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Abstract 

Controlling mosquito-borne diseases is becoming increasingly challenging due to 

factors such as insecticide resistance and shifts in mosquito behavior. The increas-

ing proportion of early evening, morning, and outdoor biting reduces the effective-

ness of core interventions like bed nets, which mainly protect people while sleeping 

indoors. In response, spatial emanators that release volatile active ingredients into 

the surrounding air to reduce human-vector contact offer a scalable, complementary 

strategy. This study evaluated the impact of BiteBarrier, a transfluthrin-based spatial 

emanator, over eight weeks of aging against multiple mosquito species in a semi-

field system simulating both indoor and outdoor settings. We assessed the protective 

efficacy using both landing rate and feeding success methods across five mosquito 

species, including pyrethroid susceptible Anopheles gambiae sensu stricto (s.s.) 

and Aedes aegypti; An. gambiae s.s. with knock down resistance (KDR); and pyre-

throid resistant An. funestus and Culex quinquefasciatus with upregulation of mixed 

function oxidases. The results show that the feeding endpoint provides more robust 

estimates of protective efficacy compared to the landing endpoint. The BiteBarrier 

provided over 93% (95% CI: 92–93) protection indoors and 80% (95% CI: 78–81) 

outdoors against mosquito bites and substantial mortality 47% (95% CI: 43–53) 

indoor and 26% (95% CI: 22–30) outdoors, regardless of mosquito species or resis-

tance status. Overall, the BiteBarrier shows potential as a tool for reducing mosquito 

bites and vectorial capacity, offering protection over at least eight weeks of use for 

both indoor and outdoor environments.
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Background

The transmission dynamics and geographic risk of vector-borne diseases, such as 
malaria and arboviruses, are shifting in response to changing settlement patterns, 
economic activities, and environmental changes [1,2]. Biological and behavioral 
challenges, including mosquito resistance to insecticides and changes in bit-
ing patterns, undermine current control efforts [3]. To accelerate malaria control 
and address the rising threat of arboviral infections, new vector control tools are 
urgently needed.

Spatial emanators (SEs) offer promise as scalable solutions to reducing 
human-mosquito contact and ultimately reducing disease transmission [4,5]. 
These emanators release active ingredients into the air, inducing various behav-
ioral responses in exposed mosquitoes including excito-repellency, interruption of 
host-seeking and feeding, incapacitation and mortality [6]. Numerous semi-field 
[7–9] and small-scale field studies [9–12] have demonstrated the efficacy of SEs in 
reducing mosquito landing, blood-feeding, and survival. Additionally, they have been 
observed to have public health benefits by reducing transmission of malaria [5,13–16] 
and Aedes-borne viruses [17]. Further ongoing randomized controlled trials (RCTs) in 
various ecological settings are evaluating the potential of SEs to reduce malaria [18] 
and arboviruses [19] transmission and the public health benefits of their operational 
implementation.

It is a World Health Organization (WHO) requirement that new vector control 
products undergo rigorous testing ranging from laboratory to semi-field and small 
to large-scale field studies to demonstrate safety, and efficacy before they are 
recommended for public use. Semi-field studies bridge the gap between labora-
tory findings and field efficacy studies, evaluating entomological efficacy against 
free-flying laboratory reared mosquitoes under controlled simulated indoor or 
outdoor conditions [20]. Since laboratory reared mosquitoes are disease-free, 
the semi-field system (SFS) allows investigators to safely test interventions even 
against dengue vectors. This approach allows mosquitoes to blood feed, which 
may not be feasible in certain field studies. It also allows to use mosquitoes with 
a known age, physiological and resistance status enabling comprehension of 
impact over a wide array of selected biological traits that may be present in field 
transmission systems. Furthermore, the SFS allows for release and recapture of 
mosquitoes after they have interacted with humans in the presence of an inter-
vention so that additional modes of action, including post-exposure mortality may 
be evaluated.

