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Abstract

Access to safe water, sanitation, and hygiene is a basic human need for health and
well-being. Yet, 2.2 billion people globally in 2022 did not have access to safely managed
drinking water. Presently there are no publicly available methods for monitoring and mea-
suring access to water sources in low-income settings at a fine spatial scale. The objective
of this study was to map and identify areas with improved and unimproved water points

in Misungwi, Tanzania using two different methods: 1) community mapping with direct

field observations, and 2) drone imagery. We quantified and summarized the number of
improved and unimproved water sources, as defined by the WHO/UNICEF Joint Monitor-
ing Programme core questions and noted their specific uses where applicable. We also
compared the results of both data collection methods outlining their respective advantages
and limitations. The community maps and direct field observations not only served as a
method to identify water sources, but also provided insights into how community members
used and interacted with each water source. In contrast, the drone imagery only served as
a method to systematically identify water sources in the study area. A notable advantage
of the drone imagery, however, was its ability to identify more unimproved water sources
(225 vs 90) compared to the direct field observations. Both methods were effective in iden-
tifying water sources at a fine scale, but the drone imagery involved a more time-intensive
process, demanded advanced skills, and incurred a higher cost compared to the commu-
nity mapping with direct field observations. This study highlights the need for accurate and
readily accessible data on water sources which is imperative for planning, developing, and
managing improved water sources, especially in underserved areas such as Misungwi,
Tanzania.

Introduction

Access to safe water, sanitation, and hygiene (WASH) is a basic human need for health and
well-being [1]. Yet, 2.2 billion people globally in 2022 did not have access to safely managed
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drinking water [1]. Access to safe water is targeted by the Sustainable Development Goals
(SDQ), specifically SDG 6 on clean water and sanitation for all [2].The SDGs are a group of
17 interrelated goals set by the United Nations for 2030 that provide a global framework to
address global challenges such as poverty, hunger, diseases, and discrimination against women
and girls [3]. The SDGs are interrelated, where progress in one goal will affect the outcomes
of others. It is evident that SDG 6 cannot be achieved without addressing other essential SDGs
including poverty reduction (SDG 1), food security (SDG 2), improving population health
(SDG 3), education (SDG 4), and peace and human rights (SDG 16) [1,4-8]. For example,
SDG 6.1.1 aims to increase the proportion of the population using safely managed drinking-
water services, and SDG 3.9.2 aims to substantially reduce the number of deaths related to
unsafe water [1,8].

The World Health Organization and UNICEF collaborated to form the Joint Monitoring
Programme (JMP) for Water Supply, Sanitation and Hygiene that is responsible for mon-
itoring the SDG 6 targets through core questions for WASH indicators [9]. There are six
core questions for drinking water that are categorized into five-levels, which are coined as a
“service ladder”, and are based on the source and the time it takes to retrieve the water [9].
The five different levels include: 1) surface water, defined as retrieving drinking water directly
from a river, dam, lake, pond, stream or canal; 2) unimproved, defined as retrieving drinking
water from an unprotected dug well or unprotected spring; 3) limited, defined as retrieving
drinking water from an improved source but collection time exceeds 30 minutes for a round
trip; 4) basic, defined as retrieving drinking water from an improved source and collection
time does not exceed 30 minutes for a round trip; 5) safely managed, defined as retrieving
drinking water from an improved water source that is located on premise, available when
needed and free from contamination [9]. These levels can be further dichotomized into unim-
proved or improved drinking water where unimproved drinking water sources include surface
and unimproved water, and improved drinking water sources include limited, basic and safely
managed water [9].

Although the WHO/UNICEF JMP only has indicators for drinking water, WASH-
attributable diseases can be spread from a range of transmission routes including ingestion,
contact with contaminated water, or through vectors that need water to complete their life-
cycle [10]. In fact, 2.5% of all deaths globally in 2019 were from four diseases that are spread
through unsafe WASH practices including diarrhoea, acute respiratory infections, undernu-
trition, and soil-transmitted helminthiases [11]. However, this is likely an underestimation
since there are other WASH-attributable diseases including dengue, Japanese encephalitis,
lymphatic filariasis, malaria, onchocerciasis, and schistosomiasis [11,12].

