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Abstract 
Access to safe water, sanitation, and hygiene is a basic human need for health and 

well-being. Yet, 2.2 billion people globally in 2022 did not have access to safely managed 

drinking water. Presently there are no publicly available methods for monitoring and mea-

suring access to water sources in low-income settings at a fine spatial scale. The objective 

of this study was to map and identify areas with improved and unimproved water points 

in Misungwi, Tanzania using two different methods: 1) community mapping with direct 

field observations, and 2) drone imagery. We quantified and summarized the number of 

improved and unimproved water sources, as defined by the WHO/UNICEF Joint Monitor-

ing Programme core questions and noted their specific uses where applicable. We also 

compared the results of both data collection methods outlining their respective advantages 

and limitations. The community maps and direct field observations not only served as a 

method to identify water sources, but also provided insights into how community members 

used and interacted with each water source. In contrast, the drone imagery only served as 

a method to systematically identify water sources in the study area. A notable advantage 

of the drone imagery, however, was its ability to identify more unimproved water sources 

(225 vs 90) compared to the direct field observations. Both methods were effective in iden-

tifying water sources at a fine scale, but the drone imagery involved a more time-intensive 

process, demanded advanced skills, and incurred a higher cost compared to the commu-

nity mapping with direct field observations. This study highlights the need for accurate and 

readily accessible data on water sources which is imperative for planning, developing, and 

managing improved water sources, especially in underserved areas such as Misungwi, 

Tanzania.

Introduction
Access to safe water, sanitation, and hygiene (WASH) is a basic human need for health and 
well-being [1]. Yet, 2.2 billion people globally in 2022 did not have access to safely managed 
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drinking water [1]. Access to safe water is targeted by the Sustainable Development Goals 
(SDG), specifically SDG 6 on clean water and sanitation for all [2].The SDGs are a group of 
17 interrelated goals set by the United Nations for 2030 that provide a global framework to 
address global challenges such as poverty, hunger, diseases, and discrimination against women 
and girls [3]. The SDGs are interrelated, where progress in one goal will affect the outcomes 
of others. It is evident that SDG 6 cannot be achieved without addressing other essential SDGs 
including poverty reduction (SDG 1), food security (SDG 2), improving population health 
(SDG 3), education (SDG 4), and peace and human rights (SDG 16) [1,4–8]. For example, 
SDG 6.1.1 aims to increase the proportion of the population using safely managed drinking-
water services, and SDG 3.9.2 aims to substantially reduce the number of deaths related to 
unsafe water [1,8].

The World Health Organization and UNICEF collaborated to form the Joint Monitoring 
Programme (JMP) for Water Supply, Sanitation and Hygiene that is responsible for mon-
itoring the SDG 6 targets through core questions for WASH indicators [9]. There are six 
core questions for drinking water that are categorized into five-levels, which are coined as a 
“service ladder”, and are based on the source and the time it takes to retrieve the water [9]. 
The five different levels include: 1) surface water, defined as retrieving drinking water directly 
from a river, dam, lake, pond, stream or canal; 2) unimproved, defined as retrieving drinking 
water from an unprotected dug well or unprotected spring; 3) limited, defined as retrieving 
drinking water from an improved source but collection time exceeds 30 minutes for a round 
trip; 4) basic, defined as retrieving drinking water from an improved source and collection 
time does not exceed 30 minutes for a round trip; 5) safely managed, defined as retrieving 
drinking water from an improved water source that is located on premise, available when 
needed and free from contamination [9]. These levels can be further dichotomized into unim-
proved or improved drinking water where unimproved drinking water sources include surface 
and unimproved water, and improved drinking water sources include limited, basic and safely 
managed water [9].

Although the WHO/UNICEF JMP only has indicators for drinking water, WASH-
attributable diseases can be spread from a range of transmission routes including ingestion, 
contact with contaminated water, or through vectors that need water to complete their life-
cycle [10]. In fact, 2.5% of all deaths globally in 2019 were from four diseases that are spread 
through unsafe WASH practices including diarrhoea, acute respiratory infections, undernu-
trition, and soil-transmitted helminthiases [11]. However, this is likely an underestimation 
since there are other WASH-attributable diseases including dengue, Japanese encephalitis, 
lymphatic filariasis, malaria, onchocerciasis, and schistosomiasis [11,12].

