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Abstract

Based on the Palma proposition and the Lorenz fitting curve, this paper estimates the sam-
ple Gini coefficient using the income share of the top 10% and bottom 40% of the population.
Empirical research shows that the absolute error between the estimated value and sample
Gini coefficient is within a hundredth. Monte Carlo simulation shows that the new method
has good performance and robustness for estimating Gini coefficients with different sample
sizes and different inequality levels. Using the two quantiles in the deciles to estimate the
sample Gini coefficient and the Lorenz fitting curve is a practical method.

1 Introduction

In recent years, income-share-based limited data has become an important way for some econ-
omies and international institutions to store and publish data. Policymakers are more likely to
want to understand the Gini coefficient that reflects income inequality when formulating pub-
lic policies. There are two main methods for estimating the income Gini coefficient using lim-
ited data. One is to fit the income distribution function and then calculate the Gini coefficient.
Some scholars have proposed fitting methods for several types of income distributions, such as
lognormal distribution, gamma distribution, Beta-2 distribution, and generalized Pareto distri-
bution [1-4]. The second is to fit the income Lorenz curve. The fitting curve is composed of
points with cumulative population share and cumulative income share as horizontal and verti-
cal coordinates. The quantile data just constitute the points on the Lorenz fitting curve, includ-
ing the two endpoints of the 45° line. The quantile approach provides great convenience for
fitting the Lorenz curve.

The existing Lorenz curves include single-parameter [5-8], two-parameter [9-11], three-
parameter [12, 13], and four-parameter [14, 15] forms. Since only some functions of the above
curves satisfy the non-negativity requirements of the first and second-order derivatives [9, 13,
16], we believe that it is more appropriate to call these curves Lorenz fitting curves.

Chotikapanich and Griffiths [17] proposed a likelihood function method for parameter
estimation of the Lorenz curve. This method assumes that the income shares of each quantile
follow a joint Dirichlet distribution, adding an adjustment parameter A related to the variance
to the Lorenz fitting curve to obtain parameter estimates through the maximum likelihood

PLOS ONE | https://doi.org/10.1371/journal.pone.0318833  February 11, 2025

1/13


https://orcid.org/0000-0001-5051-6572
https://doi.org/10.1371/journal.pone.0318833
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0318833&domain=pdf&date_stamp=2025-02-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0318833&domain=pdf&date_stamp=2025-02-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0318833&domain=pdf&date_stamp=2025-02-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0318833&domain=pdf&date_stamp=2025-02-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0318833&domain=pdf&date_stamp=2025-02-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0318833&domain=pdf&date_stamp=2025-02-11
https://doi.org/10.1371/journal.pone.0318833
https://doi.org/10.1371/journal.pone.0318833
https://doi.org/10.1371/journal.pone.0318833
http://creativecommons.org/licenses/by/4.0/
https://www.wider.unu.edu/database/world-income-inequality-database-wiid
https://www.wider.unu.edu/database/world-income-inequality-database-wiid

PLOS ONE

Estimation of the Gini coefficient based on two quantiles

Funding: Dai P’s study was funded by a grant
(#20BJY238) from the National Social Science
Fund of China (http://www.nopass.gov.cn/).

Competing interests: The authors have declared
that no competing interests exist.

(ML) method:

log[f(q|0)] = 1logT'(%) + Z{ML(Pw 0) = L(p; 1,0)] — 1} x logg;

_Zlog F{?\.[L(p,», 0) - L(Pifp 0)]}

where f is the Dirichlet joint distribution function, A is the unknown auxiliary parameter, @ is a
parameter vector, p; is the cumulative population share to the i-th quantile, g; is the income
share of the i-th decile (i=1, ..., N), g = (91, qa» - - -» qn) "> N is the number of quantiles, I"and
L represent the gamma function and the Lorenz curve, respectively.

Some scholars have found that although Chotikapanich and Griffiths [17]’s method has a
good fitting effect [8], increasing the number of parameters will complicate the estimation. In
fact, the parameter estimate can be obtained directly by minimizing the sum of squares of the
errors between the cumulative income share and the fitted one (referred to as the error mini-
mization technique) [18]. It is also difficult to verify whether the income shares of each quan-
tile follow the joint Dirichlet distribution, which may lead to large deviations in parameter
estimates and affect the estimation of the Gini coefficient. The error minimization technique
can be expressed as follows:

0 =min > [y, ~ L, 0)f 2)

where 0 is a parameter vector, y; and x; represent the cumulative income and cumulative popu-
lation shares of the i-th quantile of data (i = 1, . . ., N), respectively.

Given that the maximum likelihood method of Chotikapanich and Griffiths [17] could not
be applied to the case of negative income share in the quantile data, Lee and Suh [19] argue
that existing methods of removing negative values or replacing them with zero underestimate
inequality levels, Shen and Dai [16] proposed a linear regression method based on the Kakwa-
ni’s three-parameter Lorenz curve [12], the method is better than the error minimization tech-
nique of model (2) for estimating the Gini coefficient of economies with medium and high
inequality.

It is usually difficult to estimate the parameters of the Lorenz curve using the model (1) or
model (2) based on two quantile points to obtain an effective estimate of the sample Gini coef-
ficient. In Palma [20, 21], the author believes that changes in income inequality depend on
changes in the income shares of the top 10% and bottom 40% of the population. Cobham and
Sumner [22] supported Palma’s proposition through regression analysis based on the decile of
the World Bank’s PovcalNet data. It has become an interesting and challenging problem that
how to construct a reasonable Lorenz fitting curve and estimate the sample Gini coefficient
based on the income share of the top 10% and bottom 40% of the population.