Despite the global burden of WASH-attributable diseases and the global targets set by the
SDGs, there are no publicly available data for monitoring and measuring access to unimproved
water for drinking and other domestic uses in low-income settings at a fine spatial scale. In
research, water availability is typically represented by proxies such as rainfall or vegetation
indices like the normalized difference vegetation index (NDVT) [13,14]. Gridded raster data on
NDVI globally are publicly available through the Moderate Resolution Imaging Spectroradiome-
ter (MODIS) at a spatial and temporal resolution of 250 m and 16-days, respectively [15]. NDVI
can identify large unimproved water sources such as unprotected springs and ponds (NDVI <
0) [16,17], but it cannot identify unprotected wells which have an average diameter of 1.2 meters
[18]. There are also publicly available nationally representative census data through the Demo-
graphic Health Survey (DHS) used to monitor and evaluate progress towards multiple SDGs,
including SDG 6. The DHS uses the core questions outlined by the WHO/UNICEF JMP includ-
ing the type of drinking and nondrinking water used by each household [19]. Although these
surveys are nationally representative, it does not allow for fine spatial analyses. For instance, in a
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singular region of Tanzania (Mwanza), the point density for the number of households sampled
per square kilometer was 0.00098 (22 points to cover 22,233 km?) in 2022 [19]. The WHO/
UNICEF JMP also reports yearly national metrics for the proportion of people using unim-
proved drinking water, but this is a single metric without any spatial component [20]. Finally,
there are publicly available repositories for the location of water points and their status managed
by Water Point Data Exchange [21], however, the availability of these data points are scarce — for
instance, in Tanzania, there is only data for 10 of the 184 districts (5%) [21].

Fine spatial scale data is needed to accurately capture water availability in low-income
settings where inequities result in higher vulnerability to WASH-attributable diseases. There
is a particular need for data on unimproved water sources such as surface water (river, stream,
lake, pond), unprotected dug wells, and unprotected springs which can inform and provide
stakeholders with information of geographic hotspot areas with unimproved water points.
The objective of this study was to map and identify areas with improved and unimproved
water points in Misungwi, Tanzania, using two different methods: community mapping with
field observations, and drone imagery.

Methods
Study setting

This study was nested in a four-arm, single blinded, parallel, cluster randomized control trial
assessing the efficacy of three dual active-ingredients long lasting insecticidal nets for the
control of malaria in Misungwi, Tanzania (Fig 1) [22]. Misungwi has two rainy seasons from
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Fig 1. Map highlighting the study area in reference to Lake Victoria, and a detailed view of the 3 villages that
make up the study area. Map content was produced with Esri ArcGIS software using study data and data provided by
GADM and Natural Earth available online: https://gadm.org/download_country.html and https://www.naturalearth-
data.com/.

https://doi.org/10.1371/journal.pone.0319603.9001
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March to May (Masika - long rains), and from October to January (Vuli - short rains). This
study specifically used data from three (Gukwa, Mwagimagi and Isesa) of the 78 villages from
the main trial, which were selected based on high infection status for malaria and schistosomi-
asis (two WASH-attributable diseases) and proximity to Lake Victoria [22,23]. A recent survey
conducted in these villages in 2022 found that no households (n = 92, 100%) in these three
villages used improved drinking water sources [23], with the most fetching water from unpro-
tected springs (83%), followed by surface water (12%), and unprotected wells (5%).

Data sources

Community maps and direct field observations. This study used two different methods
to identify water sources in the three villages including community mapping with field
observations, and drone imagery. Participative community mapping activities and direct
field observations were conducted in August 2022. Data collection methods are described in
detail elsewhere [23]. Briefly, community maps were created by village members to identify
pre-defined features in their village (i.e., roads, water sources and their specific uses, schools,
health centres) to have a better understanding of the different assets in each village [24].
Specifically, ten community members above the age of 18 years from each village, with at least
5 men and 5 women per village, were selected by village leaders to create a map of their village
with one map being create by a group of men, and one map created by a group of women.

