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Abstract

Understanding past climate is essential to our knowledge of how our current climate sys-
tem operates, and how it might respond to future change. Techniques to reconstruct
climate history are challenging, and both accuracy and certainty are hampered by the
quality of the datasets used. Here we both develop a new reconstruction tool and apply
it to four ice core proxy based multi-millennial Holocene climate reconstructions, cho-
sen because of their potential influence on East Antarctic climate. The new multi-proxy
reconstruction method is called Segmented Linear Integral Correlation Kernel Ensemble
Reconstruction (SLICKER). This method employs a segmented linear rather than Gaus-
sian correlation approach and builds an ensemble of reconstructions with a best fit and
spread related to the best estimate of uncertainty. This method is robust for non-linear,
uneven or differently sampled data and produces high-fidelity reconstructions and asso-
ciated uncertainty estimates. This new method has the potential to produce more realistic
reconstructions, with associated uncertainty estimates based on robust statistical mea-
sures that are insensitive to outliers. The main findings from these new reconstructions
are: Antarctica temperature shows multi-decadal variability over the last twelve thousand
years with increased frequency over the last two thousand years; Zonal Wave 3 index
and the Southern Annular Mode both show limited trends over the last two thousand
years, but an increase since the 1970s CE; and the Indian Ocean Dipole Moment index
has a twentieth century CE upward trend, and a thirteenth to sixteenth century CE below
average period which may be related to volcanic activity.
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Introduction

Long duration records of climate are essential for many fields of study, including detection
and attribution of anthropogenic climate change (e.g. [1]), anthropology (e.g. [2]), environ-
mental history (e.g. [3]) and palaeohydrology (e.g. [4]). Instrumental climate records are typ-
ically too short in duration to adequately characterise long-term natural variability, necessi-
tating the reconstruction of longer-term climate records from suitable proxies. Frequently,
due to the nature of the proxy archives, data may be unevenly sampled. This is especially true
for ice-cores (e.g. [5]), corals (e.g. [6]), sediment cores (e.g. [7]) and tree rings (e.g. [8]). This
uneven sampling potentially introduces complications when undertaking climate reconstruc-
tions, as methods to account for the uneven sampling may introduce biases. Multi-proxy
reconstructions offer the potential for more robust reconstructions [9], however the uneven
and different sampling of multiple proxies compound these complications.

Reconstruction methods

While there are many methods for the reconstruction of climate fields using a spatially dis-
tributed network of proxy records, here we focus on the reconstruction of time series such

as climate indices or spatially averaged climate variables reconstructed from multiple proxy
records. Methods such as inverse-regression, Composite-Plus-Scale (CPS) and Principle
Component Analysis have been used for some time, and have been reviewed and compared
within the literature many times, for example in [10-12]. Existing multi-proxy reconstruc-
tion methods capable of handling unevenly and mismatched or differently sampled data have
some shortcomings. In many methods, linear relationships are assumed between the proxies
and target, or if this is not the case, then the proxy record requires transformation to enforce
this linear assumption. Other proxy data transformations are often required to overcome dif-
ferent timescales, resolutions and missing data. However, remapping methods (e.g. [13] and
[14]) may introduce errors or biases into the resulting reconstructions. CPS methods, such as
used in [15], generate composites of the different proxy records by standardising the variance
in all the records and then scaling the variance in the resultant reconstruction to match the
variance of the target time series. The scaling method used can have a large influence on the
outcome of the reconstruction. The Pairwise Comparison method [14], which compares pairs
of all proxy records, improves on this by not assuming a linear relationship between proxy
and target time series and also being robust to missing values. The correlation method of [16]
also overcomes this issue of mismatched timescales and missing data, but the Gaussian kernel
correlation that underlies this method is prone to biases towards zero [17]. Bayesian hierar-
chical models such as [18] are also able to incorporate uncertainties in the underlying data to
improve the reconstruction.

