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Abstract

Pseudouridine is an important modification site, which is widely present in a variety of
non-coding RNAs and is involved in a variety of important biological processes. Studies have
shown that pseudouridine is important in many biological functions such as gene expres-
sion, RNA structural stability, and various diseases. Therefore, accurate identification of
pseudouridine sites can effectively explain the functional mechanism of this modification site.
Due to the rapid increase of genomics data, traditional biological experimental methods to
identify RNA modification sites can no longer meet the practical needs, and it is necessary to
accurately identify pseudouridine sites from high-throughput RNA sequence data by com-
putational methods. In this study, we propose a deep learning-based computational method,
Definer, to accurately identify RNA pseudouridine loci in three species, Homo sapiens,
Saccharomyces cerevisiae and Mus musculus. The method incorporates two sequence coding
schemes, including NCP and One-hot, and then feeds the extracted RNA sequence features
into a deep learning model constructed from CNN, GRU and Attention. The benchmark data-
set contains data from three species, H. sapiens, S. cerevisiae and M. musculus, and the results
using 10-fold cross-validation show that Definer significantly outperforms other existing
methods. Meanwhile, the data sets of two species, H. sapiens and S. cerevisiae, were tested
independently to further demonstrate the predictive ability of the model. In summary, our
method, Definer, can accurately identify pseudouridine modification sites in RNA.

1. Introduction

RNA modification is an important component of gene regulation and is involved in various
biological processes [1,2]. To date, over 150 types of RNA modifications have been discovered
in the field of biology [3,4]. Among them, pseudouridine (¥) modification is the earliest and
most abundant RNA modification found in various types of RNA, including mRNA, tRNAs,
and snRNA, etc [5,6]. The most common processes of RNA modification are pseudouridyla-
tion and methylation [7]. Studies have shown that pseudouridine can change the secondary and
tertiary structure of RNA, affect the speed of gene expression, and is closely related to various
diseases, such as Parkinson’s disease, congenital keratinization disorder, and myelodysplastic
syndrome keratosis, which are associated with pseudouridine modification mutations [8,9].
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Therefore, studying pseudouridine modification sites is of great significance for both biology
and medicine [10,11]. With the advent of the post-genomic era, the amount of genomic data
has increased rapidly, and traditional biological experiments are no longer able to meet the
actual research needs [12]. Therefore, it is necessary to develop more convenient computational
models to extract information on pseudouridine sites and accurately identify them [13,14].

Many computational methods based on machine learning and deep learning have been devel-
oped for predicting pseudouridine sites in three species, including H. sapiens, S. cerevisiae, and M.
musculus. Li et al. [15] constructed the first prediction model for pseudouridine sites, PPUS, based
on the SVM algorithm for predicting Homo sapiens and Saccharomyces cerevisiae through a web
server. Chen et al. [16] constructed datasets for H. sapiens, S. cerevisiae, and Mus musculus and
combined the PseDNC encoding method with SVM to build the iRNA-PseU prediction model.
The constructed dataset was further used in subsequent research. He et al. [17] proposed PseU],
which combines five encoding methods with SVM algorithm and further improves the accuracy
of pseudouridine site recognition by applying sequence forward feature selection. Subsequently,
Tahir et al. [18] used the One-hot encoding method and built a two-layer convolutional neural
network to develop iPseU-CNN. Liu et al. [19] developed XG-PseU, a prediction method based
on extreme Gradient Boosting (XGBoost). Bi et al. [20] discovered the ensemble learning algo-
rithm, which integrates five different machine learning classifiers to build the EnsemPseU predic-
tor for predicting pseudouridine sites. Lv et al. [21] used the random forest algorithm combined
with the light gradient boosting machine algorithm and the incremental feature selection strategy
to build a new predictor, RF-PseU, which improved prediction performance. Mu et al. [22]
constructed MU-PseUDeep by combining the original sequence and secondary structure with a
convolutional neural network, further improving the performance of predicting pseudouridine
sites. Song et al. [23,24] constructed PIANO and PSI-MOUSE predictors based on genomic and
sequence features for predicting pseudouridine sites. This is the first time that genomic-derived
features have been introduced and achieved good performance in predicting pseudouridine sites.
Li et al. [25] developed the porpoise predictor based on the stacked ensemble learning method
and used four feature selection methods. Table 1 summarizes the existing pseudouridine site pre-
dictors, including benchmark datasets, feature extraction, classifiers, performance evaluation, and
network servers, and most of these computational methods predict the three species, H. sapiens, S.
cerevisiae, and M. musculus, with only PPUS predicting H. sapiens and S. cerevisiae.

