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Abstract

Rare diseases affect more than 30 million individuals, with the majority facing lim-
ited treatment options, elevating the urgency to innovative therapeutic solutions.
Addressing these medical challenges necessitates an exploration of novel treatment
modalities. Among these, drug repurposing emerges as a promising avenue, offer-
ing both potential and risk mitigation. To achieve this goal, we primarily focused on
developing predictive models that harness cutting-edge computational techniques to
uncover latent relationships between gene targets and chemical compounds towards
drug repurposing. Building upon our previous investigation, where we successfully
identified gene targets for compounds from the Tox21 in vitro assays, our endeavor
expanded to a systematic prediction of potential targets for drug repurposing employ-
ing machine learning models built on diverse algorithms such as Support Vector
Classifier, K-Nearest Neighbors, Random Forest, and Extreme Gradient Boosting.
These models were trained on comprehensive biological activity profile data to
predict the relationship between 143 gene targets and over 6000 compounds. Our
models demonstrated high accuracy (>0.75), with predictions further validated by
using public experimental datasets. Furthermore, several findings were evaluated

via case studies. By elucidating these connections, we aim to streamline the drug
repurposing process, ultimately catalyzing the discovery of more effective therapeutic
interventions for rare diseases.

Introduction

The concept of drug repurposing has emerged as a beacon of hope, offering a
cost-effective and time-efficient approach to addressing the complexities of drug
discovery [1—-4]. At its core, drug repurposing involves the exploration of alternative
applications for already approved or investigational drugs, tapping into their potential
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beyond their originally intended uses. This strategy not only capitalizes on existing
pharmacological knowledge but also expedites the drug development process by
bypassing certain stages of preclinical and clinical trials [5]. A compelling rationale
for promoting drug repurposing lies in the interconnected nature of disease mech-
anisms. Scientific evidence suggests that a single molecular target implicated in a
specific disease often exerts influence on various genetic pathways associated with
other rare diseases [6,7]. Therefore, unraveling the intricate relationship between
chemical compounds and gene targets assumes paramount importance in the quest
for breakthroughs in rare disease treatment.

Researchers employ a multifaceted approach to discover the complicated rela-
tionship between chemical compounds and gene targets, leveraging a combination
of experimental techniques and computational methodologies. Experimental studies
often involve high-throughput screening assays, where thousands of compounds
are tested against various biological targets to identify potential interactions [8—10].
Concurrently, advanced computational algorithms, such as molecular docking and
network analysis, play a crucial role in predicting the binding affinity and specificity of
compounds to target proteins [11—-15]. These computational models rely on struc-
tural and functional data of both compounds and target proteins, allowing research-
ers to elucidate the molecular mechanisms underlying drug-target interactions.

However, traditional methods like molecular docking and network analysis, while
valuable, have certain limitations in the exploration of chemical compounds and
gene targets. Molecular docking, for instance, relies heavily on structural data of
target proteins and ligands, often overlooking the dynamic nature of protein-ligand
interactions and the influence of solvent effects. This can lead to inaccuracies in pre-
dicting binding affinities and may not capture the full spectrum of interactions within
complex biological systems [15—17]. Similarly, network analysis, while useful for
identifying functional relationships between genes and proteins, may struggle to inte-
grate diverse types of data and capture the dynamic nature of biological networks
[18]. Additionally, traditional methods often require manual curation and parameter
tuning, which is time-consuming and potentially biased [15,18—20]. Moreover, these
methods may struggle with the scalability required to analyze large-scale datasets,
limiting their applicability in the era of big data [21,22]. These inherent limitations
underscore the need for complementary approaches, such as machine learning and
artificial intelligence, to overcome these challenges and unlock new insights in drug
discovery and molecular biology.

In recent years, machine learning (ML) and artificial intelligence (Al) tools have
revolutionized the exploration of the intricate relationship between chemical com-
pounds and gene targets. These tools enable researchers to analyze vast datasets
comprising chemical structures, biological activities, and genetic information to
uncover novel associations and predict potential interactions [23—30]. ML algorithms,
such as Support Vector Classifier (SVC), Random Forests, and deep learning
models, are trained on high-dimensional data to classify compounds based on their
biological activities or to predict the binding affinity of compounds to specific target
proteins [31-34]. Moreover, different Al and ML tools have been widely used for drug
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safety evaluation offering beneficial information for drug repurposing [35-37]. Application of advanced machine learning
approaches such as k-nearest neighbors (KNN) [38], SVC [39], and extreme gradient boosting (XGB) [40], in drug repur-
posing exhibited high predictive performance [41,42]. Integrating these computational techniques with experimental vali-
dation can accelerate the drug discovery process and offer insights into the mechanisms of action underlying therapeutic
effects.

The Tox21 dataset is a pivotal resource in the domains of predictive toxicology and drug discovery [41,43,44]. The
Toxicology in the 21st Century program, Tox21, is a collaborative effort between the National Institutes of Health (NIH),
the U.S. Environmental Protection Agency (EPA), and the U.S. Food and Drug Administration (FDA) [45—48]. The Tox21
dataset encompasses a plethora of biological activity information derived from screening a collection of ~10,000 drugs
and environmental chemicals (Tox21 10K compound library) against a panel of in vitro cell-based and biochemical assays,
addressing a wide spectrum of biological targets and pathways pertinent to toxicology [48-50]. The inherent advantages
of the Tox21 dataset in predictive modeling for drug repurposing are rooted in its extensive scope and diversity. These
characteristics facilitate the development of robust machine learning models capable of forecasting the toxicity and poten-
tial adverse effects of various chemicals and pharmaceuticals. Harnessing the vast repository of data within Tox21 offers
the prospect of expediting the identification of safe and efficacious drug candidates, thereby streamlining the drug discov-
ery process and mitigating reliance on resource-intensive experimental assays.

In this investigation, we compiled gene targets found to be significantly associated with Tox21 chemicals from our pre-
vious study [51] and developed predictive models employing four distinct ML algorithms aimed at uncovering novel gene
targets associated with specific drugs. Our analysis revealed previously unrecognized gene-drug pairs, which presents
opportunities for further exploration in clinical settings, thus facilitating drug repurposing endeavors across a diverse range
of medical conditions.