This study assessed the protective efficacy (PE) of the BiteBarrier (BB) transfluth-
rin emanator against East African malaria and arbovirus vectors in semi-field simula-
tions of indoor and outdoor contexts. Specifically, the study aimed to evaluate the BB 
over an eight-week period by: 1) comparing PE measured if mosquitoes are captured 
when landing (landing method) or if free flying mosquitoes are allowed to blood feed 
(feeding method), 2) measuring the indoor and outdoor PE of the BB and, 3) estimate 
the effect of BB on mosquito mortality.
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Methods

Study setting

The study was conducted in the SFS at the Ifakara Health Institute (IHI) in Bagamoyo, Tanzania. The SFS is described in 
detail elsewhere [21] and was modified to accommodate the objectives of the experiment (Fig 1. A). These modifications 
involved further dividing the larger SFS compartments using Plywood and heavy-duty polyurethane sheets to make four 
independent chambers each measuring 10 x 9 m. This allowed for both indoor and outdoor experiments to be conducted 
simultaneously, with each treatment and its control allocated to an independent chamber. During the experiments, the 
median environmental conditions were 24.4°C (24–30°C) and 85.9% (62–100%) relative humidity. Wind speed was mea-
sured in the morning before the experiments and was 0.0 m/s.

Test systems (mosquitoes)

Laboratory-reared 3–5 days old pyrethroid-susceptible Anopheles gambiae s.s., An. gambiae s.s. with knock down resis-
tance (KDR), pyrethroid-resistant An. funestus, pyrethroid-resistant Culex quinquefasciatus and pyrethroid-susceptible 
Aedes aegypti female mosquitoes were used in the experiments. Detailed susceptibility profiles for each are shown in S2 
Table. The mosquitoes were sugar starved for six hours and acclimatized in releasing cages in the control chambers for 
30 minutes before the tests. The colony was maintained by feeding larvae on Tetramin® fish food and adults on 10% glu-
cose solution ad libitum and blood for egg laying. Temperature and relative humidity within the insectary were maintained 
following MR4 guidelines at 27 ± 2ºC and 70 ± 20%, respectively [22]. As all mosquito strains were released together, An. 
gambiae s.s. (KDR) were marked with fluorescent dye to distinguish them from An. gambiae s.s. The coloring procedure 
has been optimized and has been shown to have no significant effect on mosquito fitness or survival [23].

The BiteBarrier

The BiteBarrier (BB) is a novel passive emanator dosed with 1.5 mg of transfluthrin on a non-woven substrate material 
that consists of two 24 x 28 cm sheets (a total area of 1,344 cm2). The BB emanators were aged over eight weeks by 
hanging them under temperature-controlled conditions similar to those in tropical regions (24.5–27.5°C). After aging, the 
BBs were wrapped in aluminum foil, placed in a sealed plastic bag, and stored in a cool dry room with a temperature not 
exceeding 20ºC. The temperature and humidity were monitored daily during the aging and storage process using Tinytag 
climatic logger (Gemini Data Loggers Ltd, Chichester, UK).

Study design

A series of two partially balanced 2 x 2 Latin square design experiments were conducted in four SFS chambers. The 
chambers are divided using high density polypropylene sheeting to ensure independence of observations and prevent 
contamination between chambers. Two chambers were designated for simulated indoor and two for simulated outdoor 
settings. For each setting, one chamber served as the treatment (with BB installed) and one as a negative control (no BB). 
The control chambers were located adjacent to the treatment chambers, with wind directional movement from the control 
to the treatment chambers. To prevent cross-contamination, treatment and control chambers remained fixed throughout 
the study. Four male volunteers (two for outdoor and two for indoor), aged 25–40, non-smokers, and non-drinkers, par-
ticipated in the study after providing written informed consent. During the one-hour exposure period, mosquitoes were 
allowed to interact with the volunteers, who had only the area between the knee and ankle uncovered (Fig 1. B, D). This 
standardizes the areas for mosquito landing and feeding. Volunteers rotated between treatment and control conditions 
within their assigned context (indoors or outdoors) to minimize bias. Before the study, we conducted preliminary assess-
ments of mosquito attractiveness and found no significant differences among the volunteers. The experiment was repli-
cated 30 times over five rounds and 30 experimental days. Each round lasted six days, followed by a three-day washout 
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Fig 1.  Schematic representation of the semi-field experiments. The outside view of the semi-field system (A), Indoor evaluation (B, C) and outdoor 
evaluation (D, E).

