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Abstract 

Pseudouridine is an important modification site, which is widely present in a variety of 
non-coding RNAs and is involved in a variety of important biological processes. Studies have 
shown that pseudouridine is important in many biological functions such as gene expres-
sion, RNA structural stability, and various diseases. Therefore, accurate identification of 
pseudouridine sites can effectively explain the functional mechanism of this modification site. 
Due to the rapid increase of genomics data, traditional biological experimental methods to 
identify RNA modification sites can no longer meet the practical needs, and it is necessary to 
accurately identify pseudouridine sites from high-throughput RNA sequence data by com-
putational methods. In this study, we propose a deep learning-based computational method, 
Definer, to accurately identify RNA pseudouridine loci in three species, Homo sapiens, 
Saccharomyces cerevisiae and Mus musculus. The method incorporates two sequence coding 
schemes, including NCP and One-hot, and then feeds the extracted RNA sequence features 
into a deep learning model constructed from CNN, GRU and Attention. The benchmark data-
set contains data from three species, H. sapiens, S. cerevisiae and M. musculus, and the results 
using 10-fold cross-validation show that Definer significantly outperforms other existing 
methods. Meanwhile, the data sets of two species, H. sapiens and S. cerevisiae, were tested 
independently to further demonstrate the predictive ability of the model. In summary, our 
method, Definer, can accurately identify pseudouridine modification sites in RNA.

1.  Introduction
RNA modification is an important component of gene regulation and is involved in various 
biological processes [1,2]. To date, over 150 types of RNA modifications have been discovered 
in the field of biology [3,4]. Among them, pseudouridine (Ψ) modification is the earliest and 
most abundant RNA modification found in various types of RNA, including mRNA, tRNAs, 
and snRNA, etc [5,6]. The most common processes of RNA modification are pseudouridyla-
tion and methylation [7]. Studies have shown that pseudouridine can change the secondary and 
tertiary structure of RNA, affect the speed of gene expression, and is closely related to various 
diseases, such as Parkinson’s disease, congenital keratinization disorder, and myelodysplastic 
syndrome keratosis, which are associated with pseudouridine modification mutations [8,9]. 
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Therefore, studying pseudouridine modification sites is of great significance for both biology 
and medicine [10,11]. With the advent of the post-genomic era, the amount of genomic data 
has increased rapidly, and traditional biological experiments are no longer able to meet the 
actual research needs [12]. Therefore, it is necessary to develop more convenient computational 
models to extract information on pseudouridine sites and accurately identify them [13,14].

Many computational methods based on machine learning and deep learning have been devel-
oped for predicting pseudouridine sites in three species, including H. sapiens, S. cerevisiae, and M. 
musculus. Li et al. [15] constructed the first prediction model for pseudouridine sites, PPUS, based 
on the SVM algorithm for predicting Homo sapiens and Saccharomyces cerevisiae through a web 
server. Chen et al. [16] constructed datasets for H. sapiens, S. cerevisiae, and Mus musculus and 
combined the PseDNC encoding method with SVM to build the iRNA-PseU prediction model. 
The constructed dataset was further used in subsequent research. He et al. [17] proposed PseUI, 
which combines five encoding methods with SVM algorithm and further improves the accuracy 
of pseudouridine site recognition by applying sequence forward feature selection. Subsequently, 
Tahir et al. [18] used the One-hot encoding method and built a two-layer convolutional neural 
network to develop iPseU-CNN. Liu et al. [19] developed XG-PseU, a prediction method based 
on extreme Gradient Boosting (XGBoost). Bi et al. [20] discovered the ensemble learning algo-
rithm, which integrates five different machine learning classifiers to build the EnsemPseU predic-
tor for predicting pseudouridine sites. Lv et al. [21] used the random forest algorithm combined 
with the light gradient boosting machine algorithm and the incremental feature selection strategy 
to build a new predictor, RF-PseU, which improved prediction performance. Mu et al. [22] 
constructed MU-PseUDeep by combining the original sequence and secondary structure with a 
convolutional neural network, further improving the performance of predicting pseudouridine 
sites. Song et al. [23,24] constructed PIANO and PSI-MOUSE predictors based on genomic and 
sequence features for predicting pseudouridine sites. This is the first time that genomic-derived 
features have been introduced and achieved good performance in predicting pseudouridine sites. 
Li et al. [25] developed the porpoise predictor based on the stacked ensemble learning method 
and used four feature selection methods. Table 1 summarizes the existing pseudouridine site pre-
dictors, including benchmark datasets, feature extraction, classifiers, performance evaluation, and 
network servers, and most of these computational methods predict the three species, H. sapiens, S. 
cerevisiae, and M. musculus, with only PPUS predicting H. sapiens and S. cerevisiae.