The direct field observations were characterized by an opportunistic methodology, informed
by the community maps (i.e., using different assets such as roads and health centres as reference
points) and informal interviews by community members [25]. We also identified other water
sources that were not identified in the community map to understand water access for drinking
and other domestic uses. We continued to identify water sources until no new locations were
being identified or provided by community members. While this process was not conducted
using a systematic methodology, it allowed us to capture the relevant water sources recognized
and utilized by the community. Geographic coordinates and pictures were collected for all water
sources in the study area using handheld GPS devices and an iPhone 13, respectively. If people
were present at the water source, informal interviews were conducted to inquire about specific
water uses (i.e., for drinking, for bathing, visit frequency). We then quantified and summarized
the number of improved and unimproved water sources, as defined by the WHO/UNICEF JMP
core questions, and noted their specific uses where applicable [9]. Finally, we determined the
number of households (retrieved from the census data from the main trial) that have access to
improved water sources within a 30-minute round which the WHO/UNICEF JMP classifies as
“basic” access to water [9]. This calculation was implemented in ArcMap version 10.8.1 (ESRI,
Redlands, CA, USA) and included households within a 1 km (15-min) buffer around each
improved water source, using an average walking speed of 1.2 m/s [26]. However, it is important
to acknowledge that walking speeds can vary among individuals, and households may not nec-
essarily utilize the nearest water source. Despite these limitations, and without directly surveying
and timing individuals, this approach represents the most accurate assessment to identify areas
with basic and limited access to water for this study.

Drone imagery. The drone imagery was captured in September 2022. We worked with
Notice Kilimanjaro, an experienced and authorized Tanzanian drone operating media
company (TCAA authorized and licensed to carry out drone flights across Tanzania) to map
the three villages using a Mavic 2 Pro quadcopter drone. The drone was flown using parallel
flight lines (a lawn-mower flight pattern) at an altitude of 100 m, giving a ground-sampling
distances of 3 cm, and capturing approximately 2 km? a day. This allowed for a cumulative
coverage of 64 km? over 25 days, representing the total area of all three villages. Notice
Kilimanjaro processed all drone images prior to analysis. Manual delineation (points) of the
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centroid and the diameter of all water sources of the georeferenced images were done using
ArcMap version 10.8.1 (ESRI, Redlands, CA, USA). We then quantified and summarized
the number of improved and unimproved water sources based on visual appearance from
the georeferenced image[9 ]. Descriptive statistics were used to summarize the number and
type of water sources, dichotomized as either improved and unimproved, using frequencies
and proportions. As with the community walkthrough analysis, we determined the number
of households with “basic” access to water by calculating the number of households that
have access to improved water sources within a 30-minute round (1 km buffer around each
improved water source) [9].

Comparative analysis

A comprehensive qualitative analysis comparing the results of each data collection method
and outlining their respective advantages and limitations was conducted. Specifically, we
identified key themes that emerged from each approach, including their ability to identify the
different water sources used by community members in all three villages, and the financial
and time resources required for each method.

Ethics statement

The protocol for this study was reviewed and approved by the institutional review boards,
of the University of Ottawa (Canada) and Medical Research Coordinating Committee of the
National Institute for Medical Research (Tanzania). Written informed consent forms were
obtained from all participants prior to data collection activities. Additional information
regarding the ethical, cultural, and scientific considerations specific to inclusivity in global
research is included in the Supporting Information (S1 File: Inclusivity in Global Research)

Results
Summary of results

Community maps and direct field observations. Six community maps were created in
the three selected villages (all six maps are published in [23]). Community maps primarily
identified unimproved water sources as well as other assets including schools, health centres
and Village Executive Officer offices. Only one water source in all community maps met the
criteria for an improved source of water, which was a public tap identified by the women in
Isesa. All other sources of water could be classified as unimproved surface water (i.e., wells,
ponds, river, lakes).

The median daily walking distance for the direct field observation was 5.7 km for a total of
10 days, with a minimum daily walking distance of 3.6 km and a maximum of 9.7 km (Fig 2).
A total of 114 water sources were identified during the direct field observations (Fig 3), with
the majority (n=90, 79%) being unimproved water sources (i.e., surface water, unprotected
wells) (Table 1).

A total of 1459 households in the study area were identified in the census data, of which
nearly two thirds (n=921, 63%) had access to basic water (households with access to an
improved source within a 30-minute round trip) (Fig 4). The median distance to the nearest
improved water source identified in the community walkthrough was 630 m with a minimum
and maximum distance of 6 m and 4938 m, respectively.

Drone imagery. A total of 236 water sources were identified in the drone imagery (Fig
3), with the majority (n=225, 95%) being unimproved water sources (i.e., surface water,
unprotected wells), though less improved water sources were identified in the drone imagery
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Fig 2. Map of the study area outlining the daily walking paths for the community walkthrough. Each path was
informed by the community maps and informal interviews with community members. Map content was produced
with Esri ArcGIS software using study data and data provided by GADM and Natural Earth available online: https://
gadm.org/download_country.html and https://www.naturalearthdata.com/.

https://doi.org/10.1371/journal.pone.0319603.g002

compared to the direct field observations (11 compared to 24) (Table 1). Based on the shape
of the surface water surrounding and bordering crop lines, 47 of the 236 (20%) water sources
were suspected to be used for farming and irrigation as seen in Fig 5, and not for human
consumption and use. The median diameter of all the unimproved water sources was 5.4 m,
with a minimum diameter of 0.3 m and a maximum of 45.8 m.