https://doi.org/10.1371/journal.pone.0320624.g001

https://doi.org/10.1371/journal.pone.0320624.g001
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period. On the third washout day, mosquitoes were released into all chambers without any treatment to assess residual 
activity, and landing rates were similar across all chambers.

Indoor evaluation of the BiteBarrier

To simulate an indoor setting, two Ifakara experimental huts (one hut per chamber) were installed in the two SFS cham-
bers. The huts are divided with a fully sealed plywood wall to make two huts. For this experiment, only one side of each 
hut was used (Fig 1. A, B), while the other side was sealed. The dimensions of the huts are 3.25 x 3.5 x 2 m (length x 
width x height) with a gabled roof of 0.5 m apex and volume of 25.59 m3. Each hut has 10 cm-wide eave gaps on three 
sides fitted with baffles that allow mosquitoes to enter freely. In one experimental hut, one BB sheet was hung in each 
corner (170 cm), while the other hut served as a negative control with no BBs. Each day, the BB devices were set up two 
hours before mosquito release to allow the transfluthrin to diffuse. Volunteers sat at the center of the hut while mosquitoes 
were released outside the hut from two points (Fig 1. B,C). Experiments with Anopheles and Culex mosquitoes were con-
ducted from 18:30–22:30. Each session included one-hour landing replicate with 80 mosquitoes of each strain released 
(18:30–19:30), followed by one hour for collection (removing all mosquitoes in the hut and chamber). Another one-hour 
feeding replicate was conducted with another batch of 80 mosquitoes of each strain released (20:30–21:30) followed 
by another hour of collection. For Ae. aegypti, experiments were conducted from 6:30–10:30, following similar pattern. 
Landing and feeding experiment times were alternated after every three replicates to control for temporal bias. After each 
replicate, BB devices were wrapped in aluminum foil and stored at 20°C to prevent further evaporation. Eighty per strain 
for each replicate to ensure that at least 40 mosquitoes enter the huts to maintain the study power. This decision was 
based on preliminary experiments which showed that at least 50% of the mosquitoes could enter indoors (inside the hut) 
after one hour following release in absence of any treatment. Environmental conditions in the SFS were monitored using a 
Tinytag climatic logger (Gemini Data Loggers Ltd, Chichester, UK).

Outdoor evaluation of the BiteBarrier

Outdoor experiments were conducted in a large net cage measuring 10 x 9 m. In the treatment chamber, one volunteer 
sat two meters away from four BB sheets hung at a height of 170 cm (Fig 1. D,E). In the control chamber, a volunteer was 
similarly positioned, but no BB devices were installed. Forty mosquitoes of each strain were released for each landing and 
feeding replicate. Other experimental procedures were maintained as for the indoor experiment.

Procedures for landing experiment

Volunteers used mouth aspirators to collect mosquitoes landing between the knee and ankle (Fig 1). Collections were 
conducted in 15 minutes intervals, with mosquitoes placed in separate paper cups for each period. After collection, cups 
were sealed in plastic containers to prevent additional transfluthrin exposure. The remaining mosquitoes were collected 
after one hour using Prokopack aspirators ((John W Hock, Gainesville, FL), and all samples were transported to the insec-
tary for sorting and recording. Mosquitoes collected through landing were held for 72 hours with access to 10% sucrose 
solution to observe delayed mortality.

