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Abstract

Dengue fever is a vector-borne disease which is transmitted by the bites of mosquitoes
infected with dengue viruses. This disease is spread around the world and still as a
global health problem. In this work, we formulate the dengue model by considering the
population of aware humans. The real data of dengue infection in East Java, Indonesia

is employed to estimate the parameters of the dengue model. The estimation of parame-
ters is done by using monthly cumulative data on humans infected dengue that recorded
at East Java Health Office on 2018-2020. We then analyze the stability of the equilibria of
the model. The analysis exhibits that the disease-free equilibrium is locally and globally
asymptotically stable when the basic reproduction number is less than one. We utilize the
Lyapunov function approach to guarantee that the endemic equilibrium is globally asymp-
totically stable whenever the reproduction number is greater than one. Furthermore, this
work examines the effectiveness of various dengue control strategies, including vector
control, awareness program, and prevention. Cost-effectiveness evaluation has shown
that the combination of vector control, awareness programs, and awareness prevention
is the most effective intervention to reduce the dengue fever in the community.

1 Introduction

Dengue fever is an infectious disease caused by the dengue virus which is transmitted through
one of the Aedes mosquito species, including Aedes aegypti, Aedes albopictus, and Aedes
scutellaria [1]. Dengue virus is a group of Arthropod-Borne virus, genus flavivirus, family Fla-
viviridae. This virus consists of four different serotypes namely DEN-1, DEN-2, DEN-3, and
DEN-4 [1]. After the bite of the mosquito infected, the patient will experience an incubation
period of 4 to 10 days before symptoms appear. The symptoms experienced by the patient
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are forcing a high fever continuously for two until seven days, red spots appear on the skin,
diarrhea, nausea, vomiting, dizziness, and a significant decrease in platelets. A patient will be
called entering the critical phase if about three until seven days the fever which was initially
40°C will drop below 38°C [1]. Prevention and control of the spread of dengue fever relies
heavily on vector control management and awareness campaigns. To date, there is no spe-
cific treatment for dengue fever. Early detection and access to appropriate medical care is an
effective way to reduce the death rate due to severe dengue fever [1].

Dengue fever appears in tropical and sub-tropical areas. Climatic factors such as rainfall,
temperature, humidity, and time of the rain are very influential on the breeding of Aedes
mosquitoes. This causes a lot of standing water, so mosquitoes breed [2]. More than 3.9 bil-
lion people in more than 129 countries are at risk of contracting dengue fever, with an esti-
mated 96 million symptomatic cases and around 40,000 deaths each year [3]. Indonesia is a
tropical country that has a high number of dengue cases every year. One factor in the num-
ber of dengue cases in Indonesia is the high population density. Three provinces on the island
of Java, namely West Java, East Java, and Central Java, have the highest population in Indone-
sia [4] and are the largest contributor to dengue cases during 2016-2020 [5]. East Java is the
province with the second most populous population and has the second highest number of
dengue cases in Indonesia during 2016-2020 [6].

In recent decades, mathematical modeling has played a fundamental role in understand-
ing the dynamics of the spread of dengue fever. The dynamics of dengue fever transmission
can be formulated using one of the epidemiological models called the compartment model
which has been proposed and developed by many authors [7-10]. An epidemic outbreak
typically begins with a single infected individual, known as patient zero, who first contracts
the virus [11]. The Susceptible-Infectious-Recovered (SIR) model [11] is commonly used
to analyze this transmission dynamic. Despite its simplicity, the SIR model is widely recog-
nized in epidemiology because it effectively predicts a crucial concept: the epidemic threshold.
This threshold distinguishes two possible epidemic outcomes a disease-free state and a sce-
nario where a significant portion of the population becomes infected [12]. While more com-
plex models exist, most are built upon the foundational principles of the SIR model, which
accurately captures the fundamental dynamics of disease spread [13].

A number of studies have attempted a real data on the dengue model to predict its spread.
The authors in [14] investigated the impact of the imperfect vaccine to control dengue virus
transmission in Pakistan using a mathematical model. The authors in [15] developed a dengue
model with saturated incidence rate to analyze the transmission of dengue in Bangladesh. The
work of [16] proposed the dynamics of single and two-serotype dengue model with vacci-
nation in Kupang city, Indonesia. The fractal-fractional Atangana-Baleanu model of dengue
with hospitalization in East Java, Indonesia has been investigated by [17]. The study of [18]
has devoted the integer-order model by considering temperature for the dengue outbreak
in Malaysia along with the fractional-order. The authors in [19] have developed the time-
dependent four-age structure model for dengue transmission in Bandung, Indonesia. In [20],
the authors have devoted the time-varying effective reproduction number of the epidemic
model to describe the spread of dengue fever in Palu City, Indonesia.

The concept of the optimal control theory has been studied extensively by researchers to
determine optimal intervention strategies to prevent and reduce the number of human pop-
ulations infected with dengue, see the literature [21-24]. For instance, the work in [21] has
utilized optimal control strategies for dengue model with hospitalization to examine the effect
of prevention and insecticides in reducing the spread of dengue fever in East Java Province,
Indonesia. The extended control of dengue model with partial immune and asymptomatic
individuals has been considered in [22]. The impact of vaccination, vector control, and media
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campaigns with seasonally varying mosquito populations on dengue transmission dynam-
ics has been formulated in [23]. The study in [24] implemented the optimal control on the
dengue fever model by considering asymptomatic, isolated, and alert compartments in the
human population.

Individual awareness and willingness to take effective preventive measures to reduce dis-
ease transmission are important aspects in implementing dengue control strategies. A num-
ber of mathematical models to investigate the impact of individual awareness on the disease
transmission dynamics have been discussed in [25-27]. The dynamical model of dengue fever
spread taking into account individual awareness has been proposed in [28]. They considered
the impact of the media campaign, case detection, and the hospital capacity to control dengue
transmission in Jakarta, Indonesia through the novel mathematical model. In this work, we
investigate the dengue model with awareness using dengue fever data in East Java, Indone-
sia. In the study of [28], it is assumed that the recruitment rate of the human population only
enters the susceptible population. In our proposed model, the recruitment rate in a suscep-
tible human population is separated into a portion entering the unaware population and a
portion entering the aware population. Next, we extend the dengue model by incorporating
three time-dependent optimal control interventions. The non-autonomous model is further
analyzed using the well-known Pontryagin maximum principle.