Nearly half (n=649, 44%) of the households in the study area identified in the census had basic
access to water (households with access to an improved source within a 30-minute round trip)
(Fig 4). The median distance to the nearest improved water source identified in the drone imagery
was 1114 m with a minimum and maximum distance of 10 m and 6245 m, respectively.

Comparative analysis

Integrating the two methods provided a comprehensive overview of water access for drinking
and domestic uses in the study area. Nevertheless, it is imperative to consider the respective
advantages and disadvantages associated with each individual method (Table 2).

Information derived

All methods collected water use information at a fine scale including the GPS location of
water sources for the direct field observations and a 3 cm resolution for the drone imagery.
However, one of the fundamental differences in the methods lies in the types of information
obtained from each method.
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Fig 3. Map of the study area outlining the location of improved (blue), and unimproved (red) water sources iden-
tified in the community walkthrough and the drone imagery. Map content was produced with Esri ArcGIS software
using study data and data provided by GADM and Natural Earth available online: https://gadm.org/download_coun-
try.html and https://www.naturalearthdata.com/.

https://doi.org/10.1371/journal.pone.0319603.g003

Table 1. Characteristics of water sources identified in the community maps and direct field observations, and the
drone imagery.

Total number of
water sources

Total number of unim-
proved” water sources

Total number of
improved’ water sources

Direct field observations

114

90 (79%)

24 (21%)

Drone imagery

236

225 (95%)

11 (5%)

“Unimproved water sources include surface water, unprotected springs, and unprotected wells [9].

‘Improved water sources include public taps, boreholes, and protected wells [9].

https://doi.org/10.1371/journal.pone.0319603.t001

The community maps and direct field observations contextualized and provided an indi-
cation of how the community members in all three villages used and interacted with surface
water (i.e., used for domestic use, used for farming and other domestic uses, reserved for cat-
tle). A contextual understanding of water source uses and behaviours are described in detail
elsewhere [23]; but briefly, we found that children primarily fetched water, and that although
ponds and wells were sourced from the same body of water (separated by an arbitrary border),
unprotected wells were dedicated for drinking water and ponds were dedicated for other
domestic uses and cattle. It was also evident from the community walkthrough that although
improved water sources were identified (e.g., hand pumps sourced from wells or boreholes),
they were not in use because of unpleasant taste and smell. This aspect was especially perti-
nent when analyzing the drone imagery conducted one month later in September 2022.
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Fig 4. Map of the study area outlining households that could be served by an improved water source within a
30-minute round trip (within a 1km buffer of an improved water source). Map content was produced with Esri
ArcGIS software using study data and data provided by GADM and Natural Earth available online: https://gadm.org/
download_country.html and https://www.naturalearthdata.com/.

https://doi.org/10.1371/journal.pone.0319603.9004
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Fig 5. Example of the difference between surface water and water suspected to be used for irrigation in Gukwa.

https://doi.org/10.1371/journal.pone.0319603.9005

The drone imagery identified 122 more water sources (107% more water sources) than the field
observations, specifically more unimproved water sources, but the absence of contextual details
posed a challenge in determining their relevance for human use and disease risk. For example, in
Mwagimagi, the drone imagery identified three water sources of varying sizes (Fig 6A-6C) with the
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Table 2. Characteristics and resource requirements for data collection using community maps and direct field observations, and drone imagery to identify water
sources at a fine scale in Misungwi, Tanzania. Advantages and disadvantages are indicated for each characteristic.