The contributions of this paper are mainly three-fold: firstly, based on the Lorenz curve of
Kakwani [12], a simplified two-parameter Lorenz fitting curve is proposed, and the income
share of the bottom 40% and the top 10% of the population is used to obtain an effective esti-
mate of the sample Gini coefficient. The Lorenz fitting curve is estimated in the most parsimo-
nious (least conditional) way. Secondly, the best pairwise method bridges the Gini coefficient
and the Palma ratio, because both of them are determined by the same income shares and
have equivalence. Thirdly, the best pairwise method provides governments and policymakers
with a convenient and low-cost tool to access information on inequalities. This is because pol-
icymakers only need to obtain the income shares of the bottom 40% and the top 10% of the
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population to obtain an accurate measure of the Gini coefficient, without having to obtain full
information on the distribution of income.

The remaining of this paper is organized as follows: Section 2 introduces the parameter esti-
mation of the Lorenz fitting curve and proposes the best pairwise proposition, Section 3 tests
the new proposition through Monte Carlo simulations and diversified income distribution
data, Section 4 summarizes the conclusions.

2 Materials and methods
2.1 Ethical approval

Ethical approval was not required as the study did not involve human participants.

2.2 Two-parameter Lorenz fitting curve

Many studies have found that the Lorenz curve provided by Kakwani [12] generally performs
better than other forms of Lorenz curves in empirical studies [11, 16, 23, 24]. Therefore, this
paper starts with this curve. The form of the Lorenz curve given by Kakwani [12] is as follows:

L(x,a,p,q) = x — ax"(1 — x)* a>0,0<p<1,0<g<1 (3)

where, x represents the cumulative population share, a is a scale parameter, p and q are shape
parameters, L denotes the cumulative income share. Sarabia et al. [13] criticized that model (3)
does not meet the theoretical conditions of the Lorenz curve. For example, if the parameters
a=1, p=0.96, g=0.68, and x=0.1, the value of the Lorenz curve of Eq (3) is -0.0021, that is, the
value of the function is less than 0. With this in mind, it may be more appropriate to call
model (3) a Lorenz fitting curve rather than a Lorenz curve.

Schader and Schmid [15] extended the model (3) to a four-parameter model in Eq (4).

L(x,p,q) =% — (1 —x)' (4)

where, Schader and Schmid [15] deliberately ignore the theoretical boundaries of parameter
values. They find that the model (4) has a better performance than the model (3), since the
sum of squares of the deviations between true and fitting values is smaller under model (4). In
fact, determining the parameter value boundary according to the theoretical conditions of the
Lorenz curve has brought great trouble to empirical studies. For instance, Sitthiyot and Hola-
sut [25] find that conditional on the parameter value boundary of the single-parameter Lorenz
curve proposed by Paul and Shankar [8], in many cases, an effective estimation of the Gini
coefficient cannot be obtained. Whether it is to estimate the points on the Lorenz curve or to
estimate the corresponding Gini coefficient, models (3) and (4) show that the Lorenz fitting
curve may not be a Lorenz curve. The fitting curve only needs to pass through points (0, 0)
and (1, 1), and there is no need to determine the parameter value boundary of the fitting curve
in advance. We find that this method can eliminate the boundary trouble of parameter values
encountered by Sitthiyot and Holasut [25].

Considering that the three parameters cannot be determined with two quantiles, the follow-
ing changes have been made to model (3):

L(xapvq):x_xp(l_x)q P>OaQ>0 (5)

Model (4) can be transformed into the following form:

In[x — L(x, p, q)] = plnx + gln(1 — x) (6)
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Therefore, the Lorenz fitting curve is determined by two quantiles, which is equivalent to
solving the following system of simultaneous equations:

{ ln(‘xl _)’1) :Pln(xl) + qln(l - xl)

In(x, —y,) = pln(x,) +gln(1 — x,)

(7)

where, (x;, ¥1) and (x,, ¥,) represent the coordinates of two decile points on the Lorenz fitting
curve. The solutions to the two parameters of equation system (6) are:

_ In(x, —y)In(1 — x,) — In(x, — y,)In(1 —x,)
Inx In(1 — x,) — Inx,In(1 — x,)

_ Inx;In(x, —y,) — InxyIn(x; — )

~ InxIn(1 — x,) — Inx,In(1 — x,)

The formula of the Gini coefficient corresponding to parameters p and q is:

G= 2<%— /Ol[x—x"(l —x)q]dx) =2Beta(p+1,9+1) (9)

2.3 Validity criteria for estimating the Gini coefficient

The purpose of the new method is to estimate the deciles of data and the sample Gini coeffi-
cient using only two quantiles. First, to judge the validity of the estimated sample Gini coeffi-
cient, this paper uses the absolute error between the estimated value and the true Gini
coefficient as a measure for the judgement. Specifically, when the absolute error is within a
hundredth, the estimation is considered to be valid. The root mean square error (RMSE) is
used for the comparison of multiple estimation errors. The smaller the RMSE, the better the
estimation. Secondly, for fitting the deciles of data, the information inaccuracy measure (IIM)
index is used. For fitting the Lorenz curve, the mean square error (MSE) index is used. The cal-
culation formulas for the two indices are as follows:

B N q B 1 12
HM—;qiln<€>, MSE_NZ[y,.—L(xi,e)} (10)

i=1

where, N is the number of quantiles, g; is the income share of the i-th quantile, g, is the esti-
mated income share (i=1,2, ...N) [8, 11]. The smaller the absolute value of the fitting index
(i.e., IIM or MSE), the better the fitting.