The presentation of the work is structured as follows. Sect 2 is devoted to the dengue
model formulation and the investigation of the basic properties of the model. Parameter esti-
mation is explored in Sect 3. The local and global stability analysis is examined in Sect 4.
Sect 5 contains a presentation on how the model parameters influence changes in disease
outbreaks. In Sects 6 and 7, the proposed dengue model is extended to the optimal control
problem and the simulation of the optimal control is demonstrated, respectively. The cost
effectiveness analysis is presented in Sect 8. The study is ended with a conclusion in Sect 9.

2 Model formulation

The classical SIR model, which divides the population into susceptible (S), infected (I), and
recovered (R) compartments, serves as a foundational framework for understanding dis-

ease dynamics. However, to better capture the complexities of dengue fever transmission, the
model needs to be extended to account for additional factors such as hospitalization and indi-
vidual awareness. A key transformation involves introducing a hospitalized (P) compartment,
where infected individuals who seek medical treatment or are notified as infectious are sepa-
rated from the general infected population. This modification allows for a more accurate rep-
resentation of disease progression, as it accounts for individuals who receive medical care and
do not contribute to further transmission. By incorporating awareness dynamics, the model
also distinguishes between individuals who are informed about dengue prevention measures
and those who are not, providing a more realistic approach to disease modeling.

In this section, we present the dengue fever model by incorporate the unaware and aware
human population. The total mosquito population (N,,) is separated into susceptible (S,,) and
infectious (I,,,) mosquitoes. The total human population (N}) is divided into unaware suscep-
tible (Sp,), aware susceptible (Sy,), infectious (1), hospitalized and/or notified infectious (Py,),
and recovered (Ry,).

The following assumptions is needed to explain the model construction. We assume that
the total mosquito population (N,,) is constant. The recruitment rate of the mosquito popu-
lation is assumed to be equal to the natural mortality rate of mosquitoes. Mosquitoes, once
infected, will remain infected for life. Each mosquito bite has an equal chance of spreading
the virus to people in a susceptible population. In human populations, the recruitment rate is
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assumed to be constant, with some entering the unaware susceptible human population and
some entering the aware susceptible human population. The human population in compart-
ment I is assumed to be able to recover without having to enter compartment Pj,. All human
populations included in compartment Pj, are assumed to be 100% protected so that they do
not contribute to the spread of dengue disease. The description of the model parameters are
given in Table 1. The transmission diagram to devote all the interactions between the above
compartments is presented in Fig 1.

With the above discussion, we display a system of nonlinear differential equations depict-
ing the dynamics of host-vector dengue as follows:

Table 1. Definition of model parameters.

Notation Notation

M Natural death rate of mosquito

Ay Recruitment rate of human

M Natural death rate of human

b Biting rate

Bm Transmission probability from human to mosquito

Bha Transmission probability from aware human to mosquito
Bhu Transmission probability from unaware human to mosquito
é Disease-induced death rate for human

[ Rate of hospitalized and/or notified for human

€ Recovery rate of the hospitalized and/or notified human
14 Natural recovery rate of the human population

T Proportion of individuals who are naturally aware

& Change rate from Sy, to Sy,

https://doi.org/10.1371/journal.pone.0322702.t001
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Fig 1. Transmission diagram of dengue.

https://doi.org/10.1371/journal.pone.0322702.g001
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ds bB
7:1 = :umNm - %Smlh - ,Mmsm,
dl,, bBn
- = 7Sml - mIm’
dt N, hoH
dshu bﬁhu
T _(1-T) Ay - Snaln = (n + &) Shus
dt ( ) An N, h (tn + &) Sp
dshu bﬁhu
— =TAR+ESy, - Stalm — MuShas 1
i n+ESh N, " HnSh (n
aly,  bBp, bBha
— = Sl + Shalm — +y+0)I,
at N, h N, h (p+y+@) I
dp
Th:qolh—(,uh+s+5)Ph,
t
& =yl, +€P R
dt =Y1n h — MhEh-

The total mosquito populations (N,,) and human populations (N},) respectively can be
expressed as Ny, = Sy, +1,, and Ny, = Sy, +Spa+1+ P+ Ry,. The model Eq (1) subject to the initial
conditions by S,, (0), Sy, (0), Sy (0) >0 and I, (0), I, (0), Py, (0), Ry, (0) > 0, with the solu-
tions remain non-negative for all time >0 and defined in closed set Q (positively invariant)
given as

Q=Q,UQ,cR? xR, (2)
with

Q= {(Sm (t),1, (1)) €R2 :N,, = K| Kis constant from S,,, (0) + I, (O)} ,

e {(Sh” (£):Sna (), 11 (1), Py (1), Ry (1)) € RT : Ny < 2:}

Next, we provide the positivity of solving the system Eq (1) according to the following theo-
rem.

Theorem 1. Let S, (0), I, (0), Spy, (0), Spa (0), I (0), Py, (0), and Ry, (0) be the initial condi-
tions of the system. If S, (0) >0, I, (0) > 0, Sy, (0) 20, Sy, (0) 20, I, (0) >0, P, (0) >0, and
Ry, (0) 2 0, then all solutions are nonnegative for every t > 0.

Proof: 1. Carry out the first equation of the system Eq (1) as follows:

dsr:it(t) = U Ny — N?f(’;) Sm (£) In (£) = pmSn (2) -

Letn (t) = b%I(ht()t), 50 it is obtained as follows:

d (e#mt+fo‘n(s) dsg (t))
dt

= Ny Ja 7 3)
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Then the homogeneous solution is obtained

d (eumt+fo'n(s) dsg (t))

dt
= S, (£) =k (1) eFnt S & (4)
Thus, let’s assume that the solution is non-homogeneous, substituted Eq (4) into Eq
(3) we get
dk () ‘
_ mNm ;,{mtJrfo n(s) ds
drHrime

t w

— k(f) = f LN+ Lo G dx gy o g 5)
0

Substituted Eq (5) into Eq (4) with the initial condition S,,(0) at ¢ = 0, we get
Sm (t) _ ft#mNmeMmW+fown(x) dxdw X e—umt,fofn(s) ds + Sm (0) efumt,fofn(s) ds‘
0

So S,,(t) is nonnegative for ¢ > 0. Then using the same steps, we can prove the Sy, (t)
and Sy, (t) is also nonnegative for ¢ > 0.
2. Take the second equation of the system Eq (1) as follows:

= dlrfit(t) > —Umlm (t)

with the initial condition I,,(0) at t = 0 we get
Ly (t) > 1, (0) e #*

So I, (t) is nonnegative for t > 0. Then using the same steps, we can prove the I;, (),
Py, (t), and Ry, (¢) is also nonnegative for t > 0.