Despite the global burden of WASH-attributable diseases and the global targets set by the 
SDGs, there are no publicly available data for monitoring and measuring access to unimproved 
water for drinking and other domestic uses in low-income settings at a fine spatial scale. In 
research, water availability is typically represented by proxies such as rainfall or vegetation 
indices like the normalized difference vegetation index (NDVI) [13,14]. Gridded raster data on 
NDVI globally are publicly available through the Moderate Resolution Imaging Spectroradiome-
ter (MODIS) at a spatial and temporal resolution of 250 m and 16-days, respectively [15]. NDVI 
can identify large unimproved water sources such as unprotected springs and ponds (NDVI < 
0) [16,17], but it cannot identify unprotected wells which have an average diameter of 1.2 meters 
[18]. There are also publicly available nationally representative census data through the Demo-
graphic Health Survey (DHS) used to monitor and evaluate progress towards multiple SDGs, 
including SDG 6. The DHS uses the core questions outlined by the WHO/UNICEF JMP includ-
ing the type of drinking and nondrinking water used by each household [19]. Although these 
surveys are nationally representative, it does not allow for fine spatial analyses. For instance, in a 
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singular region of Tanzania (Mwanza), the point density for the number of households sampled 
per square kilometer was 0.00098 (22 points to cover 22,233 km2) in 2022 [19]. The WHO/
UNICEF JMP also reports yearly national metrics for the proportion of people using unim-
proved drinking water, but this is a single metric without any spatial component [20]. Finally, 
there are publicly available repositories for the location of water points and their status managed 
by Water Point Data Exchange [21], however, the availability of these data points are scarce – for 
instance, in Tanzania, there is only data for 10 of the 184 districts (5%) [21].

Fine spatial scale data is needed to accurately capture water availability in low-income 
settings where inequities result in higher vulnerability to WASH-attributable diseases. There 
is a particular need for data on unimproved water sources such as surface water (river, stream, 
lake, pond), unprotected dug wells, and unprotected springs which can inform and provide 
stakeholders with information of geographic hotspot areas with unimproved water points. 
The objective of this study was to map and identify areas with improved and unimproved 
water points in Misungwi, Tanzania, using two different methods: community mapping with 
field observations, and drone imagery.

Methods

Study setting
This study was nested in a four-arm, single blinded, parallel, cluster randomized control trial 
assessing the efficacy of three dual active-ingredients long lasting insecticidal nets for the 
control of malaria in Misungwi, Tanzania (Fig 1) [22]. Misungwi has two rainy seasons from 

Fig 1.  Map highlighting the study area in reference to Lake Victoria, and a detailed view of the 3 villages that 
make up the study area. Map content was produced with Esri ArcGIS software using study data and data provided by 
GADM and Natural Earth available online: https://gadm.org/download_country.html and https://www.naturalearth-
data.com/.

https://doi.org/10.1371/journal.pone.0319603.g001

https://gadm.org/download_country.html
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March to May (Masika – long rains), and from October to January (Vuli – short rains). This 
study specifically used data from three (Gukwa, Mwagimagi and Isesa) of the 78 villages from 
the main trial, which were selected based on high infection status for malaria and schistosomi-
asis (two WASH-attributable diseases) and proximity to Lake Victoria [22,23]. A recent survey 
conducted in these villages in 2022 found that no households (n =  92, 100%) in these three 
villages used improved drinking water sources [23], with the most fetching water from unpro-
tected springs (83%), followed by surface water (12%), and unprotected wells (5%).