Materials and methods
Data preparation

Tox21 data preparation. The Tox21 10K compound library contains around 10,000 substances, of which 8,971 are
distinct entities, covering a broad spectrum of categories including drugs, pesticides, consumer products, food additives,
industrial chemicals, and cosmetics [52]. In this study, we employed quantitative high-throughput screening (QHTS)
data obtained from screening the Tox21 10K library against 78 in vitro assays. Detailed assay data are accessible from
the public Tox21 website (https://tripod.nih.gov/pubdata/). Compound activity was measured by the curve rank metric,
which ranges from -9-9 and is determined by various attributes of the primary concentration-response curve, including
potency, efficacy, and quality. A notably positive curve rank indicates robust activation, whereas a large negative curve
rank signifies potent inhibition of the assay target. Examples of compound activity scores shown in terms of curve rank are
shown in Table 1. Structure ID represents CAS Registry Number of each compound. The rest column name shows Tox21
assay name. Among 8,971 substances in the original dataset, 7,170 possessed curve rank data across all Tox21 in vitro
bioassays, and only compounds with available activity data were included in subsequent analyses.

Enriched gene target selection. From the previous study, 7,170 compounds in the Tox21 10K library were clustered
based on similarity in their activity profiles across the Tox21 in vitro assays resulting in 129 clusters [51]. Gene enrichment
analysis was performed on each cluster yielding a total of 737 enriched gene targets. For our models to discern patterns
effectively and make accurate predictions, it's important that each target has a sufficient number of compounds known
to be associated with them. Hence, we tallied the number of associated drugs for each enriched gene target, selecting
only those linked with at least 10 different compounds for our models. This selection process enables us to enhance the
predictive capacity and significance of our subsequent analyses. The gene targets selected for this study were prioritized
based on their significant enrichment in compound activity profiles derived from the Tox21 dataset. This enrichment
aligns with their known involvement in key disease pathways, particularly those implicated in rare diseases. For instance,
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Table 1. Example of compound activity scores in Tox 21 dataset.

Structure ID | tox21-ache-p1_ | tox21-ache-p3_ |tox21-ahr-p1_ |tox21-ahr-p1_ tox21-ap1- tox21-ap1- tox21-ap1-
ratio ratio ratio viability agonist-p1_ch1 | agonist-p1_ch2 | agonist-p1_ratio
97612-24-3 0 0 0.667 -0.667 0 2 1.333
207801-27-2 |0 0 3.667 0.667 0 0 0
7287-19-6 0 0 0.667 0 0 0.333 0.333
16323-43-6 0 0 0 0 0 0 0
1444-64-0 0 0 0 0 0 0 0
183321-74-6 |0 0 7.667 -5 0 -2 -0.667
2404-44-6 0 0 0 0 0 0 0
439-14-5 0 0 0 0 0 0 0
1031-07-8 -5 0 0 0 -4.333 4.667 5.333
78-38-6 0 0 0 0 0 0 0
127-31-1 0 0 0.667 0 0 0 0
91-16-7 0 0 0 0 0 0 0

https://doi.org/10.1371/journal.pone.0319865.t001

the NR3C1 gene—which codes for the glucocorticoid receptor—has well-documented associations with metabolic and
inflammatory pathways, making it a compelling target for drug repurposing. Similarly, the compounds included in this
analysis were chosen for their robust activity scores, reflecting their potential to modulate these targets effectively. This
strategic selection ensures that our predictive models focus on biologically relevant relationships, maximizing their
translational potential. In summary, out of the 737 enriched genes, 143 genes associated with 6,925 compounds were
included in the training set for our model. For each gene target, the number of associated drugs (represented by a value
of 1 in the data matrix) ranged from 10 to 223. Conversely, all unassociated drugs with gene targets were marked with a
value of 0 in the data matrix. Selected genes are detailed in Table S1.

Novel gene target prediction

We employed four modeling algorithms by using the Python packages (3.10) of SVC, KNeighborsClassifier, RandomFor-
estClassifier, and XGBClassifier, for the task of gene target prediction. Utilizing compound activity scores as features, our
objective was to predict the active or inactive relationship between each gene target and compounds. We developed the
k-nearest neighbors (KNN) algorithm, valued for its interpretability. Subsequently, we introduced more sophisticated algo-
rithms, commencing with SVCs, where we explored two different kernels: Radial Basis Function (RBF) and least square.
To further augment model performance, tree-based models, namely XGB and Random Forest (RF) were investigated. The
selection of four models ensured a comprehensive representation of modeling complexity while embracing popular meth-
odologies in the field. All four modeling algorithms underwent execution on an AWS EC2 instance.

Fine-tuning and assessment of predictive models.

We performed four different modeling algorithms on all 143 gene targets: 1) KNN; 2) SVC; 3) RF; and 4) XGB. To ensure
the robustness and accuracy of the models, we systematically explored various parameter configurations for each mod-
eling algorithm, as detailed in Table S2-S5. If the values of the specific parameters were not specified in our table, default
settings were employed. Subsequently, we engaged in hyperparameter fine tuning for all models, utilizing grid-search with
5-fold cross-validation (CV). It operates by exhaustively searching through a specified grid of hyperparameters, system-
atically evaluating the performance of the model for each combination. The dataset was partitioned into five subsets, with
four subsets used for training the model and the remaining subset for validation. This process was repeated five times,
with each subset serving as the validation set once. Performance metrics, such as accuracy or mean squared error,
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were calculated for each parameter combination across all folds. The optimal parameters were then selected based on
the average performance across all folds, providing a robust estimation of model performance while mitigating the risk of
overfitting. With the fine-tuned parameters, we assessed model performance with the area under the receiver operating
characteristic (ROC) curve (ROC_AUC) score and Area Under the Precision-Recall Curve (AUPRC) in our ML models.
The ROC_AUC, ranging from 0 to 1, assesses a model’s ability to differentiate between two classes by analyzing the true
positive rate (sensitivity) versus the false positive rate (1-specificity) at different decision thresholds. A higher ROC_AUC
score reflects better discrimination ability. This score offers a holistic view of model performance across thresholds,
making it useful for assessing classification models in diverse fields. In our study, we also calculated the Area Under the
Precision-Recall Curve (AUPRC) to address the inherent data imbalance in rare diseases, where positive drug-gene pairs
are scarce. While ROC-AUC is a widely used metric, it can yield high values even when predictions favor the majority
class, making it less reliable for imbalanced datasets. AUPRC, on the other hand, focuses on the precision and recall of
positive cases, excluding true negatives from the calculation. This makes AUPRC a more informative and complementary
metric to evaluate machine learning performance in scenarios with significant class imbalance.