Although previous studies have made significant contributions and provided a foundation for
subsequent research, there is still considerable room for improvement in predicting RNA sequence
performance based on existing methods [26,27]. Developing better prediction methods will enable
a comprehensive understanding of the relationship between RNA sequences and life activities.
Existing prediction tools mostly rely on a single feature extraction algorithm and traditional
machine learning algorithms [28,29]. Due to the extremely complex sequence features exhibited by
biological sequences, traditional machine learning methods cannot achieve better prediction per-
formance. Deep learning algorithms have strong learning and generalization abilities, and possess
good modeling capabilities [30]. Therefore, it is necessary to improve prediction performance by
increasing sequence features and developing more suitable classification algorithms [31].

Based on the above issues, this paper proposes a deep learning-based computational
method, Definer, to identify pseudouridine () sites in three species, including H. sapiens,

S. cerevisiae, and M. musculus. Firstly, we combined the One-hot and NCP feature encoding
schemes to extract RNA sequence information. Secondly, we constructed ¥ site prediction
models based on three deep learning models: convolutional neural network (CNN), gated
recurrent unit (GRU), and attention mechanism. Finally, ten-fold cross-validation and inde-
pendent testing showed that, compared with state-of-the-art methods, Definer significantly
improved the prediction performance on V¥ site identification in all three species.
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Table 1. Summary of existing methods for RNA pseudouridine site prediction.

Tools* Species Encoding Classifier Evaluation strategy Webserver/software®

PPUS [15] H. sapiens Binary SVM 5-fold CV Yes
S. cerevisiae

iRNA-PseU [16] H. sapiens PseKNC SVM jackknife test Yes
S. cerevisiae and independent
M. musculus test

PseUI [17] H. sapiens NAC,DNC, PseDNC, SVM jackknife test Yes
S. cerevisiae PSNP, and independent
M. musculus PSDP test

iPseU-CNN [18] H. sapiens One-hot CNN 5-fold CV No
S. cerevisiae
M. musculus

XG-PseU [19] H. sapiens NAC,DNC,TNC, XGBoost 10-fold CV and Yse
S. cerevisiae NCPND, independent test
M. musculus One-hot

EnsemPseU [20] H. sapiens Kmer,Binary, Ensemble 10-fold CV and No
S. cerevisiae ENAC,NCP, independent test
M. musculus ND

RF-PseU [21] H. sapiens Binary,ANF, RF 10-fold CV and Yes
S. cerevisiae NCPEIIPENAC, independent test
M. musculus CKSNAP

MU-PseUDeep [22] H. sapiens One-hot,PSNP CNN 10-fold CV and No
S. cerevisiae independent test
M. musculus

PIANO [23] H. sapiens SCP,PSNP, SVM 10-fold CV and Yes
S. cerevisiae Genome-derived features independent test
M. musculus

PSI-MOUSE [24] H. sapiens NCPND, SVM 10-fold CV and Yes
S. cerevisiae Genome-derived independent test
M. musculus features

Porpoise [25] H. sapiens Binary,PseKNC, SVM,GBDT, 10-fold CV and Yes
S. cerevisiae NCPPSTNPss GaussianNB, independent test
M. musculus XGBoost

Abbreviations: Binary, binary features; PseKNC, pseudo nucleotide composition; NAC, nucleic acid composition; DNC,di-nucleotide composition; PseDNC, pseudo
nucleic acid composition; PSNP, position-specific nucleotide propensity; PSDP, position-specific dinucleotide propensity; TNC, tri-nucleotide composition; ENAC,

enhanced nucleic acid composition; ANF, accumulated nucleotide frequency; EIIP, electron-ion interaction pseudopotentials of trinucleotide; CKSNAP, composition
of k-spaced nucleic acid pairs; SCP, structural chemical properties; SVM, support vector machine; CNN, convolutional neural networks; XGBoost, extreme Gradient
Boosting; RE, random forest; GBDT, gradient boosting decision tree; GaussianNB, gaussian naive bayes; CV, cross-validation.