Data sources
Community maps and direct field observations.  This study used two different methods 

to identify water sources in the three villages including community mapping with field 
observations, and drone imagery. Participative community mapping activities and direct 
field observations were conducted in August 2022. Data collection methods are described in 
detail elsewhere [23]. Briefly, community maps were created by village members to identify 
pre-defined features in their village (i.e., roads, water sources and their specific uses, schools, 
health centres) to have a better understanding of the different assets in each village [24]. 
Specifically, ten community members above the age of 18 years from each village, with at least 
5 men and 5 women per village, were selected by village leaders to create a map of their village 
with one map being create by a group of men, and one map created by a group of women.

The direct field observations were characterized by an opportunistic methodology, informed 
by the community maps (i.e., using different assets such as roads and health centres as reference 
points) and informal interviews by community members [25]. We also identified other water 
sources that were not identified in the community map to understand water access for drinking 
and other domestic uses. We continued to identify water sources until no new locations were 
being identified or provided by community members. While this process was not conducted 
using a systematic methodology, it allowed us to capture the relevant water sources recognized 
and utilized by the community. Geographic coordinates and pictures were collected for all water 
sources in the study area using handheld GPS devices and an iPhone 13, respectively. If people 
were present at the water source, informal interviews were conducted to inquire about specific 
water uses (i.e., for drinking, for bathing, visit frequency). We then quantified and summarized 
the number of improved and unimproved water sources, as defined by the WHO/UNICEF JMP 
core questions, and noted their specific uses where applicable [9]. Finally, we determined the 
number of households (retrieved from the census data from the main trial) that have access to 
improved water sources within a 30-minute round which the WHO/UNICEF JMP classifies as 
“basic” access to water [9]. This calculation was implemented in ArcMap version 10.8.1 (ESRI, 
Redlands, CA, USA) and included households within a 1 km (15-min) buffer around each 
improved water source, using an average walking speed of 1.2 m/s [26]. However, it is important 
to acknowledge that walking speeds can vary among individuals, and households may not nec-
essarily utilize the nearest water source. Despite these limitations, and without directly surveying 
and timing individuals, this approach represents the most accurate assessment to identify areas 
with basic and limited access to water for this study.

Drone imagery.  The drone imagery was captured in September 2022. We worked with 
Notice Kilimanjaro, an experienced and authorized Tanzanian drone operating media 
company (TCAA authorized and licensed to carry out drone flights across Tanzania) to map 
the three villages using a Mavic 2 Pro quadcopter drone. The drone was flown using parallel 
flight lines (a lawn-mower flight pattern) at an altitude of 100 m, giving a ground-sampling 
distances of 3 cm, and capturing approximately 2 km2 a day. This allowed for a cumulative 
coverage of 64 km² over 25 days, representing the total area of all three villages. Notice 
Kilimanjaro processed all drone images prior to analysis. Manual delineation (points) of the 
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centroid and the diameter of all water sources of the georeferenced images were done using 
ArcMap version 10.8.1 (ESRI, Redlands, CA, USA). We then quantified and summarized 
the number of improved and unimproved water sources based on visual appearance from 
the georeferenced image[9 ]. Descriptive statistics were used to summarize the number and 
type of water sources, dichotomized as either improved and unimproved, using frequencies 
and proportions. As with the community walkthrough analysis, we determined the number 
of households with “basic” access to water by calculating the number of households that 
have access to improved water sources within a 30-minute round (1 km buffer around each 
improved water source) [9].

Comparative analysis
A comprehensive qualitative analysis comparing the results of each data collection method 
and outlining their respective advantages and limitations was conducted. Specifically, we 
identified key themes that emerged from each approach, including their ability to identify the 
different water sources used by community members in all three villages, and the financial 
and time resources required for each method.

Ethics statement
The protocol for this study was reviewed and approved by the institutional review boards, 
of the University of Ottawa (Canada) and Medical Research Coordinating Committee of the 
National Institute for Medical Research (Tanzania). Written informed consent forms were 
obtained from all participants prior to data collection activities. Additional information 
regarding the ethical, cultural, and scientific considerations specific to inclusivity in global 
research is included in the Supporting Information (S1 File: Inclusivity in Global Research)

Results

Summary of results
Community maps and direct field observations.  Six community maps were created in 

the three selected villages (all six maps are published in [23]). Community maps primarily 
identified unimproved water sources as well as other assets including schools, health centres 
and Village Executive Officer offices. Only one water source in all community maps met the 
criteria for an improved source of water, which was a public tap identified by the women in 
Isesa. All other sources of water could be classified as unimproved surface water (i.e., wells, 
ponds, river, lakes).

