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Abstract 
While genome-wide association studies (GWAS) have identified genetic variants 

associated with intelligence, their biological mechanisms remain largely unexplored. 

This study aimed to bridge this gap by integrating intelligence GWAS data with human 

brain proteomics and transcriptomics. We conducted proteome-wide (PWAS) and 

transcriptome-wide (TWAS) association studies, along with enrichment and protein-

protein interaction (PPI) network analyses. PWAS identified 44 genes in the human 

brain proteome that influence intelligence through protein abundance regulation (FDR 

P <  0.05). Causal analysis revealed 36 genes, including GPX1, involved in the cis-

regulation of protein abundance (P <  0.05). In independent PWAS analyses, 17 genes 

were validated, and 10 showed a positive correlation with intelligence (P <  0.05). TWAS 

revealed significant SNP-based heritability for mRNA in 28 proteins, and cis-regulation 

of mRNA levels for 20 genes was nominally associated with intelligence (FDR P <  

0.05). This study identifies key genes that bridge genetic variants and protein-level 

mechanisms of intelligence, providing novel insights into its biological pathways and 

potential therapeutic targets.

1. Introduction
Intelligence refers to an individual’s ability to learn from experience, adapt, shape, and 
select environments, and is a frontier field in behavioral genetics research [1]. Intelligence 
has public health significance as it impacts academic performance, future personal health, 
and social well-being [2]. As a typical complex trait, intelligence is influenced by both 
genetic and environmental factors and exhibits high heritability. Intelligence is more pre-
dictive of important educational, occupational, and health outcomes than any other trait. 
In the 1970s and 1980s, debates over the genetic versus environmental influences on intel-
ligence spurred larger and higher-quality family, twin, and adoption studies. These studies 
consistently demonstrated that genetics play a significant role in individual differences in 
intelligence.
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Recent genome-wide association studies (GWAS) have successfully identified genetic 
sequence variations that account for 20% of the 50% heritability of intelligence [3]. Further-
more, a meta-analysis of GWAS in 269,867 individuals clarified the genetic associations with 
intelligence, identifying 205 associated genomic loci (190 of which were novel) and 1,016 
related genes (939 of which were novel) [4]. These genes provide new insights for exploring 
the molecular mechanisms of intelligence.

Proteins are the most effective biomarkers and therapeutic targets [5,6] as they represent 
the primary functional components of cellular and biological processes and are the final 
products of gene expression [7]. Advances in mass spectrometry and spatial proteomics have 
enabled high-resolution mapping of protein networks in the human brain, providing a foun-
dation for linking genetic variation to cognitive traits [8]. Previous studies have found that 
certain specific proteins are associated with intelligence or neurodegenerative diseases, such as 
NRX1A and periostin [9]. Recent research further indicates a significant association between 
proteins and intelligence traits [10]. Exploring proteins in greater depth can help us uncover 
the biological basis of intelligence and provide new avenues for enhancing cognitive function.

Transcriptome-wide association studies (TWAS) are a method used to investigate the 
correlation between the transcriptome and each genomic locus [11]. Similarly, proteome-wide 
association studies (PWAS) integrate GWAS data with proteomics data to identify candidate 
genes associated with a given trait [12].

In this study, we integrated intelligence GWAS data with human brain proteomics PWAS 
to identify risk genes associated with the proteome and transcriptome of intelligence.

2. Materials and methods

2.1. Data sources
2.1.1. GWAS summary statistics.  We utilized the most extensive available intelligence 

meta-GWAS summary statistics, published by Savage et al. in 2018 [4]. The sample consists 
of 269,867 individuals from 14 independent epidemiological cohorts of European ancestry, 
including 9,295,118 genetic variation loci that passed quality testing.

2.1.2. Brain proteomic and genetic data.  We used the discovery dataset from the 
Religious Order Study and Rush Memory and Aging Project (ROS/MAP) [13] and the Banner 
Sun Health Research Institute (Banner) [14] as the replication dataset. Protein data were 
obtained from human dorsolateral prefrontal cortex (dPFC) tissues, and matched genotyping 
was performed. Proteomic analysis utilized isobaric tandem mass tag peptide labeling 
followed by liquid chromatography-mass spectrometry.