Although previous studies have made significant contributions and provided a foundation for 
subsequent research, there is still considerable room for improvement in predicting RNA sequence 
performance based on existing methods [26,27]. Developing better prediction methods will enable 
a comprehensive understanding of the relationship between RNA sequences and life activities. 
Existing prediction tools mostly rely on a single feature extraction algorithm and traditional 
machine learning algorithms [28,29]. Due to the extremely complex sequence features exhibited by 
biological sequences, traditional machine learning methods cannot achieve better prediction per-
formance. Deep learning algorithms have strong learning and generalization abilities, and possess 
good modeling capabilities [30]. Therefore, it is necessary to improve prediction performance by 
increasing sequence features and developing more suitable classification algorithms [31].

Based on the above issues, this paper proposes a deep learning-based computational 
method, Definer, to identify pseudouridine (Ψ) sites in three species, including H. sapiens, 
S. cerevisiae, and M. musculus. Firstly, we combined the One-hot and NCP feature encoding 
schemes to extract RNA sequence information. Secondly, we constructed Ψ site prediction 
models based on three deep learning models: convolutional neural network (CNN), gated 
recurrent unit (GRU), and attention mechanism. Finally, ten-fold cross-validation and inde-
pendent testing showed that, compared with state-of-the-art methods, Definer significantly 
improved the prediction performance on Ψ site identification in all three species.
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2.  Materials and methods

2.1.  Overall framework
The experimental design process and performance evaluation of this study are shown 
in Fig 1, which includes five main steps: data collection, feature extraction, model con-
struction, performance evaluation, and visualization software development [32]. Firstly, 
benchmark datasets and independent test sets for three species, H. sapiens, S. cerevisiae, 
and M. musculus, were collected from relevant literature and public databases [24]. Two 
feature extraction methods were then employed to extract sequence information from the 
datasets. Subsequently, a deep learning-based predictor, Definer, was constructed, which 
achieved good performance on all three species. Furthermore, we evaluated and compared 

Table 1.  Summary of existing methods for RNA pseudouridine site prediction.