Predictability of Gene Target

The predictability of a given gene target may exhibit variability across distinct modeling frameworks, while the overall
predictivity of different genes may vary across these models. To elucidate this phenomenon, we computed the average
testing ROC_AUC score for each gene across all models employed in our study. Genes demonstrating consistently higher
mean ROC_AUC scores are deemed to possess heightened predictability, whereas those with lower scores are consid-
ered less predictable within the scope of the four machine learning models utilized in our analysis

In seeking to explicate the divergent predictability levels among genes, we inquired into whether predictivity correlates
with the informational content provided to the model, specifically the number of associated compounds for each gene.
Consequently, we calculated Pearson’s correlation coefficient between the count of gene-associated compounds and
the average ROC_AUC score. Pearson’s correlation coefficient, ranging between -1 and 1, quantifies both the strength
and directionality of the relationship between two variables. A negative value signifies an inverse correlation, indicating
that as one variable changes, the other changes in the opposite direction. Conversely, a positive value denotes a direct
correlation, wherein both variables change in tandem. The magnitude of the correlation coefficient reflects the strength of
the relationship: higher absolute values indicate a stronger correlation. In our investigation, Pearson’s correlation analysis
serves to elucidate whether the number of associated compounds is associated with the predictability of genes.

Parameter Influence on Model Performance

In our pursuit of comprehending the impact of hyper-parameter tuning on the predictivity of the four algorithms, we sys-
tematically configured various parameter settings and juxtaposed their average performance across all gene targets. The
breadth of parameter settings varies across models, contingent upon the complexity of each algorithm and the extent to
which parameters can be feasibly altered. Typically, more intricate models entail a greater number of parameters with a
wider range of configurational adjustments. In our exploration, we exhaustively explored parameter spaces, resulting in

a myriad of settings across the models under scrutiny. Specifically, we identified 18 configurations for KNN, 54 for SVC,
1621 for RF, and 1154 for XGB. For every model, we categorized these parameter sets into three tiers: those yielding the
highest ROC_AUC scores, those with moderate performance, and those resulting in suboptimal outcomes. This approach
provided us with a nuanced understanding of the relationship between parameter settings and algorithmic predictivity.
Subsequently, we chose 5 parameter sets in each parameter category and visualized the distribution of ROC_AUC scores
across all 15 parameter sets for each model using boxplots. By scrutinizing the performance differentials between the best
and worst parameter configurations, we aimed to elucidate the extent of parameter influence on algorithmic predictivity. A
significant variance in performance between these configurations suggests a robust sensitivity to parameter adjustments,
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whereas minimal discrepancies indicate a comparatively stable performance across genes, independent of parameter
selection.

Validation of novel gene-drug pairs with chemical assay

Through fine-tuning the parameter configurations of four distinct algorithms, we identified the top three parameter sets

for each algorithm, yielding a total of 12 different models. The selected parameters, along with their corresponding ROC_
AUC scores for the training dataset, were documented in Table 2. Leveraging these models, we predicted the novel gene
targets for the Tox 21 chemicals. To accomplish this objective, we computed the disparity between our prediction results
and the records from Pharos [53] and the Board Drug Repurposing Hub (BDRH) [54]. If our model predicts a drug-gene
relationship with a probability >0.5 but this relationship is not documented in Pharos or BDRH, we consider it as a poten-
tial novel gene-drug pair that can be prioritized for experimental validation. Utilizing the top three best parameter configu-
rations for each of the four algorithms, we cross-referenced these 12 distinct prediction results. This analysis yielded a list
of candidate gene-drug pairs along with the number of models supporting each prediction. Subsequently, we compared
the predictive outcomes from these models with the gene annotations for the Tox21 chemicals obtained from Pharos and
the BDRH. Novel gene-drug pairs were identified where the predictive models indicated a connection between a drug and
gene target, yet no such association was found in Pharos or BDRH. To validate these novel relationships, we checked the
experimental results of compounds with assay data available for their respective targets. For each predicted gene-drug
pair, if the compound acted as an active agonist or antagonist for the gene target, our prediction was deemed correct.
Conversely, if the compound was inactive against the gene target according to the assay results, our prediction was con-
sidered inaccurate. This validation process underscores the robustness of our predictive models.

Gene-rare disease association identification for drug repurposing application

To achieve the goal of drug repurposing, we aimed to identify possible rare diseases associated with the input chemi-
cals via those newly identified gene targets. We manually searched the OMIM and Orphanet for potential associations

Table 2. Parameters configuration with top 3 average performance.

Models Parameter Configuration 1 Parameter Configuration 2 Parameter Configuration 3

KNN n_neighbours:33, p:3 n_neighbours:33, p:2 n_neighbours:31, p:3

SVM C:20; gamma:0.5; kernel: rbf C:15; gamma:0.5; kernel: rbf C:10; gamma:0.5; kernel: rbf

RF bootstrap: false; max_depth: 6, max_fea- bootstrap: false; max_depth: 6, max_fea- bootstrap: false; max_depth: 6, max_
tures:auto, min_samples_leaf: 2, min_sam- tures:auto, min_samples_leaf: 2, min_sam- features:sqrt, min_samples_leaf: 2,
ples_split:2, n_estimators: 30 ples_split:3, n_estimators: 30 min_samples_split:2, n_estimators: 30

XGB Colsample_bytree: 0.6, max_depth: 5, min_ Colsample_bytree: 0.6, max_depth: 3, min_ Colsample_bytree: 0.6, max_depth:
child_weight: 3, reg_alpha: 1, subsample: 0.8 | child_weight: 3, reg_alpha: 1, subsample: 0.8 | 3, min_child_weight: 1, reg_alpha: 1,

subsample: 0.6

In KNN model: “n_neighbors” represents the number of neighbors considered when making predictions; “p” represents the power parameter for the
Minkowski distance metric. In SVC model: The “C” parameter trades off between achieving a low training error and a low complexity model that general-
izes well to unseen data. The “‘gamma” parameter defines how far the influence of a single training example reaches, with low values meaning ‘far’ and
high values meaning ‘close’. In RF model: “Max_depth” specifies the maximum depth of each decision tree in the forest. “Max_features” determines the
maximum number of features considered for splitting at each node of a decision tree. “Min_samples_leaf” sets the minimum number of samples required
to be at a leaf node. “Min_samples_split” sets the minimum number of samples required to split an internal node. “N_estimators” specifies the number of
decision trees to be used in the random forest. In XGB model: “Colsample_bytree” determines the fraction of features (columns) to be randomly sampled
for each tree during training. Similar to the parameter in Random Forest, “Max_depth” specifies the maximum depth of each decision tree in the ensem-
ble. “Min_child_weight” determines the minimum sum of instance weight (hessian) needed in a child node. “Reg_alpha” is also known as L1 regulariza-
tion term. “Reg_alpha” adds penalty to the model for large coefficient values, encouraging sparsity in the feature space. “Subsample” determines the
fraction of training data to be randomly sampled for each tree.

https://doi.org/10.1371/journal.pone.0319865.t002
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between the gene targets and rare diseases. These results establish connections between drugs, gene targets and rare
diseases, thereby advancing the process of drug repurposing for rare conditions.