“The URL addresses for the listed tools are as follows: PPUS, http://lyh.pkmu.cn/ppus/; iRNA-PseU, http://lin.uestc.edu.cn/server/iRNA-PseU; PseU], http://zhulab.ahu.
edu.cn/PseUl/; XG-PseU, http://www.bioml.cn/; RF-PseU, http://rfpsu.aibiochem.net/; PIANO, http://piano.rnamd.com/; PSI-MOUSE, http://piano.rnamd.com/.

"Yes: the publication is accompanied with a webserver/soft package and it is still functional; No: the publication has no webserver or soft package.

https://doi.org/10.1371/journal.pone.0320077.t1001

2.1. Overall framework

2. Materials and methods

The experimental design process and performance evaluation of this study are shown

in Fig 1, which includes five main steps: data collection, feature extraction, model con-
struction, performance evaluation, and visualization software development [32]. Firstly,
benchmark datasets and independent test sets for three species, H. sapiens, S. cerevisiae,
and M. musculus, were collected from relevant literature and public databases [24]. Two
feature extraction methods were then employed to extract sequence information from the
datasets. Subsequently, a deep learning-based predictor, Definer, was constructed, which
achieved good performance on all three species. Furthermore, we evaluated and compared
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Fig 1. Shows the experimental design process.

https://doi.org/10.1371/journal.pone.0320077.9001

our Definer with several existing methods, and found that its prediction performance was
significantly improved. Finally, we developed and made publicly available a software for

users to utilize online.
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2.2. Benchmark data sets

In order to facilitate comparison with existing methods, we used the dataset constructed

by Chen et al. (11), which is commonly used in most of the existing prediction methods,

such as iRNA-PseU [15], PseUI [16], iPseU-CNN [17], XG-PseU [18], and Porpoise [25].
The datasets for the three species were obtained from the RMBase database [33], includ-

ing three benchmark datasets H. sapiens (H_990), S. cerevisiae (S_628), and M. musculus
(M_994), which were used for model training, and two independent test sets, which only
included H. sapiens (H_200) and S. cerevisiae (S_200) species. The details of the datasets

are shown in Table 2.

2.3. Feature extraction

Feature extraction is an important step in building a prediction model, which aims to
encode RNA sequence fragments containing only four nucleotides, adenine (A), cytosine
(C), guanine (G), and uracil (U), into digitized feature vectors [34]. The way of extracting
input data has a great impact on the model. Only by choosing a suitable feature extraction
method according to specific conditions can better training results be achieved. Efficient
feature extraction methods can effectively extract more representative feature vectors and
provide strong support for subsequent model construction [35]. In this study, we used
two feature extraction methods, including One-hot encoding and nucleotide chemical
properties (NCP). Brief introductions of these two feature extraction methods are pre-
sented below.

2.3.1. One-hot encoding. One-hot encoding is a binary encoding method and one of the
basic feature representation methods for RNA sequences. The basic idea of one-hot encoding
is to convert each base in the sequence into a four-dimensional binary vector, where only one
dimension is 1 and the others are 0. The four nucleotides A, U, C, and G will be respectively
converted into vectors (1,0,0,0), (0,1,0,0), (0,0,1,0), and (0,0,0,1) [36].

2.3.2. NCP. The RNA sequence is composed of four nucleotides: adenine (A), cytosine
(C), guanine (G), and uracil (U). These nucleotides have different structures and chemical
properties. Nucleotide Chemical Property (NCP) encodes RNA sequences by three
different chemical properties, including cyclic structure, hydrogen bonding, and chemical
functionality [37]. Regarding cyclic structure, A and G are purines with two rings, while C
and U are pyrimidines with one ring. Concerning hydrogen bonding, A and U form two
hydrogen bonds during hybridization, while G and C can form three hydrogen bonds [38].
Regarding chemical functionality, A and C contain an amino group, while G and U contain
a ketone base. Based on the three different chemical structural properties, nucleotides in
RNA sequences can be represented by a vector L; = (Xj Y ,Zj) , where X represents cyclic
structure, Y represents hydrogen bonding, and Z represents chemical functionality. The
feature representation method of NCP is shown in equation (1).

Table 2. Datasets introduction.

