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Abstract
Spatial cluster analysis is crucial for understanding localized patterns in geospatial data,
with wide-ranging applications for scientific discovery and decision-making. However, the
dynamic nature of spatial clusters and the diverse range of clustering methods available
can make analysis and interpretation challenging. We introduce ClusterRadar, a web-
based tool designed to streamline this process by uniquely prioritizing longitudinal analy-
sis and multi-method comparison of spatial clusters. It empowers users to easily perform
clustering with multiple methods, directly compare results, and visualize spatiotemporal
patterns through a novel design of linked interactive visualizations. ClusterRadar aims
to maximize utility to a broad user base by supporting various geospatial formats and
executing entirely within the browser to ensure data privacy. ClusterRadar is available at
https://episphere.github.io/ClusterRadar.

Introduction
Space plays a critical role in many real-world phenomena, where the proximity of entities in a
system often effects the strength and nature of interactions [1–3]. This idea is succinctly cap-
tured in Tobler’s first law of geography, which states that “everything is related to everything
else, but near things are more related than distant things” [3,4]. The field of geospatial anal-
ysis offers a powerful set of methods for understanding these relationships [5,6]. Techniques
like spatial clustering, machine learning, spatial statistics, and network analysis allow ana-
lysts to uncover informative relationships within geospatial data [7–9]. The growing availabil-
ity of geospatial data, coupled with an increasingly interconnected world, mean that sophis-
ticated geospatial techniques are increasingly important in driving scientific discovery and
supporting informed decision making [6,8].

One valuable application of spatial analysis is the detection of spatial clusters: group-
ings of neighboring geospatial features which exhibit significant similarity across certain
attributes [8,10]. For example, a spatial cluster might be a collection of neighboring counties
with similar rates of breast cancer. Spatial cluster detection is a widely employed technique
in geospatial analysis, crucial for advancing scientific understanding of complex systems and
tackling practical challenges [8,10,11]. Spatial clustering has been extensively applied across
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criminology [13], and the study of weather events in climatology [14]. Robust spatial cluster
detection methodologies, particularly those founded on statistical rigor, empower analysts to
expand beyond simple visual pattern recognition in maps [15].

The field of spatial cluster analysis continues to evolve, addressing the expanding analytical
requirements of researchers across an increasingly diverse set of disciplines [5,6,16]. There is a
growing need to expand the scope of spatial clustering methods, including the deeper integra-
tion of temporal data, and better support for the comparison of results across multiple meth-
ods. References [6,8,17,18]. This growing gap between the expanding needs of researchers and
the limitations of existing tools highlights the need for novel solutions that can unlock the full
potential of spatial cluster analysis. Tools that prioritize accessibility, flexibility, and the inte-
gration of temporal data are essential to meet the rising demand and foster new discoveries in
this rapidly evolving field. References [16,19].

In this paper, we introduce ClusterRadar, a web-tool designed to meet the growing need
for a user-friendly environment in which to analyze spatial clusters over time and across mul-
tiple methods. ClusterRadar runs fully on the client-side in the user’s browser, avoiding the
need for installation and preserving the privacy of the user’s data. The core feature of the tool
is an interactive dashboard consisting of five panels, each providing a different perspective on
the methodological and temporal aspects of multi-method, spatiotemporal clustering results.
This paper details the methodology, design, and implementation of the tool, emphasizing its
unique focus on multi-method and longitudinal comparisons. By incorporating interactive
visuals, ClusterRadar makes complex spatial clustering analysis accessible to a broader audi-
ence. ClusterRadar is available at https://episphere.github.io/ClusterRadar. To provide con-
text for ClusterRadar’s capabilities, the following section reviews the fundamental concepts of
geospatial data, spatial cluster analysis, spatial autocorrelation, and local indicators of spatial
association (LISAs).

Background
Geospatial data. Geospatial data comprises data points explicitly linked to geographic

locations on the Earth’s surface. These references are typically given as points (representing
precise coordinates), lines (representing paths or routes), or areas (polygonal regions) [20].
Geospatial data can employ various coordinate systems, such as latitude and longitude, to
define spatial locations. Areal data, such as countries or census regions, is highly prevalent
because the often standardized and familiar area definitions facilitate integration across mul-
tiple data sources [21]. While less common, line data (e.g., roads) sometimes holds analyti-
cal value. Point data can often be aggregated into areas, which can simplify analysis, improve
statistical power, or facilitate linkage with other datasets [20].

Spatial cluster analysis. Spatial clusters are defined in a number of ways, depending
on the type of geospatial data and the specific analytical goals being tackled. Broadly, a spa-
tial cluster is a grouping of geographically related features that exhibit a substantial degree
of concentration or similarity [8,10]. There are many different approaches to spatial clus-
tering, including partition clustering, hierarchical clustering, density-based clustering, and
LISA-based clustering [8,10]. LISA-based clustering methods use local indicators of spatial
association (LISAs) to determine whether each location belongs to a spatial cluster [22,23].
They are popular due to their robust statistical foundation, interpretability, and wide-spread
implementation in different analytical environments [8,24].

Spatial autocorrelation. Spatial autocorrelation is a fundamental concept in spatial
analysis describing the extent to which geographically proximate locations exhibit similar
attributes [23,25]. Spatial autocorrelation can be quantified using several different statistics,
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the most prominent being Moran’s I and Geary’s C [26,27]. Both of these statistics indicate
whether or not a dataset exhibits a greater degree of spatial autocorrelation than would be
expected by random chance, but they take different numerical approaches to do so. Spatial
autocorrelation can be positive, meaning that locations which are near each other tend to
exhibit similar attribute values, or negative, meaning that locations which are near each other
tend to exhibit dissimilar attribute values.

Global spatial autocorrelation statistics are only capable of indicating whether or not spa-
tial autocorrelation is present in a dataset but not at which locations it occurs [23]. In reality,
geospatial datasets often exhibit pockets of both positive and negative spatial autocorrelation,
alongside regions which don’t show any substantial spatial autocorrelation, and it can be use-
ful to analyze this heterogeneity. For this purpose, local spatial autocorrelation statistics are
required. Unlike global spatial autocorrelation statistics, local spatial autocorrelation statistics
are a property of each location in the dataset, indicating whether a specific location is similar
to its neighbors (a spatial cluster), or dissimilar to its neighbors (a spatial outlier). The major-
ity of global spatial autocorrelation statistics have local counterparts, such as Local Moran’s
I and Local Geary’s C [23]. Local spatial autocorrelation statistics are one (major) subset of
local indicators of spatial association (LISA), which cover a broader range of local association
relationships [23].