Procedures for feeding experiment

Volunteers sat on chairs, allowing mosquitoes to feed on their exposed legs (Fig 1). After the exposure period, mosquitoes 
were collected for one hour from the floor, walls, roof in the net cages and/or huts using mouth aspirators. Mosquitoes 
were placed in paper cups (maximum 25 per cup) to reduce density-related mortality. All collected mosquitoes were taken 
to environmentally controlled insectaries for sorting and held for 72 hours with access to 10% sucrose solution to observe 
delayed mortality.
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Ethics declarations

The study was approved by the Ifakara Health Institute Review Board with certificate number: IHI/IRB/EXT/No: 01–2024, 
the National Institute for Medical Research-Tanzania (NIMR) with a certificate number: NIMR/HQ/R.8b/Vo1.I/1165, with 
ethics and sponsorship from Liverpool School of Tropical Medicine (LSTM) protocol number 22–067. Study participants 
were IHI entomology staff who were fully informed of the risks and voluntarily provided informed consent. Their employ-
ment was not contingent on participation in the study.

Statistical analysis

Statistical analysis was conducted using Stata 17. Descriptive statistics were used to explore the data. To compare 
between the landing and feeding methods in the treatment and control, the number of mosquitoes collected in the land-
ing experiment and the number fed mosquitoes in the feeding experiment were merged forming a single variable named 
“recaptured”. Recaptured mosquitoes were modelled independently for each mosquito species and overall (including all 
species) using mixed effects logistic regression with binomial distributions (recaptured/recovered) with a logit function. The 
method of collection (landing vs feeding), treatment (control vs treatment), context (indoor vs outdoor), volunteer, chamber 
and day, were treated as independent categorical fixed effects. Humidity and temperature were added to the model as 
continuous variables.

To estimate the protective efficacy of the BB using feeding method, mixed effects logistic regression following binomial 
distributions (fed/recovered) with a logit function was used. Each species and context were analyzed independently. Treat-
ment (control vs treatment), volunteer, chamber and day were treated as independent categorical fixed effects. Similarly, 
temperature and humidity were added to the model as continuous variables. The PE (reduction in the Odds of feeding) of 
the BB was calculated from the odds ratios (OR) obtained from the model using the formula (1−OR)*100.

Additionally, the effect of the BB on delayed 72 hours mortality was estimated using data obtained from feeding exper-
iment using mixed effects logistic regression with binomial distributions (dead/recovered). Each species and context were 
analyzed independently. Treatment (control vs treatment), volunteer, chamber and day were treated as independent cate-
gorical fixed effects, whereas temperature and humidity were added to the model as continuous variables. Due to the low 
number of dead mosquitoes in the control arm and to ensure model convergence, 1 was added to all observations of dead 
mosquitoes in the control and the treatment arms.

Results

Mosquito recovery in the semi-field system

Overall recovery rates, defined as the proportion of released mosquitoes that were recaptured were consistent across 
landing and feeding methods. Indoors (the experimental hut experiment), recovery rates in the treatment chambers were 
76% and 77%, compared to 92% and 93% in the controls for the landing and feeding methods, respectively. Outdoors, 
recovery rates in the treatment chambers were 99% and 100% similar to those in the control chambers 100% and 100% 
for landing and feeding methods, respectively. The recovery rates were consistent for each species and methods (S1 
Table).

Landing rate and blood feeding success

The landing rate, which is defined as the proportion of recaptured mosquitoes caught in the landing experiment, exhibited 
variation depending on the specific context in which the data were collected. Indoors, the landing rate was 14.63% (95% 
CI: 12.07–17.18) in the treatment and 62.31% (95% CI: 57.5–67.09) in the control chamber. Outdoors, the landing rate 
was 43.36% (95% CI: 39.63–47.08) in the treatment and 65.93% (95% CI: 61.97–69.91) in the control chamber. Similarly, 
feeding success, defined as the proportion of recaptured mosquitoes that were blood-fed also varied by context. Indoors, 
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feeding success was 7.92% (95% CI: 5.97–9.87) in the treatment and 53.86% (95% CI: 49.96–57.75) in the control. 
Outdoors, feeding success was 43.57% (95% CI: 39.29–47.84) in the treatment and 77.39% (95% CI: 73.46–81.32) in the 
control chambers.

