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Abstract
This paper presents the pricing formulas for variance swaps within the Heston model that
incorporates jumps and a stochastic long-term mean for the underlying asset. By lever-
aging the Feynman-Kac theorem, we derive a partial integro-differential equation (PIDE)
to obtain the joint moment-generating function for the aforementioned model. Further-
more, we provide a series pricing formula for discretely sampled variance swap, derived
through the use of this joint moment-generating function. Additionally, we discuss the
limiting properties of the pricing formula for discretely sampled variance swap, namely,
the pricing formula for continuously sampled variance swap. Finally, to demonstrate the
efficacy of the pricing formula, we conduct several numerical simulation experiments,
including comparisons with Monte Carlo (MC) simulation results and an analysis of the
impact of parameter variations on the strike price of variance swaps.

1 Introduction
Currently, as financial markets become increasingly complex, volatility risk has garnered
significant attention in the financial industry. In order to effectively address this risk, volatil-
ity derivatives have become essential tools for measuring and managing financial risk. With
the sharp increase in trading volumes, the precise and efficient determination of volatility
derivative prices has emerged as a central topic in quantitative finance and risk management.

In 1973, the classic option pricing model proposed by Black and Scholes [1] and Merton
[2] assumed constant asset price volatility. However, empirical studies have shown that the
implied volatility reverse-engineered from the Black-Scholes formula is often non-constant,
exhibiting the “volatility smile” phenomenon. This suggests that stock price volatility may be
related to its level, time, or external random factors. As a result, many researchers have turned
to studying stochastic volatility models, with the Stochastic Volatility (SV) model receiving
particular attention.

Subsequently, Hull and White [3] introduced a continuous-time stochastic volatility model
and derived a European option pricing formula via a second-order Taylor expansion. Around
the same time, Scott [4] and Stein [5] presented modeling volatility using an Ornstein-
Uhlenbeck process with mean-reverting characteristics and provided closed-form pricing
formulas. However, their model could not prevent volatility from becoming negative, and
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somewhat unrealistic. A few years later, Schöbel and Zhu [6] extended a model allowing for
correlation between the underlying stock returns and instantaneous volatility, obtaining a
closed-form solution for the European option pricing formula through an inverse Fourier
transform method.

Furthermore, Heston [7] modeled volatility using the CIR model and derived a closed-
form solution for the standard European option pricing through affine structure and Fourier
transform methods. This affine stochastic volatility model not only provides a closed-form
pricing formula but also adeptly captures the phenomenon of the “volatility smile”, making
it a fundamental model for pricing volatility derivatives and instigating widespread research
efforts. For instance, Elliott and Lian [8] studied the pricing of variance and volatility swaps
under discrete observations using a segmented Heston stochastic volatility model, obtain-
ing accurate closed-form solutions. He and Zhu [9] developed a hybrid model combining
CIR random interest rates and Heston stochastic volatility to analyze the pricing formula
for variance and volatility swaps, demonstrating convergence and verifying the accuracy of
swap prices. Additionally, Kim and Kim [10] addressed the pricing issue of generalized vari-
ance swaps within the Heston-CIR hybrid model, offering exact solutions for the fair strike
prices of these swaps. He and Lin [11] introduced a three-factor model incorporating random
volatility and interest rates, deriving an exact analytical pricing formula for foreign exchange
options. Najafi and Mehrdoust [12] analyzed the pricing of European options with propor-
tional transaction costs in an incomplete market setting using two long-memory versions
of the Heston model. However, the Heston model does have certain limitations, for exam-
ple, the square root specification is typically not suitable for modeling index returns [13,14].
Additionally, Bakshi et al. [15] pointed out that the volatility process often exhibits non-linear
mean-reverting characteristics.

Considering that the constant long-term average variance in the Heston model fails to cap-
ture the temporal market volatility dynamics, Byelkina and Levin [16] and Forde and Jacquier
[17] suggested introducing a time-dependent mean-reverting variance level to better cap-
ture the term structure of implied volatility and variance swap curves. He and Chen [18] pro-
posed a novel stochastic volatility model where the long-term mean of volatility in the Heston
model itself follows a stochastic process, deriving a closed-form pricing formula for European
options within this framework. Their empirical study, employing adaptive sample annealing,
demonstrated the superiority of this pricing model over the Heston model. Yoon et al. [19]
further extended the long-term variance mean of the Heston model to a stochastic process
with mean-reverting characteristics and derived fair strike prices for variance swaps under
this setup. Experimental results indicate that the stochastic long-run mean of variance plays
a significant role in determining the fair strike prices of variance swaps in turbulent market.

Meanwhile, financial markets are often subject to sharp price fluctuations due to external
shocks, such as major political events, economic data releases, or natural disasters, which con-
tinuous asset pricing models may not fully capture. To better represent asset price dynamics,
researchers have incorporated jump risks into continuous models. For instance, Zheng and
Kwok [20] derived pricing formulas for generalized variance swaps within a stochastic volatil-
ity framework where both the asset price and variance process allow for simultaneous jumps.
Cui et al. [21] utilized frame duality and density projection method, combined with a novel
weak approximation scheme based on continuous-time Markov chain (CTMC), to provide
pricing formulas for volatility derivatives under discrete sampling. Wu et al. [22] proposed a
variance swap valuation model that combines multi-factor stochastic spot variance and long-
term variance, while allowing for mean reversion in asset prices and a co-jump structure.
Empirical results demonstrate that this model outperforms other models. Wang and Guo [23]
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analyzed the pricing of variance and volatility swaps within the framework of a double Heston
jump-diffusion model with approximate fractional stochastic volatility. Additionally, Ascione
et al. [24] combined the Heston-CIR model with a Lévy process to enhance pricing accuracy
in the foreign exchange (FX) market, presenting a new formula that more closely aligns with
the observed price distribution.

The main goal of this paper is to propose a novel stochastic volatility model that includes
jump processes and a stochastic long-term mean for variance, and to investigate the pricing of
variance swaps within this framework. This model, which integrates asset price jumps and a
stochastic long-term mean for variance, is more comprehensive than existing models.

The rest of this paper is organized as follows: Sect 2 introduces the new model and obtains
its joint moment generating function (MGF) in a power series form. Sect 3 utilizes the joint
MGF derived in Sect 2 to develop pricing formulas for variance swaps under both discrete and
continuous sampling. Sect 4 show cases numerical experiments and examples to demonstrate
the importance of incorporating a stochastic long-term mean. The concluding section offers
final remarks.