To further demonstrate our predictive results are useful for supporting drug repurposing, we conducted several case
studies. We were able to make connections from chemicals to rare diseases via the predicted gene targets with evidence
identified from the NCATS Biomedical Data Translator (Translator) [55]. The linkage found between the compound and
disease sheds light on the drug discovery and repurposing.

Results

In this study, of 7,170 chemical compounds with curve rank data from the Tox21 10K compound library, we collected 6,925
compounds associated with 143 gene targets for novel repurposing target prediction.

Results on model development

We employed four distinct ML algorithms (SVC, KNN, RF, XGB) with the parameter set that yielded the best average
performance. The optimized parameters are listed in Table 3. All four machine learning algorithms demonstrated strong
performance, with ROC-AUC values exceeding 0.75. Our results show that the SVC, XGB, and RF models achieved high
AUPRC values, indicating their robustness in handling imbalanced data. In contrast, the KNN model exhibited a tendency
to favor true negatives, leading to comparatively lower AUPRC scores. This behavior is likely due to the simplicity of the
KNN algorithm, which relies on identifying the closest data points in the training set and involves minimal model building
and hyperparameter tuning. The overall performance of KNN, SVC, RF, and XGB on the training and test sets is depicted
respectively in Fig 1, ROC_AUC scores were utilized to assess model performance as the y-axis in Fig 1. Notably, KNN
exhibited the lowest performance compared with the other three algorithms with lowest AUPRC and ROC_AUC, while
SVC emerged as the top performer. It's worth mentioning that the predictivity variation across all gene targets was minimal
in SVC as well, whereas RF and XGB displayed larger varying degrees of performance.

We evaluated the model performance regarding overfitting and underfitting, as showcased in Fig 1. Impressively, all four
algorithms demonstrated performance exceeding 0.7 on the test dataset. Moreover, RF and XGB exhibited enhanced per-
formance on the test data, surpassing 0.8, while SVC and KNN displayed similar performance trends as the training data-
set. These results underscore the better predictivity of tree-based models for gene targets compared to other algorithms.

In summary, our prediction models trained on the Tox21 dataset displayed robust performance across all four algo-
rithms with ROC_AUC scores exceeding 0.7. Notably, XGB emerges as the standout performer, showing the best per-
formance on both the training and test datasets, solidifying its status as the premier prediction algorithm among the four
algorithms utilized in this study.

2. Predictability of Gene Targets

Apparently, the predictability of gene targets exhibits variations among genes based on the predictive results. It is
acknowledged that the ability to accurately forecast the interactions between chemical compounds and specific genes is

Table 3. Selected Best Parameters.

Models | Parameters Mean ROC_ | Mean
AUC* AUPRC "
KNN n_neighbours:33, p:3 0.71268 0.50421
SVC c:20, gamma:0.5, kernel: rbf 0.77428 0.80494
RF bootstrap: false; max_depth: 6, max_features:auto, min_samples_leaf: 2, min_samples_split:2, n_estimators: 30 0.75529 0.73537
XGB Colsample_bytree: 0.6, max_depth: 5, min_child_weight: 3, reg_alpha: 1, subsample: 0.8 0.77504 0.73602

“The mean ROC_AUCIAUPRC was calculated by averaging the ROC_AUCIAUPRC scores across all 143 selected gene targets.

https://doi.org/10.1371/journal.pone.0319865.t003
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A Table_Selected Best Parameters

Model Parameter Mean ROC_AUC Score
KNN n_neighbors: 33, p: 3 0.7126818046805555
SvC C: 20, gamma: 0.5, kernel: rbf 0.7742757875524475

RF . bootstrap: False, m?x_depth: 6, me?x_features.: auto, 0.7552852895998671
min_samples_leaf: 2, min_samples_split: 2, n_estimators: 30
XGB colsample_bytree: 0.6, max_depth: 5, min_child_weight: 3,

0.7750385602440503

reg_alpha: 1, subsample: 0.8
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Fig 1. General model performance for different algorithms. A) Model performance on the training set. B) Model performance on the test set. For all
plots, “+ ” denotes the outliers that fall significantly outside the range of the other data points in the dataset.

https://doi.org/10.1371/journal.pone.0319865.9001

influenced by a multitude of factors, such as spanning data quality [56, 57] computational methodologies [27], and Biologi-
cal Context [58]. Thus, we next aimed to delve deeper into the predictability of the 143 gene targets central to our study.

To assess the predictability of gene targets, we generated a heat map (Fig 2A) with the ROC_AUC calculated for
all 143 gene targets across four different ML algorithms. As shown in Fig 2A, each cell in this heat map is the average
ROC_AUC score based on the cross-validation results. The map contains 143 rows corresponding to 143 gene targets,
and the 4 columns for KNN, RF, SVC, and XGB algorithms, respectively. Notably, certain genes, exemplified by NR3C1,
SERPINAG, and PGR, consistently demonstrated high ROC_AUC values regardless of the modeling algorithm employed.
Conversely, several genes are consistently associated with low ROC_AUC values across all models. Obviously XGB and
SVC showed better performance among most of the gene targets, which is shown in red in Fig 2A.