Comparison of protective efficacy estimates between landing and feeding methods

Across all mosquito species, the odds of feeding was lower compared to the landing [OR = 0.83, 95% CI: (0.80–0.86), 
P < 0.002]. However, this varied for each species (Table 1). For Anopheles gambiae s.s. there was no difference measured 
by either method. Feeding success was significantly lower than landing rate for An. gambiae s.s. (KDR). Conversely, feed-
ing success was significantly higher than landing rate for An. funestus, Cx. quinquefasciatus and Ae. aegypti. Therefore, 
in subsequent analysis we opted to use data from the feeding experiment only as this endpoint captures both mosquito 
attack and feeding behavior, both of which are modified by volatile pyrethroids.

Protective efficacy of the BiteBarrier transfluthrin emanator measured by blood-feeding method

Overall, the BB gave similar high protection against all mosquito strains regardless of species or resistance status. This 
included all three Afrotropical malaria vectors (susceptible An. gambiae s.s., An. gambiae s.s. KDR, as well as resistant 
An. funestus that has upregulation of mixed function oxidases) and arbovirus vectors (resistant Cx. quinquefasciatus that 
has upregulation of mixed function oxidases and susceptible Ae. aegypti) (Table 2). Protective efficacy was higher indoors 
93% (95% CI: 0.92–0.93) than outdoors 80% (95% CI: 0.78–0.81) (Table 2).

Effect of the BiteBarrier on mosquito mortality

Overall, mortality in the control arm throughout the experiment was below 5% for each mosquito species. The BB induced 
substantial mortality with higher mortality observed indoors than outdoors. Mortality was higher among malaria vectors 
than arbovirus vectors (Table 3) and appeared to be related to susceptibility levels (S2 Table). The highest mortality rate 
was observed in the susceptible Anopheles strain while the lowest mortality was observed in highly resistant Cx. quinque-
fasciatus (Table 3).

Table 1.  Comparison between landing and feeding methods for measuring the protective efficacy of the BiteBarrier transfluthrin emanator.

Mosquito species Method n/N OR (95% CI) P value

An. gambiae s.s. landing 475/2,673 1

Feeding 447/2,617 1.01 (0.92–1.10) 0.089

An. gambiae s.s. KDR landing 588/3,179 1

Feeding 483/3,155 1.11 (1.02–1.20) 0.011

An. funestus landing 679/2,615 1

Feeding 550/2,755 0.78 (0.72–0.85) <0.002

Cx. quinquefasciatus landing 1131/3,671 1

Feeding 778/3,502 0.52 (0.48–0.56) <0.002

Ae. aegypti landing 1142/3,230 1

Feeding 1036/3,069 0.89 (0.83–0.97) 0.007

Overall landing 4,015/15,368 1

Feeding 3,294/15,098 0.83 (0.80–0.86) <0.002

N refers total number of mosquitoes of each species that were recovered in the treatment chambers while n refers total number of mosquitoes that land-
ed or fed in the treatment chambers; Odds ratios (OR) and P-values were obtained from mixed effect logistic regression model adjusted for the effect of 
method, treatment, context, volunteer, chamber, experimental night, temperature and humidity, the outcome was “recaptured” defined as total number of 
mosquitoes of each species successfully landed or fed on study volunteers.

https://doi.org/10.1371/journal.pone.0320624.t001

https://doi.org/10.1371/journal.pone.0320624.t001
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Discussion

This study demonstrated the efficacy of the BiteBarrier (BB), a transfluthrin-based emanator in reducing potential mos-
quito bites and survival across multiple species in simulated indoor and outdoor contexts. We found that BB reduced the 
odds of blood-feeding by 93% (95% CI: 92–93) indoors and 80% (95% CI: 78–81) outdoors and induced significant mor-
tality by 47% (95% CI: 43–53) indoor and 26% (95% CI: 22–30) outdoors against all mosquito species tested.