Charac- Community maps and direct field observation Drone imagery
teristics/
resources
Infor- Advantage Advantage
mation « Contextualized water uses and behaviour. « Systematically identified all available water sources in the study
derived « Can assess usability, functionality, and quality of improved water sources area”.
(i.e., borehole). o Could detect water sources as small as 30 cm in diameter.
« GPS location of water source. « Drone imagery data could be used for other studies with varying
« Better at identifying improved water sources compared to drone imagery. objectives (i.e., crop classification, urban planning, disaster response).
Disadvantage Disadvantage
« Study data is constrained to a specific set of objectives (i.e., identification « Could not delineate if water was used by humans and in what capac-
of domestic and drinking water sources). ity (i.e., drinking, domestic use)
» Could not assess water source functionality and quality.
Financial « Field personnel and travel: $ USD 2,500 « Service, field personnel, and travel $ USD 8,000
cost
Time « 13 days for data collection « 25 days for data collection
commit- « 7 h for data analysis « 80 h for data analysis
ment

“Based on previous survey results [23], no household in this study area had access to improved water sources, indicating that piped water and rainwater collection was
not an important consideration.

https://doi.org/10.1371/journal.pone.0319603.t002

125 25 50 Meters

Fig 6. Water sources identified in the drone imagery in Mwagimagi compared to the contextual information
gathered during the community walkthrough including a water source used by humans for all domestic uses (A),
a water source that was not found in the community walkthrough (B), and a water source reserved for cattle (C).

https://doi.org/10.1371/journal.pone.0319603.9006

evidence of cattle inside and surrounding one of the three water sources (Fig 6C). During the direct
field observations, we identified two of these three water sources (Fig 6A and 6C) that were identified
in the drone imagery; walking past the second water source (Fig 6B) even though it was near the other
two water sources (Fig 6A and 6C). Additionally, community members revealed that the first water
source (Fig 6A) was used by humans for all domestic uses including drinking water, and that the third
water source (Fig 6C) was reserved for cattle and was not used by humans because it was considered
“dirty”. This type of information is invaluable, particularly as the presence of cattle has implications
for certain water-borne diseases (i.e., cryptosporidium, hybrid species of schistosomiasis [27,28]).
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Another prominent difference between the two methods was the ability to assess the usabil-
ity, functionality, and quality of the water sources (although not performed exhaustively or
systematically in this study), which was only possible with the direct field observations. For
example, we identified and assessed the functionality of a borehole in Gukwa (Fig 7A) and
Isesa (Fig 7C) which we later identified in the drone imagery (Fig 7B and 7D). The ability to
note the functionality and quality of water proved to be a significant advantage in this study
area as many boreholes were not functional, e.g., such as the one in Isesa (Fig 7C and 7D). The
community walkthrough also highlighted that the availability of improved water sources did
not imply the utilization of that water source, where community members noted that they did
not use the improved water sources for drinking or other domestic uses because of unpleas-
ant taste and smell. Therefore, although we analyzed the number of households that could be
served by “basic” water sources, those metrics should be interpreted with caution given the
information derived from the community walkthrough.

Financial cost

The second notable difference between the two methods pertained to the project bud-
get and costs. This study was nested in a randomized control trial assessing the efficacy of
next-generation long lasting insecticidal nets for the control of malaria [22]. Therefore, the
cost of the two methods reflects the leveraging of available resources (i.e., infrastructure,
staff, participant recruitment, survey questionnaire) and established in-country partnerships.
The cost for the drone imagery was significantly more than the community mapping with
field observations (USD$ 2,500 compared to USD$ 8,000), which represent the cost for the

Fig 7. Comparing a functional borehole identified in the direct field observations (A) and drone imagery (B) in
Gukwa and a non-functional borehole identified in the direct field observations (C) and drone imagery (D) in
Isesa.

https://doi.org/10.1371/journal.pone.0319603.g007
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field personnel, travel, and service. The community maps and direct field observations were
conducted by three people including a local field personnel and two Canadian (international)
doctoral students for 15 days whereas the drone service included a drone pilot, a driver, and
the drone image processing for 30 days.

Time commitment

The third notable difference between the two methods pertained to the time commitment
required for both data collection and analysis. Although less labour intensive than the com-
munity walkthrough, the drone imagery took 12 additional days for data collection and 73
additional hours for data analysis, not including the time for image processing prior to anal-
ysis, compared to the community mapping with field observations. The community mapping
with field observations, and the drone imagery were collected by research assistants and a
drone service, respectively, however, the research assistant responsible for the data analysis
was present for both data collection activities, although not necessary for the drone service.
The extent of the direct field observations analysis included stratifying the results by each
village and to dichotomize and summarize the different water sources using frequencies and
proportions. The drone imagery was complex and required a substantial time commitment
and skills to analyze. Most of analysis time was spent systematically identifying water sources
within a study area 64 km? (=50h). The remaining time was spent processing and uploading
the images, which amounted to 1 terabyte of data.