2 The newly proposed model and its MGF
In this section, we aim to propose a new model based on the Yoon et al. [19]’s model , and
derive the joint moment generating function(MGF) for this newly models. Consider the
risk-neutral probability measurable space (Ω,Ft,ℚ) in which we give the newly models as
follows

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dSt
St
= (r – d – 𝜆m)dt +√vtdWS

t + (eJ
S
– 1)dNt,

dvt = 𝜅v(𝜃t – vt)dt + 𝜎v
√
vtdW

v
t + JvdNt,

d𝜃t = 𝜅𝜃( ̃𝜃 – 𝜃t)dt + 𝜎𝜃dW𝜃
t ,

(1)

where r, d, 𝜅v, 𝜅𝜃 , ̃𝜃, 𝜎v and 𝜎𝜃 are positive constants, 𝜆 denotes the jump intensity and
m = 𝔼ℚ[eJS –1] represents the average jump amplitude of the price. Moreover,WS

t ,Wv
t and

W𝜃
t are standard Brownian motions with < dWS

t ,dWv
t >= 𝜌svdt and < dWS

t ,dW𝜃
t >=< dWv

t ,
dW𝜃

t >= 0, Nt is independent withWS
t andWv

t . JS and Jv represent the jump sizes of the price
and variance, respectively, assumed to be independent ofWS

t ,Wv
t , and Nt. For easy of solving

the analytic solutions, we further assume that

Jv ∼ exp( 1𝜂) , JS ∣ Jv ∼ N (v + 𝜌JJv,𝛿2) .

Note that the proposed new model (1) encompasses several well-known models as spe-
cial cases. The first is that 𝜃t = 𝜃 a constant, it is reduced to the case considered in Zheng and
Kwok [20]. The second is that no jump diffusion occurs in model (1) , it is reduced to the
case considered in Yoon et al. [19]. The third is that both 𝜃t a constant and no jump diffusion
occurs in model (1) , it is reduced to the classic Heston stochastic volatility model. For con-
venience, we define xt = ln St. To achieve the analytic solutions for variance swaps to the new
model (1), we end this section by providing the expression for the joint moment generating
function (MGF) of the joint process xt, vt, and 𝜃t shown as follows.

2.1. Assume that the dynamics of the asset price St follows dynamics Eq (1) and denote

U (xt, vt,𝜃t, t) = 𝔼ℚ [e𝜙xT+bvT+c𝜃T+𝛾 ∣Ft] ,
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Then we have

U (xt, vt,𝜃t, t) = e𝜙xt+B(q,𝜏)vt+C(q,𝜏)𝜃t+D(q,𝜏)+E(q,𝜏), (2)

where 𝜏 = T – t and

B(q, 𝜏) = 1
𝜎2
v

⎡⎢⎢⎢⎢⎣
(𝜅v – 𝜌sv𝜎v𝜙) – 𝛿1 ⋅

sinh (𝛿12 𝜏) + 𝛿2 cosh (
𝛿1
2 𝜏)

cosh (𝛿12 𝜏) + 𝛿2 sinh (
𝛿1
2 𝜏)

⎤⎥⎥⎥⎥⎦
,

C(q, 𝜏) = –𝜅v𝛿1e
–𝜅𝜃𝜏

𝜎2
v

⎡⎢⎢⎢⎢⎣

∞
∑
n=0
(–u)n

⎛
⎝
e(𝜅𝜃–n𝛿1)𝜏 – 1
𝜅𝜃 – n𝛿1

– u
(e(𝜅𝜃–(n+1)𝛿1)𝜏 – 1)
𝜅𝜃 – (n + 1)𝛿1

⎞
⎠

⎤⎥⎥⎥⎥⎦

+ 𝜅v (𝜅v – 𝜌sv𝜎v𝜙)𝜅𝜃𝜎2
v

(1 – e–𝜅𝜃𝜏) + ce–𝜅𝜃𝜏 ,

D(q, 𝜏) = (r – d)𝜙𝜏 +
̃𝜃𝜅v
𝜎2
v
[(𝜅v – 𝜌sv𝜎v𝜙)𝜏 – 2 ln(cosh(

𝛿1
2
𝜏) + 𝛿2 sinh(

𝛿1
2
𝜏))]

+
𝜅2v𝜎2

𝜃 (𝜅v – 𝜌sv𝜎v𝜙)
2𝜅2𝜃𝜎4

v
[(𝜅v – 𝜌sv𝜎v𝜙) 𝜏 – 2 ln(cosh(

𝛿1
2
𝜏) + 𝛿2 sinh(

𝛿1
2
𝜏))]

– (
𝜅v𝜎2

𝜃 (𝜅v – 𝜌sv𝜎v𝜙)
2𝜅2𝜃𝜎2

v
+ ̃𝜃)(C(q, 𝜏) – c) – 𝜅v𝜎

2
𝜃

4𝜅𝜃
(C(q, 𝜏)2 – c2)

+
𝜅2v𝜎2

𝜃𝛿1 (𝜅v – 𝜌sv𝜎v𝜙)
2𝜅2𝜃𝜎4

v
[– 2
𝛿1

ln(cosh(𝛿1
2
𝜏) + 𝛿2 sinh(

𝛿1
2
𝜏))

+
∞
∑
i=0
(–u)i (e

–(𝜅𝜃+i𝛿1)𝜏 – 1
– (𝜅𝜃 + i𝛿1)

– u ⋅ e
–(𝜅𝜃+(i+1)𝛿1)𝜏 – 1
– (𝜅𝜃 + (i + 1)𝛿1)

)]

–
𝜅v𝜎2

𝜃𝛿1c
2𝜅𝜃𝜎2

v
[
∞
∑
i=0
(–u)i (e

–(𝜅𝜃+i𝛿1) – 1
– (𝜅𝜃 + i𝛿1)

– u
e–(𝜅𝜃+(i+1)𝛿1)𝜏 – 1
– (𝜅𝜃 + (i + 1)𝛿1)

)]

+
𝜅2v𝛿21𝜎2

𝜃
2𝜅𝜃𝜎4

v
[ 𝜏𝜅𝜃
+ e–𝜅𝜃𝜏 – 1

𝜅2𝜃
+

∞
∑
i=1

(–u)i

𝜅𝜃 – i𝛿1
(e

–i𝛿1𝜏 – 1
–i𝛿1

–
e–𝜅𝜃𝛿1𝜏 – 1

–𝜅𝜃
)

+
∞
∑
i=0

(–u)i+1

𝜅𝜃 – (i + 1)𝛿1
(e

–(i+1)𝛿1𝜏 – 1
–(i + 1)𝛿1

–
e–𝜅𝜃𝛿1𝜏 – 1

–𝜅𝜃
)

+
∞
∑
n=1

∞
∑
i=0

(–u)n+i

𝜅𝜃 – i𝛿1
(e

–(n+i)𝛿1𝜏 – 1
–(n + i)𝛿1

–
e–(𝜅𝜃+n𝛿1)𝜏 – 1
–(𝜅𝜃 + n𝛿1)