Local indicators of spatial association. A local indicator of spatial association (LISA) is
a statistical measure that quantifies some degree of spatial association between a particular
location and its neighbors within a geospatial dataset [23]. In addition to local spatial auto-
correlation statistics, a prominent example of a LISA is the Getis-Ord Gi/Gi* family of statis-
tics, local indicators which detect whether or not a location belongs to “hot-spot” or “cold-
spot”. Hot-spots are statistically significant clusters of high values, while cold-spots are sta-
tistically significant clusters of low values [28,29]. Unlike Getis-Ord Gi/Gi*, Local Moran’s
I and Local Geary’s C are incapable of directly detecting hot-spots and cold-spots, they can
only detect whether or not a location is significantly similar or dissimilar to its neighbors.
On the other hand, Getis-Ord Gi/Gi* are incapable of detecting spatial outliers. While Local
Moran’s I and Local Geary’s C are not directly capable of detecting hot-spots and cold-spots,
additional analysis is often performed to distinguish hot-spots and cold-spots among areas
exhibiting significant local spatial autocorrelation [23]. All of the aforementioned LISAs
(Local Moran’s I, Local Geary’s C, and Getis-Ord Gi/Gi*) are frequently used for detecting
spatial clusters, though the spatial clusters should be interpreted differently due to the dif-
ferent goals of the methods. For more information on the formulation and interpretation of
these statistics, see Methods.

Related work
Temporal analysis of spatial clusters. Spatiotemporal analysis of clusters offers a power-

ful approach to uncovering hidden patterns and dynamics within complex datasets, offering
insights beyond what purely spatial or temporal approaches can provide [19,30,31]. While
specialized spatiotemporal methods exist for analyzing the evolution of spatial distributions
[32–36], their complexity can limit accessibility and interpretability [33]. A more accessible
approach involves applying established spatial analysis techniques longitudinally, compar-
ing results across different time points [37–41]. However, this powerful form of comparative
spatiotemporal analysis is currently hindered by a critical gap in software tools. Existing tools
require analysts to manually manage and compare results across time—a time-consuming,
error-prone process that limits the potential of this approach. This work directly addresses this
gap, enabling more streamlined and robust spatiotemporal insights.
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Multi-method analysis of spatial clusters. There are many different methods for detect-
ing spatial clusters and they often produce vastly different results, making the choice of
method a crucial and often challenging task in spatial analysis [8,17,17,18,18,23,29,42–44].
Due to differences in results from different LISA-based clustering methods, many compar-
ative works recommend that multiple methods be applied in tandem [17,18,29,44,45]. This
advice is extensively followed in the literature, with many geospatial clustering analyses apply-
ing more than one method [41,46–48]. However, despite the popularity and utility of a multi-
method approach, existing software implementations do not directly support the automatic,
streamlined comparison of different clustering methods. This forces analysts into the time-
consuming process of separately executing and manually synthesizing results, hindering the
wider adoption of multi-method analyses.

Interactive spatial dashboards. Spatial dashboards are a popular environment for ana-
lyzing spatial data, with a growing body of work exploring novel designs, specific spatial ana-
lytical techniques and datasets [49–52], and challenges like color use [53,54], temporal data
integration [55–59], and interactivity [60–62]. The COVID-19 pandemic broadened their use
and appeal [49,55,63]. There is increasing interest in integrating statistical results, especially
for detecting spatial clusters [15,16,64]. While most dashboards focus on single methods or
datasets, this work addresses the need for comparative analysis of multiple clustering methods
and their temporal evolution—a complex problem requiring specialized visualizations.

Spatial clustering software. Several applications and libraries support spatial cluster anal-
ysis. ArcGIS, a commercial software, offers support for Local Moran’s I and Getis-Ord Gi*
[65]. Open-source alternatives exist, such as QGIS [66] (with limited LISA-based clustering
via plug-ins) and CrimeStat [67] (specializing in crime data analysis using methods like Local
Moran’s I and Getis-Ord Gi/Gi*). Programming libraries like PySAL (Python) and spdep (R)
support LISA-based clustering but require coding expertise [68,69]. GeoDa, an open-source
tool dedicated to spatial analysis, offers an interactive interface for the analysis and visualiza-
tion of LISA-based clustering methods, but doesn’t support temporal analysis or the direct
comparison of different methods [70]. SaTScan supports spatiotemporal cluster analysis but
focuses on scan statistic-based methods and doesn’t support LISA-based approaches [71].
While most tools require local installation (some with limited support for different operating
systems), web-based options like GeoDa-Web and its associated JavaScript library (jsgeoda)
are emerging, though currently with limited features [72]. None of these solutions provide
direct, user-friendly support for the longitudinal analysis of spatial clusters or the ability to
easily compare the results of different spatial clustering methods within a single, integrated
environment

Design considerations
We have formulated five key design considerations based primarily on important challenges
and analytical ideals identified in the literature.

• D1: Representation of temporal dynamics of spatial clusters. Spatiotemporal analysis is
rapidly gaining importance across diverse disciplines [6,36,73]. Historically, a major short-
coming in spatial analysis has been neglecting temporal dynamics [74]. However, the grow-
ing availability of user-friendly spatiotemporal software is steadily overcoming this lim-
itation [71]. One valuable approach involves the longitudinal analysis of spatial clusters
over time, which reveals how spatial clusters evolve [39,40,75]. Despite the utility of this
technique, software with dedicated support remains scarce. This highlights the need for
applications that prioritize the clear representation of temporal dynamics within spatial
clusters.
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• D2: Comparison of results frommultiple spatial clustering methods. Spatial clustering
encapsulates a wide variety of approaches, often producing vastly different results [8,45].
There is limited theoretical guidance on how to select an appropriate method [8]. Com-
parative studies of spatial clustering methods often recommend using multiple methods
simultaneously and interpreting the results in conjunction [17,18,29,44,45]—a common
approach across multiple disciplines. This highlights the need for applications which per-
form multiple spatial clustering methods at once and facilitate the comparison of results
across methods.

• D3: Application of varied interactive graphical elements to simplify the analysis of com-
plex results. Representing temporal and multivariate geospatial results can be challenging
to the competing demands of the various visual elements—this is a well-recognized prob-
lem in geospatial visualization [57,59,76,77]. A multi-plot, interactive dashboard can tackle
these challenges by representing different aspects of the data in different visualizations,
drawing on the unique strengths of each to improve overall clarity [77–79]. Interactivity
further eases the complexity of this analysis, revealing details only as they are required, and
helping users stay oriented while exploring the data [78,80]. This highlights the need for
applications which employ multi-faceted, interactive graphics to facilitate the exploration of
complex geospatial results.