Datasets Number of positive samples Number of negative samples Sequence length
H_990 495 495 21
S_628 314 314 31
M_994 497 497 21
H_220 100 100 21
S_220 100 100 31

https://doi.org/10.1371/journal.pone.0320077.t1002
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2.4. Deep learning model framework

This study aims to construct a prediction model for pseudouridine sites in RNA based on
three classical deep learning models: convolutional neural network (CNN), gated recurrent
unit (GRU), and attention. Firstly, the input data is processed through the first convolution
layer of the CNN, which performs cross-correlation operations on the matrix of each channel
from left to right and top to bottom using convolution kernels. Then, the obtained data is
regularized to prevent overfitting, as shown in equations (2) and (3).

P Q
Conv(x)=>"> wh x, + p.q 2)
p=1g=1
L=E,+\Y |W| (3)
j

Next, the data and parameters are compressed through the pooling layer of CNN, and the
compressed data is fed into the second layer of CNN. At the same time, the feature tensor is
fused with GRU and the Relu activation function is used to accelerate the convergence of the
model, as shown in equation (4). The update gate Z, is used to filter information, and W,
controls the retention level of new and old information input at each time step. The reset gate
7, is used to filter information, and W, controls the retention level of input information at
each position at time t-1 [39].

t—l"xtD (4)

Then, following the same method of combining the second layer convolution of CNN with
GRU, the feature tensors of the third layer convolution of CNN and GRU are fused. Finally, to
focus on important information and fully absorb it, an Attention mechanism is added to the
model.

2.5. Performance evaluations

Model evaluation is an important step to verify the feasibility of a model, and there are three
commonly used methods: K-fold cross-validation, independent testing, and overlapping
checking. In order to facilitate comparison with existing methods and better demonstrate the
effectiveness of the proposed method, we choose to use the first two methods for evaluation,
respectively based on the training dataset and the testing dataset using 10-fold cross-validation
and independent tests. For a classification task, accuracy (ACC) is the most basic evaluation
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index, which represents the percentage of correct classification. However, the basic evaluation
index often cannot reflect the model’s performance well, which may lead to poor judgments.
This study uses four evaluation indicators, including specificity (Sp), sensitivity (Sn), accuracy
(ACC), and Matthew’s correlation coefficient (MCC) to evaluate the predictive model [40,41].
The calculation formulas for the four evaluation indicators are shown below.

Sn:T—P (5)
TP+ FN
TN
S =—m— 6
P TN +FP ©)
ACC— TP+TN o
TP+TN +FP+FN

MCC— TP xXTN — FP X FN 8)

J(TP + EP)(TP+ FN)(TN + FP)(TN + FN)

In this paragraph, TP, FP, TN, and FN respectively represent the number of true positives, false
positives, true negatives, and false negatives.

3. Results and discussion
3.1. Distribution of nucleotide positions at pseudouridine sites

To analyze the characteristics of pseudouridine sites in RNA sequences, we used Two Sample
Logo [42] to calculate the importance of nucleotides at each position. Two Sample Logo is a
tool for computing differences between nucleotide samples and the significance of nucleotides
at each position in a sequence. The nucleotide distributions of pseudouridine sites in the H.
sapiens, S. cerevisiae, and M. musculus species are shown in Fig 2a, 2b, and 2, respectively.
The size of each letter represents the frequency of the corresponding base at that position, with
larger letters indicating higher frequencies. At each position, the letters are arranged in order
of dominance from top to bottom, with the most dominant base at the top. From the figures, it
can be seen that in H. sapiens, uridine (U) content is highest near the central position 11, while
cytidine (C) is mainly distributed at downstream positions 17 and 20. In S. cerevisiae, guanine
(G) is mostly distributed in the upper-middle region, while uridine (U) is distributed at the
central positions 14, 15, and 16. Adenine (A) is mainly distributed in the upper-middle region,
with three consecutive A bases at positions 13, 14, and 15. In M. musculus, uridine (U) is dis-
tributed in the upper-middle region, with U bases at positions 9, 11, 12, and 13. These results
indicate that there are different nucleotide distribution patterns between pseudouridine and
non-pseudouridine sites in the H. sapiens, S. cerevisiae, and M. musculus species, and therefore,
it is necessary to establish a universal prediction model across different species.