Further elucidating the predictability landscape, Fig 2B shows the top 20 genes with high predictability across all four
predictions. Particularly, the TUBB gene emerged with the highest predictability in both models of SVC and RF. Genes
such as NR3C1, NR3C2, HTR2A, HTR2C, and KCNJ6 remain high predictability across all models. Meanwhile, we
observed that genes illustrate different performance variability across 4 models. For example, although NR3C1 performs
the third top ranked gene with the highest predictability across all models, KNN, and SVC predict the genes with less
variability across different parameters. However, the predictability of NR3C1 depends more on hyperparameter tuning with
XGB models.
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Fig 2. Gene targets prediction assessment. A) Heatmap of ROC_AUC scores across different modeling algorithms and gene targets. High ROC_
AUC scores are highlighted in red, whereas low ROC_AUC scores in green. B) The boxplot illustrates the top 20 gene targets with the highest ROC_
AUC scores for KNN, SVC, RF, and XGB. Within each boxplot, the gene targets are ordered based on their median ROC_AUC scores, from highest to
lowest. C) The correlation between ROC_AUC scores and the number of associated compounds that each gene targets. Each yellow dot denotes one
gene target.

https://doi.org/10.1371/journal.pone.0319865.9002
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In our final analysis, we identified 16 gene targets consistently exhibiting low ROC_AUC values (<0.6) across all four
algorithms, as outlined in Table S6. To probe the underlying factors contributing to the divergent predictability among these
genes, we hypothesized that the number of associated compounds might significantly impact the predictive results. By
employing Pearson’s correlation coefficient, we found weak positive correlations between the number of associated com-
pounds and ROC_AUC scores, with Pearson’s correlation coefficient registering at 0.345 (Fig 2C). Despite this correla-
tion, the weak magnitude prompts consideration of alternative factors causing the variability in gene predictivity, such as
the diversity of compounds associated with a gene target.

In summary, our models effectively predicted the remaining 127 gene targets, encompassing nearly 90% of the total
gene targets examined. This noteworthy achievement underscores the reliability and robustness of our predictive frame-
work, thereby validating its potential to expedite accurate gene target prediction within the realms of drug discovery and
molecular biology research.

Parameter influence on model performance

In our quest to comprehend the extent to which hyper-parameter tuning affects the prediction, we configured different
parameter settings and compared their average performance across all gene targets. Fifteen sets of parameters for each
model were selected based on their performance, including the top five performers, the bottom five performers, and those
in the middle tier of performance (Listed in Table S7). lllustrated in Fig 3, the median performance of various configura-
tions for KNN, RF, SVC, and XGB unveils intriguing insights.

Our analysis reveals that parameter fine-tuning is highly impacting on the RF model, while the performance of the
KNN algorithm exhibits relatively minimal fluctuations with varying hyper-parameters. Notably, the RF model consistently
yields ROC_AUC values exceeding 0.8 with a particular set of hyper parameters. However, the XGB model demonstrated
persistent performance with an average ROC_AUC of around 0.75 regardless of the hyper-parameters. Collectively, our
findings disclosed the profound impact of hyper-parameter selection on certain modeling algorithms, such as RF, while
exerting less influence on others, such as KNN, and XGB has higher stability across all configurations.

Results on validation of candidate gene-drug pairs

The primary objective of constructing prediction models is to identify potential new gene-drug connections for drug repur-
posing. To validate our predictions, we explored available in vitro assay data to see if any of the predicted gene-drug pairs
have experimental support.

The process of identifying potentially new gene-drug connections is described in Methods. We compared our predic-
tions with records from Pharos and the Board Drug Repurposing Hub (BDRH). If our model predicts a connection with
probability >0.5 that was not documented in Pharos or BDRH, we identify it as a potential novel gene-drug pair for further
experimental validation. We utilized the top three parameter configurations for each of the four algorithms, resulting in 12
distinct predictions. Cross-referencing these predictions produced a list of candidate gene-drug pairs along with the count
of models supporting each prediction. In total, we uncovered 220 gene-drug pairs supported by at least one ML model but
not documented in Pharos or the BDRH (Examples are shown in Table 4 and the full list can be found in Table S8). We
manually identified 60 gene-drug pairs that have in vitro assay data available, 52 of which were supported by experimen-
tal results, that is, the compounds acted either as active agonists or active antagonists of their respective targets in these
assays, implying a confirmation rate (86.7%) exceeding 85% (Examples are shown in Table 5 and full list in Table S9).

Results on identifying gene-rare disease associations for drug repurposing

We conducted a manual search of the OMIM and Orphanet database to ascertain whether the gene targets identified in
our novel gene-drug pairs are associated with any rare diseases. The findings are summarized in Table 6, revealing a total
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Fig 3. Impact of hyper-parameter fine-tuning on model performance. The boxplot showcases the 15 ROC_AUC scores, comprising the 5 highest, 5
intermediate, and 5 lowest, for KNN, SVC, RF, and XGB. For each boxplot, the parameter configurations are ordered based on their median ROC_AUC

scores, from highest to lowest.

https://doi.org/10.1371/journal.pone.0319865.9003

Table 4. Examples of gene-drug pairs predicted by different models.

Models Interest Gene Targets Structure ID
[KNN_1, KNN_2, KNN_3, RF_1, RF_2, RF_3, SVC_1, SVC_2, SVC_3, XGB_1, XGB_2, XGB_3] ‘NR3C1’ 127-31-1
[KNN_1, KNN_2, KNN_3, RF_1, RF_2, RF_3, SVC_1, SVC_2, SVC_3, XGB_1, XGB_2, XGB_3] ‘NR3C1’ 1310709-74-0
[KNN_1, KNN_2, KNN_3, RF_1, RF_2, RF_3, SVC_1, SVC_2, SVC_3, XGB_1, XGB_2, XGB_3] ‘NR3C1’ 59198-70-8
[KNN_2, RF_1, RF_2, RF_3, SVC_1, SVC_2, SVC_3, XGB_1, XGB_2, XGB_3] ‘SHBG’ 10161-33-8
[SVC_1, SVC_2, SVC_3, XGB_1, XGB_2, XGB_3] ‘ACHE’ 102518-79-6
[RF_1, RF_3, SVC_3, XGB_1, XGB_2, XGB_3] ‘ADRB3 32266-10-7
[SVC_1, SVC_2, SVC_3, XGB_1, XGB_2, XGB_3] ‘DRD4’ 75444-65-4
[KNN_1, KNN_3, RF_1, RF_3, XGB_1, XGB_2] ‘HTR2A 75859-03-9
[KNN_1, KNN_3, RF_2, XGB_1, XGB_2, XGB_3] ‘HTR2C’ 75859-03-9

https://doi.org/10.1371/journal.pone.0319865.t004

of 35 distinct rare diseases linked to various gene targets for which potential drugs have been identified. Further explo-
ration of these disease-drug relationships promises to provide insights into drug repurposing strategies tailored for rare

diseases.
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Table 5. Examples of gene-drug pairs validated by Tox21 in vitro assay data.