Participants in the ROS/MAP cohort underwent genotyping using either whole-genome 
sequencing or genome-wide genotyping with platforms such as the Illumina OmniQuad 
Express or Affymetrix GeneChip 6.0. The detailed method can be described by Wingo et al 
[15]. After processing, the PWAS included 8,356 proteins from 376 individuals in the ROS/
MAP dataset and 8,168 proteins from 152 individuals in the Banner dataset.

2.1.3. Brain transcriptomic data.  The study analyzed brain transcriptome data from 
postmortem samples of 783 individuals of European descent, drawn from the ROS/MAP, 
Mount Sinai Brain Bank, and Mayo studies. The primary focus was on gene expression in 
the dorsolateral prefrontal cortex (dPFC), alongside other regions including the frontal 
cortex, temporal cortex, inferior frontal gyrus, superior temporal gyrus, and perirhinal gyrus. 
RNA-seq data underwent comprehensive quality control and normalization, as previously 
outlined [16]. Additionally, genome-wide genotyping was conducted for participants with 
transcriptomic data, a total of 13,650 genes from 888 reference brain transcriptomes were 
retained for the TWAS after quality control.
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2.2. Statistical approach
2.2.1. PWAS and TWAS.  We used the FUSION standard process to integrate brain 

protein/gene data with intelligence GWAS. Specifically, we first screened out proteins/genes 
with significant heritability based on heritability (P <  0.01). Five different predictive models 
(top1, blup, lasso, ennet, and bslmm) were then used to construct protein models, and the 
best model for each protein/gene was selected based on its predictive power. Next, the effect 
size Z value of intelligence GWAS was calculated, which represents the standardized score 
quantifying the deviation of the effect size of a given protein/gene from the mean effect size. 
This Z value was then weighted by the selected predictive model to estimate the protein/
gene effect on intelligence. For PWAS results, we performed multiple tests using Bonferroni 
correction, and proteins with PWAS.P <  2.86 × 10−5 (0.05/1749) were considered significant. 
For TWAS results, false discovery rate (FDR) correction was used, and genes with P <  0.05 
after correction were considered significantly correlated with intelligence.

2.2.2. Causal analysis.  To determine causal relationships from our PWAS findings, we 
utilized two independent methods. For Bayesian colocalization analysis [17], we used the 
COLOC tool within the FUSION software to estimate the posterior probability that the 
same variant affects both GWAS and protein quantitative trait locus (pQTL) signals. Under 
this framework, five hypotheses (H0 to H4) were evaluated, with H4 suggesting a shared 
causal SNP. Causality was established if the posterior probability for H4 exceeded 0.5. To 
further validate these relationships, we applied the SMR method [18], using pQTL data and 
intelligence GWAS data. Significant causal associations were confirmed with an adjusted P-
value <  0.05 for SMR and an unadjusted P-value >  0.05 for the HEIDI test.

2.2.3. PPI and GO enrichment.  For the investigation of causal genes implicated in three 
diseases, we employed the STRING database to perform an extensive network analysis. In 
this visualization, the thickness of the line represents the strength of the interaction between 
two nodes, and we only reserved connections with an interaction score greater than 0.4, with 
different node colors representing different protein communities. Additionally, we conducted 
functional enrichment analysis for causal genes pertinent to three categories of diseases using 
the Metascape online platform [19]. We select the pathways with P <  0.05 (with FDR adjusted) 
as the significant result.

3. Result

3.1. Discovery PWAS of intelligence
We integrated human brain proteomics with the latest intelligence GWAS results, using the 
FUSION pipeline to perform a PWAS on intelligence. The human brain proteome was gen-
erated from the dorsolateral prefrontal cortex (dPFC) of 376 European ancestry participants 
from the ROS/MAP. After quality control, the proteome consisted of 8,356 proteins, of which 
1,469 had significant single nucleotide polymorphism (SNP) heritability (P <  0.01) and were 
included in the PWAS. The intelligence GWAS summary statistics were sourced from the 
latest genome-wide association meta-analysis by Savage et al., which included 269,867 partici-
pants of European ancestry.