)

+
∞
∑
n=1

∞
∑
i=0

(–u)n+i+1

𝜅𝜃 – (i + 1)𝛿1
(e

–(n+i+1)𝛿1𝜏 – 1
–(n + i + 1)𝛿1

–
e–(𝜅𝜃+n𝛿1)𝜏 – 1
–(𝜅𝜃 + n𝛿1)

)

+
∞
∑
n=0

∞
∑
i=0

(–u)n+i+1

𝜅𝜃 – i𝛿1
(e

–(n+i+1)𝛿1𝜏 – 1
–(n + i + 1)𝛿1

–
e–(𝜅𝜃+(n+1)𝛿1)𝜏 – 1
–(𝜅𝜃 + (n + 1)𝛿1)

)

+
∞
∑
n=0

∞
∑
i=0

(–u)n+i+2

𝜅𝜃 – (i + 1)𝛿1
(e

–(n+i+2)𝛿1𝜏 – 1
–(n + i + 2)𝛿1

–
e–(𝜅𝜃+(n+1)𝛿1)𝜏 – 1
–(𝜅𝜃 + (n + 1)𝛿1)

)] ,

E(q, 𝜏) = –𝜆(m𝜙 + 1)𝜏 + 𝜆𝜎
2
ve𝜙v+

𝜙2𝛿21
2

m1 + 𝜂𝛿1
𝜏

– 𝜆𝜎2
ve
𝜙v+ 𝜙

2𝛿2
2

2𝜂
m2

1 – 𝜂2𝛿21
ln

m1 + 𝜂𝛿1 + (m1u – 𝜂𝛿1u) e–𝛿1𝜏
m1 + 𝜂𝛿1 + (m1u – 𝜂𝛿1u)

,
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with q = (𝜙, b, c, r)T and

u = 1 – 𝛿2
1 + 𝛿2

, m1 = 𝜎2
v – 𝜂 (𝜅v – 𝜌sv𝜎v𝜙 + 𝜎2

v𝜙𝜌J) ,

with

𝛿1 =
√
(𝜅v – 𝜌sv𝜎v𝜙)2 + 𝜎2

v (𝜙 – 𝜙2), 𝛿2 =
(𝜅v – 𝜌sv𝜎v𝜙) – b𝜎2

v

𝛿1
.

Proof : By using Feynman-Kac theorem, we obtain U (xt, vt,𝜃t, t) satisfies the following
PIDE equation

𝜕U
𝜕𝜏 = (r – d – 𝜆m –

v
2
) 𝜕U𝜕x + 𝜅v(𝜃 – v)

𝜕U
𝜕v + 𝜅𝜃 (

̃𝜃 – 𝜃) 𝜕U𝜕𝜃

+ v
2
𝜕2U
𝜕x2 +

𝜎2
v
2
v
𝜕2U
𝜕v2 +

𝜎2
𝜃
2
𝜕2U
𝜕𝜃2 + 𝜌sv𝜎vv

𝜕2U
𝜕x𝜕v

+ 𝜆𝔼ℚ [U (x + JS, v + Jv,𝜃, 𝜏) –U(x, v,𝜃, 𝜏)] ,

(3)

with U|𝜏=0 = e𝜙xT+bvT+c𝜃T+𝛾 . Since Eq (3) has affine structure, we guess that U (xt, vt,𝜃t, t)
admits an analytic solution with form given by

U (xt, vt,𝜃t, 𝜏) = e𝜙xt+B(q,𝜏)vt+C(q,𝜏)𝜃t+D(q,𝜏)+E(q,𝜏). (4)

By putting Eq (4) into Eq (3), it gives

v
𝜕B
𝜕𝜏 + 𝜃

𝜕C
𝜕𝜏 +

𝜕D
𝜕𝜏 +

𝜕E
𝜕𝜏 = (r – d – 𝜆m –

v
2
)𝜙 + 𝜅v(𝜃 – v)B + 𝜅𝜃( ̃𝜃 – 𝜃)C + v

2
𝜙2

+ 𝜎
2
v
2
vB2 +

𝜎2
𝜃
2
C2 + 𝜌sv𝜎vv𝜙B + 𝜆𝔼ℚ [e𝜙J

S+BJv – 1] ,

which by separating variables can be divided into four ODEs

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕B
𝜕𝜏 = –

1
2 (𝜙 – 𝜙2) – (𝜅v – 𝜌sv𝜎v𝜙)B + 𝜎2

v
2 B

2,
𝜕C
𝜕𝜏 = 𝜅vB – 𝜅𝜃C,
𝜕D
𝜕𝜏 = (r – d)𝜙 + 𝜅𝜃 ̃𝜃C + 𝜎2

𝜃
2 C2,

𝜕E
𝜕𝜏 = 𝜆 (𝔼ℚ [e𝜙J

S+BJv – 1] –m𝜙) ,

(5)

with initial conditions

B(q, 0) = b, C(q, 0) = c, D(q, 0) = 𝛾, E(q, 0) = 0.

Obviously, the ODE governing B(𝜙, 𝜏) is a Riccati equation with constant coefficients, which
is not difficult to solve. Thus, the details are omitted.

By integrating both sides of the ODE governing C(𝜙, 𝜏) and assuming

1
1 + ue–𝛿1𝜏

=
∞
∑
n=0
(–u)ne–n𝛿1𝜏 , |u| < 1.
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The expression of C(𝜙, 𝜏) can be easily worked out, one has

C(q, 𝜏) = –𝜅v𝛿1e
–𝜅𝜃𝜏

𝜎2
v

⎡⎢⎢⎢⎢⎣

∞
∑
n=0
(–u)n

⎛
⎝
e(𝜅𝜃–n𝛿1)𝜏 – 1
𝜅𝜃 – n𝛿1

– u
(e(𝜅𝜃–(n+1)𝛿1)𝜏 – 1)
𝜅𝜃 – (n + 1)𝛿1

⎞
⎠

⎤⎥⎥⎥⎥⎦

+ 𝜅v (𝜅v – 𝜌sv𝜎v𝜙)𝜅𝜃𝜎2
v

(1 – e–𝜅𝜃𝜏) + ce–𝜅𝜃𝜏 ,

Furthermore,

D(q, 𝜏) = (r – d)𝜙𝜏 + 𝜅𝜃 ̃𝜃∫
𝜏

0
C(q, s)ds +∫

𝜏

0

𝜎2
𝜃
2
C2(q, s)ds + 𝛾. (6)