Table 2.  Protective efficacy of the BiteBarrier transfluthrin emanator against Anopheles, Culex and Aedes mosquito species measured using 
feeding method.

Mosquito species Treatment Indoor Outdoor

n/N OR (95% CI) %PE (1-OR)*100 n/N OR (95% CI) %PE (1-OR)*100

An. gambiae s.s. Control 819/1,773 1 711/1,055 1

BB 70/1,540 0.05 (0.04–0.07) 95 (93–96) 377/1,077 0.25 (0.21–0.30) 75 (70–79)

An. gambiae s.s. KDR Control 897/2,348 1 1004/1,341 1

BB 136/1,891 0.11 (0.09–0.14) 89 (86–91) 347/1,264 0.11 (0.09–0.12) 89 (88–91)

An. funestus Control 1330/2,212 1 1011/1,214 1

BB 103/1,697 0.04 (0.03–0.05) 96 (95–97) 447/1,058 0.14 (0.12–0.17) 86 (83–88)

Cx. quinquefasciatus Control 1329/2,331 1 1051/1,456 1

BB 204/2,123 0.07 (0.06–0.08) 93 (92–94) 574/1,379 0.27 (0.23 −0.31) 73 (69–77)

Ae. aegypti Control 1556/2,336 1 1143/1,263 1

BB 213/1,855 0.06 (0.05–0.07) 94 (93–95) 823/1,214 0.21 (0.17–0.27) 79 (73–83)

Overall Control 5931/11,000 4,920/6,000

BB 726/9,106 0.07 (0.07–0.08) 93 (92–93) 2,568/5,992 0.20 (0.19–0.22) 80 (78–81)

N refers total number of mosquitoes of each species that were recovered in the semi-field system while n refers total number blood-fed mosquitoes; 
Odds ratios (OR) and p-value were obtained from mixed effect logistic regression model adjusted for the effect of treatment, volunteer, chamber, experi-
mental night, temperature and humidity; All P < 0.002. PE is the reduction in the odds of mosquitoes feeding.

https://doi.org/10.1371/journal.pone.0320624.t002

Table 3.  Effect of the BiteBarrier transfluthrin emanator on mortality of exposed mosquitoes.

Mosquito species Treatment Indoor Outdoor

Mean (95% CI) OR (95% CI) Mean (95% CI) OR (95% CI)

An. gambiae s.s. Control 1.2 (0.43–1.98) 1 4.71 (0.48–9.91) 1

BB 73.37 (61.29–85.4) 3.07 (1.51–6.24) 52.16 (42.65–61.68) 2.18 (1.14–4.15)

An. Gambiae s.s. KDR Control 0.05 (0.02–0.14) 1 1.07 (0.17–1.97) 1

BB 47.33 (34.89–59.77) 2.26 (1.46–3.49) 20.65 (15.17–26.14) 1.70 (1.12–2.59)

An. funestus Control 1.17 (0.38–1.96) 1 2.05 (0.74–3.36) 1

BB 54.09 (44.08–64.10) 1.96 (1.30–2.94) 29.53 (24.43–34.64) 1.57 (1.06–2.35)

Cx. quinquefasciatus Control 1.30 (0.15–2.45) 1 0.93 (0.36–2.22) 1

BB 19.08 (11.22–26.93) 1.55 (1.02–2.34) 15.22 (10.24–20.19) 1.79 (1.17–2.73)