The PWAS identified 44 genes whose cis-regulated brain protein levels were associ-
ated with intelligence (FDR P <  0.05) (Fig 1 and Table 1). To further evaluate whether 
cis-regulated brain protein expression mediated the association between these 44 genes’ 
genetic variation and intelligence, we applied COLOC and SMR analyses to the same 
discovery dataset [18]. Multiple genes showed significant colocalization and causal 
associations (Supplementary Table S1 in S1 File). The COLOC analysis revealed that 29 
genes, including GPX1, had an extremely high probability of colocalization. The SMR 
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analysis indicated that 37 genes, including GPX1, had significant causal relationships (P <  
0.05). We then performed heterogeneity testing using the HEIDI tool [18] to distinguish 
between pleiotropy/causal effects and linkage relationships for these 37 genes. HEIDI 
results indicated that 10 of the 37 genes may be significant due to linkage disequilibrium, 
while 27 were consistent with pleiotropy or causal relationships (Supplementary Table S1 
in S1 File). SMR and HEIDI suggested that 36 genes, including GPX1, may be related to 
intelligence through cis-regulated brain protein abundance (Table 1). A total of 20 genes, 
including GPX1, exhibited high colocalization probabilities and causality, confirmed by 
both COLOC and SMR analyses.

3.2. Replication PWAS of intelligence
To increase the credibility of our findings, we performed a replication PWAS for intelli-
gence using proteomic and GWAS results that were not included in our discovery analysis. 
The replication human brain proteome was generated from the dPFC of 152 European-
ancestry participants recruited by the Banner Sun Health Research Institute. After quality 
control, the proteome consisted of 8,168 proteins, of which 1,139 proteins had significant 
SNP-based heritability (P <  0.01) and were included in the replication PWAS. Seventeen 
genes were replicated in the independent PWAS for intelligence, providing greater con-
fidence in our results (Fig 1 and Table 1). Of these, 10 genes were positively correlated 
and 7 were negatively correlated. Twenty-seven of the 44 significant proteins identified 
in the discovery PWAS were not detected in the replication PWAS. CRAT, MAP2K2, and 
TMEM245 were analyzed, but the results in the replication cohort were not significant (P >  
0.05) (Table 1).

Fig 1.  Manhattan plot of the discovery of intelligence-related PWAS. The intelligence GWAS (N =  269,867) is combined with the ROS/MAP proteome findings (N 
=  376). Each point represents a single association test between a gene and intelligence, ordered by the genomic position on the x-axis and the association strength on 
the y-axis, represented as −log10 (P) of the z-score test. A total of 44 cis-regulated brain proteins associated with intelligence were identified, with FDR P <  0.05. The 
red horizontal line indicates the FDR significance threshold of P <  0.05, set at the unadjusted maximum P-value below this threshold (P =  1.75 ×  10 −5).

https://doi.org/10.1371/journal.pone.0319278.g001

https://doi.org/10.1371/journal.pone.0319278.g001


PLOS ONE | https://doi.org/10.1371/journal.pone.0319278  February 21, 2025 5 / 11

PLOS ONE Novel Intelligence-Related Proteins via GWAS and Brain Proteomics

Table 1.  The discovery Intelligence PWAS identified 44 significant genes, of which 17 were found in the confirmation PWAS, and 14 replicated.

ID CHR START END Discovery Replication
ROSMAP.Z ROSMAP.P BANNER.Z BANNER.P

GPX1 3 49394609 49396033 -10.73 7.07 × 10‒27 ‒10.79 3.97 × 10‒27

MON1A 3 49946302 49967606 8.74 2.33 × 10‒18 – –
CSE1L 20 47662849 47713489 ‒8.70 3.21 × 10‒18 ‒6.48 9.29 × 10‒11

STAU1 20 47729878 47804904 ‒8.29 1.18 × 10‒16 – –
SULT1A1 16 28616903 28634946 7.59 3.30 × 10‒14 8.32 8.61 × 10‒17

SND1 7 127292234 127732661 ‒6.17 6.85 × 10‒10 – –
NEK4 3 52744800 52804965 ‒6.10 1.03 × 10‒9 – –
PPP1R16A 8 145703352 145727504 5.95 2.73 × 10‒9 – –
CYSTM1 5 139554227 139661637 5.93 3.05 × 10‒9 5.93 3.05 × 10‒9

NKIRAS1 3 23933151 23988082 ‒5.90 3.57 × 10‒9 – –
LACE1 6 108616098 108847999 5.87 4.32 × 10‒9 – –
SLC7A6 16 68298433 68335722 ‒5.87 4.45 × 10‒9 – –
ERLIN1 10 101909851 101948091 ‒5.79 6.87 × 10‒9 ‒5.03 4.85 × 10‒7