3.2. Performance comparison analysis of different feature extraction
methods

An efficient feature extraction method can effectively extract more representative feature
vectors and provide strong support for subsequent model construction. This section com-
pared One-hot, NCP, and their fusion, respectively, by placing these three feature extraction
methods into the predictor for comparison. The comparative results for the three species H.
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Fig 2. Distribution of nucleotide positions of the three species.

https://doi.org/10.1371/journal.pone.0320077.9002

sapiens, S. cerevisiae, and M. musculus are shown in Tables 3-5, respectively. Please note that
there are no grammar errors in the original text.

From the table, it becomes apparent that the combination of both encoding methods yields
superior results across all three datasets in comparison to the utilization of a single feature
extraction approach. In the context of the H_990 dataset, the amalgamation of One-hot and
NCP surpasses both individual feature extraction methods with respect to all four evaluation
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Table 3. Three feature extraction methods used in H_990 comparison of results.

Feature extraction ACC (%) Sn (%) Sp (%) MCC (%)
One-hot 81.02 83.25 78.78 62.38
NCP 76.55 76.77 76.33 53.48
One-hot+NCP 82.95 85.28 80.62 66.43
Note: Bold numbers indicate the maximum value in this column.

https://doi.org/10.1371/journal.pone.0320077.t1003

Table 4. Three feature extraction methods used in S_628 comparison of results.

Feature extraction ACC (%) Sn (%) Sp (%) MCC (%)
One-hot 85.81 85.00 86.62 72.18
NCP 84.52 86.28 82.77 69.91
One-hot+NCP 86.01 84.05 87.97 72.66
Note: Bold numbers indicate the maximum value in this column.

https://doi.org/10.1371/journal.pone.0320077.1004

Table 5. Three feature extraction methods used in M_944 comparison of results.

Feature extraction ACC (%) Sn (%) Sp (%) MCC (%)
One-hot 86.93 88.32 85.54 74.03
NCP 85.76 85.97 85.56 71.76
One-hot+NCP 87.15 87.04 87.26 74.41

Note: Bold numbers indicate the maximum value in this column.

https://doi.org/10.1371/journal.pone.0320077.t1005

metrics. Specifically, it attains an accuracy rate of 82.95%, which represents a notable enhance-

ment of 1.93% over the accuracy achieved by the One-hot method alone. While it is true

that the single feature extraction method Sn exhibits a relatively better performance than the

fusion on the S_628 and M_944 datasets in terms of a particular aspect, it is important to

note that the fusion method demonstrates a significantly more favorable performance in the
other three evaluation metrics. The fused ACC values on the S_628 and M_944 datasets are
86.01% and 87.15%, respectively. Based on these comprehensive observations and analyses, we

have opted to employ the fusion of One-hot and NCP for the extraction of sequence feature

information pertaining to pseudouridine sites, as it offers a more comprehensive and effective

means of capturing the essential characteristics and patterns within the data.

3.3. Performance comparison analysis of different models

The classifier is an important component of the experiment and is closely related to the final
experimental results. Building a suitable predictive model can greatly improve experimental
performance. Deep learning is a machine learning algorithm with feature learning ability.

It can extract and learn low-level data features to obtain more abstract high-level features.

In recent years, the genomics databases have grown rapidly. Only by using classifiers with
stronger learning ability can we better learn and mine effective information in huge databases
[43]. In this section, a predictor called Definer was constructed based on commonly used deep
learning algorithms. We compared it with several traditional machine learning algorithms and
commonly used deep learning algorithms, including SVM, RE, LightGBM, and CNN, based
on ten-fold cross-validation on three benchmark datasets. The comparison results of the three

benchmark datasets are shown in Fig 3. From the figure, it can be seen that the evaluation
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Fig 3. The comparison results of the three benchmark dataset.
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indicators of deep learning algorithms are much higher than those of traditional machine
learning algorithms. We built a new predictor Definer based on CNN, which integrates two
GRUs and introduces Attention. From the prediction results, our model is superior to other
classifiers in all four evaluation indicators.