Discussion

Fine spatial scale data is imperative to capture information on water availability in low-
income settings where inequities result in higher vulnerability to WASH-attributable diseases.
This study focused on three villages in Tanzania with a history of using unimproved water
sources for drinking and other domestic uses. We identified water bodies, including surface
water and unprotected wells, ranging from 30 cm to 46 m in diameter using two methods.
The community maps and direct field observations identified, contextualized, and provided
an understanding of how community members in all three villages used and interacted with
water sources, while the drone imagery systematically identified water sources in the study
area, including more unimproved water sources (225 vs 90) and less improved water sources
(11 vs 24) compared to the direct field observations. Both methods were effective in iden-
tifying water sources at a fine scale, but the drone imagery involved a more time-intensive
process, demanded advanced skills, and incurred a higher cost compared to the community
mapping with direct field observations.

It is evident from this study that publicly available environmental data or nationally rep-
resentative data such as the DHS fail to capture the heterogeneity of risk factors for WASH-
attributable diseases and access and usage of improved and unimproved water sources at a
fine spatial scale (i.e., at an individual or household-level). For instance, in this study, the
median size of water sources identified in the drone imagery was 5.4 m, and the direct field
observations noted that community members use these water sources for drinking and other
domestic uses, potentially exposing them to WASH-attributable disease. While there is no sin-
gle proxy for water availability or environmental risk factors for WASH-attributable diseases,
studies typically use publicly available proxy environmental data at spatial resolutions of 250
m (i.e., NDVI [29]) or 1 km (rainfall [30]) as risk factors for diseases [31-33] and to even to
predict disease prevalence to inform control programs [34].

As climate change is expected to alter the patterns and intensity of rainfall, temperature,
and other environmental factors, it will likely influence the distribution and prevalence of
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WASH-attributable diseases [35-37]. It is evident that WASH-attributable diseases exhibit
considerable temporal and spatial heterogeneity, making it essential to monitor and identify
risk areas at a fine scale for effective disease prevention and control. Direct field observations
and drone imagery are effective methods for identifying fine scale features in the environment
that are beyond the scope of publicly available methods and can expand beyond the applica-
tion of identifying water sources in low-income settings. Drone imagery has proven to be a
valuable tool in crop classification for agriculture [38], search and rescue missions to identify
humans after a natural disaster [39], and to aid in study designs to identify households where
census data is either incomplete or not available [40,41].

Limitations

This study has some limitations to be considered. We could not comprehensively compare
the water sources identified in the direct field observations and the drone imagery for two
reasons: 1) the presence of trees obstructing the aerial view necessary for capturing all water
sourced during the drone imagery process, and; 2) we could not confidently discern which
water source in the direct field observation corresponded to which water source identified in
the drone imagery, likely because of limitation in the accuracy of the GPS handheld device.
Typically, handheld GPS devices are accurate within a range of 5 to 10 m [42]. Therefore,
when there was the presence of multiple water sources in the drone imagery that did not
correspond to the number of water sources identified in the direct field observation, we could
not discern which water source from the direct field observation corresponded to the drone
imagery. This limitation posed challenges in a direct one-to-one comparison between the
points obtained from the direct field observations with those captured in the drone imagery.
Another limitation is that both methods collected data at one point in time during the dry
season, limiting the ability to evaluate fluctuations in water availability that occur seasonally.
Specifically, in this study area, surface water and unprotected wells can evaporate completely
during the dry season [32] and behaviours in accessing and using unimproved water sources
also vary with the varying availability of water across the seasons [23]. Although this study did
not assess fluctuations in water availability, it is evident that the study area faces significant
challenges related to safe water infrastructure and usage which was identified by both the direct
field observation and drone imagery. Conducting similar research across the different seasons is
recommended, especially given the expected shifts in rain patterns due to climate change.

Conclusion

Access to safe water is a basic human need for health and well-being [1] and yet current meth-
ods for monitoring and measuring access to improved and unimproved water for drinking
and other domestic uses in low-income settings are not sufficient at a relevant scale. Accurate
and readily accessible data on water sources is crucial for various stakeholders, including gov-
ernments, researchers, international organizations, and non-governmental organizations. This
information is imperative for planning, developing, and managing improved water sources,
especially in underserved areas such as Misungwi, Tanzania. The importance of reliable data
becomes particularly evident when striving to achieve the SDGs set for 2030 [3]. Such data
serves as a foundation for informed decision-making and targeted efforts to ensure the provi-
sion of safe and sustainable water, addressing a pressing global need.
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