3 Parameter estimation

In this section, the parameter estimation will be carried out on the model Eq (1). We obtained
some of the parameter values from literature and others were estimated using the least-
squares method. The data used is the cumulative data of dengue fever cases every month in
January 2018 - December 2020 [6]. Then the average of human life expectancy in East Java
from 2018 to 2020 is 71.15 years [29] with the average of total population in East Java from
2018 to 2020 is 39,955,059 people [30] so the calculation of parameters u;, and Ay, as follows:

1 1 0.0140548138 107
=— = = =1.172 X ,
Life Expectancy 71,15 year month

Hn
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population population

=46,796

Ay = pp X Total Population = 561, 560
year month

The remaining of the parameters in model Eq (1) is estimated with fulfill the condition
Phu > Pra and the goal is to minimize the objective function,

,.
i
. 2
min E (P, - Data;)”,
T’b)ﬁhwﬁhmﬁm’“m’g) Cp,yf,a i=0

where t; is the end time of the cumulative dengue fever cases Data; (i =0,1,2,..., tf) and the
cumulative numerical solutions of notified or hospitalized infected humans from model Py,
(i =0,1,2,..., tf). Next, we set the initial population is

(Simo3 Imo Shugs Shags Ings Phos Riy ) =
(158, 087,600; 300; 26,347,933; 13,173,967; 2000; 1106; 100) .

Thus, the initial parameters value for estimation is

(A3 T03 D03 Bhugs Bhags Bmgs Mmos 03 Pos Y03 €05 80) =
(0.4; 0.6; 0.7; 0.6; 0.7; 9; 0.5; 0.07; 0.04; 0.06; 0.005) s

with lower bound and upper bound parameters value respectively is

(107%107% 107%107% 107" 1;107%107'% 107'%107% 107") and
(1; 1, 1; 1,1, 30; 1; 1; 15 15 1).
The result of estimation and parameter values are summarized in Fig 2 and Table 2.

x 10

w
w [&)]
T T

N
(6]
T

—_
)]
T

Cumulative Population of
Notified or Hospitalized Humans
-t n

O
051 0© o RealDataP, .
Estimation Result Data F’h
0 1 1 1 1 1 1
0 5 10 15 20 25 30 35

Time (Month)

Fig 2. Comparison of the real data and estimation result of Pj,.

https://doi.org/10.1371/journal.pone.0322702.g002
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Table 2. Fitted and estimated values of the parameters.

Parameters Value Source Parameters Value Source
Mm 8.4277 Fitted ) 0.0106 Fitted
Ap 46796 Estimated ) 0.0702 Fitted
Mn 1.172 Estimated € 0.0655 Fitted
b 0.6443 Fitted 14 0.0614 Fitted
Bm 0.7445 Fitted T 0.5562 Fitted
Bha 0.4828 Fitted 3 0.2315 Fitted
Bhu 0.9961 Fitted

https://doi.org/10.1371/journal.pone.0322702.t002

Looking at Fig 2, it is apparent that the real data of the number of people who were hospi-
talized due to dengue fever with the calculation results had the same tendency.

4 Stability analysis

Equilibrium state is a state when the change in the population of each model variable over
time is zero. Based on this statement, the mathematical model of dengue fever transmission
satisfies a state of equilibrium when

dS, _dly _dSw _dSw _dl, _dP, _dRy _ ©
dt  dt  dt dt dt dt  dr

From Eq (6), we obtained two equilibrium points, namely disease-free and endemic equi-
librium points. The disease-free equilibrium is a condition when there is no spread of disease
(I, = I, = P, = 0). While the endemic equilibrium point is the condition when the disease
spreads (I, # 0, I # 0, P, # 0). The disease-free equilibrium of the dengue spread model is
provided by

1-T)A, A +
Ey= (S0 By St Sho I, P, Rz):(Nm, o, LoD Be Mulzi 2) 4 o).

M+ € ’ Mn (i + &) ’

Next, we determined the basic reproduction number (Ry). Using the Next Generation
Matrix method [31], we have the the basic reproduction number as follow

(7)

R :\} 2Ny Bonptn (Bhu (1 =T) ptn + Bra (Tin + §))
° tnsn (i + &) (un +7 + @) '

4.1 The local stability of the disease-free equilibrium

The local stability of the the disease-free equilibrium (Ey) is yielded by substituting the E, into
the Jacobian matrix as follows:

BB Nom

o 0 0 o -Hfus g g
0 . 0 o (‘s o g
0 _ bﬁh;(hl;g)#h —m 0 0 0 0

]Eo = 0 _ bﬁha,i:fg"'g) é‘ —U 0 0 0 N

0 bﬁhu(l’f)ﬂ#h:f?hu(fﬂh*f) 0 0 —m, 0 0
0 0 0 ® -m3 0
0 0 0 0 y -
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where

mi=up+&  my=pp+y+@, my=(u+e+d).

From the matrix Jg,, we will look for the characteristic equation with det (A -Jg,) =0, so
we get:

A+ ) (A + ) A+ pp+e+8) A+ + &) (A2 +Aay +ay) =0 (8)

where

Q1= + U+ Y + P,
= W (n +7 + @) [1- R].

From Eq (8), we obtain the eigenvalues —y, —tm, —(n +€+68), -y + &) are obviously neg-
ative, while the remaining two eigenvalues are the roots of the following equation:

/12 + /1a1 +a, =0. (9)

Using Routh-Hurwitz criterion, the characteristic Eq (9) will have roots with real parts are
negative if and only if a;, a, > 0. From the description obtained:

1. Itis clear that a; > 0 because all parameters are positive.
2. The coefficient a, >0 < R3 <1< Ry < 1.

Hence, all roots of Eq (9) are negative real parts if Ry < 1. Therefore, it is proved that the
disease-free equilibrium (Ey) will be locally asymptotically stable if Ry < 1 and unstable if Ry >
1. The foregoing discussion could be summarized in the following theorem.