3.4. Comparative analysis on independent datasets

To further substantiate the proficiency of Definer in predicting pseudouridine sites, this
section undertakes a comprehensive verification and evaluation process using two indepen-
dent test sets, which encompass two distinct species, namely Homo sapiens and Saccharo-
myces cerevisiae. Concurrently, an in-depth comparison of the predictive performance of
our proposed method with that of several pre-existing methods was carried out on these two
independent test sets, and the corresponding results are meticulously presented in Table 6. As
is conspicuously demonstrated in the table, our predictor exhibits a highly significant and pre-
ponderant performance, outstripping other methods across all four evaluation metrics on the
two independent test datasets. Particularly in the case of Homo sapiens, the achieved Accu-
racy (ACC) reaches an impressive 83.50%, which represents a remarkable increment of 6%
over the hitherto best-performing existing method, Porpoise. This outstanding performance
not only attests to the enhanced predictive power of Definer but also underlines its potential
to make a substantial contribution in the realm of pseudouridine site prediction and related
bioinformatics research.

3.5. Performance comparison with state-of-the-art methods

In this section, a comprehensive comparison was conducted between Definer and a series of
state-of-the-art methods across three benchmark datasets, namely XG-PseU [19], iPseU-CNN
[18], PseUI [17], iRNA-PseU [16], EnsemPseU [20], RF-PseU [21], and Porpoise [25]. The
detailed comparison results are presented in Table 7. Upon performing ten-fold cross-
validation on the identical two independent test datasets, it becomes evident that Definer

Table 6. Comparison Evaluation with state-of-the-art several methods on the same independent test dataset.

Species Method ACC (%) Sn (%) Sp (%) MCC (%)
H.sapiens XG-PseU [19] 67.50 68.00 67.00 35.00
(H_200) iPseU-CNN [18] 69.00 77.72 60.81 40.00
PseUI [17] 65.50 63.00 68.00 31.00
iRNA-PseU [16] 61.50 58.00 65.00 23.00
EnsemPseU [20] 69.50 73.00 66.00 39.00
RF-PseU [21] 75.00 78.00 72.00 50.00
Porpoise [25] 77.35 82.30 72.40 55.13
Definer 83.50 91.00 88.00 73.34
S.cerevisiae XG-PseU [19] 71.00 75.00 67.00 42.14
(S_200) iPseU-CNN [18] 73.50 68.76 77.82 47.00
PseUI [17] 68.50 65.00 72.00 37.00
iRNA-PseU [16] 60.00 63.00 57.00 20.00
EnsemPseU [20] 75.00 85.00 65.00 51.00
RF-PseU [21] 77.00 75.00 79.00 54.00
Porpoise [25] 83.50 88.00 79.00 67.27
Definer 88.00 90.00 88.00 78.59

Note: Bold numbers indicate the maximum value in this column.

https://doi.org/10.1371/journal.pone.0320077.t1006
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Table 7. Comparison of three benchmark datasets with existing methods.

Species Method ACC (%) Sn (%) Sp (%) MCC (%)
H.sapiens XG-PseU 65.44 63.64 67.24 31.00
(H_990) iPseU-CNN 66.68 65.00 68.78 34.00
PseUI 64.24 64.85 63.64 28.00
iRNA-PseU 60.40 61.01 59.80 21.00
EnsemPseU 66.28 63.46 69.09 33.00
RF-PseU 64.30 66.10 62.60 29.00
Porpoise 78.53 89.11 67.94 58.45
Definer(10-fold CV) 85.68 84.66 86.50 71.31
S.cerevisiae XG-PseU 68.15 66.84 69.45 37.00
(S_628) iPseU-CNN 68.15 66.36 70.45 37.00
PseUI 65.13 62.74 67.52 30.00
iRNA-PseU 64.49 64.65 64.33 29.00
EnsemPseU 74.16 73.88 74.45 49.00
RF-PseU 74.80 77.20 72.40 49.00
Porpoise 81.69 81.21 82.17 63.38
Definer(10-fold CV) 86.30 85.68 86.94 73.01
M.musculus XG-PseU 72.03 76.48 67.57 45.00
(M_944) iPseU-CNN 71.81 74.79 69.11 44.00
PseUI 70.44 74.58 66.31 41.00
iRNA-PseU 69.07 73.31 64.83 38.00
EnsemPseU 73.85 75.43 72.25 48.00
RF-PseU 74.80 73.10 76.50 50.00
Porpoise 77.75 77.83 77.67 55.55
Definer(10-fold CV) 87.68 88.10 87.25 75.54

Note: Bold numbers indicate the maximum value in this column and CV indicates cross-validation.