Gene Targets Structure ID Assay Names Assay Outcome
‘CYP1A2’ 81-14-1 tox21-p450-1a2-p1 active antagonist
‘CYP1A2’ 15930-66-2 tox21-p450-1a2-p1 active antagonist
‘CYP2D®’ 303-49-1 tox21-p450-2d6-p1 active antagonist
‘CYP2D®’ 1104-22-9 tox21-p450-2d6-p1 active antagonist
‘CYP2D®’ 113-92-8 tox21-p450-2d6-p1 active antagonist
‘DRD2’ 959-24-0 tox21-drd2-agonist-p1/tox21-drd2-antagonist-p1 inactive/inactive
‘ESRT’ 26538-44-3 tox21-er-luc-bg1-4e2-antagonist-p1 active antagonist
‘KCNH2’ 75859-03-9 tox21-herg-u20s-p1 active antagonist
‘KCNH2’ 553-08-2 tox21-herg-u20s-p1 active antagonist
‘NR3C1’ 127-31-1 tox21-gr-hela-bla-antagonist-p1/tox21-gr-hela-bla-agonist-p1 active agonist

https://doi.org/10.1371/journal.pone.0319865.t005

Application of novel gene targets for drug repurposing

The principal objective of this study is to advance the frontier of drug repurposing. Consequently, the elucidation of a
cohesive relationship between pharmaceutical compounds and pathological conditions assumes paramount importance.
We are now embarking on a quest to identify rare diseases intricately linked to specific gene targets by utilizing the OMIM
and Orphanet databases. Our aim in this phase is to outline various pathways that elucidate how drugs implicated in the
modulation of these genes may offer therapeutic avenues for the treatment of the rare diseases. Through the following
examples, we demonstrate how our research findings facilitate the establishment of robust connections between rare
diseases and pharmaceutical agents via the identified novel gene targets, thereby presenting promising avenues for ther-
apeutic exploration and intervention.

Case study 1. Candidate Drugs for Generalized Glucocorticoid Resistance (GCCR). The NR3C1 gene has
been predicted as a novel gene for eight distinct compounds, as listed in Table 7. GCCR (GARD:0002499) is a rare
adrenogenital syndrome characterized by generalized, partial tissue insensitivity to glucocorticoids, and it is caused by
heterozygous mutation in the glucocorticoid receptor gene (NR3C1) on chromosome 5931 [59]. With the connections
between eight chemical compounds and the gene NR3C1, and NR3C1 and GCCR, we aimed to explore the potential use
of these drugs in treating GCCR.

Through our analysis of scientific evidence mined from the Translator ecosystem, we found that Fludrocortisone,
Rimexolone, and Fluoxymesterone can modulate the NR3C1 gene mainly by binding to it and activating its signaling path-
way [60—62] and subsequently influencing GCCR by restoring the function of the glucocorticoid receptor [63—66]. These
three drugs as synthetic corticosteroids are commonly used to treat adrenal insufficiency diseases like Addison’s disease
[62,67-69]. Additionally, research indicates that GCCR patients typically exhibit deficiencies in adrenal corticosteroids,
including cortisol and aldosterone [70-73]. Therefore, Fludrocortisone, Rimexolone, and Fluoxymesterone may potentially
treat GCCR by providing adrenal corticosteroids. Rimexolone is shown as an example in Fig 4, other examples can be
found under the column ‘Scientific evidence from the Translator’ in Table 7.

Moreover, Rimexolone and Flunisolide, two of the aforementioned drugs, are known to affect the glucocorticoid receptor
(GR) by binding to it with high affinity [74]. As cortisol action mediated by the GR is diminished in GCCR patients [75, 76],
Rimexolone and Flunisolide may also be effective in treating GCCR by enhancing GR binding. Hormone replacement therapy
is another pivotal approach to maintaining hormonal balance in patients [77,78], which could aid in treating GCCR. Among the
eight drugs, Diflucortolone valerate and Melengestrol acetate are connected to GCCR through hormone pathways, suggesting
their potential use in hormone replacement therapy. Additionally, Deoxycorticosterone acetate (DOCA) is documented as a
drug that induces one of the GCCR phenotypes, hypertensive disorder. Research shows that DOCA is often used to induce
hypertension in animal models [79-81], thus reducing DOCA levels may partially alleviate GCCR symptoms.
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Table 6. Target Gene and Related Rare Diseases based on OMIM and Orphanet.

Gene Targets Rare Disease Records OMIM Number
ACHE YT BLOOD GROUP ANTIGEN OMIM: 112100
ADRA2A LIPODYSTROPHY, FAMILIAL PARTIAL, TYPE 8; FPLD8 OMIM: 620679
ADRB1 RESTING HEART RATE, VARIATION IN OMIM: 607276
ADRB1 SHORT SLEEP, FAMILIAL NATURAL, 2; FNSS2 OMIM: 618591
AR Spinal and bulbar muscular atrophy, X-linked 1 OMIM: 313700
AR Hypospadias 1, X-linked OMIM: 30633

AR ANDROGEN INSENSITIVITY, PARTIAL; PAIS OMIM: 312300
AR ANDROGEN INSENSITIVITY SYNDROME; AIS OMIM: 300068
BCHE BUTYRYLCHOLINESTERASE DEFICIENCY; BCHED OMIM: 617936
C5 ECULIZUMAB, POOR RESPONSE TO OMIM: 615749
C5 COMPLEMENT COMPONENT 5 DEFICIENCY; C5D OMIM: 609536
CA12 Hyperchlorhidrosis, isolated OMIM: 143860
CA2 Osteopetrosis, autosomal recessive 3, with renal tubular acidosis OMIM: 259730
CALM1 Long QT syndrome 14 OMIM: 616247
CALM1 Ventricular tachycardia, catecholaminergic polymorphic, 4 OMIM: 614916
CHRM3 PRUNE BELLY SYNDROME; PBS OMIM:100100

CYP19A1 AROMATASE DEFICIENCY OMIM: 613546
CYP19A1 Aromatase excess syndrome OMIM: 139300
CYP2C9 COUMARIN RESISTANCE OMIM: 12270