Theorem 2. The the disease-free equilibrium (Ey) of the system Eq (1) is locally asymptotically
stable in region of interest Q2 if Ry < 1 and unstable if Ry > 1.

4.2 The global stability of the disease-free equilibrium

The global stability of the disease-free equilibrium is examined using the method described by
Castillo-Chavez et al. in [32]. Let X = (S, Shu> Shas Rh)T €R*and Z = (I, I, Ph)T € R?and
the system Eq (1) can be rewrite as follows:

dx

ZoF(X,Z 1
5 ~F(%2) (10)
‘% = G(X,Z),G(X,0) =0,

where Ej = (X*,0) represents the disease-free equilibrium of the system.
Based [32], the fixed point Ej = (X*,0) is globally asymptotically stable provided that Ry <
1 and the two conditions bellow are fulfilled

(H1) For % =F(X, 0): X' is globally asymptotically stable,
(H2) G(X,Z) =AZ- G (X,Z) >0 for (X,Z) €Q,
where A = D;G (X*,0) is the M-matrix (the off diagonal elements of A are non-negative).
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From the system Eq (1), we can get form of Eq (10) as follows:

,umNm - %Smlh - Iumsm
O—T)Ah—%T&JM—U%+§)&u
A+ §Sh - %Shalm = MnSha

YIn + &Py — unRy

F(X,Z) =

>

b]gimsmlh _:umIm
G(X,2)=| Y, 1, + Byl — (n +y + ) Iy
ol - (up +e+6) Py

Furthermore
M S, 0
A=| bBm g0 bBha 0 0
N0 T Ne Vha (Hp+y + @) >
0 P ~(un +€+9)

0 SmNY
bt (1- )

. _ SN ShaNp
G (X7Z) b,BhuIm (1 - I\;lhsgh) + b;BhIZIm (1 - I\;lhsgh) ’
0

MmN = UmSm
(1-7) An = (n +§) Shu
Ay + EShy — UnSha
~MnRy,

F(X,0) =

Solving % =F(X,0), we obtain

Ny + (S (0) = N,y ) e7Hm!t

Sm (t
m ( ) (1-T)Ay S DAL ()t
S (£) g (S (0) - gy ) e -
Sha (t) - TAp+ESpy + (S (()) - M) e Mt
Ry (t i " i
() Ry (0) eH!

Hence, from Eq (11), when Z = 0, we obtain lim;_,« Sy, (£) =Ny = 8%, limy e S (£) =

((ll;g?)’l =80 limyeo Spa (£) = % =S) ,and lim/, Ry () =0=R) ensuring the global
A-D)Ay An(tpn+§)

asymptotic stability of the equilibrium point X* = (Nm, WD) (B 0). Hence H1 is
satisfied.
Next, it is clear that S,, < N,,, = S%, and by solving the third and fourth equations on model

Eq (1), we get lim;_, 0 Spy, (£) < ((:;2?)’1 =8) and limy, Sy, () < % =§) such that

S < 80,5 Shu < SY),, and S, < S . However, to have G; (X, Z) > 0 and G, (X, Z) > 0, some con-
ditions are required. For example, we could let the total human population be at equilib-
rium level (Nh = % = Ng) and this condition will be achieved when we assume to ignore the

. . . SmN? SpuND SpalN?
disease-induced death rate. This ensures that 1 — 222 >0, 1 — 27k >0, and 1 - 2232 > 0 such
N, S, NS0 NS

that H2 is satisfied.
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Therefore, because two conditions are fulfilled so the disease-free equilibrium point is
globally asymptotically stable if we assume to ignore the disease-induced death rate. The
foregoing discussion could be summarized in the following theorem.

Theorem 3. Suppose that in system Eq (1) the disease-induced death rate is ignored (6 = 0). If
Ry < 1, then the disease-free equilibrium point is globally asymptotically stable.

4.3 Endemic equilibrium

The endemic equilibrium of the system Eq (1) can be determined by using the conditions of
the force infection (%), with

uIm aIm
ﬁh Khll = hﬁh >

_ b:gmlh
N, Ny,

m=UN, (12)

hu:b

The endemic equilibrium is obtained as follows:

E* = (o Lo St Sha> Ti> Pi> Ry)

where
S;’ = MmNm 5
Ky + Mm
* K* *
L, = M—ZSm,
* (1 B T) Ah
M g+ €
S* ‘L'Ah + §S;u
ha= " _x .,
¢ Kha + luh
o K KhS
g Hpty+@
pr = % .
Up+e+d
. yI, +eP;,
W= -
Hh

In this case, we ignore the disease-induced death rate (6§ = 0) to show the continuation of
Theorem 3. We note that the disease-free equilibrium is globally asymptotically stable, which
means that the existence of backward bifurcation will not occur when the disease-induced
death rate is zero. Furthermore, when & = 0, we obtain N; = % and the force of infection at
equilibrium conditions as follows:

* bﬁhu/"mNmK;
hu N} tm (K;l“'/"m)’
- bBhafmNmXky,
"Ny o (05 + o)

and x;, is the roots of the following equation:

*

2
xx,” +yx, +z=0,

PLOS One | https://doi.org/10.1371/journal.pone.0322702 May 22, 2025 11/ 31



https://doi.org/10.1371/journal.pone.0322702

PLOS One Modeling the Dynamics of Dengue Transmission with Awareness and Optimal Control Analysis

with

x= N (Un+7+®) (bBnattmNom + Nis nttsn) (0B niuttnNo + Nty (i + €)),
¥ = b (DBrNoN; bt (7 +9) + bBraNuN; 18, (st + €) (uaty+9) ) [1 - R
N3 bt (b + &) (it y+9) [2- R
2= N s (i + ) (ity+9) [1- B3],
with R, = b BunBruBhaNm i

X At (Y +9) (B +Bra (n+§)) *
Furthermore, using algebraic calculation, the relationship between RZ and R, is given by

_ ONuBoptn (B (1=7) 4+ Bia (ptn + §) (pn + §) + Buna (1-7) p)

R} - R,
Anpin (pnty+9) (i + &) (Bruptn + Bra (n +£))

Because all the parameters are positive and 0 < 7 < 1, so it is clear that R} - R, > 0 < R, < Rj.
Suppose z> 0« R2 <1< Ry < 1. We have R, <R3, 50 R, <R3 < 1 & R, < L. It is clear that
1-R,>0and 2 - R2 > 0. Thus, when z>0, then y>0 cause the model does not has two endemic
equilibrium points in Q. Hence, the backward bifurcation does not occur in the model when
we assume to ignore the disease-induced death rate.