Ae. aegypti Control 1.39 (0.05–2.73) 1 1.63 (0.38–2.89) 1

BB 47.18 (34.01–60.37) 2.90 (1.46–5.74) 14.98 (8.22–21.73) 2.11 (1.07–4.15)

Overall Control 1.02 (0.61–1.41) 1 2.08 (0.97–3.19) 1

BB 47.84 (43.26–53.41) 1.80 (1.49–2.16)* 26.51 (22.91–30.11) 1.54 (1.28–1.84)*

Mean refers to as arithmetic mean of proportion of mosquitoes of each species died per treatment arm; Odds ratio (OR) and P-values were obtained 
from mixed effect logistic regression model adjusted for the effect of treatment, volunteer, chamber, experimental night, temperature and humidity; *P 
value <0.002, all other P < 0.018

https://doi.org/10.1371/journal.pone.0320624.t003

https://doi.org/10.1371/journal.pone.0320624.t002
https://doi.org/10.1371/journal.pone.0320624.t003
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Previous studies on volatile pyrethroids have used human landing catch (HLC) as a proxy for blood-feeding 
[24,25] or allowed mosquitoes to bite freely to measure feeding inhibition [9]. Some studies found similar efficacy 
[10,26], while others found different but reasonable agreement between the two methods [8]. In this current study, 
feeding method provided a significantly higher estimate of PE of the BB across multiple species, particularly Cx. 
quinquefasciatus, An. funestus and Ae. aegypti. However, for An. gambiae s.s., both methods yielded similar results, 
while landing method estimated greater PE for An. gambiae s.s. (KDR). In a previous study [8] using transfluthrin 
hessian strips that conducted a similar comparison the results agree closely for An. funestus, (OR: 0.78 (95% CI: 
0.72–0.85 in the current work vs. (RR: 0.75 (95% CI: 0.63–0.89 in the previous study), and An. gambiae s.s. (KDR), 
(OR: 1.11 (95% CI: 1.02–1.20 in this work) vs. (RR: 0.97 (95% CI: 0.80–1.17 in the previous study). However, the 
difference between methods was less pronounced for An. gambiae s.s., (OR: 1.01 (95% CI: 0.92–1.10 in the cur-
rent study) vs. (RR: 0.77 (95% CI: 0.63–0.94 in the earlier work). Since not all mosquitoes landing after exposure to 
transfluthrin feed, as indicated by higher PE in feeding experiments, measuring blood-feeding is important for under-
standing the potential for pathogen acquisition by mosquitoes. However, we acknowledge that, while landing rate is 
not equivalent to feeding, remains epidemiologically important for assessing human exposure risks. Although, both 
feeding and landing assays provide complimentary information, given the mode of action of transfluthrin we rec-
ommend blood-feeding as a more accurate measure of PE in proof-of-concept studies under controlled settings. In 
contrast, the HLC while involving some exposure to probing and potential pathogen transmission, remains a practical 
and widely used proxy in field evaluations especially where ethical, logistical and regulatory constrains limit the use 
of blood feeding assays [8,10,27].

The recovery rate of mosquitoes in the SFS (S1 Table) was consistent across both methods, indicating that dif-
ferences in landing and feeding behavior were not due to mosquito density variations. Indoor and outdoor recovery 
rates between treatment and control chambers were similar. The slightly lower recovery rates in the indoor treatment 
chambers may be due to transfluthrin-induced disorientation within the enclosed hut environment, making some 
mosquitoes less likely to be recaptured. Overall, in a few instances, recovery rates were below or exceeded the esti-
mated release mosquito count, which is expected especially when working with multiple species and complex setups. 
Instances where the number of recovered mosquitoes exceeded the release count were rare and did not significantly 
affect the overall recovery patterns across replicates. We acknowledge that, despite a one-hour collection period, 
some mosquitoes may temporarily remain hidden in the large semi-field system despite that we lowered the roof and 
covered the floor with white tarpaulin to enhance visibility. Similar scenario has been observed in previous semi-field 
studies [7,28], highlighting the importance of using recovered mosquitoes as the denominator in analysis for studies 
conducted in larger semi-field chambers.