• D4: Goal focused and appropriately scoped design to ensure usability for non-
expert users. Powerful geospatial software often presents a steep learning curve for
non-experts because it requires a robust understanding of complex geospatial con-
cepts [16,81]. As geospatial methods becomes increasingly integrated into diverse ana-
lytical pipelines, the need for user-friendly geospatial analytical applications grows.
To make geospatial methods more accessible, a goal-driven approach is required [81].
This approach focuses on the desired analytical outcomes, rather than requiring users
to understand the low-level steps required to achieve them. While feature-rich geospa-
tial software offers versatility, it can overwhelm non-experts with its complexity [82].
This highlights the need for simpler, goal-oriented tools designed for specific analytical
tasks.

• D5: In-browser web implementation to ensure FAIR distribution and privacy preser-
vation.There has been a recent emphasis in science on adherence to the FAIR principles
(findability, accessiblity, interoperability, and reproducability), including for software [83,
84]. Due to its ubiquity, familiarity, and inherent support for information sharing, the web
provides a naturally FAIR place in which to distribute software. However, server-reliant
software requires the user to upload their data, which may violate privacy requirements of
sensitive data (common in fields like epidemiology). This highlights the need for applica-
tions which are distributed on the web and run fully client-side inside the sandbox of the
user’s browser.

Methods
Preparation

Normalization. Given a list of spatially-referenced values X = [x1, x2, ..., xn] the first step is
to z-score normalize each value, which simplifies the downstream calculations:

zi =
(xi – 𝜇)

𝜎 (1)

Where 𝜇 and 𝜎 are the mean and standard deviation over all values in the dataset.
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Weight matrix. Local indicators of spatial association require a definition of the relation-
ships between locations in the dataset. This is encapsulated in a weight matrix. Given a dataset
with n locations, a weight matrix is a n×n square matrixW where elementWi,j quantifies the
relationship between location i and location j. In its simplest form, a binary weight matrix
takesWij = 1 if location i is a neighbor of location j, andWij = 0 otherwise. The definition
of a “neighbor” is the decision of the analyst: the most common approach uses simple areal
contiguity. While other weighting schemes exist, the binary weight matrix acts as a simple
and computationally efficient starting point for analysis, appropriate when a more nuanced
weighting scheme between neighbors (e.g., inter-area traffic flow, shared border length) is not
apparent or readily available. For simplicity in the later calculation, we will row-normalize the
weight matrix:

∀i∈ {1, 2,… ,n},
n
∑
j=1

Wij = 1 (2)

Choosing an appropriate weight matrix is challenging and depends on the specific parame-
ters and goals of the task at hand. Local indicators of spatial association are highly sensitive to
the choice of weight matrix.

Local indicators of spatial association
Moran’s I. TheMoran’s I statistic is a popular local indicator of spatial association, imple-

mented in most major geospatial software packages and libraries [24,26]. It measures spa-
tial autocorrelation. Assuming a row-normalized weight matrixW, Moran’s I is calculated as
follows:

I =
∑n

i ∑
n
j Wij ⋅ zi ⋅ zj
n – 1

(3)

A significant negative value for the Moran’s I statistic indicates negative spatial autocorre-
lation, a significant positive value indicating positive spatial autocorrelation, and a value close
to 0 indicates no spatial autocorrelation (spatial randomness). The Local Moran’s I statistic
addresses the need for a more granular assessment of spatial autocorrelation by breaking the
global spatial autocorrelation into a separate value for each location [23]. The Local Moran’s I
statistic for location i is calculated as follows:

Ii =
zi ⋅ lagi
n – 1

=
zi ⋅ ∑n

j Wij ⋅ zj
n – 1

(4)

Note the spatial lag term, lagi =∑n
j Wij ⋅ zj. Spatial lag is a useful concept when interpreting

local spatial autocorrelation; it is essentially the weighted mean of a location’s neighbors.
A significant negative value for Local Moran’s I indicates that the location is a spatial out-

lier (significantly different from its neighbors), a significant positive value indicates that
the location belongs to a spatial cluster (significantly similar to its neighbors), and a non-
significant value indicates that the location does not exhibit significant local spatial autocor-
relation. Results can be further categorized by looking at how the value and spatial lag of a
location compare to the mean, which is easy to do with z-score normalized values because
the mean is equal to 0. The possible assignments are “high-high” (if the value and lag are both
positive), “low-low” (if the value and lag are both negative), “high-low” (if the value is positive
and the lag negative), and “low-high” (if the value is negative and the lag positive).
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Geary’s C. Like Moran’s I, Geary’s C is a statistic which measures spatial autocorrela-
tion but the two methods differ in their approach: Moran’s I measures spatial autocorrela-
tion using the correlation between neighboring values whereas Geary’s C measures spatial
autocorrelation using the square differences between neighboring values [28,29]. Geary’s C
has less widespread support in geospatial software than Moran’s I. Geary’s C is calculated as
follows:

C =
∑n

i ∑
n
j Wij ⋅ z2

2n
(5)

Geary’s C takes values 0 or greater. The values are interpreted by their proximity to 1,
with values less than 1 indicating positive spatial autocorrelation, and values greater than 1
indicating negative spatial autocorrelation. Values close to 1 indicate spatial randomness.

Like for Moran’s I, there is a local equivalent of the Geary’s C to provide a more granular
assessment of spatial autocorrelation [85]. Local Geary’s C is calculated as follows:

Ci =
n
∑
j
Wij ⋅ (zi – zj)2 (6)

In essence, the Local Geary’s statistic is a weighted sum of the squared difference between
a location’s value and its neighboring values. The statistic takes values 0 or greater. Unlike for
the global Geary’s C, the value of the local Geary’s C statistic has no inherent meaning—the
“no spatial autocorrelation” point is no longer equal to 1. Instead, it must be interpreted with
significance testing: values that are significantly lower than expected indicate positive spatial
autocorrelation, values significantly higher than expected indicate negative spatial autocorre-
lation, and values not significantly different than expected indicate spatial randomness. Like
for Local Moran’s, a Local Geary’s C result can be further specified by inspecting the loca-
tion’s value and spatial lag. However, unlike for Local Moran’s I this is not always possible.
If the Local Geary’s C statistic indicates positive spatial autocorrelation, then the following
assignments can be made: “high-high” (if the value and lag are both positive), “low-low” (if
the value and lag are both negative), and “other positive spatial autocorrelation” (the remain-
ing cases). If the Local Geary’s C statistic indicates “negative spatial autocorrelation” then this
result can’t be specified any further.