2.4 Best pairwise proposition

The deciles of data are most common (N=10), so consider available pairings among 10%, 20%,
30%,. . ., 70%, 80%, and 90% quantiles, there are 36 combinations in total. For example, we can
take a data on each side of the fifth decile point, which corresponds to the 4th and 9th deciles
on the Lorenz curve. We can search the best pairs among possible matches to estimate the
Gini coefficient. Dagum [26] believes that a good parametric form of the Lorenz curve must be
able to characterize the income distribution in different regions, different socio-economic
forms and different periods. This paper divides the income distribution situation into four cat-
egories according to the level of the sample Gini coefficient: low income inequality (0 < Gini
coefficient < 0.3), medium income inequality (0.3 < Gini coefficient < 0.4), high income
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inequality (0.4 < Gini coefficient < 0.5), and very high income inequality (0.5 < Gini

coefficient < 1).

Records of the World Income Inequality Database (WIID) are divided into four categories
based on data quality: high, average, low and not known levels. To ensure data quality, we
extract the decile income share data of 16 economies that are with different socioeconomic
backgrounds and inequality levels from the World Bank’s PIP records in the WIID database
(The quality level of PIP is average). Then we estimate the Gini coefficient using the above-
mentioned pairing method, and compare the estimated Gini coefficients with the sample Gini
coefficients reported in the database to find the best pairing and propose new proposition. The
calculation results are reported in Table 1.

According to the validity criteria for estimating the Gini coefficient, Table 1 suggests there
are two best pairings, i.e. 40% and 90% pair, and 30% and 80% pair. The absolute errors of the
Gini coefficient estimates of the two pairs are within a hundredth, regardless of the maximum

error or the minimum error. Based on the comparison of the estimated errors of 16 econo-
mies, the RMSE value of the (40%, 90%) pairing is 0.00196, which is smaller than the RMSE
value (0.00267) of the (30%, 80%) pairing, indicating that the (40%, 90%) pairing is better than
the (30%, 80%) pairing. The Palma ratio is an important measure of income inequality (Cob-
ham and Sumner, 2002; Palma, 2014), which is equal to the ratio of income shares of the top

Table 1. Estimated errors of the Gini coefficient for the main pairwises of decile of 16 economies.

Year Economies True Gini Errors between observed and estimated Gini under various pairings
(30%,80%) (40%,90%) (50%,90%) (60%,40%) (70%,30%) (80%,40%)
2020 Belgium 0.2540 -0.00062 0.00364 0.02208 0.02695 0.01122 0.01381
2019 Czechia 0.2402 -0.00132 0.00027 0.01943 0.03002 0.01314 0.01251
2018 Slovakia 0.2097 -0.00017 -0.00197 0.02008 0.03546 0.01698 0.01462
2017 Iceland 0.2487 -0.00122 -0.00173 0.01981 0.03066 0.01420 0.01225
2020 Austria 0.3802 0.00081 0.00185 0.01990 0.03187 0.01482 0.01390
2019 Albania 0.3430 -0.00274 0.00119 0.01411 0.01975 0.00747 0.00721
2018 Germany 0.3159 -0.00005 0.00182 0.01367 0.02025 0.00924 0.00855
2017 Russia 0.3670 -0.00012 0.00203 0.01366 0.01887 0.00816 0.00794
2020 France 0.4230 0.00060 0.00142 0.01235 0.02050 0.00990 0.00830
2019 Colombia 0.4810 0.00152 0.00250 0.01208 0.01857 0.00904 0.00877
2018 USA 0.4709 0.00047 0.00162 0.00581 0.00890 0.00418 0.00392
2017 Malaysia 0.4107 0.00068 0.00073 0.00914 0.01667 0.00857 0.00665
2019 Panama 0.5150 0.00237 0.00054 0.00469 0.01109 0.00724 0.00480
2018 Brazil 0.5400 -0.00130 -0.00026 0.00766 0.00737 0.00622 0.00353
2017 South Africa 0.6170 0.00245 0.00260 0.00524 0.00690 0.00584 0.00393
2016 Hong Kong 0.5390 -0.00925 0.00323 -0.00427 -0.01963 -0.01699 -0.01060
Error Max 0.00245 0.00364 0.02208 0.03546 0.01698 0.01462
Min -0.00925 -0.00197 -0.00427 -0.01963 -0.01699 -0.01060
RMSE All 0.00267 0.00196 0.01408 0.02198 0.01090 0.00956
Low 0.00095 0.00225 0.02037 0.03092 0.01404 0.01333
Medium 0.00143 0.00175 0.01556 0.02330 0.01034 0.00976
High 0.00091 0.00169 0.01020 0.01675 0.00823 0.00716
Very High 0.00497 0.00209 0.00562 0.01235 0.01017 0.00639
"The income distribution situation is devided into four categories: low, medium, high and very high.
*There are a total of C2 = 36 quantile pairs, and only results of the main 6 pairwises are listed in the table.
https:/doi.org/10.1371/journal.pone.0318833.t001
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10% and the bottom 40% groups. The Palma proposition is the theoretical basis for estimating
the Gini coefficient using two quantiles. Therefore, this paper extracts the following
proposition.

Definition 1 If the absolute error between the estimated value and the true value of the
sample Gini coefficient is less than 0.01, the estimate of the sample Gini coefficient is said to be
a valid estimate.

Proposition 1 The pair of income shares of the bottom 40% and the top 10% groups is the
best pairwise for estimating the sample Gini coefficient, since the pair can obtain a valid esti-
mate of the sample Gini coefficient.