Toolsa Species Encoding Classifier Evaluation strategy Webserver/softwareb

PPUS [15] H. sapiens
S. cerevisiae

Binary SVM 5-fold CV Yes

iRNA-PseU [16] H. sapiens
S. cerevisiae
M. musculus

PseKNC SVM jackknife test
and independent
test

Yes

PseUI [17] H. sapiens
S. cerevisiae
M. musculus

NAC,DNC, PseDNC, 
PSNP,
PSDP

SVM jackknife test
and independent
test

Yes

iPseU-CNN [18] H. sapiens
S. cerevisiae
M. musculus

One-hot CNN 5-fold CV No

XG-PseU [19] H. sapiens
S. cerevisiae
M. musculus

NAC,DNC,TNC,
NCP,ND,
One-hot

XGBoost 10-fold CV and
independent test

Yse

EnsemPseU [20] H. sapiens
S. cerevisiae
M. musculus

Kmer,Binary,
ENAC,NCP,
ND

Ensemble 10-fold CV and
independent test

No

RF-PseU [21] H. sapiens
S. cerevisiae
M. musculus

Binary,ANF,
NCP,EIIP,ENAC,
CKSNAP

RF 10-fold CV and
independent test

Yes

MU-PseUDeep [22] H. sapiens
S. cerevisiae
M. musculus

One-hot,PSNP CNN 10-fold CV and
independent test

No

PIANO [23] H. sapiens
S. cerevisiae
M. musculus

SCP,PSNP,
Genome-derived features

SVM 10-fold CV and
independent test

Yes

PSI-MOUSE [24] H. sapiens
S. cerevisiae
M. musculus

NCP,ND,
Genome-derived
features

SVM 10-fold CV and
independent test

Yes

Porpoise [25] H. sapiens
S. cerevisiae
M. musculus

Binary,PseKNC,
NCP,PSTNPss

SVM,GBDT,
GaussianNB,
XGBoost

10-fold CV and
independent test

Yes

Abbreviations: Binary, binary features; PseKNC, pseudo nucleotide composition; NAC, nucleic acid composition; DNC,di-nucleotide composition; PseDNC, pseudo 
nucleic acid composition; PSNP, position-specific nucleotide propensity; PSDP, position-specific dinucleotide propensity; TNC, tri-nucleotide composition; ENAC, 
enhanced nucleic acid composition; ANF, accumulated nucleotide frequency; EIIP, electron-ion interaction pseudopotentials of trinucleotide; CKSNAP, composition 
of k-spaced nucleic acid pairs; SCP, structural chemical properties; SVM, support vector machine; CNN, convolutional neural networks; XGBoost, extreme Gradient 
Boosting; RF, random forest; GBDT, gradient boosting decision tree; GaussianNB, gaussian naive bayes; CV, cross-validation.
aThe URL addresses for the listed tools are as follows: PPUS, http://lyh.pkmu.cn/ppus/; iRNA-PseU, http://lin.uestc.edu.cn/server/iRNA-PseU; PseUI, http://zhulab.ahu.
edu.cn/PseUI/; XG-PseU, http://www.bioml.cn/; RF-PseU, http://rfpsu.aibiochem.net/; PIANO, http://piano.rnamd.com/; PSI-MOUSE, http://piano.rnamd.com/.
bYes: the publication is accompanied with a webserver/soft package and it is still functional; No: the publication has no webserver or soft package.

https://doi.org/10.1371/journal.pone.0320077.t001
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our Definer with several existing methods, and found that its prediction performance was 
significantly improved. Finally, we developed and made publicly available a software for 
users to utilize online.

Data collec�on

H.sapiens

S.cerevisiae

M.musculus

Data collec�on Feature Extrac�on

NCP

One-Hot

Classifier

Model

Evalua�on

ACC

Sn

Sp

MCC

Input Conv Normal Conv concat Conv concat A�en�o
n Input

GRU GRU

So ware

Model

Fig 1.  Shows the experimental design process.

https://doi.org/10.1371/journal.pone.0320077.g001
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2.2.  Benchmark data sets
In order to facilitate comparison with existing methods, we used the dataset constructed 
by Chen et al. (11), which is commonly used in most of the existing prediction methods, 
such as iRNA-PseU [15], PseUI [16], iPseU-CNN [17], XG-PseU [18], and Porpoise [25]. 
The datasets for the three species were obtained from the RMBase database [33], includ-
ing three benchmark datasets H. sapiens (H_990), S. cerevisiae (S_628), and M. musculus 
(M_994), which were used for model training, and two independent test sets, which only 
included H. sapiens (H_200) and S. cerevisiae (S_200) species. The details of the datasets 
are shown in Table 2.

2.3.  Feature extraction
Feature extraction is an important step in building a prediction model, which aims to 
encode RNA sequence fragments containing only four nucleotides, adenine (A), cytosine 
(C), guanine (G), and uracil (U), into digitized feature vectors [34]. The way of extracting 
input data has a great impact on the model. Only by choosing a suitable feature extraction 
method according to specific conditions can better training results be achieved. Efficient 
feature extraction methods can effectively extract more representative feature vectors and 
provide strong support for subsequent model construction [35]. In this study, we used 
two feature extraction methods, including One-hot encoding and nucleotide chemical 
properties (NCP). Brief introductions of these two feature extraction methods are pre-
sented below.

2.3.1.  One-hot encoding.  One-hot encoding is a binary encoding method and one of the 
basic feature representation methods for RNA sequences. The basic idea of one-hot encoding 
is to convert each base in the sequence into a four-dimensional binary vector, where only one 
dimension is 1 and the others are 0. The four nucleotides A, U, C, and G will be respectively 
converted into vectors (1,0,0,0), (0,1,0,0), (0,0,1,0), and (0,0,0,1) [36].