CRAT 9 131857089 131873468 ‒5.77 7.79 × 10‒9 0.57 0.571
ZFYVE1 14 73436159 73493920 5.73 1.00 × 10‒8 – –
HARS2 5 140071011 140078889 ‒5.69 1.25 × 10‒8 – –
DCC 18 49866542 51057784 ‒5.55 2.82 × 10‒8 – –
ABCB9 12 123405498 123466196 5.52 3.45 × 10‒8 – –
MYO6 6 76458909 76629254 ‒5.45 5.02 × 10‒8 ‒5.49 3.93 × 10‒8

PDE2A 11 72287185 72385635 5.45 5.04 × 10‒8 – –
RANGAP1 22 41641615 41682255 ‒5.45 5.10 × 10‒8 – –
DISP2 15 40650436 40663257 ‒5.24 1.61 × 10‒7 – –
GPT 8 145728356 145732557 5.18 2.23 × 10‒7 5.28 1.33 × 10‒7

RAB5B 12 56367697 56388490 ‒5.14 2.70 × 10‒7 – –
XRCC6 BP1 12 58335324 58351052 4.98 6.49 × 10‒7 – –
CCDC93 2 118673054 118771709 4.93 8.06 × 10‒7 – –
LMOD1 1 201865580 201915715 4.85 1.26 × 10‒6 4.00 6.28 × 10‒5

CALU 7 128379346 128411861 4.79 1.67 × 10‒6 4.63 3.63 × 10‒6

MAP2K2 19 4090319 4124126 4.77 1.86 × 10‒6 1.88 0.06
KHK 2 27309615 27323640 ‒4.63 3.59 × 10‒6 ‒4.21 2.57 × 10‒5

PPA2 4 106290234 106395238 4.61 4.02 × 10‒6 3.16 0.002
KIAA1279 10 70748487 70776738 ‒4.60 4.18 × 10‒6 – –
CCBL2 1 89401456 89458636 4.52 6.06 × 10‒6 4.47 7.93 × 10‒6

C15orf57 15 40820882 40857256 4.52 6.21 × 10‒6 – –
TMEM245 9 111777432 111882225 ‒4.51 6.56 × 10‒6 ‒0.65 0.513
TFB1M 6 155578643 155635627 ‒4.51 6.64 × 10‒6 – –
PLEKHA1 10 124134212 124191867 ‒4.49 6.99 × 10‒6 3.49 4.86 × 10‒4

PLCL1 2 198669426 199437305 4.49 7.04 × 10‒6 – –
RAF1 3 12625100 12705725 4.45 8.43 × 10‒6 – –
CWF19L1 10 101992055 102027437 4.43 9.38 × 10‒6 – –
CGREF1 2 27321757 27341995 4.43 9.39 × 10‒6 – –
MLEC 12 121124672 121139667 4.43 9.63 × 10‒6 – –
SLC7A6OS 16 68318406 68344849 ‒4.35 1.36 × 10‒5 – –
FLOT2 17 27206353 27224697 ‒4.30 1.74 × 10‒5 ‒4.31 1.61 × 10‒5

https://doi.org/10.1371/journal.pone.0319278.t001

https://doi.org/10.1371/journal.pone.0319278.t001
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3.3. Examination of the potential intelligence-related proteins at the mRNA 
level
The brain transcriptome data for this study were primarily derived from postmortem brain 
samples of 783 European ancestry participants from the ROS/MAP, Mayo, and Mount Sinai 
Brain Bank studies, focusing on the frontal cortex. Among the 13,650 mRNAs that passed 
quality control, 6,735 exhibited significant SNP-based heritability and were included in the 
TWAS. The intelligence TWAS using the FUSION pipeline identified 20 genes whose cis-
regulated brain mRNA expression was associated with intelligence (FDR P <  0.05) (Supple-
mentary Table S2 in S1 File). All 44 proteins identified in the discovery PWAS were analyzed 
at the mRNA level; however, only 28 of them, including GPX1, exhibited significant SNP-
based mRNA heritability estimates (Supplementary Table S2 in S1 File). The TWAS revealed 
that 20 of these 28 genes had nominally significant associations with intelligence at the cis-
regulated mRNA level, with 10 of these genes showing consistent directionality of effects on 
both mRNA and protein levels.