Getis-Ord G. The Getis-Ord G family of statistics differ fromMoran’s I and Geary’s C
in that they do not measure spatial autocorrelation, but instead directly measure hot-spots
and cold-spots [29]. A hot-spot is a group of neighboring locations with significantly higher
than expected values, whereas a cold spot is a group of neighboring locations with signifi-
cantly lower than expected values. The Getis-Ord General G statistic is a global measure that
indicates whether a geospatial dataset exhibits clustering overall and whether that clustering
is generally of high values or low values. The Getis-Ord General G statistic is calculated as
follows:

G =
∑n

i=1∑
n
j=1Wij ⋅ zi ⋅ zj

∑n
i=1∑

n
j=1 ⋅zi ⋅ zj

, where j ≠ i (7)

Getis-Ord General G must be interpreted in relation to a reference distribution (usually
obtained using permutation testing, see Assessing significance). If the observed value of G is
significantly higher than the expected value then the dataset exhibits overall clustering of high
values (hot-spots), if the observed value of G is significantly lower than the expected value
then the dataset exhibits overall clustering of low values (cold-spots)
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The Getis-Ord Gi* and Getis-Ord Gi statistics are two local statistics which indicate
whether a specific location belongs to a hot-spot or cold-spot. The Getis-Ord Gi* statistic is
calculated as follows:

G∗i =
∑n

j=1Wij ⋅ zj
√

1
n–1 ⋅ [n ⋅ (∑

n
j=1W

2
ij) – 1]

(8)

The Getis-Ord Gi statistic is similar, except it doesn’t include the value at the focal location:

Gi =
∑n

j=1Wij ⋅ zj – ̄z(i)

S(i) ⋅
√

1
n–1 ⋅ [n ⋅ (∑

n
j=1W

2
ij) – 1]

(9)

Where ̄z(i) and S(i) are the mean and variance over all z-normalized values excluding the
value at location i. The interpretation of Getis-Ord Gi and Gi* is similar. If the observed
value of G/G* is significantly less than 0 then that location exhibits a clustering of high val-
ues (a hot-spot). If the observed value of G/G* is significantly greater than 0 then that loca-
tion exhibits a clustering of low values (a cold-spot). If the observed value is not significantly
different from the expected value, this indicates that there is no spatial clustering of values.

Assessing significance
In order to correctly interpret indicators of spatial association, it is necessary to determine
whether or not a value is significant. The standard approach is to use a permutation test
because, unlike an analytical derivation of the statistic’s theoretical distribution, it avoids
imposing unrealistic assumptions upon the data [23]. A permutation test on a spatial statis-
tic involves shuffling the data values across the spatial locations a number of times, calculating
the statistic for each shuffle, and then using those values to build an empirical distribution
against which the actual value can be compared. When the actual value is compared to the
permuted values, a pseudo p-value can be calculated. The interpretation of a pseudo p-value
differs somewhat from the interpretation of a traditional, analytical p-value. It is important
to remember that the value of p* depends on the number of permutations performed. The
usual p-value cutoffs (e.g. p<0.05, p<0.01) are often used when interpreting pseudo p-values,
but the analyst should be aware of the dependence on the number of permutations and avoid
thinking of pseudo p-values as equivalent to traditional p-values. For this reason, we use p* to
refer to pseudo p-values in this manuscript and within the ClusterRadar web-tool. For specific
details on how pseudo p-values are calculated, see S2 Appendix (Assessing significance). In
order to simplify the interpretation of the spatial statistics in the ClusterRadar tool, the values
are z-score normalized with the permuted set of values S.

Results
ClusterRadar web-tool
ClusterRadar is a web-tool that allows users to perform spatial cluster analysis and inspect
the results in an interactive dashboard. The tool is fully in-browser and executes entirely on
the client side. ClusterRadar performs spatial clustering using several popular local indicators
of spatial association: Local Moran’s I, Local Geary’s C, Getis-Ord Gi, and Getis-Ord Gi*. By
default, the tool will perform only one of the Getis-Ord methods (Gi*) due to their similarity,
but the user is free to enable and disable methods to suit their needs. ClusterRadar operates
on areal geospatial data. The dashboard (see Fig. 1) consists of five plot panels, each providing
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Fig 1. The main dashboard of the ClusterRadar tool, showing the various plot panels and the graphical tooltip.The dashboard is divided into two rows of plots: the
panels in the top row show the geospatial distribution of the cluster assignments, and the panels in the bottom row show various additional details about the results.
The five main panels are: (a) the primary cluster map panel, (c) the zoomed map reel panel, (d) the statistical density plot panel, (e) the cluster assignments cell plot
panel, and (f) the statistical time-series plot panel. In this screenshot, the user has hovered over a location (Monmouth County, NJ) showing (b) the graphical tooltip,
which gives additional information about that location’s data and cluster assignments over time. Because the user is hovering over a specific location, the bottom
row plots show results related to that location. The user has also selected a sub-region around Florida, and that region is consequently shown in the zoomed map reel
panel. The data shown in this screenshot is yearly US county-level age-adjusted cancer mortality data from the CDC, from 1999-2020. ClusterRadar can be accessed at
https://episphere.github.io/ClusterRadar.

https://doi.org/10.1371/journal.pone.0322393.g001

a different perspective on the results. Each panel is interactive, allowing the user to gain more
details about a specific element through mouse events such as hovering, clicking, and drag-
ging. The panels are interactively linked: when the user interacts with one panel that interac-
tion is reflected in the other panels. In addition to the plot panels, ClusterRadar has a tool bar
with options for uploading and configuring data, enabling and disabling methods, switching
coloring modes, and downloading the data. To encourage use among a diverse set of users,
ClusterRadar also features a short, interactive tutorial which describes the tool’s purpose and
highlights its features. A video outlining the tool’s key features can be found in S1 Video.

Coloring. The primary cluster map panel, graphical tooltip, zoomed map reel panel, and
cluster assignments cell plot panel (see Fig. 1a, 1b, 1c, and 1e) share a unified coloring scheme.
The tool offers multiple coloring modes: a categorical color scheme for each of the individ-
ual LISAs and an aggregate color scheme that summarizes the assignments across all enabled
methods. In general, locations with similar cluster assignments (e.g., “high-high” or “hot-
spot”) receive the same color. The aggregate mode uses a color scale to represent the degree
of agreement among different clustering methods, with more saturated colors indicating
stronger agreement. Special color assignments exist for when methods seemingly contradict
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one another (purple) or have a relationship that is not easily covered by other color assign-
ment criteria (yellow). For a comprehensive explanation of the coloring schemes, including
the mathematical formulas used in the aggregate mode and handling of special cases, please
refer to S3 Appendix (Color assignment).