By exploiting the ODEs Eq (5), we are able to obtain the relation

{
𝜅𝜃 ∫ 𝜏0 C(q, s)ds = 𝜅v ∫ 𝜏0 B(q, s)ds – C(q, 𝜏) + c,
∫
𝜏
0 C2(q, s)ds = 1

𝜅𝜃
[𝜅v ∫ 𝜏0 B(q, s)C(q, s)ds – 1

2C
2(q, 𝜏) + 1

2C
2] . (7)

Applying Eq (7) to Eq (6), D(q, 𝜏) transforms into

D(q, 𝜏) = (r – d)𝜙𝜏 + ̃𝜃 [𝜅v ∫
𝜏

0
B(q, s)ds – C(q, 𝜏) + c]

+
𝜎2
𝜃

2𝜅𝜃
[𝜅v ∫

𝜏

0
B(q, s)C(q, s)ds – 1

2
C2(q, 𝜏) + 1

2
C2] + 𝛾.

(8)

To calculate Eq (8), we need to integrate B(q, s) and B(q, s)C(q, s). Through direct calcula-
tion, the integral of B(q, s) yields

∫
𝜏

0
B(q, s)ds = 1

𝜎2
v
[(𝜅v – 𝜌sv𝜎v𝜙) 𝜏 – 2 ln(cosh(

𝛿1
2
𝜏) + 𝛿2 sinh(

𝛿1
2
𝜏))] , (9)

and the integral of B(q, s)C(q, s) can be computed as

𝜅v𝜎2
𝜃

2𝜅𝜃 ∫
𝜏

0
B(q, s)C(q, s)ds

=
𝜅2v𝜎2

𝜃 (𝜅v – 𝜌sv𝜎v𝜙)
2𝜅2𝜃𝜎4

v
[(𝜅v – 𝜌sv𝜎v𝜙) 𝜏 – 2 ln(cosh(

𝛿1
2
𝜏) + 𝛿2 sinh(

𝛿1
2
𝜏))]

– (
𝜅v𝜎2

𝜃 (𝜅v – 𝜌sv𝜎v𝜙)
2𝜅2𝜃𝜎2

v
)(C(q, 𝜏) – c)

+
𝜅2v𝜎2

𝜃𝛿1 (𝜅v – 𝜌sv𝜎v𝜙)
2𝜅2𝜃𝜎4

v
[– 2
𝛿1

ln(cosh(𝛿1
2
𝜏) + 𝛿2 sinh(

𝛿1
2
𝜏))

+
∞
∑
i=0
(–u)i (e

–(𝜅𝜃+i𝛿1)𝜏 – 1
– (𝜅𝜃 + i𝛿1)

– u ⋅ e
–(𝜅𝜃+(i+1)𝛿1)𝜏 – 1
– (𝜅𝜃 + (i + 1)𝛿1)

)]

–
𝜅v𝜎2

𝜃𝛿1c
2𝜅𝜃𝜎2

v
[
∞
∑
i=0
(–u)i (e

–(𝜅𝜃+i𝛿1) – 1
– (𝜅𝜃 + i𝛿1)

– u
e–(𝜅𝜃+(i+1)𝛿1)𝜏 – 1
– (𝜅𝜃 + (i + 1)𝛿1)

)]

+
𝜅2v𝛿21𝜎2

𝜃
2𝜅𝜃𝜎4

v
[ 𝜏𝜅𝜃
+ e–𝜅𝜃𝜏 – 1

𝜅2𝜃
+

∞
∑
i=1

(–u)i

𝜅𝜃 – i𝛿1
(e

–i𝛿1𝜏 – 1
–i𝛿1

–
e–𝜅𝜃𝛿1𝜏 – 1

–𝜅𝜃
)
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+
∞
∑
i=0

(–u)i+1

𝜅𝜃 – (i + 1)𝛿1
(e

–(i+1)𝛿1𝜏 – 1
–(i + 1)𝛿1

–
e–𝜅𝜃𝛿1𝜏 – 1

–𝜅𝜃
)

+
∞
∑
n=1

∞
∑
i=0

(–u)n+i

𝜅𝜃 – i𝛿1
(e

–(n+i)𝛿1𝜏 – 1
–(n + i)𝛿1

–
e–(𝜅𝜃+n𝛿1)𝜏 – 1
–(𝜅𝜃 + n𝛿1)

)

+
∞
∑
n=1

∞
∑
i=0

(–u)n+i+1

𝜅𝜃 – (i + 1)𝛿1
(e

–(n+i+1)𝛿1𝜏 – 1
–(n + i + 1)𝛿1

–
e–(𝜅𝜃+n𝛿1)𝜏 – 1
–(𝜅𝜃 + n𝛿1)

)

+
∞
∑
n=0

∞
∑
i=0

(–u)n+i+1

𝜅𝜃 – i𝛿1
(e

–(n+i+1)𝛿1𝜏 – 1
–(n + i + 1)𝛿1

–
e–(𝜅𝜃+(n+1)𝛿1)𝜏 – 1
–(𝜅𝜃 + (n + 1)𝛿1)

)

+
∞
∑
n=0

∞
∑
i=0

(–u)n+i+2

𝜅𝜃 – (i + 1)𝛿1
(e

–(n+i+2)𝛿1𝜏 – 1
–(n + i + 2)𝛿1

–
e–(𝜅𝜃+(n+1)𝛿1)𝜏 – 1
–(𝜅𝜃 + (n + 1)𝛿1)

)] . (10)

Substituting Eq (9) and Eq (10) into Eq (8) yields the expression for D(q, 𝜏).
Due to Jv ∼ exp( 1𝜂) , J

S ∣ Jv ∼ N (v + 𝜌JJv,𝛿2), we have

𝜕E
𝜕𝜏 = 𝜆E

ℚ [(e𝜙J
s+BJ𝜈 – 1)] – 𝜆m𝜙

= –𝜆(m𝜙 + 1) + 𝜆e𝜙v+
𝛿2𝜙2

2
1

1 – (𝜙𝜌JB)𝜂
.

(11)

Solving Eq (11) completes the proof. ◻

3 Analytic solutions for variance swaps
In this section, we introduce variance swaps and using the joint moment generating function
to derive the pricing formulas for variance swaps under the frame of discrete and continuous
sampling, respectively.

To do this, we first give the definitions of the annualized realized variance and volatility.
According to Yuen et al. [25], the calculation of realized variance depends on whether it is
based on the actual or log returns. The annualized realized variance of the actual returns and
the log returns are represented as RV(1)var and RV(2)var , respectively, which are given by

RV(1)var =
AF
N

N
∑
i=1
(
Sti – Sti–1
Sti–1

)
2

× 1002,

RV(2)var =
AF
N

N
∑
i=1
(ln

Sti
Sti–1
)
2

× 1002,

(12)

where ti, i = 0, 1,⋯,N is the i-th observation time in [0,T], Sti is the price of underlying asset
at the i-th observation time ti and there are altogether N observations. AF is the annual-
ized factor that converts this expression to an annualized variance. Let Δt = ti – ti–1 = T

N , the
annualized factor AF = 1

Δt
= N

T .