https://doi.org/10.1371/journal.pone.0320077.t1007

exhibits remarkable superiority. In the case of two species, S. cerevisiae and M. musculus,
Definer surpasses the other seven prediction methods with respect to all four evaluation
metrics. Even in H. sapiens, although the Sn of the porpoise tool is marginally higher than
that of our predictor, it is crucial to note that our predictor demonstrates a significant edge
and is far more excellent in the remaining three evaluation metrics. This clearly indicates
that Definer not only attains a higher level of accuracy but also showcases enhanced stability
when compared to other existing methods. By integrating the comparison outcomes from
the independent test set in the preceding section, it can be firmly and conclusively drawn that
Definer is capable of precisely and accurately predicting pseudouridine sites within the three
species, namely H. sapiens, S. cerevisiae, and M. musculus, thereby establishing its efficacy

and reliability in the field of pseudouridine site prediction.

3.6. Software engineering

In the field of bioinformatics, there are numerous commonly used analysis methods and
online tools. For example, sequence alignment tools like GGMSA [44] are widely utilized.
GGMSA allows for the comparison of nucleotide or amino acid sequences, enabling the iden-
tification of homologous sequences and providing insights into evolutionary relationships and
functional similarities. It uses efficient algorithms to search large sequence databases rapidly,

which is a remarkable technical achievement.
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Another important tool is gene expression analysis software such as DESeq2 [45]. It can
analyze differential gene expression between different samples or conditions. By applying
statistical models and normalization techniques, it helps to identify genes that are significantly
upregulated or downregulated, which is crucial for understanding biological processes and
disease mechanisms.

Recent advancements in computational methods, such as the MRNDR [46], further
enhance the ability to analyze complex biological data and uncover potential drug repurposing
opportunities through sophisticated attention mechanisms and deep learning architectures.

However, when it comes to the prediction of potential pseudo-uridine sites from RNA
sequences, existing tools have certain limitations. While they may focus on general sequence
analysis or other types of RNA modifications, they do not specifically target pseudo-uridine
sites with high accuracy and user-friendly visualization.

Software engineering and web servers have become essential in the Internet age. To address
the need for identifying potential pseudo-uridine sites, we have developed a software visu-
alization based on our model Definer. It is developed using the Python Tkinter framework.
The main interface of this software, as shown in Fig 4, offers a unique solution. It provides
users with an intuitive and convenient way to input RNA sequences and obtain predictions of
potential pseudo-uridine sites. The model Definer underlying the software has been carefully
designed and trained to improve the accuracy of pseudo-uridine site prediction, filling a gap

¢ Main - [m] X

& S.cerevisiae

© M.musculus

Please enter or copy the

RNA sequence that you wish to © H.sapiens
query into the input box
located in the lower-right Upload File Confirm I Example |
portion of the screen. >N1 ' A
Alternatively. you can upload a CACCAUAUUGAAACGUCUACAAAUGAUCGUA
txt file. To view the required >N2
format of the txt file. simply CCACUCCAUCACCCAUCUCUCACCAUCAGUA
g n ” " > N 3
click the "Sample" button. You ACUCCGCUCUGCAACUCAAAGCCUCUUUUCG
can choose from three different >N4
models to predict the sequence, CGGCGGGUUCUACGGUACCUAUAUACCACCA
each named after a >N5
] : i AGUUUAUCUUACUUAUCUUUUCCUGGAAGAG
corresponding species. Once N6
you have selected your desired UUUCAAUUUUCAUUUUAAUAUUUUUUUAAUA
model. click the "confirm" >N7
button to view the forecast GGUGCUCGAGGAUGAUGAGAGGACACAACUU
” . - . >N8
results. which will be displayed AAACUAUGAUCUCAAUACAGGCAUAAAGAAU
on your computer screen. SN9
AGAGUUGGUUAGGCAUGGUUUGUGUCCAUAU
>N10
CUAGCUUUGAAAAGGUAUACUGGAUGCCGGU
>N11
GAUAGUCACACGAAAUGAAAAAGGUGAAAAA
>N12 v

Fig 4. Main interface of the software.

https://doi.org/10.1371/journal.pone.0320077.9g004
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in the existing bioinformatics tool landscape and offering a novel approach to this specific
aspect of RNA sequence analysis.