2.3.2.  NCP.  The RNA sequence is composed of four nucleotides: adenine (A), cytosine 
(C), guanine (G), and uracil (U). These nucleotides have different structures and chemical 
properties. Nucleotide Chemical Property (NCP) encodes RNA sequences by three 
different chemical properties, including cyclic structure, hydrogen bonding, and chemical 
functionality [37]. Regarding cyclic structure, A and G are purines with two rings, while C 
and U are pyrimidines with one ring. Concerning hydrogen bonding, A and U form two 
hydrogen bonds during hybridization, while G and C can form three hydrogen bonds [38]. 
Regarding chemical functionality, A and C contain an amino group, while G and U contain 
a ketone base. Based on the three different chemical structural properties, nucleotides in 
RNA sequences can be represented by a vector L X Y Zj j j j=( ), , , where X represents cyclic 
structure, Y represents hydrogen bonding, and Z represents chemical functionality. The 
feature representation method of NCP is shown in equation (1).

Table 2.  Datasets introduction.

Datasets Number of positive samples Number of negative samples Sequence length
H_990 495 495 21
S_628 314 314 31
M_994 497 497 21
H_220 100 100 21
S_220 100 100 31

https://doi.org/10.1371/journal.pone.0320077.t002

https://doi.org/10.1371/journal.pone.0320077.t002
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2.4.  Deep learning model framework
This study aims to construct a prediction model for pseudouridine sites in RNA based on 
three classical deep learning models: convolutional neural network (CNN), gated recurrent 
unit (GRU), and attention. Firstly, the input data is processed through the first convolution 
layer of the CNN, which performs cross-correlation operations on the matrix of each channel 
from left to right and top to bottom using convolution kernels. Then, the obtained data is 
regularized to prevent overfitting, as shown in equations (2) and (3).
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Next, the data and parameters are compressed through the pooling layer of CNN, and the 
compressed data is fed into the second layer of CNN. At the same time, the feature tensor is 
fused with GRU and the Relu activation function is used to accelerate the convergence of the 
model, as shown in equation (4). The update gate Zt  is used to filter information, and Wz  
controls the retention level of new and old information input at each time step. The reset gate 
rt  is used to filter information, and Wr  controls the retention level of input information at 
each position at time t-1 [39].
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Then, following the same method of combining the second layer convolution of CNN with 
GRU, the feature tensors of the third layer convolution of CNN and GRU are fused. Finally, to 
focus on important information and fully absorb it, an Attention mechanism is added to the 
model.

2.5.  Performance evaluations
Model evaluation is an important step to verify the feasibility of a model, and there are three 
commonly used methods: K-fold cross-validation, independent testing, and overlapping 
checking. In order to facilitate comparison with existing methods and better demonstrate the 
effectiveness of the proposed method, we choose to use the first two methods for evaluation, 
respectively based on the training dataset and the testing dataset using 10-fold cross-validation 
and independent tests. For a classification task, accuracy (ACC) is the most basic evaluation 
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index, which represents the percentage of correct classification. However, the basic evaluation 
index often cannot reflect the model’s performance well, which may lead to poor judgments. 
This study uses four evaluation indicators, including specificity (Sp), sensitivity (Sn), accuracy 
(ACC), and Matthew’s correlation coefficient (MCC) to evaluate the predictive model [40,41]. 
The calculation formulas for the four evaluation indicators are shown below.

	 S TP
TP FNn = +

	 (5)

	 S TN
TN FPp = +

	 (6)

	 ACC TP TN
TP TN FP FN
=

+
+ + +

	 (7)

	 MCC TP TN FP FN

TP FP TP FN TN FP TN FN
=

× − ×

+( ) +( ) +( ) +( )
	 (8)

In this paragraph, TP, FP, TN, and FN respectively represent the number of true positives, false 
positives, true negatives, and false negatives.

3.  Results and discussion

3.1.  Distribution of nucleotide positions at pseudouridine sites
To analyze the characteristics of pseudouridine sites in RNA sequences, we used Two Sample 
Logo [42] to calculate the importance of nucleotides at each position. Two Sample Logo is a 
tool for computing differences between nucleotide samples and the significance of nucleotides 
at each position in a sequence. The nucleotide distributions of pseudouridine sites in the H. 
sapiens, S. cerevisiae, and M. musculus species are shown in Fig 2a, 2b, and 2c, respectively. 
The size of each letter represents the frequency of the corresponding base at that position, with 
larger letters indicating higher frequencies. At each position, the letters are arranged in order 
of dominance from top to bottom, with the most dominant base at the top. From the figures, it 
can be seen that in H. sapiens, uridine (U) content is highest near the central position 11, while 
cytidine (C) is mainly distributed at downstream positions 17 and 20. In S. cerevisiae, guanine 
(G) is mostly distributed in the upper-middle region, while uridine (U) is distributed at the 
central positions 14, 15, and 16. Adenine (A) is mainly distributed in the upper-middle region, 
with three consecutive A bases at positions 13, 14, and 15. In M. musculus, uridine (U) is dis-
tributed in the upper-middle region, with U bases at positions 9, 11, 12, and 13. These results 
indicate that there are different nucleotide distribution patterns between pseudouridine and 
non-pseudouridine sites in the H. sapiens, S. cerevisiae, and M. musculus species, and therefore, 
it is necessary to establish a universal prediction model across different species.