Notably, our findings demonstrated that the BB significantly reduces feeding success across all mosquito species. 
Overall, PE ranged from 92–93% indoors and 78–81% outdoors across species, irrespective of resistance status, rein-
forcing evidence of transfluthrin’s effectiveness against both pyrethroid-susceptible and resistant mosquitoes [5,29]. The 
higher PE observed indoors is likely due to the higher concentration of transfluthrin inside the hut. Outdoor efficacy could 
potentially be enhanced by increasing the number of emanators. In a previous semi-field study using the BB, Burton et 
al., [7] reported over 40% reduced host-seeking by An. gambiae s.s. with fresh devices, with efficacy slightly declining but 
persisting over five weeks. Similarly, Vajda et al., [28] observed over 50% reduction in the odds of An. minimus landings 
in the BB treated arm deployed for 30 days. Field studies further confirmed effectiveness of the BB showing over 94% 
protection against Anopheles landings in Cambodia [11]. These findings highlight the BB’s potential for protecting people 
in diverse contexts and the utility of SEs to bridging protection gaps, such as indoor biting when people are awake and 
not using insecticide-treated nets (ITNs) or sleeping but not using ITNs and outdoor biting [30,31]. Additionally, SEs are 
suitable for protecting individuals in humanitarian or other emergency settings and mobile communities such as forest 
workers who live in temporary structures [32].
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Furthermore, transfluthrin exposure led to significant mosquito mortality especially indoors, aligning with previous stud-
ies [7,9,29,33,34]. The high mortality combined with reduction in feeding, highlights the intervention’s potential to reduce 
mosquito populations and disrupt transmission cycles [4,35,36]. Mortality was highest among susceptible and resistant 
Anopheles species and susceptible Ae. aegypti, while Cx. quinquefasciatus, highly resistant to pyrethroids, showed lower 
mortality. The observed lower mortality for Cx. quinquefasciatus may be due to the high level of pyrethroid resistance 
observed in this strain (S2 Table), and likelihood of other resistance mechanisms. However, resistance to transfluthrin for 
this strain is not fully established. Therefore, further experiments are warranted using recommended discriminating doses 
and determine any potential cross-resistance.

The design of this study, involved only one-hour of mosquito exposure, a relatively shorter period compared to other 
semi-field experiments where exposure lasted several hours at night. Still, it may not fully, replicate real-world conditions, 
where host-seeking mosquitoes often exit quickly the treated space due to irritation, disorientation, or repellency. Shorter 
exposure times combined with repeated mosquito release and collection are recommended to better mimic field condi-
tions [7]. Additionally, while the SFS allows for controlled experimental variables and standardized data collected, it does 
not fully capture the complexities of real-world environments. Variables such as wind and other environmental conditions 
could significantly influence the performance of SEs [33,37]. Even so, the inclusion of multiple mosquito species with 
different susceptibility levels offered a comprehensive evaluation, ensuring that the findings reflect diverse ecological 
scenarios. Furthermore, SFS studies are valuable as part of a staged process for product evaluation, providing data for 
proof-of-concept studies and optimizing products or deployment options. For example, our study has provided valuable 
data that can be used to inform onward experimental hut or field studies.

Conclusions

Overall, this study provides evidence for the efficacy of the BiteBarrier spatial emanator over eight weeks of deployment 
in semi-field-controlled settings in reducing mosquito bites and survival for a range of species, including resistant popula-
tions. The results highlight the potential of spatial emanators as a valuable addition to the current arsenal of vector control 
tools, even in areas where resistance to pyrethroids is prevalent or other conventional tools may not be feasible. Further 
longitudinal research beyond the eight weeks of aging is needed to explore its longer-term effectiveness and public health 
impact in real-world settings.
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