Since the income share of the top 10% of the population is equal to 1 minus the income
share of the bottom 90% of the population, the above proposition is equivalent to that the pair
of the income share of the bottom 40% and the bottom 90% of the population is the best. This
method is also called the best pairwise method. From Table 1, it can also be found that the dif-
ference between the maximum error and the minimum error of the (40%, 90%) pairing is
0.00561, which is obviously smaller than the 0.01170 of the (30%, 80%) pairing. The smaller
range indicates that the former is more robust. As for the RMSE, we find that the RMSE of the
Gini coefficient estimated by the (30%, 80%) pairing is relatively small for the low, medium
and high inequality groups, and the RMSE of the (40%, 90%) pairing is relatively small for the
whole sample and very high inequality groups. Whether that this new method has a general
significance can be verified through Monte Carlo simulation. It also can be verified by compar-
ing the estimated Gini coefficients with the reported Gini coefficients in the records of World
Bank’s PIP and the Luxembourg Income Institute’s LIS of the WIID database.

The best pairwise method for estimating the Gini coefficient can be decomposed into the
following steps: The first step is to substitute the two income shares (40%, 90%) into the simul-
taneous Eq (7) to solve the parameters. The second step is to substitute the parameter values
into Eq (5) to determine the Lorenz fitting curve. The third step is to calculate the sample Gini
coefficient by Eq (9). The calculation of the Gini coefficient requires the help of the Beta func-
tion. The Beta function value can be easily realized by commonly used software, such as R,
STATA, etc., so the best pairwise method is very practical.

In this paper, with the exception of the error minimization technique, which uses R, the
rest of the calculations are performed in Eviews 10.0.

3 Results and discussion
3.1 Monte Carlo simulation

In order to analyze and verify the sample performance of the best pairwise method, we con-
sider two cases. One is that income follows a log-normal distribution [25]. The other one is
that income follows a Beta-2 distribution [3].

3.1.1 Case of income log-normal distribution. First, similar to Arcarons and Calonge
[27], we assume that income is generated from the following log-normal distribution:

¥, = exp[9.1171 + 1.1021 x U(0,1)] (11)
The sample sizes are 500, 1000, 5000, and 10000 respectively. Taking a sample size of 500 as
an example, we explain how to generate deciles of data by the following steps:

Step 1 we use formula (11) to generate a random sample of income with a size of 500, and sort
sample incomes from small to large to calculate the total income and sample Gini
coefficient.
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Step 2 starting from the minimum income, for each sample income level, we calculate the
number of incomes and the sum of incomes until that sample income (including that sam-
ple income), and calculate the cumulative population share and the cumulative income
share.

Step 3 we extract the corresponding cumulative income shares for each decile cumulative pop-
ulation share, thus obtaining a set of decile income share.

In order to avoid the possible contingency of a set of data, we repeat the above process 1000
times to obtain 1000 sets of deciles of data.

For each set of deciles of data, a paired test is performed to calculate the estimated error of
the Gini coefficient. Then, the minimum error, maximum error and overall RMSE are calcu-
lated based on the estimated errors of 1000 sets of deciles of data. The other sample sizes are
processed similarly, and the results in Table 2 can be obtained. In theory, Iny obeys the above-
mentioned normal distribution, i.e. Iny ~ N(9.1171, 1.1021°), and the corresponding theoreti-
cal value of the Gini coefficient is G = 2®(1.1021/v/2) — 1 = 0.56420. However, the error
here refers to the deviation between the estimated value and the sample Gini coefficient.

We examine the error between the estimated value and the true value of the sample Gini
coefficient under different sample sizes, and look for the best pairs based on the maximum and
minimum errors according to the validity criterion. Both the absolute values of the maximum
error and minimum error of the (40%, 90%) pair and the (50%, 90%) pair in Table 2 are within
a hundredth, so both these pairs are the best matches.

From Table 2, we can find that when the sample size is greater than or equal to 500, the esti-
mates of the Gini coefficient are valid under the pairings (40%, 90%) and (50%, 90%). The
RMSE index for the pairing (50%, 90%) is smaller than that of the pairing (40%, 90%) under
each kind of sample size, so the estimation performance of the Gini coefficient of the pairing
(50%, 90%) is slightly better than that of the pairing (40%, 90%). This shows that different pair-
ings may have their own advantages under different income distributions. As one of the two
best pairs, the pair (40%, 90%) provides empirical support for the Palma proposition,

Table 2. Estimation error of the Gini coefficient for the main pairwises of log-normal random income under different sample sizes.

Ob;.

500

1000

5000

10000

Error

Max
Min
RMSE
Max
Min
RMSE
Max
Min
RMSE
Max
Min
RMSE

(30%,80%)

0.00345
-0.01334
0.00560
0.00141
-0.01294
0.00494
-0.00117
-0.00740
0.00447
-0.00241
-0.00630
0.00439

Pairwises estimation error (1000 repetitions)

(40%,90%) (50%,90%) (60%,40%) (70%,30%) (80%,40%)
0.00998 0.00920 0.01607 0.01003 0.00635
-0.00729 -0.00889 -0.03014 -0.02077 -0.01349
0.00366 0.00276 0.00946 0.00856 0.00518
0.00851 0.00546 0.00752 0.00184 0.00200
-0.00371 -0.00851 -0.02166 -0.01663 -0.01222
0.00311 0.00207 0.00800 0.00752 0.00447
0.00585 0.00194 0.00063 -0.00163 -0.00099
-0.00044 -0.00300 -0.01292 -0.01197 -0.00687
0.00258 0.00096 0.00676 0.00686 0.00394
0.00407 0.00137 -0.00170 -0.00335 -0.00195
0.00088 -0.00223 -0.01067 -0.00987 -0.00579
0.00255 0.00069 0.00651 0.00674 0.00385

"The random incomes are generated from y, = exp [9.1171 + 1.1021 x U(0, 1)].