3.2.  Performance comparison analysis of different feature extraction 
methods
An efficient feature extraction method can effectively extract more representative feature 
vectors and provide strong support for subsequent model construction. This section com-
pared One-hot, NCP, and their fusion, respectively, by placing these three feature extraction 
methods into the predictor for comparison. The comparative results for the three species H. 
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sapiens, S. cerevisiae, and M. musculus are shown in Tables 3–5, respectively. Please note that 
there are no grammar errors in the original text.

From the table, it becomes apparent that the combination of both encoding methods yields 
superior results across all three datasets in comparison to the utilization of a single feature 
extraction approach. In the context of the H_990 dataset, the amalgamation of One-hot and 
NCP surpasses both individual feature extraction methods with respect to all four evaluation 

Fig 2.  Distribution of nucleotide positions of the three species.

https://doi.org/10.1371/journal.pone.0320077.g002

https://doi.org/10.1371/journal.pone.0320077.g002
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metrics. Specifically, it attains an accuracy rate of 82.95%, which represents a notable enhance-
ment of 1.93% over the accuracy achieved by the One-hot method alone. While it is true 
that the single feature extraction method Sn exhibits a relatively better performance than the 
fusion on the S_628 and M_944 datasets in terms of a particular aspect, it is important to 
note that the fusion method demonstrates a significantly more favorable performance in the 
other three evaluation metrics. The fused ACC values on the S_628 and M_944 datasets are 
86.01% and 87.15%, respectively. Based on these comprehensive observations and analyses, we 
have opted to employ the fusion of One-hot and NCP for the extraction of sequence feature 
information pertaining to pseudouridine sites, as it offers a more comprehensive and effective 
means of capturing the essential characteristics and patterns within the data.

3.3.  Performance comparison analysis of different models
The classifier is an important component of the experiment and is closely related to the final 
experimental results. Building a suitable predictive model can greatly improve experimental 
performance. Deep learning is a machine learning algorithm with feature learning ability. 
It can extract and learn low-level data features to obtain more abstract high-level features. 
In recent years, the genomics databases have grown rapidly. Only by using classifiers with 
stronger learning ability can we better learn and mine effective information in huge databases 
[43]. In this section, a predictor called Definer was constructed based on commonly used deep 
learning algorithms. We compared it with several traditional machine learning algorithms and 
commonly used deep learning algorithms, including SVM, RF, LightGBM, and CNN, based 
on ten-fold cross-validation on three benchmark datasets. The comparison results of the three 
benchmark datasets are shown in Fig 3. From the figure, it can be seen that the evaluation 

Table 3.  Three feature extraction methods used in H_990 comparison of results.

Feature extraction ACC (%) Sn (%) Sp (%) MCC (%)
One-hot 81.02 83.25 78.78 62.38
NCP 76.55 76.77 76.33 53.48
One-hot+NCP 82.95 85.28 80.62 66.43

Note: Bold numbers indicate the maximum value in this column.

https://doi.org/10.1371/journal.pone.0320077.t003

Table 4.  Three feature extraction methods used in S_628 comparison of results.

Feature extraction ACC (%) Sn (%) Sp (%) MCC (%)
One-hot 85.81 85.00 86.62 72.18
NCP 84.52 86.28 82.77 69.91
One-hot+NCP 86.01 84.05 87.97 72.66

Note: Bold numbers indicate the maximum value in this column.

https://doi.org/10.1371/journal.pone.0320077.t004

Table 5.  Three feature extraction methods used in M_944 comparison of results.