Additionally, among the 44 intelligence-related genes, 16 genes showed no evidence of 
association with intelligence at the mRNA level in TWAS, including those that were not 
heritable and thus not included in the analysis. Interestingly, 6 of these 16 genes had signif-
icant findings in the discovery PWAS and were replicated (GPT, MAP2K2, KHK, CCBL2, 
PLEKHA1, and FLOT2; Table 1). This suggests that PWAS provides novel insights into the 
pathophysiological mechanisms of intelligence beyond what TWAS has revealed.

3.4. Enrichment Analysis of Pathways Based on Intelligence-Causal Genes
To further identify the functions of the candidate proteins, we performed enrichment analysis 
using the coding genes of the proteins identified by PWAS. The result of enrichment revealed 
that intelligence-causative genes are significantly involved in various biological processes, 
including Salmonella infection, glucose response, small molecule metabolic processes, micro-
tubule transport, cellular responses to oxidative stress, steroid metabolism, and intracellular 
protein transport (Fig 2). These findings were derived from proteomic data, providing insights 
into the functional roles of these proteins in intelligence-related pathways.

3.5. Protein-Protein Interaction Networks in Intelligence
We investigated the connectivity among the 44 intelligence-related proteins identified 
in the PWAS using the STRING database and discovered a protein community based on 
protein-protein interactions (PPIs). A module is defined as a group of proteins that have 
tighter connections with each other than with other protein groups. Community 1 includes 
RANGAP1, CSE1L, and STAU1; Community 2 includes SND1, MAP2K2, RAF1, and DCC; 
Community 3 includes CWF19L1, ERLIN1, GPT, and PPP1R16A; and Community 4 includes 
MON1A and RAB5B (Fig 3).

Fig 2.  Enrichment analysis of causal gene pathways related to intelligence.

https://doi.org/10.1371/journal.pone.0319278.g002

https://doi.org/10.1371/journal.pone.0319278.g002
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4. Discussion
Intelligence is a typical complex trait influenced by both genetic and environmental factors, 
exhibiting high heritability. It is more representative than any other characteristic in predict-
ing significant educational, occupational, and health outcomes. For instance, there is ample 
evidence that intelligence has an independent causal relationship with the risk of Alzheimer’s 
disease (AD), attention deficit hyperactivity disorder (ADHD), and schizophrenia [4,20]. 
Identifying genetic targets that influence intelligence is a critical objective in human genetics 
research, particularly significant for enhancing the understanding and development of cogni-
tive abilities.

Although previous studies have identified the functional relevance of tissue proteins 
and the development of brain function, the potential biological mechanisms between tissue 
proteins and intelligence remain to be elucidated [21]. In this study, we employed a range of 
analytical techniques to investigate the functional associations between protein biomarkers in 
the brain and intelligence. We identified 44 candidate genes associated with changes in brain 
protein abundance related to intelligence. Among these, 17 genes were replicated in indepen-
dent PWAS analyses of intelligence, providing higher confidence in our findings. Additionally, 
we discovered that GPX1 and 19 other genes exhibited co-localization and causal inference 
related to intelligence in the brain PWAS, while the associations of genes such as CSE1L with 
intelligence were supported at the brain transcript level. Enrichment analyses revealed that 

Fig 3.  PPI network and pathways of the 44 significant proteins associated with intelligence in the PWAS. The lines rep-
resent physical PPIs, with the thickness of the lines proportional to the strength of the PPI evidence. Enrichment of pathways 
was determined using the hypergeometric test with Bonferroni correction for multiple tests.

https://doi.org/10.1371/journal.pone.0319278.g003

https://doi.org/10.1371/journal.pone.0319278.g003
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these genes participate in various biological processes, including responses to Salmonella 
infection, glucose metabolism, small molecule metabolic processes, microtubule transport, 
cellular responses to oxidative stress, steroid metabolism, and intracellular protein transport. 
These results suggest that these genes may collectively influence intelligence performance by 
regulating these critical pathways. Further analysis indicates that these genes may synergisti-
cally participate in the regulation of the target traits at the transcriptomic and proteomic lev-
els, highlighting their potential roles in related biological mechanisms. This finding provides 
robust support and promising directions for subsequent mechanistic studies and the develop-
ment of therapeutic targets.