The median daily walking distance for the direct field observation was 5.7 km for a total of 
10 days, with a minimum daily walking distance of 3.6 km and a maximum of 9.7 km (Fig 2). 
A total of 114 water sources were identified during the direct field observations (Fig 3), with 
the majority (n = 90, 79%) being unimproved water sources (i.e., surface water, unprotected 
wells) (Table 1).

A total of 1459 households in the study area were identified in the census data, of which 
nearly two thirds (n = 921, 63%) had access to basic water (households with access to an 
improved source within a 30-minute round trip) (Fig 4). The median distance to the nearest 
improved water source identified in the community walkthrough was 630 m with a minimum 
and maximum distance of 6 m and 4938 m, respectively.

Drone imagery.  A total of 236 water sources were identified in the drone imagery (Fig 
3), with the majority (n = 225, 95%) being unimproved water sources (i.e., surface water, 
unprotected wells), though less improved water sources were identified in the drone imagery 
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compared to the direct field observations (11 compared to 24) (Table 1). Based on the shape 
of the surface water surrounding and bordering crop lines, 47 of the 236 (20%) water sources 
were suspected to be used for farming and irrigation as seen in Fig 5, and not for human 
consumption and use. The median diameter of all the unimproved water sources was 5.4 m, 
with a minimum diameter of 0.3 m and a maximum of 45.8 m.

Nearly half (n = 649, 44%) of the households in the study area identified in the census had basic 
access to water (households with access to an improved source within a 30-minute round trip) 
(Fig 4). The median distance to the nearest improved water source identified in the drone imagery 
was 1114 m with a minimum and maximum distance of 10 m and 6245 m, respectively.

Comparative analysis
Integrating the two methods provided a comprehensive overview of water access for drinking 
and domestic uses in the study area. Nevertheless, it is imperative to consider the respective 
advantages and disadvantages associated with each individual method (Table 2).

Information derived
All methods collected water use information at a fine scale including the GPS location of 
water sources for the direct field observations and a 3 cm resolution for the drone imagery. 
However, one of the fundamental differences in the methods lies in the types of information 
obtained from each method.

Fig 2.  Map of the study area outlining the daily walking paths for the community walkthrough. Each path was 
informed by the community maps and informal interviews with community members. Map content was produced 
with Esri ArcGIS software using study data and data provided by GADM and Natural Earth available online: https://
gadm.org/download_country.html and https://www.naturalearthdata.com/.

https://doi.org/10.1371/journal.pone.0319603.g002

https://gadm.org/download_country.html
https://gadm.org/download_country.html
https://www.naturalearthdata.com/
https://doi.org/10.1371/journal.pone.0319603.g002
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The community maps and direct field observations contextualized and provided an indi-
cation of how the community members in all three villages used and interacted with surface 
water (i.e., used for domestic use, used for farming and other domestic uses, reserved for cat-
tle). A contextual understanding of water source uses and behaviours are described in detail 
elsewhere [23]; but briefly, we found that children primarily fetched water, and that although 
ponds and wells were sourced from the same body of water (separated by an arbitrary border), 
unprotected wells were dedicated for drinking water and ponds were dedicated for other 
domestic uses and cattle. It was also evident from the community walkthrough that although 
improved water sources were identified (e.g., hand pumps sourced from wells or boreholes), 
they were not in use because of unpleasant taste and smell. This aspect was especially perti-
nent when analyzing the drone imagery conducted one month later in September 2022.

Fig 3.  Map of the study area outlining the location of improved (blue), and unimproved (red) water sources iden-
tified in the community walkthrough and the drone imagery. Map content was produced with Esri ArcGIS software 
using study data and data provided by GADM and Natural Earth available online: https://gadm.org/download_coun-
try.html and https://www.naturalearthdata.com/.

https://doi.org/10.1371/journal.pone.0319603.g003

Table 1.  Characteristics of water sources identified in the community maps and direct field observations, and the 
drone imagery.