On the main interface, users can enter or copy the RNA sequence they want to query
into the input box in the lower right corner, or upload a txt file. Clicking the “example”
button allows users to view the required format for the txt file. After a file is successfully
uploaded, the data content will be displayed in the lower right box. The software pro-
vides three models for users to choose from, named after the corresponding species: H.
sapiens, S. cerevisiae, and M. musculus. When users click the “Confire” button above the
text box, the model will analyze and calculate the sequence, and return the sequence’s
name, length, and whether it contains a site to the user. After the prediction is complete,
users can click the “download” button to export the prediction result file to a specified
path. The prediction result interface is shown in Fig 5. Please note that there should be
N0 grammar errors.

Fig 5. Prediction results interface.

Sequence
>H.cerevisiae_P1
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>H.cerevisiae_P3
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>H.cerevisiae_P19
>H.cerevisiae_P20
>H.cerevisiae_P21
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31 No
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31 No
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31 No
3N No
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Download l

https://doi.org/10.1371/journal.pone.0320077.g005
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4. Discussion

The accurate identification of pseudouridine sites is of great significance as it is involved in
numerous crucial biological processes. In this study, we developed a novel computational
method, Definer, to address the challenge of identifying RNA pseudouridine loci in H. sapi-
ens, S. cerevisiae, and M. musculus.

With the explosive growth of genomics data, the limitations of traditional experimental
methods for identifying RNA modification sites have become increasingly prominent. Compu-
tational methods have emerged as a powerful alternative. Our proposed Definer method com-
bines two sequence coding schemes, NCP and One-hot, which allows for a more comprehensive
representation of RNA sequence features. By feeding these features into a deep learning model
composed of CNN, GRU, and Attention, we were able to capture both local and global sequence
information, as well as the importance of different regions within the sequence.

The benchmark dataset, which includes data from three species, provided a solid founda-
tion for evaluating the performance of Definer. The results of 10-fold cross-validation clearly
demonstrated that Definer outperforms other existing methods. This superiority can be
attributed to the effective combination of the sequence coding schemes and the powerful deep
learning architecture. The independent testing of the data sets of H. sapiens and S. cerevisiae
further validated the robustness and predictive ability of the model.

However, it is important to note that there are still some limitations and areas for improve-
ment. For example, although Definer has shown good performance, the complexity of biolog-
ical systems means that there may be other factors that affect pseudouridine site identification
that have not been fully considered. Future studies could explore incorporating additional
types of data, such as structural information or epigenetic marks, to further enhance the accu-
racy of the model.

In addition, as new experimental techniques for detecting pseudouridine sites are devel-
oped, the benchmark datasets may need to be updated and refined to ensure the continued
relevance and effectiveness of computational methods like Definer. Overall, our study rep-
resents an important step forward in the accurate identification of RNA pseudouridine sites,
and we believe that Definer has the potential to be a valuable tool in further understanding
the functional mechanisms of this important modification site and its implications in various
biological processes and diseases.

5. Conclusion

In this research, we have tackled the crucial task of identifying RNA pseudouridine sites.
Pseudouridine, being widely distributed in non-coding RNAs and implicated in essential
biological functions and diseases, demands accurate identification to decipher its functional
mechanisms. The exponential growth of genomics data has necessitated the development of
computational approaches, as traditional experimental methods have become insufficient.

Our proposed method, Definer, offers a promising solution. By integrating two sequence
coding strategies, NCP and One-hot, it is capable of extracting comprehensive RNA sequence
features. These features are then processed by a deep learning model composed of CNN,
GRU, and Attention, which effectively capture the complex patterns and relationships within
the RNA sequences.

The evaluation using a benchmark dataset covering three species, H. sapiens, S. cerevi-
siae, and M. musculus, and the application of 10-fold cross-validation have provided robust
evidence that Definer outperforms existing methods. The independent testing of the datasets
from H. sapiens and S. cerevisiae further bolsters the confidence in the model’s predictive
capabilities.
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Opverall, Definer represents a significant advancement in the field of RNA pseudouridine
site identification. It has the potential to enhance our understanding of the role of pseudou-
ridine in gene expression, RNA structural stability, and disease mechanisms. Future research
could focus on further optimizing the method, exploring its application in other species or
RNA types, and investigating potential synergies with other omics data to provide a more
holistic view of the complex regulatory networks involving pseudouridine. With continued
development and refinement, Definer could become an invaluable tool in both basic biological
research and clinical applications related to RNA modifications.
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