Therefore, we obtained the following results:

Theorem 4. Suppose that in system Eq (1) the disease-induced death rate is ignored (6 = 0).
Then the system Eq (1) has:

1. A unique endemic equilibrium that exist in Q if z<0 (i.e. Ry > 1).

2. A unique endemic equilibrium that exist in Q if y<0 and either z=0 (i.e. Ry =1) or y* -
4xz=0.

3. No endemic equilibrium otherwise.

4.4 The global stability of endemic equilibrium
Suppose

Q={MeQ :I,=1,=P, =R, =0},

with M = (S, (£) 5 L (), Snu (£) 5 Sna (), I () , Py (¢), Ry, (t)) and Qy is defined as the sta-
ble manifold of non-endemic equilibrium (E). The global stability of endemic equilibrium is
provided in the following theorem.

Theorem 5. The endemic equilibrium (E*) is globaly asymptotically stable in the interior of
region Q\Qy if Ry > 1, supposing that, in system Eq (1), the disease-induced death rate is ignored
(6=0).

Proof: We use Lyapunov function £ : Q\Q; — R defined as

c :% [(Sw=S5)+ (In-I)T

1 * * * * *
+5 [(Shu—shu)+(Sha—sha)+(Ih—Ih)+(Ph—Ph)+(Rh—Rh)]2-
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The time derivative of L is

ar dN,,
L[St I) = (S5, + 1 )] Nm 13
o (S +Im) = (Sp + 1] o (13)
* * * * * th
+[(Shu+8ha+Ih+Ph+Rh)_(Shu+Sha+Ih+Ph+Rh):|W

* de * th
=(Nm-N,,) —— +(Ni,-N,,)) ——
(- Np) o v, - ) 2N
=(Nyu-N,)0+ (N, -N;;) (Ay - unNy - 8Py)
= (Ni = N;.) (A = Ny = 8Py) -

In this case, we analyze the global stability by assuming the disease-induced death rate is
ignored (8 = 0). This approach aims to demonstrate that, under these conditions, global sta-
bility will be guaranteed, and no backward bifurcation will occur, consistent with the endemic
equilibrium point previously obtained. Therefore, we have N} = %, and Eq (13) is simplified
to:

ac Ay,
— =N, - — | (Ay - upN,
i ( h ,uh)( h— Mh h)

1
= — (An- )’
Mn

Therefore, % <0 due to all the parameters are positive, with % =0ifonly if Sp, = S;,,,
Sha = Sp,,» In = I, Py, = Py, and Ry, = R;;. The endemic equilibrium point E exists if only if Ry >
1 and the singleton set {E* } is the biggest compact invariant set in {(Sy, Lu> Shu> Shas In> P> Ri)
e :% = 0}. According to LaSalle’s invariance principle [33], the endemic equilibrium E
globally asymptotically stable in the interior of region Q\Q if Ro> 1. O

5 Sensitivity analysis parameter

Sensitivity analysis is used to establish the most influential parameter in the model [34]. In
this case, a sensitivity index will be determined for each of the eleven parameters involved in
the basic reproduction number (Ry) of the mathematical model of the dengue fever transmis-
sion. The parameter sensitivity index (e, ) is formulated as follows:

B a R() P
%= ( 6p ) (Ro )
where p is the parameter to be analyzed.

Using the parameter values in Table 2, the sensitivity index of the parameters model to Ry
are presented in Table 3.

A positive sensitivity index interprets that the greater of the parameter values will cause
an increase in the Ry. Conversely, a negative sensitivity index means that the greater of the
parameter values will cause a decrease in the R,. Based on Table 3, the most influential and
controllable parameters are parameters b, 8,,, Uy, and Bp,. Next, we will simulation the sen-
sitivity of parameters b, 8,,, Um, and B, to Ry contour plots.
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Table 3. Sensitivity index of parameters.

Parameter (p) Sensitivity index Parameter (p) Sensitivity index
U -0.5 [ 0.0023

Ay, 05 ® ~0.2644

U 0.4968 y -0.2312

b 1 T -0.0015

B 05 £ -0.0012

Bra 0.4977

https://doi.org/10.1371/journal.pone.0322702.t003

From Figs 3 and 4, it can be seen that b, 8,,,, and 8y, has a positive relation to Ry, however
HUm has negative relation to Ry, this corresponds to the sign of index sensitivity in Table 3. Fur-
thermore, to ensure whether the parameters b, 8,,, U, and By, really has an effect, a simula-
tion of changes in parameter values will be carried out on the population Ij with the results as
follows:

From Figs 5-7, it can be seen that the greater value of b, 8,,, and 8, causes the infected
human population to be greater. While in Fig 8, the smallest value of u,, cause the infected
human population to be greater. These results are inline with the sensitivity index values in
Table 3.

6 Optimal control problem

In this section, we perform an optimal control approach to examine the effects of control on
dengue fever transmission dynamics. We extend model Eq (1) with three optimal control
variables as follows: vector control (u; ), awareness program (4, ), and awareness prevention
(u3) as follows:

A 0.2 0.3 0.4 0.5 0.6 0.7 0.8
b

Fig 3. Contour plot of Ry due to change in b - 3,, values.

https://doi.org/10.1371/journal.pone.0322702.9003
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Fig 4. Contour plot of Ry due to change in (3, - 1, values.
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Fig 5. Graph of the effect of parameter b to population ;.
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ds b

T:'n = UmNpm - %}:ﬂsth - ,umSm - ouSp,

dl,, b

dSh, b

Th =(1-7) A~ B Stulim = (Mn + &) Shu = 142 Shuss
t Ny

PLOS One | https://doi.org/10.1371/journal.pone.0322702 May 22, 2025



https://doi.org/10.1371/journal.pone.0322702.g004
https://doi.org/10.1371/journal.pone.0322702.g005
https://doi.org/10.1371/journal.pone.0322702

PLOS One

Modeling the Dynamics of Dengue Transmission with Awareness and Optimal Control Analysis

2500 : .
——B_=0.07445
———p_=0.7445
2 2000 —— B, =09445 |
©
S
=]
T
8 1500f |
O
Q
IS
©
c 1000 -
S
=
2
Q.
O
& 500f |
0
0 50 100

Time (Month)

Fig 6. Graph of the effect of parameter (3,, to population I;,.