*There are a total of C2 = 36 quantile pairs, and only results of the main 6 pairwises are listed in the table.

https://doi.org/10.1371/journal.pone.0318833.t002
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indicating that it is valid to estimate the Gini coefficient using the income share of the lowest
40% and the highest 90% of the population.

3.1.2 Case of income Beta-2 distribution. The income distribution function of Hong
Kong in 1993 fitted by Chotikapanich et al. [3] is expressed as:

y,=bT/(1—T), b=29585740, T = Beta(8.6944,2.0609) (12)

Similar to the treatment of lognormal distribution, we examine the error between the esti-
mated value and the true value of the Gini coefficient under different sample sizes. We find
that when the sample size is greater than or equal to 500, the pairs (40%, 90%) is only the best
pairings for the sample Gini coefficient estimation. Since the sample size of household surveys
is usually more than several thousand, the results in Table 3 verify the correctness of Proposi-
tion 1, and provide empirical support for the Palma Proposition.

We also try to have a small sample size, for example, when the sample size is equal to 100
and 200 respectively, the estimation accuracy of the sample Gini coefficient decreases, and
some results that do not meet the effective estimation will occur.

According to Tables 2 and 3, we find that as the sample size increases, the RMSE of the best
pairing also shows an overall downward trend (i.e. the estimation accuracy improving), indi-
cating that the sample size also has an important impact on the performance of the best pair-
wise method. In summary, the income distribution form and sample size can play an
important role in the validity of the best pairwise method.

3.1.3 Performance of the method when estimating deciles of data. We have found that
the best pairwise (40%, 90%) method is valid for estimating the Gini coefficient under decile
case. So, conversely, how does the best pairwise method perform when estimating deciles of
data? Below we compare the best pairwise method with the Sitthiyot and Holasut [11]’s
method (hereinafter referred to as SH method). The SH method estimates the deciles of data
based on the Gini coefficient and the income shares of the bottom 10% and top 10% of the
population, while the best pairwise method is a method based on the income shares of the bot-
tom 40% and top 10% of the population.

Table 3. Estimation error of the Gini coefficient for the main pairs of Beta-2 distribution random income under different sample sizes.

Ob;.

500

1000

5000

10000

Error

Max
Min
RMSE
Max
Min
RMSE
Max
Min
RMSE
Max
Min
RMSE

(30%,80%)

0.01237
-0.00717
0.00281
0.01246
-0.00489
0.00219
0.01363
-0.00176
0.00158
0.00719
-0.00110
0.00125

Pairwises estimation error (1000 repetitions)

(40%,90%) (50%,90%) (60%,40%) (70%,30%) (80%,40%)
0.00905 0.01844 0.04762 0.03010 0.01998
-0.00606 0.00565 0.01072 0.00125 0.00204
0.00216 0.01249 0.02658 0.01328 0.00918
0.00450 0.01724 0.04352 0.02865 0.01905
-0.00390 0.00823 0.01449 0.00353 0.00312
0.00153 0.01261 0.02701 0.01357 0.00942
0.00346 0.01573 0.04039 0.02857 0.01903
-0.00149 0.01098 0.02051 0.00842 0.00667
0.00081 0.01281 0.02731 0.01372 0.00960
0.00209 0.01486 0.03850 0.02355 0.01562
-0.00115 0.01143 0.02360 0.01036 0.00762
0.00066 0.01282 0.02736 0.01370 0.00959

"The random incomes are generated from y, = bT/(1 — T), b = 2958.5740, T = Beta(8.6944, 2.0609).

There are a total of 36 quantile pairs, and only results of the main 6 pairwises are listed in the table.

https://doi.org/10.1371/journal.pone.0318833.t003
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The following is a comparative analysis on the goodness of fit of estimating deciles of data
based on the two methods. The needed Lorenz curve of the SH method when estimating decile
data is as following:

L(x,k,p) = (1 — k)x* +k[1 —( _x)%] (13)

The two parameters k and p can be obtained by the following calculation formula:

1+G k a—r+cXxr

>1, k= (14)
1-G cXr—r+dxr+a+b-1

where, G is the sample Gini coefficient, a = 0.1°, b = 0.9, ¢ = 0.9", d = 0.1"7, and r = Lo ,/(1 —
Loo).

Below, taking the sample size as 10000, we use models (11) and (12) to generate a decile
data (as the true value) and calculate the sample Gini coefficient. The sample Gini coefficient
under the log-normal distribution is equal to 0.56438, and it is equal to 0.47397 under the
income Beta-2 distribution. Based on the above data, the best pairwise and SH methods are
used to estimate the decile data. Table 4 reports the estimated decile data and the goodness of
fit indicators MSE and IIM under two income distributions.

In order to judge the validity of the pairwise method, we compares the fit-goodness indica-
tors of the best pairwise and SH methods. For the MSE indicator, the MSE of the best pairwise
method is always smaller than that of the SH method under both distribution functions, indi-
cating that the best pairwise method is more advantageous. In terms of the IIM index, the best

pairwise method is more advantageous under the lognormal distribution, but less advanta-
geous in the Beta-2 distribution. In general, the best pairwise and the SH method have their
own advantages in fitting decile data, indicating that the applicability of the two methods is
also closely related to the income distribution. However, the best pairwise method only uses

Table 4. Comparison of the best pairwise and SH methods in estimating deciles of data under two distributions.