DRD3 TREMOR, HEREDITARY ESSENTIAL, 1; ETM1 OMIM: 190300
ESR1 BREAST CANCER, FAMILIAL MALE, INCLUDED OMIM: 114480
GABRB2 Developmental and epileptic encephalopathy 92 OMIM: 617829
GABRG2 Generalized epilepsy with febrile seizures plus, type 3 OMIM: 607681
GABRG2 FEBRILE SEIZURES, FAMILIAL, 8; FEB8 OMIM: 607681
GABRG2 DEVELOPMENTAL AND EPILEPTIC ENCEPHALOPATHY 74; DEE74 OMIM: 618396
KCNH2 LONG QT SYNDROME 2; LQT2 OMIM: 613688
KCNH2 SHORT QT SYNDROME 1; SQT1 OMIM: 609620
NR3C1 GLUCOCORTICOID RESISTANCE, GENERALIZED; GCCR OMIM: 615962
PPARG LIPODYSTROPHY, FAMILIAL PARTIAL, TYPE 3; FPLD3 OMIM: 604367
SI SUCRASE-ISOMALTASE DEFICIENCY, CONGENITAL; CSID OMIM: 609845
SIGMAR1 AMYOTROPHIC LATERAL SCLEROSIS 16, JUVENILE; ALS16 OMIM: 614373
SIGMAR1 NEURONOPATHY, DISTAL HEREDITARY MOTOR, AUTOSOMAL RECESSIVE 2; HMNR2 OMIM: 605726
SLC6A2 ORTHOSTATIC INTOLERANCE OMIM: 604715
SLC6A3 PARKINSONISM-DYSTONIA 1, INFANTILE-ONSET; PKDYS1 OMIM: 613135
SLCO1B1 HYPERBILIRUBINEMIA, ROTOR TYPE; HBLRR OMIM: 237450

https://doi.org/10.1371/journal.pone.0319865.t006

In summary, our study identifies several drugs with the potential to treat GCCR through different pathways, including
increasing adrenal corticosteroids, enhancing GR binding efficiency, hormone replacement therapy and alleviating GCCR
symptoms. Meanwhile, there are other compounds, e.g., Cortodoxone, that can be further investigated and shows weak
relationship to GCCR according to current research recorded in Translator.

Case study 2. Candidate Drugs for short QT syndrome. In our results, KCNH2 was predicted as a novel gene target
of eleven drugs listed in Table 8. KCNH2 provides instructions for making channels that transport positively charged atoms
(ions) of potassium out of cells, and mutations in the KCNH2 gene can cause short QT syndrome (OMIM: 609620) [82].
Thus, we speculated that drugs linked to KCNH2 might present promising candidates for short QT syndrome treatment.
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Table 7. Candidate compounds for GCCR.

Compounds Original indication Use for GCCR Scientific evidence from the
Translator
Rimexolone Employed in ophthalmology to treat eye Providing adrenal corticosteroids; https://arax.ncats.io/?r=236272

inflammation and allergic eye diseases like
keratitis and conjunctivitis

Enhancing GR binding

Fluoxymesterone

Treatment of hypogonadism

Providing adrenal corticosteroids;
Enhancing GR binding

https://arax.ncats.io/?r=241052

Fludrocortisone

Adrenal insufficiency diseases like Addison’s
disease

Providing adrenal corticosteroids

https://arax.ncats.io/?r=236165

Melengestrol acetate

Growth-promoting agent in livestock

Hormone replacement therapy

https://arax.ncats.io/?r=241051

Deoxycorticosterone
acetate

Adrenal insufficiency diseases

Alleviate one GCCR symptom,
hypertension

https://arax.ncats.io/?r=236273

Diflucortolone valerate

Combat skin inflammation and allergic reac-
tions such as eczema and dermatitis

Hormone replacement therapy

https://arax.ncats.io/?r=241047

Cortodoxone

Adrenal insufficiency diseases like Addison’s
disease

Weak relationship through ethanol.

https://arax.ncats.io/?r=236270

Halometasone hydrate

Combat skin inflammation and allergic reac-
tions such as eczema and dermatitis

N/A

https://arax.ncats.io/?r=241048

https://doi.org/10.1371/journal.pone.0319865.t007

bnhm;eﬁd feceplor

UW resistance

Fig 4. Associations between Rimexolone and Generalized Glucocorticoid Resistance from the Translator. (the original graph can be accessed
via https://arax.ncats.io/?r=236272).

https://doi.org/10.1371/journal.pone.0319865.9004

To test our hypothesis, we examined the scientific evidence identified from the Translator, and among these eleven
drugs, we found that Bucindolol, triprolidine, Cyproheptadine Hydrochloride, and Thonzonium bromide are connected to
short QT syndrome via the KCNH2 gene. Thonzonium bromide is shown as an example in Fig 5, The KCNH2 gene, also
referred to as the hERG gene, encodes a protein forming channels in cardiac muscle cell membranes [83]. These chan-
nels regulate potassium ion flow, crucial for cardiac rhythm maintenance [84,85]. Cyproheptadine has been demonstrated
to interfere with the hERG channel function, while Bucindolol and triprolidine reduce the KCNH2 protein activity [86]. In
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Table 8. Candidate compounds for short QT syndrome.

Compounds Original indication Use for short QT syndrome Scientific evidence from the
Translator
Bucindolol Management of heart failure and hypertension KCNH2 deactivation; 3-blocker https://arax.ncats.io/?r=241069

of calcium channel

Thonzonium bromide

Used in topical formulations for its ability to inhibit the
growth of bacteria, fungi, and other microorganisms

KCNH2 deactivation

https://arax.ncats.io/?r=241079

triprolidine Symptomatic relief of allergic conditions such as hay KCNH2 deactivation https://arax.ncats.io/?r=241074
fever

Cyproheptadine Allergic conditions; Serotonin Syndrome; Migraine KCNH2 deactivation https://arax.ncats.io/?r=241077

hydrochloride Prophylaxis

iloperidone Treatment of schizophrenia Induced tachycardia https://arax.ncats.io/?r=241071

Clomipramine
hydrochloride

Treatment of various mental health conditions, includ-
ing: Obsessive-Compulsive Disorder (OCD), panic
disorder.

Weak relationship through
Chloride ion

https://arax.ncats.io/?r=241073

Trimipramine maleate

Treatment of depression; anxiety disorders; insomnia

Weak relationship connected by
prelamin-A/C

https://arax.ncats.io/?r=241078

Mebeverine Alleviate symptoms associated with irritable bowel N/A https://arax.ncats.io/?r=241070

hydrochloride syndrome (IBS) and related gastrointestinal disorders

Rimcazole Preclinical studies only N/A https://arax.ncats.io/?r=241072

dihydrochloride

Promethazine Allergic conditions; nausea and vomiting; sedation and | N/A https://arax.ncats.io/?r=241075
anxiolysis; insomnia

AVE8923 potential therapeutic agent for cardiovascular N/A Cannot find this drug in translator

conditions

https://doi.org/10.1371/journal.pone.0319865.t008
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Fig 5. Associations between triprolidine and short QT syndrome from the Translator. (the original graph can be accessed via https://arax.ncats.

io/?r=241074).

https://doi.org/10.1371/journal.pone.0319865.9005

the meanwhile, research shows that accelerated KCNH2 deactivation is linked to arrhythmogenesis, a key symptom of
short QT syndromes [87]. Thus, these drugs hold potential in short QT syndrome treatment through KCNH2 deactivation.
Notably, Bucindolol, a B-blocker formerly employed in heart-related conditions, has been phased out due to its ambiguous

efficacy [88,89].

