64%, Recall :

96.79%, F1 : 96.71%
[55] 2022 Mobile-Net-v2 +

squeeze-excitation sub-network
Feature distillation
backbone

mPQ: 50%, bPQ: 63.7%

[56] 2019 Deep Residual Aggregation
Network

ResNet50 Dice Score : 78%, ACC : 81%

Ours 2024 SegNet DenseNet121 MPA : 91.4%, MIoU : 63.5%,
FWIoU: 90.8%, ACC : 83%

https://doi.org/10.1371/journal.pone.0322749.t008

improvement in MPA underscores the effectiveness of SegNet in accurately classifying pix-
els, making it a strong contender for segmentation tasks. Additionally, the Trapezoidal LSTM
model introduced by [54] exhibited good performance, while Mobile-Net-v2 with a squeeze-
excitation sub-network, proposed by [55], achieved an mPQ of 50% and bPQ of 63.7%. How-
ever, the proposed approach offers a lightweight solution that balances model complexity with
performance, making it an appealing choice for practical applications.

In comparison, ResNet50, utilized by [56], achieved 81% accuracy, while DenseNet121
achieved 83% accuracy. Although these models performed well, they still lag behind SegNet
in terms of segmentation performance.

It is important to note that the results presented in Table 8 are based on a specific dataset
and experimental setup, meaning the relative performance of these models may vary depend-
ing on the dataset’s characteristics, model hyperparameters, and other experimental condi-
tions.

We intentionally did not incorporate both the fuzzy ensemble mechanism and transfer
learning (TL) into our framework for several reasons. Our primary goal was to maintain the
simplicity of our framework to ensure it could be deployed effectively on various edge plat-
forms. By not combining these two approaches, we kept the model less complex, which aligns
with our deployment objectives. Furthermore, we recognized that fuzzy ensemble mech-
anisms and TL would require distinct data preprocessing and transformation techniques.
Ensuring compatibility between fuzzy logic and TL could introduce challenges and may not
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result in optimal outcomes. Additionally, integrating fuzzy logic into TL would introduce
extra hyperparameters that need careful tuning, increasing the risk of overfitting.

Several recent publications have evaluated models using the PanNuke dataset, includ-
ing HoVer-UNet for nuclei instance segmentation [57] and CellViT, which employs Vision
Transformers for automated instance segmentation [27]. However, in this work, we focus
specifically on comparing models that utilize two-stage methods (segmentation followed by
classification). Both of these recent studies represent significant advancements in leverag-
ing transformer-based architectures for nuclei segmentation: HoVer-UNet offers a compact
and efficient design, whereas CellViT explores the potential of large-scale, pre-trained Vision
Transformers to achieve improved performance.

Given the two-stage nature of these models, evaluating their performance using a sin-
gle metric becomes challenging, as each stage emphasizes different aspects of model perfor-
mance. To maintain focus on the most relevant results, we selected only the best-performing
CNN architectures for inclusion in this paper. Our comparison highlights the impact of
multi-stage models on segmentation performance, considering key factors such as accuracy,
inference time, and computational efficiency.

4 Ablation studies
We conducted ablation experiments to optimize the SegNet and DenseNet models for seg-
mentation and classification tasks, respectively. These experiments involved exploring a pre-
defined search space, as shown in Table 1. For the SegNet architecture, we varied several
parameters, including the number of filters (32, 64, 128, 256), filter lengths (10, 15, 20, 25, 30),
filter widths (2, 4, 8, 16), initialization modes (‘uniform’, ‘normal’, ‘zero’, ‘he_uniform’), activa-
tion functions (‘softmax’, ‘relu’, ‘sigmoid’, ‘tanh’), neurons in fully connected layers (16, 32, 64,
128), batch sizes (32, 64, 128), and dropout rates (0.05, 0.1, 0.15, 0.2, 0.25). Similarly, for the
DenseNet model, which was used for classification, we adjusted the number of units (16, 32,
64, 128, 256), learning rates (0.0001, 0.001, 0.01), optimizers (‘Rmsprop’, ‘Adam’, ‘SGD’), reg-
ularizers (‘L1’, ‘L2’), output activation functions (‘softmax’, ‘relu’, ‘tanh’), dense units (64, 128,
256), batch sizes (32, 64, 128), and dropout rates (0, 0.2, 0.3).

For both models, we evaluated key performance metrics such as accuracy, loss, and com-
putational efficiency. Through iterative adjustments within the defined search space, we iden-
tified optimal configurations that enhanced model performance. Some configurations led
to higher accuracy and lower loss, particularly those that utilized suitable activation func-
tions, regularization techniques, and dropout rates. These ablation studies provided valuable
insights into the sensitivity of SegNet and DenseNet architectures to various hyperparameters,
offering a systematic approach to optimizing performance for segmentation and classification
tasks.

5 Challenges, future directions and clinical impact
While our framework demonstrates promising results, several limitations should be acknowl-
edged. A primary concern is the vulnerability of federated learning systems to attacks from
malicious clients, potentially compromising the integrity of the shared model. Future research
should focus on investigating effective mitigation strategies, such as robust aggregation meth-
ods, secure multi-party computation, and anomaly detection techniques, to enhance the
robustness and reliability of federated learning models.

Another limitation is the absence of validation with domain experts in real-world clin-
ical scenarios. Although our framework was thoroughly tested in simulated environments,
real-world applications present challenges and complexities that simulations may not fully
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capture. Collaboration with domain experts for further evaluation in clinical settings will be
crucial to ensuring the reliability and applicability of our framework in real-world medical
practices.

The clinical benefits of automated nuclei segmentation using CNNs are substantial, offer-
ing the potential to significantly enhance disease diagnosis, treatment planning, and medical
research. By delivering more accurate diagnostic tools and deeper insights into tissue mor-
phology, our framework can play a pivotal role in improving healthcare outcomes. Moreover,
automating image analysis through CNN-based segmentation increases diagnostic efficiency,
facilitating quicker and more precise clinical decisions. This approach not only supports clin-
icians in making informed medical judgments but also contributes to scalable and effective
healthcare solutions, ultimately transforming clinical practice in histopathology by enabling
faster and more accurate diagnoses.

6 Conclusion
Nuclei segmentation plays a crucial role in tissue sample analysis, helping to identify and
locate individual nuclei. This technique is especially important in the diagnosis of diseases like
cancer and in the development of new treatments. In this study, we proposed a novel frame-
work for nuclei segmentation and classification from pathology images. The framework lever-
ages federated learning and quantization techniques to ensure both data security and the fea-
sibility of model deployment in real-world applications. The results demonstrated the effec-
tiveness of our quantization approach, showing the potential of the framework to automate
the analysis of different types of nuclei on various pathological images. This capability not
only facilitates faster diagnoses but also enhances our understanding of tissue characteris-
tics, ultimately leading to improved patient care and management. Furthermore, the model’s
ability to identify and quantify the morphological characteristics of nuclei adds significant
diagnostic and predictive value.
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