Primary cluster map panel. Themost prominent panel in the ClusterRadar dashboard
is the primary cluster map panel: a categorical choropleth plot that colors each location by
its cluster assignments (see Fig. 1a). The choropleth plot is interactive: when the user hov-
ers their cursor over a location, that location is brought into focus until they move the cursor
elsewhere. The statistical density plot, cluster assignments cell plot, and statistical time-series
panels are updated to show information pertaining to the in-focus location; see the individ-
ual descriptions of these panels for more details. The user can also keep a location in focus by
clicking on it, meaning it will not be taken out of focus when their cursor leaves that location.
When a user hovers their cursor over a location, a graphical tooltip appears showing addi-
tional information about that location (see Graphical tooltip). By default, the primary cluster
map panel shows data from the most recent time point but the user can look through different
time points using the time slider above the plot. Finally, when the user clicks and drags on the
map, a selection box will appear allowing them to select multiple locations at once for further
inspection in the zoomed cluster reel panel.

Zoomed cluster reel panel. The zoomed cluster reel panel (see Fig. 1c) allows the user
to directly inspect how cluster assignments have changed over time in a selected sub-region
of space. When the user has selected a sub-region using the primary cluster map panel, this
panel will show a vertically stacked “reel” of choropleth plots—one for each time step in the
dataset. The user can then scroll through this reel to see the evolution of cluster assignments
over time. Each of the choropleth plots in this panel have the same interactive features as the
primary choropleth, excluding the ability to select the zoomed sub-region of space.

Density plot panel. The density plot panel consists of density plots showing the empirical
distributions of the enabled spatial statistics (see 2a and 2b), allowing the user to gain a better
understanding of each statistic’s distribution and significance assignments. The empirical dis-
tribution is calculated using the permutation approach described in Assessing significance. If
the aggregate coloring mode is selected, then a density plot is shown for each enabled statistic,
otherwise a single density plot is shown with the corresponding statistic of the selected single
indicator mode. The content of the density plot panel also depends on whether or not a spe-
cific location is in focus. If so, the panel will show information regarding the local statistic(s)
at that location. Otherwise, the panel will show the global statistic(s) for the whole dataset.
Each density plot consists of a filled area representation of the statistic’s empirical distri-
bution, a solid red line indicating the statistic’s value, and two dashed grey lines indicating
the upper and lower significance boundaries at the user’s chosen significance cut-off (0.05
by default). The filled area is generated using kernel-density estimation over the permuted
values.

Cluster assignments cell plot panel. The cluster assignments cell plot panel shows a
cell plot with time on the x-axis and spatial clustering method on the y-axis (see 2c and 2d).
Each cell is colored according to the cluster assignment for that method at that timestep. If
no location is in focus, then the cell plot shows the assignments from the global statistics.
If a location is in focus, then the cell plot shows the assignments from the local statistics for
that location. In the aggregate coloring mode, an additional row is added to the bottom of
the cell plot which shows the aggregate color assignments. This helps the user understand
how the aggregate color scheme works. The cell plot provides the most complete summary
of the multi-method cluster assignments over time, but it is limited to a single location at
a time.
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Fig 2. The visual elements of the ClusterRadar dashboard: the density plots (a, b), cluster assignments cell plot (c, d), statistical time-series plots (e, f), and graphi-
cal tooltip (g).The density plots depict the distribution of local (b) or global (a) indicators, with significance thresholds indicated by dashed lines. The cluster assignment
cell plot illustrates global (a) or local (b) cluster assignments over time, with an additional row in (b) for the aggregate color scheme assignments. The time-series plots
track local (b) or global (a) statistics over time, highlighting significance boundaries and a reference value. The graphical tooltip (g) appears when a user is hovering over
a location in the map, presenting that location’s name or ID, a time-series of its values, a density plot contextualizing the values, and color assignments for the chosen
color mode.

https://doi.org/10.1371/journal.pone.0322393.g002

Statistical time-series panel. The statistical time-series panel allows the user to inspect
the spatial statistics over time (see Fig. 2e and 2f). If the aggregate viewing mode is selected,
the time-series plot is split into sub-plots for each enabled method. Otherwise, a single plot
for the current mode’s method is shown. Within each plot there is a solid red line tracking
the statistic’s actual value over time and two dashed dark-grey lines tracking the p-value cut-
offs over time. As with the cluster assignments cell plot and statistical density plot panels, the
statistic(s) represented in the time-series plot depends on the current interaction state. If a
specific location is in focus, then the plot will show the enabled local statistic(s) for that loca-
tion. If no location is in focus, then the plot will show the enabled global statistic(s) for the
entire dataset.

Graphical tooltip. The graphical tooltip appears on the choropleth plots when the user
hovers over a specific location, in either the main cluster map panel or the zoomed cluster reel
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panel (see Fig. 2g). The tooltip allows the user to quickly get more information about a loca-
tion. At the top of the tooltip is location’s name or ID. Below that is a time-series plot show-
ing the location’s value over time. The axis is marked with the mean (over the whole dataset
across all time points) and the mean plus or minus 3 standard deviations. Attached to the
right axis of the time-series is a density plot showing the distribution of values across all time
points. On this density plot, the current value is shown as red line labelled with the value in
text. At the bottom is a single row cell plot showing the color assignments over time for the
in-focus location; the exact coloring shown depends on the enabled mode and is identical to
the coloring shown on the map.

Implementation details. ClusterRadar is implemented in vanilla JavaScript and runs
entirely on the client-side in the user’s web browser. The basic graphical elements of the dash-
board were rendered using the Observable Plot library, with interaction and additional visual
elements added using D3, HTML, and CSS. Currently, there is no JavaScript library which
supports the full set of spatial indicators required in ClusterRadar. The jsgeoda library sup-
ports most of them using WebAssembly but it doesn’t provide estimates of the empirical dis-
tributions or significance cut-offs. Therefore, all methods were re-implemented in JavaScript.
Calculating the LISA results is particularly computationally intensive due to the permutation-
based significance testing, which requires re-calculating the statistic many times for each loca-
tion. To ensure a responsive user interface and parallelize computation, web workers are used.
When results for a given configuration are calculated, they are cached on the user’s machine
using IndexedDB so that the user does not need to re-run the calculations every time they
visit the tool. We evaluated the scalability of the tool (see Fig. 3), and found that it is practi-
cal for reasonably large datasets (such as US county-level data, with around 3,200 areas), but
would likely face memory issues for US census level data (with around 8.2 million areas). For
more in-depth technical evaluations, including performance comparisons with jsgeoda, see S4
Appendix (Performance) and S5 Appendix (Memory usage).