Variable Log-normal distribution Variable Beta-2 distribution
True Decile Est. of income share True Decile Est. of income share
Pairwise method SH method Pairwise method SH method
D1 0.00865 0.00952 0.00743 D1 0.02426 0.04452 0.02218
D2 0.01708 0.01577 0.00997 D2 0.03343 0.03199 0.02705
D3 0.02557 0.02513 0.01621 D3 0.04049 0.03221 0.03476
D4 0.03549 0.03637 0.02750 D4 0.04810 0.03755 0.04518
D5 0.04716 0.04977 0.04504 D5 0.05702 0.04703 0.05840
D6 0.06358 0.06611 0.06995 D6 0.06812 0.06090 0.07471
D7 0.08476 0.08703 0.10346 D7 0.08205 0.08051 0.09485
D8 0.11587 0.11625 0.14725 D8 0.10329 0.10940 0.12075
D9 0.17342 0.16563 0.20517 D9 0.14627 0.15890 0.15918
D10 0.42842 0.42842 0.36802 D10 0.39698 0.39698 0.36296
goodness of fit goodness of fit
MSE 0.00002 0.00068 MSE 0.00018 0.00025
IIM 0.00044 0.01860 IIM 0.01002 0.00597
"The random incomes of log-normal distribution are generated from y, = exp [9.1171 + 1.1021 x U(0, 1)].
>The random incomes of Beta-2 distribution are generated from y, = bT/(1 — T), b = 2958.5740, T = Beta(8.6944, 2.0609).
https://doi.org/10.1371/journal.pone.0318833.t004
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the income shares of the bottom 40% and top 10% of the population, requiring fewer data
conditions.

3.2 Discussion

We have shown that the (40%, 90%) best pairwise method is effective in estimating the sample
Gini coefficient and performs well in fitting deciles of data. In the Monte Carlo simulation, we
verify the validity of the best pairwise method under two specific income distributions. How-
ever, it is usually impossible to know in advance the types of income distribution and the spe-
cific distribution parameters. Next, we will directly verify the effectiveness of the best pairwise
method by using two sets of records in the WIID database, one is obtained from the World
Bank’s PIP records, and the other from the Luxembourg Income Institute’s LIS records.

3.2.1 Applicability of the best pairwise method to PIP and LIS records. One of the rea-
sons for using the PIP and LIS records is the higher quality of these decile data, the PIP data
and LIS data are average and high, respectively. The second is that these two sets of records
reported the sample Gini coefficient for different economies, facilitating comparative analysis.
In November 2023, there are 2383 and 5545 records of decile data in WIID database, which is
collected from PIP and LIS databases. As mentioned earlier, the best pairwise method can esti-
mate the Gini coefficient without requiring the distribution information of data. In reality, it is
difficult to know in advance what kind of distribution income and wealth follow, the best pair-
wise method should have good practicality. We will verify the applicability of the best pairwise
method using the above-mentioned decile datasets. Similar to the inequality classifications of
economies in Table 1, we divide the sample economies into four categories, i.e. low inequality,
medium inequality, high inequality, and very high inequality. We first estimate the values of
the Gini coefficient by using the best pairwise and the error minimization methods, then calcu-
late the maximum and minimum errors between the estimated and the true value of Gini coef-
ficients for each category, the root mean square error (RMSE) as well. Table 5 reports the
results.

As shown in Table 5, the maximum error, the minimum error, and the root mean square
error are all within a hundredth, indicating that the income shares of the bottom 40% and top
10% of the population can be used to obtain an effective and robust estimate of the Gini
coefficient.

3.2.2 Comparison between the best pairwise and the error minimization methods. It
can be found that when using the error minimization technique, the Gini coefficient estima-
tion of models (3) and (4) are both valid, since the absolute values of the maximum and mini-
mum errors are within a hundredth. The error minimization method based on models (3) and
(4) are both better than the (40%, 90%) pairwise method in the entire sample. For model (3),
although both are effective estimates of the Gini coefficient, the (40%, 90%) pairwise method is
better than the error minimization method only in the high inequality category. For model (5),
the error minimization technique cannot obtain an effective estimate of the Gini coefficient in
multiple inequality categories. Despite using all the information of the decile data, the maxi-
mum error of the error minimization technique in multiple inequality categories is greater
than 0.01. Therefore, when using model (5), the performance of the best pairwise method is
better than the error minimization method under most inequality categories.

4 Conclusions

Based on the Palma proposition, this paper proposes an best pairwise method to estimate the
Gini coefficient, and the method only requires two quantiles in decile, i.e. the income shares of
the bottom 40% and top 10%. The absolute values of the maximum and minimum errors, and
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Table 5. Comparison between the best pairwise and the error minimization methods using PIP and LIS records in the WIID database.

Category Error
(40%,90%)

All Max 0.00679
Min -0.00466
RMSE 0.00180
Low Max 0.00525
Min -0.00328
RMSE 0.00163
Medium Max 0.00679
Min -0.00288
RMSE 0.00191
High Max 0.00513
Min -0.00466
RMSE 0.00183
Very high Max 0.00581
Min -0.00293
RMSE 0.00156

PIP records LIS records
Model(3) Model(4) Model(5) (40%,90%) Model(3) Model(4) Model(5)
0.00212 0.00252 0.01514 0.00932 0.00252 0.00246 0.01567
-0.00806 -0.00852 -0.01113 -0.00591 -0.00852 -0.00748 -0.01565
0.00116 0.00100 0.00701 0.00173 0.00100 0.00093 0.00685
0.00123 0.00119 0.01334 0.00816 0.00119 0.00096 0.01567
-0.00107 -0.00211 0.00629 -0.00309 -0.00211 -0.00228 0.00492
0.00044 0.00055 0.00939 0.00145 0.00055 0.00056 0.00935
0.00212 0.00234 0.01514 0.00808 0.00234 0.00235 0.01441
-0.00230 -0.00250 0.00214 -0.00365 -0.00250 -0.00251 0.00123
0.00073 0.00066 0.00736 0.00176 0.00066 0.00067 0.00671
0.00110 0.00252 0.01224 0.00558 0.00252 0.00246 0.00948
-0.00446 -0.00364 -0.00213 -0.00591 -0.00364 -0.00365 -0.00168
0.00132 0.00110 0.00443 0.00160 0.00110 0.00111 0.00398
0.00165 0.00104 0.01455 0.00932 0.00104 0.00090 0.00609
-0.00806 -0.00852 -0.01113 -0.00281 -0.00852 -0.00748 -0.01565
0.00252 0.00258 0.00310 0.00240 0.00258 0.00215 0.00420