150

https://doi.org/10.1371/journal.pone.0322702.g006

2500 .
—— B, =0.04828

B, =0.4828

2000 —— B, =0.8828

1500

1000

Population of Infected Humans

[9)]

o

o
T

0 50 100
Time (Month)

Fig 7. Graph of the effect of parameter (3, to population I;,.

150

https://doi.org/10.1371/journal.pone.0322702.g007

ds b
ha _ TAL+ gshu - (1 - u3) ﬁshalm = MnSha + U2 Shu> (14)
dt Ny
d, b b
7: = —f’l;lu Shulm + (1 - u3) £:a Shalm - (luh tr+ §0) I,
dP,
7" =l - (up +€+68) Py,
t
16/ 31
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dRy,
— =y, + Py, — uyRy,
dat Vi h — MhKp

with o and ¢ respectively is rate of implementation vector control and awareness program
with u; € [0,1], i = 1,2, 3. The purpose of the optimal control problem is to set the optimal
values that minimize the following objective function:

fy 1 1 1
ji[(&M+Mh+&ﬂ+ihﬁ+£&@+5&ﬁyh (15)
0

subject to system Eq (16), with A}, Ay, As, A4, As, and Ag are balancing coefficient for the con-
trols and ¢ is the final time. We employ a quadratic form in the control variables to exhibit the
nonlinear costs of implementing the control strategies. Therefore, the quadratic form of the
cost has been commonly utilized in various literature [35-37]. To solve this optimal control
problem, we utilize Pontryagin Maximum Principle [38]. First, we establish the Hamiltonian
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function as follows:
1 , 1 , 1 2
H= AlIm + Ath + A3Ph + £A4M1 + 5A5u2 + £A6u3
ﬁm
A | Ny = —SiIn = S — 011 Sy
+ A, S mly — ,UmIm —O'Llllm)

'Bhu ShuI = (Hn+ &) Sphu - ¢u23hu)

+ g [TAL + ESp - (1- u3) bBha

(
(5

+ 3 ((1 T)Ap -
(

Sha m = MhSha + ¢M25hu)
ﬁha

bBhu
+/15( By Shulm +(1—u3) ShaI ~(up+y+o)I )

+ g (golh - (up+e+8)Py) +/17 (yIn + €Py - wnRy) ,

with A;, (i=1,2,3,...,6) are adjoint/co-state variables associated with each state variables. The
co-state variables satisfies the following equations

di OH bl
j:_FZ(/h—/‘lz) ‘i]hh+/11(,um+ou1),
di oOH bBhuShu 1-u3) bBraSha
7: A = Ay + (A3 -15) ﬁhh” (/14—/15)(3]2]}1/3“14—/12(/xm+0'u1),
das oH bﬁms In bBnul N — bBnuShulm
ars _ _ = (-1 + (A3 - As
G e, M) T (Ao ds) N
1 -u3) bBhaSnalm
+(/15_/14)( 3>th halm Ay - Aa) (& + duz) + Aspu,
h
d/14 oH bﬁms I bﬁhushulm
= =(l-2 +(As-1
dt asha(2 ) N2 Fs=h) =G — N2
1- bBhalnNy, = bBralnSha
+(/14_/15)( u3) (bBn Nzh B h)+/14luh’
h
d/‘LS _ aH _ b,gmsmNh _b,smsmlh bﬁhushulm
1-u3) bBraSnaln
+(/15_A4)( 3)th haim (s - A6) @ + (As = A7) ¥ + Aspips
h
d/lﬁ aH bﬁms Ih bﬁhushulm
dt P, A+ (Aa-h) N2 +(As-4) N2
1 -u3) bBhaSnalm
+(,15-/14)( 3)N2‘6h haim (A -27) e+ Ag (p + ),
h
dl;, M bBun Sl bBhuShulm
LA I | + (A = Ay) um
ar ~om, M) N2 +(ds-4a) N2
1 -u3) bBraSnal
+ (/15 _/14) ( 3)N2;8h h +/17,uh,
h

with transversality boundary conditions 4; (tf) =0,i=1,2,..,7
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Next, taking the derivative of Hamiltonian function to control variables u;, u,, and u3, we

obtain

aﬂ :A41/l1 +Al (—US,,,) +/12 (—O'Im) ,

6u1

oH

PR = Asuy + A3 (-¢Snu) + A4 ($Shu) » (16)
2

OH bBha ) ( bBna )

—=A | —Snaln | + A5 | - Shalm |-

Bus U3 + 4(Nh h +As N, h

Solving for uy, u,, and u; from Eq (16) when 377{] =0, 2—3'2[ =0,and g—z =0, we obtain

g (/118m +/12[m)
ul = —’

Ay
_ ¢Shu (’13 - /14)
uz - 7’
As
Un = bﬁhashalm (/15 - /LL)
’ NjAq ’

Taking the bounds of each control variables, we find the characterization of the optimal
control as presented by

uf =min(1,maX (O)OM) ) ,

Ay
’ :min(l,max(o,qwm) ) ,
As
u3 =min (l,max (0, bBhaShalm (A5 ‘14)) ) '
N, As

7 Optimal control simulation

In this section, we discuss the numerical simulation of the optimal control problem using the
forward-backward iterative method [39]. The parameter values used refer to Table 2 with the
initial values are as follows:

S (0) = 158,087,600, I, (0) =300, Sy, (0) = 26,347,933,

Spa (0) =13,173,967, I, (0) = 2,000, P, (0) =1,106, R, (0) = 100.

Next, we employ the values of weight constants as A; = A, = A3 =1, A; =20, A5 =15, and Ag =
10. The parameter values of o and ¢ are assumed to be o = 0.7 and ¢ = 0.6. We consider seven
control strategies, which is three for single intervention, three for double intervention, and
one for full intervention.