The existing methods for palaeo-climate reconstructions discussed here each have their
own strengths, weaknesses, and limitations. They perform well in many cases, but their
underlying assumptions and limitations must be considered in deciding when they are an
appropriate tool to use. Here we will introduce a new method capable of utilising multiple,
unevenly and differently sampled proxy data-sets, for both linear and non-linear relation-
ships, whilst producing robust reconstructions. An additional benefit of this method is that
it also provides a means for assessing uncertainty over time, without the need to assume that
that uncertainty is normally-distributed. There is no universally accepted best method for all
situations [12] and our new method is not a panacea, but is a useful additional tool. In gen-
eral, using multiple approaches and the common features of the resulting reconstructions
allows for robust interpretations.
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Relationships between many environmental processes are non-linear, e.g. between atmo-
spheric pressure and wind speed (e.g. [19]), wind-speed and aerosol generation over open-
water (e.g. [20]) and atmospheric water-vapour and temperature (e.g. [21]). The ability to
automatically account for non-linear relationships (potentially different between all proxy and
target pairs), greatly expands the utility of the new method we present here, especially when
combined with intrinsic support for unevenly and differently sampled data, and provides the
opportunity to produce more realistic and higher fidelity reconstructions.

Applications

Here we present a new non-linear multi-proxy reconstruction method, Segmented Linear
Integral Correlation Kernel Ensemble Reconstruction (SLICKER) which we use to produce
a 12 thousand year high southern latitude annual average temperature reconstruction. This
application of SLICKER demonstrates its ability to handle long reconstructions with greatly
varying proxy data density and duration, whilst having an existing (lower temporal resolu-
tion) reconstruction to compare to [12].

We also present three new two thousand year climate reconstructions using SLICKER
based on proxy records from an East Antarctic ice core: namely, an Indian Ocean Dipole
Moment Index (DMI) reconstruction, a Zonal Wave 3 (ZW3) Index reconstruction, and a
Southern Annular Mode (SAM) reconstruction. As large scale modes of climate variabil-
ity, including the Southern Annular Mode and the Zonal Wave 3 are the dominant drivers
of synoptic-scale atmospheric circulation governing Antarctic surface climate and sea ice
changes [22], these are likely targets for Antarctic ice core based climate reconstructions for
the last millennia. In addition, a dearth of multi-millennial reconstructions of these climate
drivers with large high southern latitude impacts, restricts our ability to assess recent changes
in a longer context: motivating our reconstruction of all three of these important indices.
Additionally, our DMI reconstruction is the first to continuously cover more than 500 years,
and is based on a remote proxy record (compared to the discontinuous, and local coral based
proxy reconstruction of [23]). Common features between the local and remote proxy based
reconstructions are more likely to represent the climate mode being investigated rather than
local non-climate influences on the proxy record (such as bio-predation or nutrient limita-
tion). Our ZW3 reconstruction is the first proxy based reconstruction, with previous recon-
structions being based on climate model simulations. While there have been previous SAM
reconstructions based on Antarctic ice cores proxy records, they have used linear recon-
struction methods. We find that, at least for the Dome Summit South ice core proxies that we
use, the proxy-SAM relationships are quite non-linear, and that non-linear methods such as
SLICKER are appropriate.

Climate reconstructions using proxy records from Antarctic ice cores are a natural appli-
cation of the SLICKER method due to the inherently unevenly temporally spaced data, mul-
tiple independent proxy records from individual ice cores, and non-linear proxy-climate rela-
tionships. SLICKER has intrinsic support for unevenly and differently sampled data and can
automatically account for non-linear relationships between proxies and targets. This new
method provides the opportunity to produce more realistic reconstructions, with associated
uncertainty estimates based on robust statistical measures that are insensitive to outliers.

Methods

Conceptually, SLICKER builds an ensemble of reconstructions in the same manner as [16].
We calculate the correlation between the target data-set and each of the proxies, and then aim
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to generate a reconstruction (typically of longer duration than the target) with the same cor-
relations with each of the proxies. There are many possible reconstructions satisfying these
correlations, therefore we generate an ensemble and report the robust group statistics of this
ensemble.