Total number of 
water sources

Total number of unim-
proved* water sources

Total number of 
improved# water sources

Direct field observations 114 90 (79%) 24 (21%)
Drone imagery 236 225 (95%) 11 (5%)
*Unimproved water sources include surface water, unprotected springs, and unprotected wells [9].
#Improved water sources include public taps, boreholes, and protected wells [9].

https://doi.org/10.1371/journal.pone.0319603.t001

https://gadm.org/download_country.html
https://gadm.org/download_country.html
https://www.naturalearthdata.com/
https://doi.org/10.1371/journal.pone.0319603.g003
https://doi.org/10.1371/journal.pone.0319603.t001
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The drone imagery identified 122 more water sources (107% more water sources) than the field 
observations, specifically more unimproved water sources, but the absence of contextual details 
posed a challenge in determining their relevance for human use and disease risk. For example, in 
Mwagimagi, the drone imagery identified three water sources of varying sizes (Fig 6A–6C) with the 

Fig 4.  Map of the study area outlining households that could be served by an improved water source within a 
30-minute round trip (within a 1km buffer of an improved water source). Map content was produced with Esri 
ArcGIS software using study data and data provided by GADM and Natural Earth available online: https://gadm.org/
download_country.html and https://www.naturalearthdata.com/.

https://doi.org/10.1371/journal.pone.0319603.g004

Fig 5.  Example of the difference between surface water and water suspected to be used for irrigation in Gukwa.

https://doi.org/10.1371/journal.pone.0319603.g005

https://gadm.org/download_country.html
https://gadm.org/download_country.html
https://www.naturalearthdata.com/
https://doi.org/10.1371/journal.pone.0319603.g004
https://doi.org/10.1371/journal.pone.0319603.g005
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evidence of cattle inside and surrounding one of the three water sources (Fig 6C). During the direct 
field observations, we identified two of these three water sources (Fig 6A and 6C) that were identified 
in the drone imagery; walking past the second water source (Fig 6B) even though it was near the other 
two water sources (Fig 6A and 6C). Additionally, community members revealed that the first water 
source (Fig 6A) was used by humans for all domestic uses including drinking water, and that the third 
water source (Fig 6C) was reserved for cattle and was not used by humans because it was considered 
“dirty”. This type of information is invaluable, particularly as the presence of cattle has implications 
for certain water-borne diseases (i.e., cryptosporidium, hybrid species of schistosomiasis [27,28]).

Table 2.  Characteristics and resource requirements for data collection using community maps and direct field observations, and drone imagery to identify water 
sources at a fine scale in Misungwi, Tanzania. Advantages and disadvantages are indicated for each characteristic.

Charac-
teristics/
resources

Community maps and direct field observation Drone imagery

Infor-
mation 
derived

Advantage
• Contextualized water uses and behaviour.
• �Can assess usability, functionality, and quality of improved water sources 

(i.e., borehole).
• GPS location of water source.
• �Better at identifying improved water sources compared to drone imagery. 

Disadvantage
• �Study data is constrained to a specific set of objectives (i.e., identification 

of domestic and drinking water sources).

Advantage
• �Systematically identified all available water sources in the study 

area*.
• Could detect water sources as small as 30 cm in diameter.
• �Drone imagery data could be used for other studies with varying 

objectives (i.e., crop classification, urban planning, disaster response). 
Disadvantage

• �Could not delineate if water was used by humans and in what capac-
ity (i.e., drinking, domestic use)

• Could not assess water source functionality and quality.
Financial 
cost

• Field personnel and travel: $ USD 2,500 • Service, field personnel, and travel $ USD 8,000

Time 
commit-
ment

• 13 days for data collection
• 7 h for data analysis

• 25 days for data collection
• 80 h for data analysis

*Based on previous survey results [23], no household in this study area had access to improved water sources, indicating that piped water and rainwater collection was 
not an important consideration.