Our analysis involves genes previously studied in the context of intelligence. Prior research 
has identified GPT, an enzyme involved in brain amino acid metabolism, as a candidate gene 
for intelligence [22]. Its function may be related to cognitive abilities and plays a crucial role 
in the complex behaviors of neurons. Additionally, studies have shown that the antioxidant 
enzyme GPX1 is widely expressed in brain tissue and is significantly associated with cognitive 
function [23]. Moreover, dietary and exercise interventions can enhance cognitive function by 
regulating GPX levels [24–26], which aligns closely with our findings.

Furthermore, CSE1L is associated with apoptosis and proliferation, demonstrating a strong 
correlation with intelligence performance in GWAS [27]. Previous studies have indicated that 
patients with mutations in MAP2K2 may exhibit better functional preservation in intelligence 
[28]. Specifically, in terms of neurodevelopmental functions, patients with mutations in the 
MAP2K2 gene show a lower incidence of intellectual disability (ID) compared to those with 
mutations in other genes, such as BRAF and MAP2K1, with an incidence rate of only 25%.

Additionally, previous studies have identified NEK4, ERLIN1, PLCL1, SULT1A1, 
CYSTM1, and PLEKHA1 as candidate genes for intelligence, which aligns with our findings. 
Specifically, NEK4, one of the largest members of the NEK family, is involved in the DNA 
damage response. Consistent evidence suggests its association with schizophrenia and bipolar 
disorder [29]. As a critical gene in cell cycle regulation, NEK4 may play a key role in neuronal 
proliferation and survival, thereby influencing intelligence performance.

Furthermore, research has shown that PLCL1 is significantly associated with green expo-
sure and is involved in neurotransmitter clearance, affecting the development of intelligence 
in children [30]. Additionally, PLCL1 has been linked to hereditary dyslexia and ADHD [31], 
suggesting potential implications during the process of intelligence development.

While SULT1A1 may have some association with intelligence, its function in the brain has 
not been thoroughly investigated, and further functional studies are needed to validate its 
specific role [32]. CYSTM1 is a candidate gene that influences pregnancy and has been asso-
ciated with body mass index and intelligence, indicating its significant role in developmental 
regulation [33]. Additionally, PLEKHA1 is related to intelligence through its involvement in 
protein synthesis, energy metabolism, and amino acid metabolism [34].

This study offers industrial feasibility in areas such as drug development, biomarker iden-
tification, and precision medicine by providing insights into proteins and genes associated 
with intelligence, which could inform therapeutic and diagnostic advancements for cognitive 
disorders.

In conclusion, this study provides significant contributions to the understanding of the 
genetic and proteomic foundations of intelligence. We conducted the largest and most com-
prehensive pQTL analysis of intelligence PWAS to date, utilizing the latest summary statistics 
from GWAS. By replicating the PWAS with an independent human brain proteome and vali-
dating causal relationships through MR analyses, we strengthened the confidence in the iden-
tified risk proteins. The integration of PWAS and TWAS analyses allowed us to explore the 
complex relationships between mRNA and protein levels associated with intelligence while 
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identifying four core protein modules CWF19L1, ERLIN1, GPT, and PPP1R16A through 
PPIs, shedding light on critical biological pathways that influence cognitive functions.

However, the current study has several limitations. First, while pQTL and eQTL mapping 
provide valuable insights, they cannot fully capture all GWAS signals or comprehensively 
interpret the functional roles of genes in the biological pathways underlying intelligence. A 
single-layer analysis, such as at the protein level, may overlook critical interactions across 
molecular layers. Future studies incorporating multi-omics approaches, such as methylation 
quantitative trait loci (mQTL), single-cell sequencing, and whole-genome sequencing, are 
essential to uncover the complete molecular mechanisms associated with intelligence and to 
inform the development of tailored therapeutic strategies [35,36]. Second, the limited sample 
size and racial specificity of the proteomic dataset may constrain the generalizability of the 
findings. Expanding the scale and diversity of brain proteomic data across different popula-
tions and age groups will be crucial for improving the robustness of the results, enabling more 
precise effect estimates, and ensuring broader applicability. Additionally, addressing potential 
technical biases introduced by varying genotyping platforms used across datasets could fur-
ther enhance the reliability of the conclusions.
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