Feature extraction ACC (%) Sn (%) Sp (%) MCC (%)
One-hot 86.93 88.32 85.54 74.03
NCP 85.76 85.97 85.56 71.76
One-hot+NCP 87.15 87.04 87.26 74.41

Note: Bold numbers indicate the maximum value in this column.

https://doi.org/10.1371/journal.pone.0320077.t005

https://doi.org/10.1371/journal.pone.0320077.t003
https://doi.org/10.1371/journal.pone.0320077.t004
https://doi.org/10.1371/journal.pone.0320077.t005
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Fig 3.  The comparison results of the three benchmark dataset.

https://doi.org/10.1371/journal.pone.0320077.g003

https://doi.org/10.1371/journal.pone.0320077.g003
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indicators of deep learning algorithms are much higher than those of traditional machine 
learning algorithms. We built a new predictor Definer based on CNN, which integrates two 
GRUs and introduces Attention. From the prediction results, our model is superior to other 
classifiers in all four evaluation indicators.

3.4.  Comparative analysis on independent datasets
To further substantiate the proficiency of Definer in predicting pseudouridine sites, this 
section undertakes a comprehensive verification and evaluation process using two indepen-
dent test sets, which encompass two distinct species, namely Homo sapiens and Saccharo-
myces cerevisiae. Concurrently, an in-depth comparison of the predictive performance of 
our proposed method with that of several pre-existing methods was carried out on these two 
independent test sets, and the corresponding results are meticulously presented in Table 6. As 
is conspicuously demonstrated in the table, our predictor exhibits a highly significant and pre-
ponderant performance, outstripping other methods across all four evaluation metrics on the 
two independent test datasets. Particularly in the case of Homo sapiens, the achieved Accu-
racy (ACC) reaches an impressive 83.50%, which represents a remarkable increment of 6% 
over the hitherto best-performing existing method, Porpoise. This outstanding performance 
not only attests to the enhanced predictive power of Definer but also underlines its potential 
to make a substantial contribution in the realm of pseudouridine site prediction and related 
bioinformatics research.

3.5.  Performance comparison with state-of-the-art methods
In this section, a comprehensive comparison was conducted between Definer and a series of 
state-of-the-art methods across three benchmark datasets, namely XG-PseU [19], iPseU-CNN 
[18], PseUI [17], iRNA-PseU [16], EnsemPseU [20], RF-PseU [21], and Porpoise [25]. The 
detailed comparison results are presented in Table 7. Upon performing ten-fold cross- 
validation on the identical two independent test datasets, it becomes evident that Definer 

Table 6.  Comparison Evaluation with state-of-the-art several methods on the same independent test dataset.

Species Method ACC (%) Sn (%) Sp (%) MCC (%)
H.sapiens XG-PseU [19] 67.50 68.00 67.00 35.00
(H_200) iPseU-CNN [18] 69.00 77.72 60.81 40.00

PseUI [17] 65.50 63.00 68.00 31.00
iRNA-PseU [16] 61.50 58.00 65.00 23.00
EnsemPseU [20] 69.50 73.00 66.00 39.00
RF-PseU [21] 75.00 78.00 72.00 50.00
Porpoise [25] 77.35 82.30 72.40 55.13
Definer 83.50 91.00 88.00 73.34

S.cerevisiae XG-PseU [19] 71.00 75.00 67.00 42.14
(S_200) iPseU-CNN [18] 73.50 68.76 77.82 47.00

PseUI [17] 68.50 65.00 72.00 37.00
iRNA-PseU [16] 60.00 63.00 57.00 20.00
EnsemPseU [20] 75.00 85.00 65.00 51.00
RF-PseU [21] 77.00 75.00 79.00 54.00
Porpoise [25] 83.50 88.00 79.00 67.27
Definer 88.00 90.00 88.00 78.59

Note: Bold numbers indicate the maximum value in this column.

https://doi.org/10.1371/journal.pone.0320077.t006

https://doi.org/10.1371/journal.pone.0320077.t006
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exhibits remarkable superiority. In the case of two species, S. cerevisiae and M. musculus, 
Definer surpasses the other seven prediction methods with respect to all four evaluation 
metrics. Even in H. sapiens, although the Sn of the porpoise tool is marginally higher than 
that of our predictor, it is crucial to note that our predictor demonstrates a significant edge 
and is far more excellent in the remaining three evaluation metrics. This clearly indicates 
that Definer not only attains a higher level of accuracy but also showcases enhanced stability 
when compared to other existing methods. By integrating the comparison outcomes from 
the independent test set in the preceding section, it can be firmly and conclusively drawn that 
Definer is capable of precisely and accurately predicting pseudouridine sites within the three 
species, namely H. sapiens, S. cerevisiae, and M. musculus, thereby establishing its efficacy 
and reliability in the field of pseudouridine site prediction.