https://doi.org/10.1371/journal.pone.0319603.t002

Fig 6.  Water sources identified in the drone imagery in Mwagimagi compared to the contextual information 
gathered during the community walkthrough including a water source used by humans for all domestic uses (A), 
a water source that was not found in the community walkthrough (B), and a water source reserved for cattle (C).

https://doi.org/10.1371/journal.pone.0319603.g006

https://doi.org/10.1371/journal.pone.0319603.t002
https://doi.org/10.1371/journal.pone.0319603.g006
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Another prominent difference between the two methods was the ability to assess the usabil-
ity, functionality, and quality of the water sources (although not performed exhaustively or 
systematically in this study), which was only possible with the direct field observations. For 
example, we identified and assessed the functionality of a borehole in Gukwa (Fig 7A) and 
Isesa (Fig 7C) which we later identified in the drone imagery (Fig 7B and 7D). The ability to 
note the functionality and quality of water proved to be a significant advantage in this study 
area as many boreholes were not functional, e.g., such as the one in Isesa (Fig 7C and 7D). The 
community walkthrough also highlighted that the availability of improved water sources did 
not imply the utilization of that water source, where community members noted that they did 
not use the improved water sources for drinking or other domestic uses because of unpleas-
ant taste and smell. Therefore, although we analyzed the number of households that could be 
served by “basic” water sources, those metrics should be interpreted with caution given the 
information derived from the community walkthrough.

Financial cost
The second notable difference between the two methods pertained to the project bud-

get and costs. This study was nested in a randomized control trial assessing the efficacy of 
next-generation long lasting insecticidal nets for the control of malaria [22]. Therefore, the 
cost of the two methods reflects the leveraging of available resources (i.e., infrastructure, 
staff, participant recruitment, survey questionnaire) and established in-country partnerships. 
The cost for the drone imagery was significantly more than the community mapping with 
field observations (USD$ 2,500 compared to USD$ 8,000), which represent the cost for the 

Fig 7.  Comparing a functional borehole identified in the direct field observations (A) and drone imagery (B) in 
Gukwa and a non-functional borehole identified in the direct field observations (C) and drone imagery (D) in 
Isesa.

https://doi.org/10.1371/journal.pone.0319603.g007

https://doi.org/10.1371/journal.pone.0319603.g007
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field personnel, travel, and service. The community maps and direct field observations were 
conducted by three people including a local field personnel and two Canadian (international) 
doctoral students for 15 days whereas the drone service included a drone pilot, a driver, and 
the drone image processing for 30 days.

Time commitment
The third notable difference between the two methods pertained to the time commitment 
required for both data collection and analysis. Although less labour intensive than the com-
munity walkthrough, the drone imagery took 12 additional days for data collection and 73 
additional hours for data analysis, not including the time for image processing prior to anal-
ysis, compared to the community mapping with field observations. The community mapping 
with field observations, and the drone imagery were collected by research assistants and a 
drone service, respectively, however, the research assistant responsible for the data analysis 
was present for both data collection activities, although not necessary for the drone service. 
The extent of the direct field observations analysis included stratifying the results by each 
village and to dichotomize and summarize the different water sources using frequencies and 
proportions. The drone imagery was complex and required a substantial time commitment 
and skills to analyze. Most of analysis time was spent systematically identifying water sources 
within a study area 64 km2 (≈50 h). The remaining time was spent processing and uploading 
the images, which amounted to 1 terabyte of data.

Discussion
Fine spatial scale data is imperative to capture information on water availability in low-
income settings where inequities result in higher vulnerability to WASH-attributable diseases. 
This study focused on three villages in Tanzania with a history of using unimproved water 
sources for drinking and other domestic uses. We identified water bodies, including surface 
water and unprotected wells, ranging from 30 cm to 46 m in diameter using two methods. 
The community maps and direct field observations identified, contextualized, and provided 
an understanding of how community members in all three villages used and interacted with 
water sources, while the drone imagery systematically identified water sources in the study 
area, including more unimproved water sources (225 vs 90) and less improved water sources 
(11 vs 24) compared to the direct field observations. Both methods were effective in iden-
tifying water sources at a fine scale, but the drone imagery involved a more time-intensive 
process, demanded advanced skills, and incurred a higher cost compared to the community 
mapping with direct field observations.