Specifically, individual reconstruction ensemble members are initially randomly gener-
ated and then iteratively modified to minimise the mismatch in the reconstruction-to-proxy
correlations compared to the corresponding target-to-proxy correlations. This procedure is
repeated for all ensemble members, returning the ensemble center (central tendency from
the M-estimator), uncertainty for the ensemble centre (via jack-knife resampling calibrated
to yield a 95% confidence interval), and the spread of the ensemble (estimated by the Qn
statistic).

The iterative modification of each ensemble member, to ensure the same correlation
between the reconstruction and proxies as the target, is via a time-capped Las Vegas down
gradient optimisation method with the gradients estimated via simultaneous perturbation
[24]. As ensemble members are only optimized to minimise the mis-match in the correlation
coeflicients, both the ensemble center and spread of the reconstruction are unconstrained.
Therefore, we add an offset and scale to each ensemble member to have the same ensemble
center and spread as the target.

For long reconstructions with multiple proxies and large ensemble sizes, a large number
of correlation calculations are required. The SLICKER FORTRAN code has been optimised
to re-use calculations where possible, and utilise OpenMP shared memory parallelism. Even
with these optimisations, execution time can be appreciable (from several minutes to days on
modern 8 core processor computers). Therefore, we only provide FORTRAN source code,
with Matlab, Python and R functionality implemented via wrappers to the FORTRAN code.
For Windows users without access to a FORTRAN compiler, we also include an executable.
All code and test suite examples are freely available at https://github.com/jlr581/SLICKER.

There are four key differences compared to the Gaussian kernel correlation method of [16].
First, the correlations are calculated using the Segmented Linear Integral Correlation Kernel
(SLICK) method [17]. In general, this method produces less biased estimates of the Pearson
correlation coefficient compared to Gaussian kernel correlation, with smaller uncertainty esti-
mates [17]. Second, stationarity in the correlation is enhanced over the entire reconstruction
period only using the subset (typically 50%) of the ensemble with the best stationarity. Third,
the ensemble statistics are based on an ensemble center estimated using the M-estimator [25],
while the spread is based on the Qn statistic scaled to the equivalent standard deviation for
normally distributed data [26,27]. These statistical measures combine both high efficiency and
robustness. Fourth, non-linearities are treated automatically (at the user’s discretion) rather
than the external piecewise linear transform used in [16].

Improved correlations

To calculate the correlations between potentially unevenly and differently sampled data, we
use the Segmented Linear Integral Correlation Kernel (SLICK) method [17] to reduce error
and bias compared to other methods (slotted correlation and Gaussian kernel correlation).
SLICK sub-divides the computational domain into regions containing valid data points from
both data-series within some threshold distance (h, a user selectable width parameter). Inside
each region, linear interpolation is used to calculate the local integral contribution to the
SLICK correlation, see [17] for details.

In cases of very uneven data spacing, individual points in the reconstruction can be decou-
pled from the correlation calculation. This will result in points that are unconstrained, with no
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meaningful information content. To reduce the occurrence of such decoupled points, we use
an additional set of correlations, with a larger width parameter, which are less localised. The
user can select the value of the SLICK width parameters h, but for most applications we rec-
ommend the default value of 0.4 [17], and 1.6 for the less localised set of correlation targets
that reduce the occurrence of decoupled points. For unevenly sampled data, lower values of

h result in more data being discarded, while larger values may result in excessive interpolation
across large data gaps.

Stationarity

Stationarity of the reconstruction can be an issue, especially for longer reconstructions. In
particular, SLICKER produces an ensemble of reconstructions with prescribed correlations
with the given proxies. It is possible to obtain the correct overall correlation with sub-epochs
of high and low correlation, which is clearly undesirable.

During the development of the SLICKER code, several alternatives were trialled to address
the issue of stationarity in the reconstruction by enforcing stationarity for each ensemble
member. Attempting to enforce stationarity for each ensemble member via direct minimisa-
tion of short (50-100% of calibration epoch) and overlapping sub-window correlations during
the Las Vegas down gradient optimisation was sub-optimal. It tended to produce unrealistic
reconstructions with abrupt step transitions at the boundaries of the sub-windows, and more
than tripled the execution time.