1. Single intervention
In single intervention, there are three control strategies, which is Strategy A (imple-
mentation of #; only, while u, = u3 = 0), Strategy B (implementation of u, only, while
uy = u3 = 0), and Strategy C (implementation of u3 only, while u; = u, = 0). The numer-
ical results of the single intervention is illustrated in Fig 9 for compartments of I,,, I,,
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Fig 9. Simulation for optimal control for single intervention.
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and Py. Thus, the profile of the optimal control is shown in Fig 10. The simulation yield

a lower populations of the infected mosquitoes (I,,,), the infected humans (I;,) as well

as the hospitalized and/or notified of infection (P;,) when the single control measure

is implemented compare to no control. Form Fig 10, it is apparent that the single con-

trol strategy for each of u;, u,, and u3 should be carried out for a maximum of almost 50

months before it reduces to zero at the end of the period.
2. Double intervention

In double intervention, we adopt three control strategies, namely Strategy D: the
implementation of controls u; and u, (43 = 0), Strategy E: the implementation of con-
trols u; and u3 (u, = 0), and Strategy F: the implementation of controls u, and u;
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(41 =0). The simulation results in Fig 11 show that the double control intervention
reduces significantly the number of the infected mosquitoes (), the infected humans

(I,) as well as the hospitalized and/or notified of infection (P,) than the ones with-

out the controls. The control profile of the double intervention is set out in Fig 12. For
Strategy D, both controls u; and u, are given maximum until the end of the observa-
tion period in 50th month. Next, for Strategy E, the control 1, is given 100% for 25
months and then gradually reduced to zero at the end of the observation period, while
control u3 is applied 100% for almost 50 months before finally being reduced to zero
at the end of the observation period. Then, for Strategy F, the control u, is initially set
100% for about 8 months and then gradually reduced to zero in the 50th month, while
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Fig 11. Simulation for optimal control for double intervention.

https://doi.org/10.1371/journal.pone.0322702.g011

the control u3 is applied 100% for almost 48 months before finally going to zero at the
end of the period.
3. Full intervention
In full intervention, we apply Strategy G, which is the implementation of controls
uy, Uz, and u; simultaneously. Fig 13 presents the implementation of full intervention
for infected populations. As can be seen from Fig 13, Strategy G yields more significant
reduction of the number of the infected mosquitoes (I,,), the infected humans (I,) as
well as the hospitalized and/or notified of infection (P;,) than without the application
of controls. The profiles of the three control variables simultaneously are illustrated in
Fig 14. As shown in Fig 14, the control variable u; is given a maximum for 16 months
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Fig 12. Control profiles for double intervention.
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and reduced slowly to zero at the end of the period. Meanwhile, the control u; is ini-
tially set at a maximum during 8 months then decreases gradually to zero at the end of
the period. Next, the control u3 is supplied full effort during 46 months before decreases
to zero by the conclusion of the period.

8 Cost effectiveness analysis

In this study, we perform a cost-effectiveness analysis to decide the most cost-effective
strategy for applying the optimal control. To measure the disparity between the costs and
health outcomes of the seven strategies, we employ the incremental cost effectiveness ratio
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Fig 13. Simulation for optimal control for full intervention.

https://doi.org/10.1371/journal.pone.0322702.q013

(ICER) [40]. To avoid wasting limited resources, ICER is performed to compare two interven-
tion strategies i and j with the formula as follows

ICER < Difference in total cost by strategies i and j

Difference in the total number of averted infection by strategies i and j

The total number of averted infection is computed to be difference between the total num-
ber of infected and notified individuals without and with controls with the formula as follows

t
Total number of averted infection = [ ! ((In() =L (1)) + (Py () - P} (1)) dt,
0

PLOS One | https://doi.org/10.1371/journal.pone.0322702 May 22, 2025 24/ 31



https://doi.org/10.1371/journal.pone.0322702.g013
https://doi.org/10.1371/journal.pone.0322702

PLOS One Modeling the Dynamics of Dengue Transmission with Awareness and Optimal Control Analysis

09

0.8

0.7 F

06F

05F

0.4F

Control Profiles

03F

0.2

0.1F

D 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

Time (Month)
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where the notation with subscript ~ is used to show the optimal solutions associated with the
appropriate strategy. Meanwhile, the total cost generated by a control strategy refers to Eq
(15). Note that for the ICER computation, at each step, the strategy with the highest ICER
value is discarded or eliminated. When comparing 2 or more competing intervention strate-
gies in a stepwise manner, one intervention is compared with the next-less-effective alterna-
tive in increasing order of total infected averted [40,41]. First, we arranged all of the strat-
egy from smallest to highest number of total averted infection. Next, the ICER indexes is
computed as follows

3.7450 X 107 - 0
ICER(B)="—"""———— =202
1.8548 X 107 - 0

1.2716 X 107 - 3.7450 x 107

ICER (A) = . - =-1.37
3.6633 X 107 - 1.8548 X 10
7.7247 X 10° - 1.2716 X 107

ICER (D) = . - =-1.28
4.0543 x 107 - 3.6633 X 10
1.2363 X 10° - 7.7247 x 10°

ICER (C) = -1.28

4.6493 X 107 - 4.0543 x 107
5 5
ICER (E) = 411.(6)451(1; X 107 -1.2363 X 107 139
) X 107 - 4.6493 X 10
6.5521 X 10* - 1.0413 X 10°
4.6540 X 107 - 4.6507 x 107
6.1894 X 10* - 6.5521 X 10* L8]

4.6542 X 107 - 4.6540 X 107

ICER (F) =

ICER (G) =

Comparing Strategy B and Strategy A, the application of Strategy A is cost saving over
Strategy B. This exhibit that the Strategy B is less effectiveness and more costly than the other
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strategy. Hence, Strategy B is discarded. Furthermore, we recalculation the index of ICER as
follows

1.2716 X 107 - 0
ICER(A)=-—"—"—"—"—— =035
3.6633 %107 -0
7.7247 x 10° - 1.2716 X 107
ICER (D) = - - =-1.28
4.0543 X 107 - 3.6633 X 10