It is evident from this study that publicly available environmental data or nationally rep-
resentative data such as the DHS fail to capture the heterogeneity of risk factors for WASH-
attributable diseases and access and usage of improved and unimproved water sources at a 
fine spatial scale (i.e., at an individual or household-level). For instance, in this study, the 
median size of water sources identified in the drone imagery was 5.4 m, and the direct field 
observations noted that community members use these water sources for drinking and other 
domestic uses, potentially exposing them to WASH-attributable disease. While there is no sin-
gle proxy for water availability or environmental risk factors for WASH-attributable diseases, 
studies typically use publicly available proxy environmental data at spatial resolutions of 250 
m (i.e., NDVI [29]) or 1 km (rainfall [30]) as risk factors for diseases [31–33] and to even to 
predict disease prevalence to inform control programs [34].

As climate change is expected to alter the patterns and intensity of rainfall, temperature, 
and other environmental factors, it will likely influence the distribution and prevalence of 
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WASH-attributable diseases [35–37]. It is evident that WASH-attributable diseases exhibit 
considerable temporal and spatial heterogeneity, making it essential to monitor and identify 
risk areas at a fine scale for effective disease prevention and control. Direct field observations 
and drone imagery are effective methods for identifying fine scale features in the environment 
that are beyond the scope of publicly available methods and can expand beyond the applica-
tion of identifying water sources in low-income settings. Drone imagery has proven to be a 
valuable tool in crop classification for agriculture [38], search and rescue missions to identify 
humans after a natural disaster [39], and to aid in study designs to identify households where 
census data is either incomplete or not available [40,41].

Limitations
This study has some limitations to be considered. We could not comprehensively compare 
the water sources identified in the direct field observations and the drone imagery for two 
reasons: 1) the presence of trees obstructing the aerial view necessary for capturing all water 
sourced during the drone imagery process, and; 2) we could not confidently discern which 
water source in the direct field observation corresponded to which water source identified in 
the drone imagery, likely because of limitation in the accuracy of the GPS handheld device. 
Typically, handheld GPS devices are accurate within a range of 5 to 10 m [42]. Therefore, 
when there was the presence of multiple water sources in the drone imagery that did not 
correspond to the number of water sources identified in the direct field observation, we could 
not discern which water source from the direct field observation corresponded to the drone 
imagery. This limitation posed challenges in a direct one-to-one comparison between the 
points obtained from the direct field observations with those captured in the drone imagery.

Another limitation is that both methods collected data at one point in time during the dry 
season, limiting the ability to evaluate fluctuations in water availability that occur seasonally. 
Specifically, in this study area, surface water and unprotected wells can evaporate completely 
during the dry season [32] and behaviours in accessing and using unimproved water sources 
also vary with the varying availability of water across the seasons [23]. Although this study did 
not assess fluctuations in water availability, it is evident that the study area faces significant 
challenges related to safe water infrastructure and usage which was identified by both the direct 
field observation and drone imagery. Conducting similar research across the different seasons is 
recommended, especially given the expected shifts in rain patterns due to climate change.

Conclusion
Access to safe water is a basic human need for health and well-being [1] and yet current meth-
ods for monitoring and measuring access to improved and unimproved water for drinking 
and other domestic uses in low-income settings are not sufficient at a relevant scale. Accurate 
and readily accessible data on water sources is crucial for various stakeholders, including gov-
ernments, researchers, international organizations, and non-governmental organizations. This 
information is imperative for planning, developing, and managing improved water sources, 
especially in underserved areas such as Misungwi, Tanzania. The importance of reliable data 
becomes particularly evident when striving to achieve the SDGs set for 2030 [3]. Such data 
serves as a foundation for informed decision-making and targeted efforts to ensure the provi-
sion of safe and sustainable water, addressing a pressing global need.
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