Fig 3. Basic technical evaluation of ClusterRadar showing memory burden and run times on a Macbook with an M1 Pro chip and
16gb of RAM. Performance and memory burden grow linearly with the number of areas. Per-process memory limits vary consider-
ably, but an assumed memory limit of 4GB puts the estimated limit on number of features at around 1.5 million. This is sufficient for
many use cases, but may be insufficient for fine-grained geographic units such as US census blocks (the entire US is comprised of over
8 million census blocks).

https://doi.org/10.1371/journal.pone.0322393.g003
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Usage scenario: US cancer mortality
Insights. To show how ClusterRadar may be applied to real world data, we analyzed age-

adjusted US county-level cancer mortality with a domain expert in geospatial epidemiology.
The data was collected from CDCWonder, with a filter for the “malignant neoplasms (C00-
C97)” group of the ICD-10 113 cause list. The data is yearly from 1999 to 2020. We uploaded
the data to the ClusterRadar tool and inspected the results in the dashboard. We noticed the
following:

• I1: An overall trend of increased global spatial autocorrelation, especially according to the
Moran’s I statistic (see Fig. 4a). This is immediately apparent from the statistical time-series
panel. The expert suggested this increase in spatial autocorrelation may be a result of over-
all increased spatial structure in cancer risk factors, including growing spatial disparities
in smoking, obesity, and socioeconomic factors. The interactivity of the primary cluster
map panel allows the analyst to find specific areas of the US where the increase in spatial
structure is most apparent (see I2 for an example).

• I2: An emerging cold-spot in the north-eastern US around New Jersey, Pennsylvania, New
York, and Connecticut (see Fig. 4d). The tooltip shows a steady decline in age-adjusted
mortality rates since 1999, with a concomitant increase in assignment to low clusters (see
Fig. 4e). The cluster assignments cell plot shows that these clusters began to emerge in
the early 2000s, and that the Geary’s C method was generally the earliest to detect signif-
icant clustering. The statistical time-series plots reflect the gradual emergence of these
clusters, with increasing local spatial autocorrelation from Local Moran’s I and Geary’s
C, and cold-spot clustering from Getis-Ord Gi* (see Fig. 4f). These plots show that the
strength of these cluster assignments has been steadily growing over time, a result that
would have been missed in a static analysis. The expert suggested that this may be caused
by growing affluence in these coastal and near-coastal counties, factors associated with
lower cancer mortality. Shifting demographics in these counties may be a contributing fac-
tor, though further investigation would be required to disentangle all the possible factors
involved.

• I3: A large and fluctuating hot-spot in the south, around Kansas, Tennessee, and Ohio. The
expert noted that her eye was drawn immediately to this hot-spot, and said that the higher
rates of cancer in this region of the US are well-studied, believed to be driven by a variety
of risk factors including poverty, smoking rates, and obesity. The fluctuating nature of the
hot-spot becomes apparent when interacting with the time slider, or by hovering over the
hot-spot’s counties and inspecting any of the temporal plots (the cell plot, the time-series
plot, the zoomed cluster reel panel, or the tooltip). The expert agreed that the fluctuating
nature of this hot-spot is a good example of why longitudinal analysis is important: any one
time-point may present a misleading picture of confidence in the cluster’s exact shape, but
overall we can observe a consistent cluster of high cancer rates in that general region of the
US.

• I4: A large cold-spot encompassing much of the western US. The expert noted that the cold
spots in the coastal counties are expected, given the typically higher socioeconomic status
of those counties. She also cautioned about placing too much emphasis on the other coun-
ties due to low populations—the cluster draws the eye due to its sheer geographic size, but
encapsulates a relatively small number of people. On top of that, there is a lot of suppressed
data in that part of the country due to small population sizes.

• I5: A sudden hot-spot in northern Michigan in 2020 (see Fig. 4b). The graphical tooltip
shows that this primarily results from a sudden spike in Oscoda County, MI (see Fig. 4c).
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Fig 4. Example snapshots of ClusterRadar on a dataset of US county-level age-adjusted mortality rates, from the CDC.These illustrate some of the potential insights
that ClusterRadar can help uncover. (a) A snapshot of the statistical time-series panel showing the global spatial statistics. There appears to be a general increase in these
statistics, especially for Moran’s I. (b) An edited snapshot of the cluster reel panel, showing the sudden appearance of a high cluster in Northern Michigan in 2020. (c) A
snapshot of the primary cluster map panel in which the user is hovering over a central area from the high cluster in Northern Michigan. The time-series shows a sudden
spike in the age-adjusted mortality rate in 2020 and the cell plot shows a concomitant assignment to a high cluster. (d) An edited snapshot of the cluster reel panel, show-
ing the emergence of a low cluster in the east coast around New Jersey, New York, and Connecticut. (e) A snapshot of the primary cluster map panel in which the user
is hovering over a central area (Morris County, NJ) from the low cluster on the east coast. The time-series show a gradual decline in age-adjusted mortality rates in that
county. (f) A snapshot of the statistical time-series panel showing the local statistics for Morris County, NJ.

https://doi.org/10.1371/journal.pone.0322393.g004

Oscoda County has a relatively small population which can lead to unstable rates. This sug-
gests that this particular cluster may just be noise, a result which emphasizes the importance
of longitudinal analysis of spatial clusters.

The expert emphasized that these observations are purely exploratory, and that robust sta-
tistical testing would need to be done to investigate them further. It is worth noting that many
of these insights (I1, I2, I3, and I5) would not have been apparent from a static analysis, fur-
ther validating the longitudinal approach to spatial analysis facilitated by ClusterRadar. The
tool’s varied graphical plots and robust interactive features convey the temporal structure of
both the data and the results, exposing insights that would not have naturally emerged from
existing static tools.