3.6.  Software engineering
In the field of bioinformatics, there are numerous commonly used analysis methods and 
online tools. For example, sequence alignment tools like GGMSA [44] are widely utilized. 
GGMSA allows for the comparison of nucleotide or amino acid sequences, enabling the iden-
tification of homologous sequences and providing insights into evolutionary relationships and 
functional similarities. It uses efficient algorithms to search large sequence databases rapidly, 
which is a remarkable technical achievement.

Table 7.  Comparison of three benchmark datasets with existing methods.

Species Method ACC (%) Sn (%) Sp (%) MCC (%)
H.sapiens XG-PseU 65.44 63.64 67.24 31.00
(H_990) iPseU-CNN 66.68 65.00 68.78 34.00

PseUI 64.24 64.85 63.64 28.00
iRNA-PseU 60.40 61.01 59.80 21.00
EnsemPseU 66.28 63.46 69.09 33.00
RF-PseU 64.30 66.10 62.60 29.00
Porpoise 78.53 89.11 67.94 58.45
Definer(10-fold CV) 85.68 84.66 86.50 71.31

S.cerevisiae XG-PseU 68.15 66.84 69.45 37.00
(S_628) iPseU-CNN 68.15 66.36 70.45 37.00

PseUI 65.13 62.74 67.52 30.00
iRNA-PseU 64.49 64.65 64.33 29.00
EnsemPseU 74.16 73.88 74.45 49.00
RF-PseU 74.80 77.20 72.40 49.00
Porpoise 81.69 81.21 82.17 63.38
Definer(10-fold CV) 86.30 85.68 86.94 73.01

M.musculus XG-PseU 72.03 76.48 67.57 45.00
(M_944) iPseU-CNN 71.81 74.79 69.11 44.00

PseUI 70.44 74.58 66.31 41.00
iRNA-PseU 69.07 73.31 64.83 38.00
EnsemPseU 73.85 75.43 72.25 48.00
RF-PseU 74.80 73.10 76.50 50.00
Porpoise 77.75 77.83 77.67 55.55
Definer(10-fold CV) 87.68 88.10 87.25 75.54

Note: Bold numbers indicate the maximum value in this column and CV indicates cross-validation.

https://doi.org/10.1371/journal.pone.0320077.t007

https://doi.org/10.1371/journal.pone.0320077.t007
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Another important tool is gene expression analysis software such as DESeq2 [45]. It can 
analyze differential gene expression between different samples or conditions. By applying 
statistical models and normalization techniques, it helps to identify genes that are significantly 
upregulated or downregulated, which is crucial for understanding biological processes and 
disease mechanisms.

Recent advancements in computational methods, such as the MRNDR [46], further 
enhance the ability to analyze complex biological data and uncover potential drug repurposing 
opportunities through sophisticated attention mechanisms and deep learning architectures.

However, when it comes to the prediction of potential pseudo-uridine sites from RNA 
sequences, existing tools have certain limitations. While they may focus on general sequence 
analysis or other types of RNA modifications, they do not specifically target pseudo-uridine 
sites with high accuracy and user-friendly visualization.

Software engineering and web servers have become essential in the Internet age. To address 
the need for identifying potential pseudo-uridine sites, we have developed a software visu-
alization based on our model Definer. It is developed using the Python Tkinter framework. 
The main interface of this software, as shown in Fig 4, offers a unique solution. It provides 
users with an intuitive and convenient way to input RNA sequences and obtain predictions of 
potential pseudo-uridine sites. The model Definer underlying the software has been carefully 
designed and trained to improve the accuracy of pseudo-uridine site prediction, filling a gap 

Fig 4.  Main interface of the software.

https://doi.org/10.1371/journal.pone.0320077.g004

https://doi.org/10.1371/journal.pone.0320077.g004
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in the existing bioinformatics tool landscape and offering a novel approach to this specific 
aspect of RNA sequence analysis.