1.2363 X 10° - 7.7247 X 10°

 4.6493 X 107 - 4.0543 X 107
1.0413 X 10° - 1.2363 X 10°

46507 X 107 — 4.6493 X 107

6.5521 x 10* - 1.0413 x 10°

ICER (F) = - ~=-1.17
4.6540 X 107 - 4.6507 X 10
6.1894 x 10* - 6.5521 x 10*

ICER (G) = - - =-1.81
4.6542 X 107 - 4.6540 X 10

ICER (C) --1.28

ICER (E) = -1.39

Comparing Strategy A and Strategy D, the application of Strategy D is cost saving over
Strategy A. This reveal the Strategy A is less effectiveness and more costly than the other
strategy. Hence, Strategy A is wiped. Next, we recalculation the index of ICER as follows

7.7247 X 10° - 0
ICER(D) = -"—"————=0.19
4.0543x 107 -0
1.2363x10° - 7.7247 X 10° _
4.6493 X 107 - 4.0543 % 107
1.0413 X 10° - 1.2363 X 10°
ICER (E) = - ~=-1.39
4.6507 X 107 - 4.6493 X 10
6.5521 X 10* - 1.0413 X 10° L1
4.6540 X 107 - 4.6507 X 107
6.1894 x 10* - 6.5521 x 10*

ICER(G) = =-1.81
(G 4.6542 X 107 - 4.6540 X 107

ICER (C)

ICER (F) =

Comparing Strategy D and strategy C, the utilization of strategy C is cost saving over strat-
egy D. This mean the strategy D is less effectiveness and more costly than the other strategy.
Hence, strategy D is eliminated. Furthermore, we recalculation the index of ICER as follows

1.2363%10° - 0
ICER (C) = -—————— =0.003
4.6493x10” -0

1.0413 x 10° - 1.2363 X 10°

ICER (E) = - - =-1.39
4.6507 X 107 - 4.6493 X 10
6.5521 X 10* - 1.0413 x 10°

ICER (F) = - -=-1.17
4.6540 X 107 - 4.6507 X 10
6.1894 x 10* - 6.5521 x 10*

ICER(G) = =-1.81

4.6542 X 107 - 4.6540 X 107

Comparing Strategy C and Strategy E, the application of Strategy E is cost saving over
Strategy C. This show that the Strategy C is less effectiveness and more costly than the other
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strategy. Hence, Strategy C is removed. Next, we recalculation the index of ICER as follows

5
ICER () = 2B X120 40
4.6507 %107 -0
6.5521 X 10" - 1.0413 X 10° _
4.6540 X 107 - 4.6507 X 107
6.1894 X 10* - 6.5521 X 10* Ll

4.6542 X 107 - 4.6540 X 107

ICER (F) =

ICER (G) =

Comparing Strategy E and Strategy F, the utilization of Strategy F is cost saving over Strat-
egy E. This indicate that the Strategy E is less effectiveness and more costly than the other
strategy. Hence, Strategy E is removed. Next, we recalculation the index of ICER as follows

6.5521 x10* -0
ICER (F) = ;7 =0.001
4.6540 X 107 - 0

6.1894 X 10* - 6.5521 X 10* Ll
4.6542 X 107 - 4.6540 x 107 ’

ICER (G) =

When comparing Strategy F and Strategy G, the use of Strategy G is a cost savings over
Strategy E This means that Strategy F is less effective and more costly than the other strat-
egy. Thus, Strategy F is eliminated. Our result suggests that Strategy G (full intervention) is

the most cost-effective intervention associated with ICER. We present a summary of the ICER

calculations in Table 4.

9 Conclusion

This article studied the transmission dynamics and optimal control of dengue fever using
a new mathematical model that takes into account both aware and unaware human

Table 4. Comparison of ICER for each intervention strategies.

Strategies Optimal Control Total Averted Total Cost ICER
B uj 1.8548 X 107 3.7450 X 107 2.02
A uy 3.6633 x 107 1.2716 X 107 -1.37
D ut and u} 4.0543 x 107 7.7247 X 10° -1.28
C uy 4.6493 x 107 1.2363 X 10° -1.28
E uf and uj} 4.6507 X 107 1.0413 X 10° -1.39
F uy and u} 4.6540 x 107 6.5521 x 10* -1.17
G uf, uf,and uf 4.6542 X 107 6.1894 x 10 -1.81
Strategies ICER-Recalculated-1 ICER-Recalculated-2 ICER-Recalculated-3 ICER-Recalculated-4
A 0.35 - - -

D -1.28 0.19 - -

C -1.28 -1.28 0.003 -

E -1.39 -1.39 -1.39 0.002
F -1.17 -1.17 -1.17 -1.17
G -1.81 -1.81 -1.81 -1.81
Strategies ICER-Recalculated-5

F 0.001

G -1.81

https://doi.org/10.1371/journal.pone.0322702.t004
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populations. The results of the model analysis show that the stability of the disease-free equi-
librium point is formed when R < 1, and it is further proven that the infection will persist
in the population if Ry exceeds 1. This model was successfully applied to monthly data on
dengue cases reported in East Java Province, Indonesia, during 2018-2020. In addition, we
performed a sensitivity analysis to examine the dynamics of the dengue infection thresh-
old and to identify the most sensitive factors that affect the incidence of dengue disease.
The analysis shows that reducing the effective contact rate between susceptible and infected
populations in both human and mosquito populations and increasing awareness programs
are essential for the eradication of dengue. Next, by combining three control variables, a
model with controls was built based on sensitivity analysis. The results of the control simu-
lation demonstrated that each strategy was able to reduce the number of infections. In addi-
tion, a cost analysis of the optimal control problem shows that the combination of vector
control, awareness programs, and awareness prevention is the most economically efficient
approach.

The limitations of our study include the assumption that do not take into account age
structure, no vaccination efforts, multi-strain infections are ignored, and there are no sea-
sonal factors. Future research could focus on refining this model by incorporating additional
factors, such as the implementation of vaccination campaigns and the influence of seasonal
variations, which can significantly impact transmission patterns. Furthermore, it would be
beneficial to explore the spatial dynamics of dengue spread, assess the role of human mobility,
and consider heterogeneous population structures. These investigations could provide a more
comprehensive understanding of dengue dynamics, leading to more effective and sustainable
control strategies. In addition, collaborative efforts with local health agencies could improve
data accuracy and ensure that the findings are translated into practical interventions for the
improvement of public health. Future research can also explore different analytical methods
to solve the model [42-45].
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