Quantitative evaluation. To provide some additional evaluation of ClusterRadar, we have
performed an inter-method and temporal evaluation of the cluster assignments on the pre-
viously described cancer mortality dataset. The results of the inter-method evaluation can be
found in Fig. 5 and the results of the temporal evaluation can be found in Fig. 6. The inter-
method evaluation shows a substantial degree of disagreement between the methods when
at least one method’s assignment is statistically significant. For instance, only 32.1% of dual-
method comparisons involving a ’high-high’ label were in agreement. Most contradictions
arose because one method detected statistically significant spatial structure and the other
method did not. It is worth noting that some apparent contradictions occur due to the dif-
fering nature of the methods, rather than a direct disagreement about the spatial structure at
the focal location. For example, you may notice the substantial number of ‘high-high’ results
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Fig 5. A quantitative evaluation of the multi-method spatial clustering results generated by ClusterRadar, on a US county-level cancer mortality dataset. (a) A
stacked bar chart breaking down the nature of between-method assignment comparisons, by label. e.g. the leftmost bar shows that 32.1% of between method com-
parisons for the ‘high-high’ label were comparisons where both assignments were ‘high-high’, 57.2% were comparisons with a ’not significant’ label, and 8.1% were
comparisons with contrasting labels. The “similar” category is used when methods are not necessarily in agreement but don’t contradict each other (e.g. ‘high-high’ and
’other positive spatial autocorrelation’.) (b) A cell plot providing a more detailed breakdown of between-method assignment comparisons e.g. the third cell on the top
row shows that 5.1% of comparisons involving a ‘high-high’ label are comparisons where the other label is ’low-high’. The bar chart on the left shows the total number of
assignments for the corresponding label.

https://doi.org/10.1371/journal.pone.0322393.g005

which were assigned a label indicating negative spatial autocorrelation (i.e. ‘low-high’ or ‘neg-
ative’) by another method. A closer inspection of the results reveals that this occurs because
of Getis-Ord Gi* which, unlike the other methods, doesn’t detect spatial autocorrelation but
instead directly detects hot and cold spots. Consequently, a location with a relatively low value
may still be detected as a ‘hot-spot’ (equivalent to ‘high-high’ in ClusterRadar) by Getis-Ord
Gi*, whereas this would likely be assigned ‘low-high’ by Local Moran’s I and ‘negative’ by
Local Geary’s C. Situations like this expose some of the difficulties associated with directly
comparing spatial clustering results across methods. However, it also shows the value of a
multi-method approach, as different methods expose different aspects of spatial structure,
leading to a more complete understanding of the data.

The temporal evaluation of the cancer mortality dataset shows the dynamic nature of the
results, and furthers the argument for longitudinal investigation as a important step in spa-
tial analysis. As Fig. 6a shows, even a single time-step difference has a substantial effect on the
results, with many locations exhibiting a different result at an immediately prior time-step. If
a longitudinal investigation was not performed, one of these results would be the only infor-
mation provided to the analyst and crucial dynamic information about the detected spatial
clusters (such as their stability) would be missed. Fig. 6b shows the variability in how differ-
ent methods respond to the data’s dynamics. For instance, only 1.9% of locations assigned
a ‘high-high’ result by Local Moran’s I were assigned a ‘low-low’ result by Local Moran’s I at
any other timestep, but for Local Geary’s C this percentage is much higher at 32.5%. In other
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Fig 6. A quantitative evaluation of the longitudinal spatial clustering results generated by ClusterRadar, on a US county-level cancer mortality dataset. (a) An area
chart showing the percentage of agreement between the label assigned at the most recent time-point for a location, and the labels assigned at previous time-points. e.g.
The topmost area chart shows that a location assigned a ‘high-high’ label at the most recent time-point was also assigned ‘high-high’ at the previous time-point in around
50% of instances, and was assigned ’High-high’ at the earliest time-point in around 29% of instances. (b) Percentage of labels shared by a single location’s time-series, by
method. e.g. the third cell in the top row of the topmost cell plot shows that 53.3% of locations that were assigned a ‘high-high’ label by the Local Moran’s I method at one
time-point were assigned a ‘low-high’ label by the same method at some other time-point in the past or future.

https://doi.org/10.1371/journal.pone.0322393.g006

words, the dynamics of the results vary considerably by the chosen method, an observation
which supports the need for a simultaneous multi-method and longitudinal analysis.

Together, the quantitative evaluations discussed here demonstrate the additional insight
which can be naturally obtained in ClusterRadar which would be time consuming or impos-
sible in other tools. The temporal and methodological variability present in the real-world
dataset indicate that a longitudinal, multi-method approach is necessary to fully contextualize
and understand the spatial clusters present in the dataset.

Initial feedback
To provide an initial evaluation of ClusterRadar, we sent an evaluation survey to individu-
als with a diverse set of analytical interests. The NIH IRB determined that this survey is not
human subjects research, and therefore does not require IRB approval. Consent for all partic-
ipants was obtained informally by email. All seven survey participants have a research back-
ground, with interests spanning data science, public health, geospatial epidemiology, and
computer science. The form and a snapshot of its responses at the time of writing are avail-
able in S6 File. All participants responded that they had a basic understanding of spatial data
and analysis, but only one participant claimed expert knowledge of the methods; the remain-
ing participants expressed a mixture of unfamiliarity and basic understanding. This is useful
to test ClusterRadar’s suitability for non-expert users (D4).
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When asked if the insight provided by temporal analysis of spatial clusters is worth the
additional complexity, 5 of 7 (71.4%) of participants answered affirmatively, and two partic-
ipants answered that it is potentially useful but may not be worth the additional complexity.
When asked whether the comparison of multiple clustering methods is useful, 3 of 7 (42.9%)
of users answered affirmatively, 3 of 7 (42.9%) answered that it is potentially useful but may
not be worth the additional complexity, and 1 of 7 answered they remained uncertain but
enjoyed viewing the comparison across methods.

In the evaluation of the tool itself, 4 of 7 (57.1%) participants said ClusterRadar is success-
ful in its primary goal of making the analysis of spatial clusters over time more accessible. The
remaining participants said it is “somewhat” successful, with one stating that the tool is more
descriptive than analytical. One participant expressed a desire for more information on the
methods involved in the tool and how they differ.

The participants were asked the extent to which the major features of ClusterRadar are
useful. The primary cluster map panel was deemed “very useful” by all 7 participants. The
following features received a mixture of “very useful” and “somewhat useful” responses: the
graphical tooltip (85.7% “very useful”) the zoomed map reel panel (71.4% “very useful”),
the statistical time-series panel (71.4% “very useful”), the cluster assignments cell plot panel
(42.9% “very useful”), the aggregate color scheme (71.4% “very useful”). The density plot
panel received 57.1% “very useful”, 28.6% “somewhat useful”, and one response of “not use-
ful”: that participant commented that they did not know how to interpret the density plots.
All participants said that the tool’s implementation as a web-application was “very useful”.
One participant commented that the plot choices were “very insightful”.