"The PIP records come from WIID, data quality level is average. Low, medium, high and very high inequality economies have 506, 1110, 508, 259 records, respectively.

There are a total of 2383 records.

*The LIS records come from WIID, data quality level is high. Low, medium, high and very high inequality economies have 1139, 3090, 907, 409 records, respectively.

There are a total of 5545 records.

https://doi.org/10.1371/journal.pone.0318833.t005

the root mean square error between the estimated value and the true value of the Gini coeffi-
cient are within a hundredth.

When the income distribution is known, for example, the lognormal distribution or
Beta-2 distribution, the best pairwise method is verified valid by using the income samples
randomly generated by these distributions. Also, the results of Monte Carlo simulation sup-
port the proposition proposed in this paper. When the income distribution is unknown, for
verification of the best pairwise method, we use the high-quality quintile data from the
World Bank’s PIP source and the Luxembourg Income Institute’s LIS source in WIID data-
base. We find that the income Gini coefficient depends on the income shares of the bottom
40% and the top 10% of the population, indicating the validity of the pairwise method.
Therefore, the best pairwise method provides a practical tool for estimating the sample Gini
coefficient.

The best pairwise method bridges the Gini coefficient and the Palma ratio, both of
which are determined by the income share of the top 10% and the bottom 40% groups,
and contain the same information. This fact suggests that governments and public policy
makers must pay attention to the income levels of the bottom 40% and the top 10%
groups. In order to narrow the income gap, the income distribution policy should pay
attention to raising the income of the bottom 40% group and lowering the income of the
top 10% group, for example, setting a minimum wage and the key targets of poverty allevi-
ation. In addition, tax policies can adopt strategies such as progressive tax rates to make
high-income groups bear a higher tax burden. In social welfare arrangements, priority
should be given to the bottom 40% of the population, such as providing social minimum
medical care and old-age security, and special institutional design for the non-income

group.

PLOS ONE | https://doi.org/10.1371/journal.pone.0318833  February 11, 2025 11/13


https://doi.org/10.1371/journal.pone.0318833.t005
https://doi.org/10.1371/journal.pone.0318833

PLOS ONE

Estimation of the Gini coefficient based on two quantiles

Author Contributions

Conceptualization: Pingsheng Dai.

Data curation: Pingsheng Dai.

Formal analysis: Sitong Shen.

Methodology: Pingsheng Dai, Sitong Shen.

Software: Pingsheng Dai.

Supervision: Pingsheng Dai.

Validation: Sitong Shen.

Writing - original draft: Pingsheng Dai.

Writing - review & editing: Pingsheng Dai, Sitong Shen.

References

1.

10.

11.

12

13.

14.

15.

16.

17.

McDonald J B. Some generalized functions for the size distribution of income. Econometrica, 1984,
52:647—-663. https://doi.org/10.2307/1913469

Chotikapanich D, Valenzuela M R, Prasada Rao D S. Global and regional inequality in the distribution of
income: Estimation with limited/incomplete data. Empirical Economics, 1997, 20, 533-546. https://doi.
org/10.1007/BF01205778

Chotikapanich D, Griffiths W E, Rao D S P. Estimating and Combining National Income Distributions
using Limited Data. Journal of Businessand Economic Statistics. 2007, 25(1):97-109. https://doi.org/
10.1198/073500106000000224

Blanchet T, Piketty T, Fournier J. Generalized Pareto curves: theory and applications. Review of
Income and Wealth, 2022, 1:263-288. https://doi.org/10.1111/roiw.12510

Kakwani NC, Podder N. On the estimation of Lorenz curves from grouped observations. International
Economic Review, 1973, 14:278-292 https://doi.org/10.2307/2525921

Aggarwal V. On optimum aggregation of income distribution data [J]. Sankhya B, 1984, 46:343-355

Chotikapanich D. A comparison of alternative functional forms for the Lorenz curve. Economics Letters,
1993, 41:21-29. https://doi.org/10.1016/0165-1765(93)90186-G

Paul S, Shankar S. An alternative single parameter functional form for Lorenz curve. Empirical Econom-
ics, 2020, 59:1393-1402. https://doi.org/10.1007/s00181-019-01715-3

Rasche R H, Gaffney J, Koo A, Obst N. Function forms for estimating the Lorenz curve. Econometrica,
1980, 48:1061-1062. https://doi.org/10.2307/1912948

Ortega P, Martn G, Fernndez A, Ladoux M, Garca A. A new functional form for estimating Lorenz
curves. Review Income and Wealth, 1991, 37:447-452 https://doi.org/10.1111/j.1475-4991.1991.
tb00383.x

Sitthiyot T, Holasut K. A simple method for estimating the Lorenz curve. Humanities & Social Sciences
Communications, 2021, 8:268. https://doi.org/10.1057/s41599-021-00948-x

Kakwani N C. On a class of poverty measure. Econometrica 1980, 48(2): 437—446 https://doi.org/10.
2307/1911106