3.1 The discrete case
Variance swaps are special kinds of forward contracts. The price of variance swaps are called
strike prices in the contracts. In this subsection, we derive the fair strike prices of variance
swaps in terms of the joint moment generating function.

PLOS ONE https://doi.org/10.1371/journal.pone.0318886 March 25, 2025 7/ 17

https://doi.org/10.1371/journal.pone.0318886


ID: pone.0318886 — 2025/3/25 — page 8 — #8

PLOS ONE Analytic solutions of variance swaps for Heston models with stochastic long-run mean of variance and jumps

We denote K(i)var, i = 1, 2 be the fair strike prices of variance swaps with realized variance
RV(i)var, i = 1, 2. The values of the variance at time t with maturity T can be presented as

Vvar(t) = 𝔼ℚ[e–r(T–t)(RV(i)var – K(i)var)L|Ft], i = 1, 2. (13)

where L is the nominal amount. To be fair to both parties, the value of the contract should be
equal to zero when it is realized. Thus, the fair strike prices K(i)var, i = 1, 2 are given by

K(1)var = 𝔼ℚ[RV(1)var |F0] =
AF
N

N
∑
i=1
𝔼ℚ
⎡⎢⎢⎢⎢⎣
(
Sti – Sti–1
Sti–1

)
2 RRRRRRRRRRR
F0

⎤⎥⎥⎥⎥⎦
× 1002,

K(2)var = 𝔼ℚ[RV(2)var |F0] =
AF
N

N
∑
i=1
𝔼ℚ
⎡⎢⎢⎢⎢⎣
(ln

Sti
Sti–1
)
2 RRRRRRRRRRR
F0

⎤⎥⎥⎥⎥⎦
× 1002.

(14)

Since the expectation is additive, we use the additivity of expectations to calculate
the fair delivery prices of variance swaps. Specifically, we first calculate the values of

𝔼ℚ[ ( Sti–Sti–1Sti–1
)
2
∣F0] and 𝔼ℚ[ (ln Sti

Sti–1
)
2
∣F0]. Upon the introduction of variance swaps, we will

illustrate the utilization of the joint moment-generating function to compute each term in the
aforementioned summation. Consequently, the comprehensive pricing formulas for variance
swaps with discrete sampling within the framework (1) are derived in the subsequent sections.

Theorem 1. Let K(i)var, i = 1, 2 be the fair delivery prices of discretely sampled variance
swaps under the dynamics specified in (1),Then,

K(1)var =
1002AF

N

N
∑
i=1
[eB(q2 ,ti–1 ,)v0+C(q2 ,ti–1)𝜃0+D(q2 ,ti–1)+G(q2 ,ti–1)

–2eB(q4 ,ti–1 ,)v0+C(q4 ,ti–1)𝜃0+D(q4 ,ti–1)+G(q4 ,ti–1) + 1] ,
(15)

K(2)var =
1002AF

N

N
∑
i=1

𝜕2
𝜕𝜙2 e

B(q6 ;ti–1)v0+C(q6 ,ti–1)𝜃0+D(q6 ,ti–1)+G(q6 ,ti–1)∣
𝜙=0

, (16)

where
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q1 = (2 0 0 0)⊤,
q2 = (0,B(q1, 𝜏),C(q1, 𝜏),D(q1, 𝜏) +G(q1, 𝜏))⊤,
q3 = (1 0 0 0)⊤,
q4 = (0,B(q3, 𝜏),C(q3, 𝜏),D(q3, 𝜏) +G(q3, 𝜏))⊤,
q5 = (𝜙 0 0 0)⊤,
q6 = (0,B(q4, 𝜏),C(q4, 𝜏),D(q4, 𝜏) +G(q4, 𝜏))⊤.

(17)

Proof : (i) Actual rate of return. Since

K(1)var =
AF
N

N
∑
i=1
𝔼ℚ[(Sti – Sti–1

Sti–1
)
2

∣F0]× 1002,
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we only calculate the expression of 𝔼ℚ[ ( Sti–Sti–1Sti–1
)
2
∣Fti–1].

𝔼ℚ
⎡⎢⎢⎢⎢⎣
(
Sti – Sti–1
Sti–1

)
2

∣F0

⎤⎥⎥⎥⎥⎦
= 𝔼ℚ [(exti–xti–1 – 1)2∣F0]

= 𝔼ℚ [e2(xti–xti–1)∣F0] – 2𝔼ℚ [e(xti–xti–1)∣F0] + 1

= 𝔼ℚ[𝔼ℚ[e2xti ∣Fti–1]e
–2xti–1 ∣F0]

– 2𝔼ℚ[𝔼ℚ[exti ∣Fti–1]e
–xti–1 ∣F0] + 1

= 𝔼ℚ [eB(q1 ,𝜏)vti–1+C(q1 ,𝜏)𝜃ti–1+D(q1 ,𝜏)+E(q1 ,𝜏)∣F0]

– 2𝔼ℚ [eB(q3 ,𝜏)vti–1+C(q3 ,𝜏)𝜃ti–1+D(q3 ,𝜏)+E(q3 ,𝜏)∣F0] + 1

= eB(q2 ,ti–1 ,)v0+C(q2 ,ti–1)𝜃0+D(q2 ,ti–1)+G(q2 ,ti–1)

– 2eB(q4 ,ti–1 ,)v0+C(q4 ,ti–1)𝜃0+D(q4 ,ti–1)+G(q4 ,ti–1) + 1,

where q1, q2, q3 and q4 are given by Eq (17). Then the delivery price of discretely sampled
variance swap is provided as

Kvar =
1002AF

N

N
∑
i=1
[eB(q2 ,ti–1 ,)v0+C(q2 ,ti–1)𝜃0+D(q2 ,ti–1)+G(q2 ,ti–1)

–2eB(q4 ,ti–1 ,)v0+C(q4 ,ti–1)𝜃0+D(q4 ,ti–1)+G(q4 ,ti–1) + 1] .

(ii) Log rate of return. Similar to K(1)var , we calculate the expression of 𝔼ℚ
⎡⎢⎢⎢⎢⎣
(ln Sti

Sti–1
)
2
∣F0

⎤⎥⎥⎥⎥⎦
.