Although no published studies on iloperidone specifically address its relationship with KCNH2 gene targets, we identi-
fied the potential indication of iloperidone for short QT syndrome via Translator. Notably, iloperidone-induced tachycardia,
a short QT syndrome phenotype, suggests its relevance (table reference column). Hence, iloperidone warrants investiga-
tion as a potential treatment for cardiac diseases with similar phenotypes.

In conclusion, our findings suggest that drugs identified in our study can modulate KCNH2 gene target function, holding
promise for short QT syndrome treatment.
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Discussion

In our study, we introduced a systematic approach to identify novel relationships between chemical compounds and gene
targets and rare diseases based on biological activity profiles generated by using Tox21 bioassay screening data towards
drug repurposing. With the developed ML models achieving an overall prediction accuracy reflected by ROC-AUC scores
exceeding 0.7 and showing comparable values in APRUC metrics, we were able to identify 220 potential pairs of gene tar-
gets and compounds. Of these, 60 pairs had public assay records, with 52 of them validated by experimental outcomes.
In addition, the two case studies further underscore the robustness of our approach in predicting novel gene targets for
drug repurposing and disease treatment initiatives.

Research indicates that algorithms with more intricate architectures, such as SVC or tree-based ML models, often
exhibit better statistical performance. Our study corroborates this trend, as our results consistently demonstrate that RF,
SVC, and XGB consistently outperform KNN models across all 143 genes analyzed. Furthermore, our investigation into
hyper-parameter tuning revealed an interesting pattern: while fine-tuning had a significant impact on RF algorithms, its
effect was less pronounced in KNN and XGB models. This phenomenon can be attributed to the intricate nature of the
models and the multitude of hyper-parameters that can be fine-tuned to optimize performance. Thus, the complexity of the
algorithm architecture and the flexibility in parameter adjustments likely contribute to the varying degrees of sensitivity to
fine-tuning observed across different ML models.

In our study, we have identified 16 gene targets that exhibit a lack of predictability. The predictability of gene targets,
defined as the capacity of ML models to accurately predict interactions between chemical compounds and specific genes,
is influenced not only by computational algorithms but also by various other factors such as data quality, data quantity, and
biological complexities. To delve deeper into this issue, we have explored the correlation between the quantity of asso-
ciated compounds and the predictability of gene targets. Our analysis reveals a slightly positive correlation between the
number of known compounds of gene targets and their predictability. It appears that gene targets with a limited number of
associated compounds tend to exhibit poorer model performance. This could be the first reason that hinders the predict-
ability of these 16 genes (maximum number of related compounds: 52; minimal number of related compounds: 10; Mean:
22). Conversely, genes involved in well-characterized cellular pathways or disease processes may demonstrate higher
predictability due to their well-understood functions and interactions. Additionally, the lack of associated compounds fur-
ther indicates a poor understanding of these gene targets, contributing to their low predictability across different models.
Thus, it becomes evident that the absence of sufficient biological context significantly impacts the prediction accuracy of
these gene targets.

To accomplish our primary objective of drug repurposing using our ML models, we have successfully identified 220
gene-target pairs for drugs that were not previous reported. We checked 60 pairs that have in vitro assay data and found
that 52 pairs were confirmed by experimental evidence. We also found that NR3C1 genes are associated with multiple
compounds that are supported by nearly all different predictive models. The NR3C1 gene codes for the glucocorticoid
receptor (GR). Changes in NR3C1 gene targets lead to not only common diseases like polycystic ovarian syndrome but
also result in rare diseases like GCCR. Besides that, we also found a great number of compounds related to the family
of HTR2, PTGS, and DRD gene targets. All these gene targets are highly related to common and rare diseases such as
schizophrenia, gastric ulcer, urticaria, and endogenous depression. Thus, predicting the potential drugs associated with
these gene targets will provide meaningful information for drug repurposing and future clinical studies.

Besides those gene-drug pairs that have been validated with Tox21 assay data, the newly predicted drug candidates
from this study provide additional opportunities for future investigation. For example, our model predicts the novel asso-
ciation between metoclopramide and the gene ADRA2A. ADRA2A is related to Familial Partial Lipodystrophy (FPLD)
[90], and metoclopramide is connected to different kinds of FPLD through multiple pathways including hypertensive
disorder [91]. Thus, we hypothesized this might be a new potential solution for treating FPLD with metoclopramide via
ADRA2A.
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In general, the findings of this study hold significant translational potential for addressing the unmet medical needs in
rare diseases. By utilizing machine learning models, we identified novel gene-drug associations that provide a foundation
for targeted therapeutic development. For instance, the high predictability of gene targets such as NR3C1 and KCNH2,
coupled with their relevance to rare diseases like Generalized Glucocorticoid Resistance and Short QT Syndrome,
demonstrates the potential to prioritize drug candidates for preclinical and clinical evaluations. Furthermore, the diver-
sity of associated compounds for these targets enables the exploration of multiple therapeutic pathways. This approach
is particularly valuable for rare diseases, where limited research funding often constrains the development of targeted
treatments. By focusing on well-characterized gene-disease relationships, such as those supported by existing evidence,
this study makes it feasible to design clinical studies with higher confidence in the underlying biology. Our methodology
also has broader implications for drug repurposing in rare diseases. The ability to predict novel gene-drug relationships
and validate them experimentally highlights a systematic pipeline that can be applied to other underexplored diseases.
This not only accelerates the identification of promising therapeutic candidates but also provides a scalable framework for
addressing the broader challenges of drug discovery in rare disease contexts.

Despite the promising results from our models, our study acknowledges several limitations. The imbalance of the
dataset, characterized by a disproportionately low number of positive drug-gene pairs, can lead to skewed predictions
favoring the major class. While we employed metrics like AUPRC to mitigate this, future studies would benefit from
augmented datasets with more balanced distributions. Additionally, the varying performance of machine learning models
highlights the need to balance model complexity and interpretability. Simpler models like KNN underperform due to their
inability to capture intricate relationships, while more complex models like XGB, although more accurate, present chal-
lenges in biological interpretation due to their computational complexity. Finally, the predictability of certain gene targets
is constrained by limited biological context, emphasizing the importance of integrating additional functional data into
future analyses.
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