To evaluate ClusterRadar’s potential utility as a research tool, and to improve its design, we
asked seven fellow researchers to provide anonymous feedback on the tool’s methodology and
user experience. The participating researchers spanned a variety of backgrounds, including
data science, public health, and geospatial epidemiology. All participants responded that they
had a basic understanding of spatial data and analysis, but only one participant claimed expert
knowledge of the specific methods applied; the remaining participants expressed a mixture
of unfamiliarity and basic understanding. This is useful to test ClusterRadar’s suitability for
non-expert users (D4). The majority of responses confirmed that the tool is successful in mak-
ing the longitudinal analysis of spatial clusters more accessible to researchers, though some
expressed concerns that the complexity of the methods employed in ClusterRadar may be
excessive for their research.

Discussion
In this paper, we have introduced ClusterRadar, a web-tool which confronts the challenge of
multi-method, temporal exploration of spatial clusters using multi-faceted interactive visu-
alization. In this section, we will discuss some of the problems we tackled while creating this
tool.

A core challenge in multi-method, spatiotemporal cluster analysis is managing the poten-
tially large volume of results. In our example (see Usage scenario: US cancer mortality), apply-
ing just 3 clustering methods across 22 time points to 3,143 counties yields over 200,000
individual results. ClusterRadar addresses this complexity through a multi-plot dashboard
that follows the visual analytics principle of “overview first, details-on-demand” (D3). This
approach allows users to gain a broad understanding of the results before drilling down into
specific details. This philosophy is reflected in several parts of the tool, including the respon-
sive nature of the density, cell, and time-series panels. Each of these visualizations initially
represent global statistics but changes to represent local statistics when the user interacts with
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a specific location. The global statistics provide the “overview”, and the local statistics pro-
vide the “details-on-demand”. This approach is well supported by the visual analytics litera-
ture, and ClusterRadar follows established principles to simplify the difficulties which may
arise when exploring multiple visualizations at once, including the principle of maintaining
the user’s mental map between plots using linked interaction [80]. Initial feedback from a
users regarding the plots was generally positive. However, some plots (e.g. the primary clus-
ter map) received more positive feedback than others (e.g. the statistical density plots), so a
future effort to provide alternatives and collect feedback may benefit the tool’s overall success
in representing complex results.

The results generated by ClusterRadar are both spatial and multi-variate/multi-method
(D2). Visualizing the spatial distribution of multi-variate results is a well-documented chal-
lenge in the geospatial visualization literature and a broad range of solutions have been pro-
posed. Once again, we took a visual analytics approach, with the aggregate color scheme offer-
ing the overview, and user interaction providing further details. The aggregate color scheme
provides a way for the user to inspect the level of agreement between results at a glance. While
some finer distinctions between methods might be obscured in this simplification, it provides
a valuable starting point. For users wishing to delve deeper into the nuances, the interactive,
linked views provide the necessary granularity to dissect and compare results with greater
precision.

A challenging element of the ClusterRadar results is that they are both spatial and tem-
poral (D1)—elements that can be difficult to visualize together. Like with multi-variate spa-
tial data, the problem of representing spatiotemporal data in plots is well documented in the
visualization literature. There are two key approaches: contrasting time and contrasting space
[59]. In the former, some representation of the temporal results (e.g. a time-series) is plot-
ted at each geospatial location, and in the latter separate geospatial plots are used to represent
data from different time-points. The contrasting time approach can be overwhelming when
there are a lot of geospatial locations and the temporal results are complex, as is the case in
ClusterRadar, and so we decided on the contrasting space approach. This was achieved using
the cluster map reel panel, which stacks choropleths from different time points on top of each
other, and the interactive time-slider in the primary cluster map panel, which allows users to
“animate” the cluster results by viewing data from different time-points. The statistical time-
series panel, cluster assignments cell plot panel, and graphical tooltip all provide additional
information on temporal elements of the results.

A key element in the success of novel applications is their usability and accessibility to
the target user base. In this case, our target user base is anybody interested in the analysis of
spatial clusters. While a working knowledge of spatial data, statistical principles, and com-
mon visualizations is beneficial, the ClusterRadar tool is designed to minimize the required
expertise. It does so in a few ways: applying a varied set of visualizations to streamline the
interpretation of the results (D3), employing a goal-focused design philosophy (D4), and dis-
tributing the application on the web (D5). Importantly, the user can access the application
from any modern browser without the need for installation. ClusterRadar eliminates the need
for specialized technical knowledge of the methods; users simply upload data, configure set-
tings, and receive results. The initial feedback from users suggests the success of this approach,
though additional work is required to address certain confusing elements. Several individu-
als expressed confusion over aspects of the tool which could potentially be cleared up through
better documentation and a refined tutorial.

When inspecting the cancer mortality data in Usage scenario: US cancer mortality, the
expert analyst expressed the opinion that ClusterRadar is primarily an exploratory tool, rather
than an analytical one. The distinction between these concepts is important: exploratory tools
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can uncover patterns worthy of further analysis (hypothesis generation), but are not neces-
sarily appropriate for more rigorous inspection (hypothesis testing). Exploratory data analy-
sis is becoming common across disciplines, including those with well-established analytical
traditions such as epidemiology, driving a need for exploratory tools such as ClusterRadar
[86,87]. ClusterRadar allows the user to download the results, which an experienced ana-
lyst could then inspect in the analytical environment of their choice (e.g. R). Further work
could improve the analytical appeal of ClusterRadar by supporting p-value correction or other
techniques important in confirmatory spatial cluster analysis.

Conclusion
ClusterRadar advances the analysis of complex spatial datasets by offering a user-friendly
environment specifically designed for interpreting temporal and multi-method spatial cluster-
ing results. By combining diverse visual elements with linked interaction, ClusterRadar tack-
les the challenges of representing multi-variate, spatiotemporal data. The tool’s goal-driven
design democratize spatial cluster analysis, empowering users across disciplines to uncover
spatial patterns within their data. ClusterRadar runs entirely in the user’s browser and does
not require a server or installation, preserving the privacy of the user’s data and ensuring the
tool’s longevity.

Supporting information
S1 Video. Video outlining the main features of the ClusterRadar tool.
(MP4)

S2 Appendix (Assessing significance). Greater detail on how permutation tests are used
within ClusterRadar to assess significance.
(PDF)

S3 Appendix (Color assignment). Greater detail on how colors are assigned in ClusterRadar.
(PDF)

S4 Appendix (Performance). Performance benchmarks for ClusterRadar.
(PDF)

S5 Appendix (Memory usage).Memory usage benchmarks for ClusterRadar.
(PDF)

S6 File. User survey and responses.
(PDF)
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