Sarabia J M, Castillo E, Slottje D. An ordered family of Lorenz curves. Journal Economics, 1999,
91:43-60. https://doi.org/10.1016/S0304-4076(98)00048-7

Basmann R L, Hayes K J, Slottje D J, Johnson J D. A General Functional Form for Approximating the
Lorenz Curve, Journal of Econometrics, 1990, 43, 77-90. https://doi.org/10.1016/0304-4076(90)
90108-6

Schader M, Schmid F. Fitting Parametric Lorenz Curves to Grouped Income distributions—A Critical
Note. Empirical Economics, 1994, 19:361-370. https://doi.org/10.1007/BF01205943

Shen X B, Dai P S. A regression method for estimating Gini index by decile. Humanities & Social Sci-
ence Communications, 2024, 11:1235. https://doi.org/10.1057/s41599-024-03701-2

Chotikapanich D, Griffiths W E. Estimating Lorenz curves using a dirichlet distribution. Journal of Busi-
ness and Economic Statistics, 2002, 20:290-295 https://doi.org/10.1198/073500102317352029

PLOS ONE | https://doi.org/10.1371/journal.pone.0318833  February 11, 2025 12/13


https://doi.org/10.2307/1913469
https://doi.org/10.1007/BF01205778
https://doi.org/10.1007/BF01205778
https://doi.org/10.1198/073500106000000224
https://doi.org/10.1198/073500106000000224
https://doi.org/10.1111/roiw.12510
https://doi.org/10.2307/2525921
https://doi.org/10.1016/0165-1765(93)90186-G
https://doi.org/10.1007/s00181-019-01715-3
https://doi.org/10.2307/1912948
https://doi.org/10.1111/j.1475-4991.1991.tb00383.x
https://doi.org/10.1111/j.1475-4991.1991.tb00383.x
https://doi.org/10.1057/s41599-021-00948-x
https://doi.org/10.2307/1911106
https://doi.org/10.2307/1911106
https://doi.org/10.1016/S0304-4076(98)00048-7
https://doi.org/10.1016/0304-4076(90)90108-6
https://doi.org/10.1016/0304-4076(90)90108-6
https://doi.org/10.1007/BF01205943
https://doi.org/10.1057/s41599-024-03701-2
https://doi.org/10.1198/073500102317352029
https://doi.org/10.1371/journal.pone.0318833

PLOS ONE

Estimation of the Gini coefficient based on two quantiles

18.

19.

20.

21.

22,

23.

24,

25.

26.

27.

Jorda V, Sarabia J M, Jantti M. Inequality measurement with grouped data: parametric and non-
parametric methods. The Journal of the Royal Statistical Society, Series A, 2021, 184:964-984 https://
doi.org/10.1111/rssa.12702

Lee D, Suh S. Measuring Income and Wealth Inequality: A Note on the Gini Coefficient for Samples
with Negative Values [J], Social Indicators Reseach, 2024. https://doi.org/10.1007/s11205-024-03488-
4

Palma J G. Homogeneous middles vs. heterogeneous tails, and the end of the’Inverted-U’:It's all about
the share of the rich. Development and Change, 2011, 42(1): 87-153. https://doi.org/10.1111/j.1467-
7660.2011.01694.x

Palma J G. Has the income share of the middle and upper-middle been stable around the’50/50 Rule’,
or Has it converged towards that level? The’Palma Ratio’ revisited. Development and Change. 2014,
45(6): 1416—1448. https://doi.org/10.1111/dech.12133

Cobham A, Sumner A. Is it all about the tails? The Palma measure of income inequality. 2013. CGD
Working Paper 343. Washington, DC: Center for Global Development.

Cheong K S. An empirical comparison of alternative functional forms for the Lorenz curve. Applied Eco-
nomics Letters, 2002, 9:171-176. https://doi.org/10.1080/13504850110054058

Tanak A K, Mohtashami Borzadaran G R, Ahmadi J. New functional forms of Lorenz curves by maxi-
mizing Tsallis entropy of income share function under the constraint on generalized Gini index. Physica
A, 2018, 511:280-288.

Sitthiyot T, Holasut K. An investigation of the performance of parametric functional forms for the Lorenz
curve [J]. PLOS ONE, 2023, 18(6):e0287546. https://doi.org/10.1371/journal.pone.0287546 PMID:
37352250

Dagum C. A new model of personal income distribution: Specification and estimation. In: Chotikapanich
D (Ed) Modeling income distributions and Lorenz curves. Economic studies in equality, social exclusion
and well-being, 1977, vol 5. Springer, New York, pp. 3-25

Arcarons J, Calonge S. Inference tests for tax progressivity and income redistribution: The Suits
approach [J], Journal of Economic Inequality, 2015, 13 (2): 207—223. https://doi.org/10.1007/s10888-
014-9280-0

PLOS ONE | https://doi.org/10.1371/journal.pone.0318833  February 11, 2025 13/13


https://doi.org/10.1111/rssa.12702
https://doi.org/10.1111/rssa.12702
https://doi.org/10.1007/s11205-024-03488-4
https://doi.org/10.1007/s11205-024-03488-4
https://doi.org/10.1111/j.1467-7660.2011.01694.x
https://doi.org/10.1111/j.1467-7660.2011.01694.x
https://doi.org/10.1111/dech.12133
https://doi.org/10.1080/13504850110054058
https://doi.org/10.1371/journal.pone.0287546
http://www.ncbi.nlm.nih.gov/pubmed/37352250
https://doi.org/10.1007/s10888-014-9280-0
https://doi.org/10.1007/s10888-014-9280-0
https://doi.org/10.1371/journal.pone.0318833