On the main interface, users can enter or copy the RNA sequence they want to query 
into the input box in the lower right corner, or upload a txt file. Clicking the “example” 
button allows users to view the required format for the txt file. After a file is successfully 
uploaded, the data content will be displayed in the lower right box. The software pro-
vides three models for users to choose from, named after the corresponding species: H. 
sapiens, S. cerevisiae, and M. musculus. When users click the “Confire” button above the 
text box, the model will analyze and calculate the sequence, and return the sequence’s 
name, length, and whether it contains a site to the user. After the prediction is complete, 
users can click the “download” button to export the prediction result file to a specified 
path. The prediction result interface is shown in Fig 5. Please note that there should be 
no grammar errors.

Fig 5.  Prediction results interface.

https://doi.org/10.1371/journal.pone.0320077.g005

https://doi.org/10.1371/journal.pone.0320077.g005
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4.  Discussion
The accurate identification of pseudouridine sites is of great significance as it is involved in 
numerous crucial biological processes. In this study, we developed a novel computational 
method, Definer, to address the challenge of identifying RNA pseudouridine loci in H. sapi-
ens, S. cerevisiae, and M. musculus.

With the explosive growth of genomics data, the limitations of traditional experimental 
methods for identifying RNA modification sites have become increasingly prominent. Compu-
tational methods have emerged as a powerful alternative. Our proposed Definer method com-
bines two sequence coding schemes, NCP and One-hot, which allows for a more comprehensive 
representation of RNA sequence features. By feeding these features into a deep learning model 
composed of CNN, GRU, and Attention, we were able to capture both local and global sequence 
information, as well as the importance of different regions within the sequence.

The benchmark dataset, which includes data from three species, provided a solid founda-
tion for evaluating the performance of Definer. The results of 10-fold cross-validation clearly 
demonstrated that Definer outperforms other existing methods. This superiority can be 
attributed to the effective combination of the sequence coding schemes and the powerful deep 
learning architecture. The independent testing of the data sets of H. sapiens and S. cerevisiae 
further validated the robustness and predictive ability of the model.

However, it is important to note that there are still some limitations and areas for improve-
ment. For example, although Definer has shown good performance, the complexity of biolog-
ical systems means that there may be other factors that affect pseudouridine site identification 
that have not been fully considered. Future studies could explore incorporating additional 
types of data, such as structural information or epigenetic marks, to further enhance the accu-
racy of the model.

In addition, as new experimental techniques for detecting pseudouridine sites are devel-
oped, the benchmark datasets may need to be updated and refined to ensure the continued 
relevance and effectiveness of computational methods like Definer. Overall, our study rep-
resents an important step forward in the accurate identification of RNA pseudouridine sites, 
and we believe that Definer has the potential to be a valuable tool in further understanding 
the functional mechanisms of this important modification site and its implications in various 
biological processes and diseases.

5.  Conclusion
In this research, we have tackled the crucial task of identifying RNA pseudouridine sites. 
Pseudouridine, being widely distributed in non-coding RNAs and implicated in essential 
biological functions and diseases, demands accurate identification to decipher its functional 
mechanisms. The exponential growth of genomics data has necessitated the development of 
computational approaches, as traditional experimental methods have become insufficient.

Our proposed method, Definer, offers a promising solution. By integrating two sequence 
coding strategies, NCP and One-hot, it is capable of extracting comprehensive RNA sequence 
features. These features are then processed by a deep learning model composed of CNN, 
GRU, and Attention, which effectively capture the complex patterns and relationships within 
the RNA sequences.

The evaluation using a benchmark dataset covering three species, H. sapiens, S. cerevi-
siae, and M. musculus, and the application of 10-fold cross-validation have provided robust 
evidence that Definer outperforms existing methods. The independent testing of the datasets 
from H. sapiens and S. cerevisiae further bolsters the confidence in the model’s predictive 
capabilities.
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Overall, Definer represents a significant advancement in the field of RNA pseudouridine 
site identification. It has the potential to enhance our understanding of the role of pseudou-
ridine in gene expression, RNA structural stability, and disease mechanisms. Future research 
could focus on further optimizing the method, exploring its application in other species or 
RNA types, and investigating potential synergies with other omics data to provide a more 
holistic view of the complex regulatory networks involving pseudouridine. With continued 
development and refinement, Definer could become an invaluable tool in both basic biological 
research and clinical applications related to RNA modifications.
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