𝔼ℚ
⎡⎢⎢⎢⎢⎣
(ln

Sti
Sti–1
)
2

∣F0

⎤⎥⎥⎥⎥⎦
= 𝔼ℚ [(xti – xti–1)2∣F0]

= 𝔼ℚ[ 𝜕
2

𝜕𝜙2 e
𝜙(xti–xti–1)∣F0]∣

𝜙=0

= 𝜕2
𝜕𝜙2𝔼

ℚ [𝔼ℚ[e𝜙xti ∣Fti–1]e
–𝜙xti–1 ∣F0] ∣

𝜙=0

= 𝜕2
𝜕𝜙2𝔼

ℚ [eB(q5 ,𝜏)vti–1+C(q5 ,𝜏)𝜃ti–1+D(q5 ,𝜏)+E(q5 ,𝜏)∣F0] ∣
𝜙=0

= 𝜕2
𝜕𝜙2 e

B(q6 ;ti–1)v0+C(q6 ,ti–1)𝜃0+D(q6 ,ti–1)+G(q6 ,ti–1)∣
𝜙=0

,

with q5 and q6 given by Eq (17). As a result, the delivery price of discretely sampled variance
swap is presented as

1002AF
N

N
∑
i=1

𝜕2
𝜕𝜙2 e

B(q6 ;ti–1)v0+C(q6 ,ti–1)𝜃0+D(q6 ,ti–1)+G(q6 ,ti–1)∣
𝜙=0

.
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The proof is completed. ◻

The pricing formulas for the fair delivery prices of variance swaps under discrete sampling,
as determined by Eq (15), are predicated on finite observations. The following subsection
investigates the limiting properties of these pricing formulas as N→ +∞ (i.e., Δt→ 0).

3.2 The continuous case
In the previous section, we obtained the fair strike prices of variance swaps under discrete
sampling. In this subsection, we will present the pricing formulas for variance swaps under
continuous sampling.

The continuous model is widely used for variance swaps. According to [26], the realized
variance consists of two parts: The first component accounts for the variance accumulated
via the diffusion term in the asset price process, while the second component arises from the
jumps in the asset price process. Therefore, the realized variance can be expressed as

RVcvar = lim
N→+∞

1002

T

N
∑
i=1
(
Sti – Sti–1
Sti–1

)
2

= 100
2

T

⎡⎢⎢⎢⎢⎣
∫

T

0
vtdt +

NT

∑
i=1
(eJ

S
– 1)2

⎤⎥⎥⎥⎥⎦
.

(18)

As a result, the fair strike price Kcvar of the continuously-sampled variance swap can be
presented as

Kcvar = 𝔼ℚ[RVcvar|F0]

= 100
2

T

⎡⎢⎢⎢⎢⎣
∫

T

0
𝔼ℚ[vt|F0]dt + 𝔼ℚ

⎡⎢⎢⎢⎢⎣

NT

∑
i=1
(eJ

S
– 1)2

⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎦
.

(19)

Theorem 2.The fair strike price Kcvar of the continuously-sampled variance swap within
the Heston model incorporating stochastic long-term variance mean and jumps can be deter-
mined as

Kcvar =
1002

T

⎡⎢⎢⎢⎢⎣
( ̃𝜃 + 𝜆𝜂𝜅v

)T + (v0 – ̃𝜃 – 𝜅v(𝜃0 –
̃𝜃)

𝜅v – 𝜅𝜃
) 1 – e

–𝜅vT

𝜅v

+ 𝜅v(𝜃0 –
̃𝜃)

𝜅v – 𝜅𝜃
1 – e–𝜅𝜃T

𝜅𝜃
+ 𝜆T⎛

⎝
e2v+2𝛿

2

1 – 2𝜌J𝜂
–
2ev+𝛿

2/2

1 – 𝜌J𝜂
+ 1
⎞
⎠

⎤⎥⎥⎥⎥⎦
.

(20)

Proof : We know that vt and 𝜃t satisfy

{ dvt = 𝜅v(𝜃t – vt)dt + 𝜎v
√vtddWv

t + JvdNt,
d𝜃t = 𝜅𝜃( ̃𝜃 – 𝜃t)dt + 𝜎𝜃dW𝜃

t ,
(21)

whereWv
t andW𝜃

t are two independent standard Brownian motions. Integrating both sides of
Eq (22), we have

vt – v0 = 𝜅v ∫
t

0
(𝜃s – vs)ds + 𝜎v ∫

t

0

√
vtdWv

s +
NT

∑
i=1

Jv, (22)

𝜃t – 𝜃0 = 𝜅𝜃 ∫
t

0
( ̃𝜃 – 𝜃s)ds + 𝜎𝜃 ∫

t

0
dW𝜃

s . (23)
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Taking the expectation on both sides of Eq (23) and Eq (24), and then take the derivative
with respect to t, one has

d𝔼ℚ[vt|F0]
dt

= 𝜅v(𝔼ℚ[𝜃t|F0] – 𝔼ℚ[vt|F0]) + 𝜆𝜂,

d𝔼ℚ[𝜃t|F0]
dt

= 𝜅𝜃( ̃𝜃 – 𝔼ℚ[𝜃t|F0]),

with initial conditions 𝔼ℚ[vt]|t=0 = v0 and 𝔼ℚ[𝜃t]|t=0 = 𝜃0. By solving the above ODEs, 𝔼ℚ[vt]
and 𝔼ℚ[𝜃t] can be derived as

𝔼ℚ[vt|F0] = ̃𝜃(1 – e–𝜅vt) + 𝜅v(𝜃0 –
̃𝜃)

𝜅v – 𝜅𝜃
(e–𝜅𝜃t – e–𝜅vt) + v0e–𝜅vt +

𝜆𝜂
𝜅v
(1 – e–𝜅vt),

𝔼ℚ[𝜃t|F0] = ̃𝜃 + (𝜃0 – ̃𝜃)e–𝜅𝜃t.
(24)

Since JS is independent of Nt, we obtain

𝔼ℚ
⎡⎢⎢⎢⎢⎣

NT

∑
i=1
(eJ

S
– 1)2

⎤⎥⎥⎥⎥⎦
= 𝜆T𝔼ℚ [(eJS – 1)2]

= 𝜆T⎛
⎝
e2v+2𝛿

2

1 – 2𝜌J𝜂
–
2ev+𝛿

2/2

1 – 𝜌J𝜂
+ 1
⎞
⎠
.

(25)

By substituting Eq 24 and Eq 25 into Eq 19 can be readily obtained, which complete the
proof. ◻

4 Numerical examples
We present several numerical examples and compare the obtained conclusions with exist-
ing research findings. In our numerical examples, we employ two types of samples, labeled as
Sample 1 and 2, where the model parameters are detailed in Table 1.

Example 4.1. In this numerical experiment, we conduct a numerical comparison
between the results derived from the pricing formulas and those obtained through Monte
Carlo (MC) simulations. Given the similarity in pricing formulas for variance swaps based on
actual returns and those based on logarithmic returns, we solely compare the prices of variance
swaps based on actual returns with the outcomes of the Monte Carlo simulations. The Euler-
Maruyama discretization for the Heston jump-diffusion model with a stochastic long-term jump

Table 1. Sample parameters of our model
Parameters v0 𝜽0 𝜿v 𝝈v 𝜿𝜽 ̃𝜽 𝝈𝜽 𝝆sv
Sample 1 0.1 0.15 5 0.005 4 0.1 0.01 -0.5
Sample 2 0.16 0.11 6.3 0.012 3.6 0.125 0.004 -0.7
Notes: The parameters r, T, l, 𝜆, 𝜂, v, 𝜌J and 𝛿 are fixed at r = 0.01, T = 1, l = 15, 𝜆 = 0.2, 𝜂 = 0.05, v = 0.01,
𝜌J = –0.086 and 𝛿 = 0.02, respectively.

https://doi.org/10.1371/journal.pone.0318886.t001
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mean can be expressed as follows

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sti = Sti–1e
(r–𝜆m– 1

2 vti–1)Δt+
√vti–1

√
ΔtW1,ti–1+∑

Nti
Nti–1

JS ,
vti = vti–1 + 𝜅v(𝜃ti–1 – vti–1)Δt +∑

Nti
Nti–1

Jv

+𝜎v√vti–1
√
Δt(𝜌svW1,ti–1 +

√
1 – 𝜌2svW2,ti–1),

𝜃ti = 𝜃ti–1( ̃𝜃 – 𝜃ti–1)Δt + 𝜎𝜃
√
ΔtW3,ti–1 ,

(26)

where W1,ti–1 ,W2,ti–1 ,W3,ti–1 are three independent standard normal random variables. Δt =
T/N. JS and Jv are random variables generated by normal distribution and exponential distribu-
tion, respectively.

We exhibit a comparison between the numerical implementation of Eq (15) and the Monte
Carlo (MC) simulation results in S1 Fig and Table 2. S1 Fig displays three sets of data: one set
represents the variance swap prices derived from 500,000 Monte Carlo simulations based on
Eq (14), another set is calculated using Eq (15) for discretely-sampled variance swaps, and the
third set is obtained from Eq (20) for continuously-sampled variance swaps. In Table 2, we
present a detailed listing of the numerical results for variance swaps under four different sam-
pling frequencies along with their corresponding relative errors. In this table, AS denotes the
discretely-sampled analytic solution, MC represents the Monte Carlo simulation results, CON
stands for the continuously-sampled analytic solution, and RD signifies the standard error. Addi-
tionally, we have recorded the CPU runtime to facilitate a comprehensive comparison of the
computational efficiency of the two methods. All calculations were performed on an Intel(R)
Core(TM) i5-12500H processor. It is evident from the table that the analytic formula can pro-
duce highly accurate results within an extremely short period of time. Notably, as the sampling
frequency increases, the time required to compute the fair strike price of variance swaps using
Monte Carlo simulation becomes significantly longer than that required using our proposed
analytic pricing formula. From S1 Fig and Table 2, we observe that as the sampling frequency
increases, the strike price of the variance swap under discrete sampling gradually converges to
that under continuous sampling. Furthermore, with increasing sampling frequency, the strike
price of the variance swap under discrete sampling becomes very close to the price obtained
through MC simulations, this indicates that the results obtained from our analytical results in
Theorem 1 are in high agreement with those from the MC simulations.

Example 4.2. By assigning different values to the parameters in system (1), our model
encompasses the Heston model, the Heston model with simultaneous jumps, and the Heston
model with stochastic long-run mean of variance. For example, if the parameters 𝜅𝜃 = 𝜎𝜃 =
𝜆 = 0, our model deduce to the model framework in [27]. Using the parameters provided by [27],
Table 3 presents the analytical solutions derived in this paper, the analytical solutions provided
in [27], and the results obtained from Monte Carlo simulations. Clearly, Table 3 demonstrates
that our pricing formula is consistent with the closed-form variance swap formula proposed by
[27] using the single-factor Heston model. When the parameters satisfy 𝜅𝜃 = 𝜎𝜃 = 0, our model
reduces to the Heston model with simultaneous jumps, the system of equations obtained during
the derivation of the joint moment generating function is consistent with [20]. Through compu-
tation, we obtain the same pricing formula as in [20] under this condition. On the other hand,
when 𝜆 = 0, our model simplifies to the Heston model with a stochastic long-term variance mean
proposed by [19], Table 4 presents the analytical solutions derived in this paper, the analytical
solutions provided in [19], and the results obtained from Monte Carlo simulations.
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Table 2. Fair strike prices Kvar derived fromMC simulation, the analytic formula and the continuous model,
along with their corresponding relative errors.
Sample N AS textbfMC CON RD
Sample 1 Monthly (N = 12) 1141.0764 1145.0146 1133.8657 0.3439

CPU time (s) 0.0115 1.1463 - -
Fortnightly (N =
26)

1137.1822 1138.5908 1133.8657 0.1237

CPU time (s) 0.0141 1.6675 - -
Weekly (N = 52) 1135.5212 1136.1883 1133.8657 0.0587
CPU time (s) 0.01185 2.7977 - -
Daily (N = 252) 1134.2058 1134.3083 1133.8657 0.0090
CPU time (s) 0.0147 11.4784 - -

Sample 2 Monthly (N = 12) 1288.9977 1288.5884 1280.6165 -0.0318
CPU time (s) 0.0071 1.1323 - -
Fortnightly (N =
26)

1284.4478 1283.9812 1280.6165 -0.0363

CPU time (s) 0.0087 1.8132 - -
Weekly (N = 52) 1282.5236 1282.3325 1280.6165 -0.0149
CPU time (s) 0.0092 3.6321 - -
Daily (N = 252) 1281.0086 1280.8717 1280.6165 -0.0107
CPU time (s) 0.0136 10.6012 - -

Notes: We provide numerical results for variance swaps under four different sampling frequencies, along with their
corresponding relative errors. In this table, AS, MC, CON and RD represent the discretely-sampled analytic solution,
Monte Carlo simulation results, continuously-sampled analytic solution and standard error, respectively.

https://doi.org/10.1371/journal.pone.0318886.t002

Table 3. Results of Heston model using parameters in [27]
Sampling frequency MC Zhu’s formula Our formula
Monthly (N = 12) 243.2 242.7 242.71
Fortnightly (N = 26) 238.1 238.6 238.58
Weekly (N = 52) 237.4 237.1 237.11
Daily (N = 252) 236.5 236.1 236.08
Notes: The table presents the results of the Heston model using different sampling frequencies. The values are
compared between MC simulation, Zhu’s formula, and our proposed formula.

https://doi.org/10.1371/journal.pone.0318886.t003

Table 4. Results of our model using parameters in [19]
Sample N Our formula Yoon’s formula MC
Sample1 Monthly (N=12) 953.168 953.145 948.340

Weekly (N=52) 950.843 950.838 948.411
Daily (N=252) 950.248 950.248 951.106

Sample2 Monthly (N=12) 1272.507 1272.510 1276.980
Weekly (N=52) 1267.881 1267.880 1265.570
Daily (N=252) 1266.665 1266.670 1266.740

Sample3 Monthly (N=12) 775.506 775.506 773.783
Weekly (N=52) 773.478 773.478 772.599
Daily (N=252) 772.970 772.970 773.570

Notes: The table presents the results of our model using different sampling frequencies and samples. The values are
compared between our formula, Yoon’s formula, and MC simulations.

https://doi.org/10.1371/journal.pone.0318886.t004

Example 4.3.We investigated the impact of key parameters 𝜅𝜃 , ̃𝜃, 𝜎𝜃 , and 𝜃0 of the
stochastic long-term mean on the strike price of variance swaps, while keeping all other param-
eters in the model consistent with those in Sample 2.
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From S2 Fig, we observe that the primary parameters of the stochastic long-term mean sig-
nificantly impact the strike price of the variance swap. Specifically, the strike price of the vari-
ance swap increases with an increase in 𝜅𝜃 . This is because 𝜅𝜃 determines the speed at which the
long-term mean 𝜃t reverts to its long-term average ̃𝜃. Specifically, when 𝜅𝜃 is high, 𝜃t converges
to ̃𝜃 more rapidly. Over the life of the contract, this leads to an increase in the variability of vt,
which in turn amplifies the fluctuations in realized returns, thereby raising the fair strike price of
the variance swap. Conversely, when 𝜅𝜃 is low, the reversion of 𝜃t to ̃𝜃 occurs more slowly. Over
the contract period, the variability of vt becomes relatively smaller, resulting in reduced fluctu-
ations in realized returns and, consequently, a lower fair strike price for the variance swap. The
strike price of the variance swap exhibits an increasing trend with an increase in ̃𝜃 and 𝜃0, and
the increase occurs at a relatively steady rate. This is because when ̃𝜃 is high, 𝜃t tends to fluctu-
ate around a higher level, thereby pulling vt toward higher values. This increases the variability
of Sti–Sti–1

Sti
, leading to a higher realized variance and, consequently, a higher fair strike price. In

markets with low volatility expectations (e.g., during periods of economic stability or calm mar-
ket sentiment), investors demand lower risk premiums. As a result, the fair strike price of vari-
ance swaps decreases. Additionally, if the market’s expectation of future volatility is high at the
initial time, the volatility of asset prices will be greater in the early stages of the contract, resulting
in higher realized variance and, consequently, an increase in the fair strike price of the variance
swap. Furthermore, the strike price of the variance swap increases with an increase in 𝜎𝜃 , and
the rate of increase gradually decreases with an increase in the sampling frequency. The increase
in 𝜎𝜃 leads to a higher strike price for variance swaps due to the greater uncertainty and insta-
bility it introduces into the long-term volatility dynamics. This uncertainty increases the risk pre-
mium demanded by market participants, driving up the price of variance swaps. However, as
sampling frequency increases, the rate at which the strike price rises slows down, reflecting the
averaging effect of more frequent measurements.

Example 4.4.We further investigated the impact of key jump parameters 𝜆, 𝜂, v, and
𝛿 on the strike price of variance swaps, while keeping all other parameter settings in the model
consistent with those in Sample 2.

Observing S3 Fig reveals that the key parameters related to the jump component play a cru-
cial role in determining the strike price of the variance swap. Specifically, the variance swap
shows a high sensitivity to 𝜆, with the strike price gradually increasing as 𝜆 increases. Specifically,
the jump intensity 𝜆 reflects the probability of price jumps in the underlying asset within a unit of
time. A higher jump intensity implies a greater likelihood of significant short-term fluctuations
in the underlying asset price, indicating an expected increase in future volatility, leading to an
increase in the price of the variance swap. A higher 𝜆 increases the uncertainty about future asset
price movements. Investors and hedgers demand greater compensation for this heightened uncer-
tainty, thereby leading to an increase in the fair strike price of the variance swap. The strike price
of the variance swap gradually increases with an increase in 𝜂. This is because an increase in 𝜂
will increase the volatility of the variance, leading to an increase in the volatility of the underly-
ing asset price, thereby increasing the strike price of the variance swap. This increased variabil-
ity in volatility translates to higher uncertainty about future market conditions. As a result, the
strike price of the variance swap rises to reflect the heightened risk. The strike price of the vari-
ance swap shows an increasing trend with an increase in v and 𝛿, respectively, and the rate of
price increase gradually accelerates. This is because an increase in v and 𝛿 will lead to more pro-
nounced market price movements, i.e., an increase in market volatility, resulting in an increase
in the strike price of the variance swap. An increase in v and 𝛿 signifies an elevated probability
of extreme price fluctuations. On the one hand, this augments the risk premium demanded by
investors and hedgers, as they seek compensation for the heightened uncertainty. On the other
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hand, in markets characterized by high levels of v and 𝛿, variance swaps become more valu-
able as hedging instruments, thereby elevating their strike prices. This may be attributed to the
heightened demand for effective volatility protection stemming from the possibility of large and
unpredictable price jumps, making variance swaps a pivotal tool for risk management in such
environments.

5 Conclusions
This paper focuses on pricing variance swaps within the framework of the Heston jump-
diffusion model with a stochastic long-term mean. We first derive the joint moment-
generating function, which is then used to derive the pricing formula for variance swaps with
discrete sampling. Subsequently, to further investigate the limiting properties of the pricing
formulas under discrete sampling, we also derive the pricing formula for variance swaps with
continuous sampling. A series of numerical experiments are conducted to validate the accu-
racy and reliability of the pricing formula for discrete sampling. The numerical results com-
puted using the discrete sampling formula are compared with Monte Carlo simulations and
previous research findings. The results demonstrate a close alignment between our discrete
sampling pricing formula, Monte Carlo simulation results, and existing research, confirm-
ing its effectiveness. Additionally, a thorough analysis is conducted on the specific impact of
key parameters (such as 𝜎𝜃 and 𝜆) related to the stochastic long-term mean and jump risk on
the prices of variance swaps. The research findings indicate that these parameters significantly
influence the prices of variance swaps, further emphasizing the importance of considering
stochastic long-term mean and jump risk in pricing variance swaps.
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