Instead, we have chosen not to enforce stationarity for individual members, but to select
a fixed size subset of the ensemble members with better stationarity. Specifically, for each
ensemble member we calculate a stationarity-index as the sum of the squared difference (over
all proxies) between the reconstruction-proxy correlation for the full epoch and a running
window half the length of the calibration epoch, with 50% overlap. We then select the subset
of the ensemble members with the lowest stationarity-index.

Ensemble center uncertainty calibration

To estimate the uncertainty in the ensemble center calculation, the standard deviation of a
jack-knife based resample is calculated and then scaled by a calibration factor to convert this
to a 95% confidence interval, based on the assumption of a normally distributed ensemble.

The calibration factor is empirically derived by drawing N samples from a normal distribu-
tion with underlying mean of zero and standard deviation of one. Then the standard deviation
of the resampled ensemble center is calculated. Both the ensemble center of the original sam-
ple and the resampled standard deviation are recorded. This process is repeated 2 X 107 times
and the 95% half-range of the ensemble center series is divided by the average resampled stan-
dard deviation to estimate the calibration factor for an ensemble size of N. This process was
repeated for N € [16,32, 64, 128,256,512,1024,2048] (Fig 1). The resulting dataset is well
fitted (in a least squares sense) by the function cal(N) = 1.956/(N).

The resampled standard deviation of the ensemble center has an inverse linear relation-
ship with the sample size (i.e. it will halve for a doubling of the sample size). The inverse
square-root calibration factor results in the 95% confidence interval reducing by a square-
root factor, similar to the behaviour of traditional standard deviations with increasing sample
sizes.

The underlying SLICK correlation is invariant to the addition of an offset or linear scaling
to the calculated reconstruction. Therefore, similar to the Composite-Plus-Scaling method
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Fig 1. Ensemble center uncertainty calibration. To estimate the uncertainty in ensemble center calculation, the standard deviation of a resample is calculated and
then scaled by a calibration factor to convert this to a 95% confidence interval, based on the assumption of a normally distributed ensemble.

https://doi.org/10.1371/journal.pone.0318825.g001

[28], we scale the reconstruction to have the same ensemble center and spread as the tar-

get data. Unlike Composite-Plus-Scaling, which uses the series mean and standard devia-
tion for the offset and scaling respectively, we use the more robust M-Estimator and Qn. This
choice results in much reduced sensitivity to outliers. However, depending on the end use

of the reconstruction, other offsets and linear scalings, such as (mean, standard deviation)

or (median, median-absolute-deviation) might be more appropriate. Alternative offsets and
linear scalings can simply be applied as a post-processing step.
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Non-linearity

For the target series (f) and each proxy (p) with range [pminspmax] R = Z222" S = b — Pnins
we calculate the SLICK correlation for ¢ with p, (p - a)%, |p - a| X (p - a), (p - a)?, |p - |
and (p - )", wherea €[R - 4S,R + 4S]. We also (optionally) test for a stronger correla-
tion when individual proxies have their sign inverted. We then use the target/proxy pair and
corresponding « with the largest magnitude SLICK correlation. To simplify calculations, « are
evenly sampled across their ranges in 800 increments. While this method formally only allows
for linear, quadratic and cubic relationships between the target and proxy, for most applica-
tions this is sufficient. More complicated relationships can be allowed for by pre-processing
the data.

Test cases

Simple sinusoidal test cases from [16] are shown in S1 Appendix. These test cases include
linear reconstructions in the presence of noise and missing data, non-linear and unresolved
proxy components. Tables comparing SLICKER and Gaussian kernel reconstruction in terms
of correlation, RMS error and reduction of error (RE) are given in S1-S3 Tables. In the major-
ity of cases SLICKER shows equal or better correlation (14 out of 16 cases), RMS error (12 out
of 16 cases) and reduction of error (14 out of 16 cases).

For more indicative test cases to show in detail, we consider three pseudo-proxy recon-
structions of the 20th century annual average continental USA 2m air temperature Tconus
from the 20CRv3 reanalysis [29]. For the three examples, we consider IID (white), blue and
red noise. The SLICKER work-flow for these test cases is given in S2 Appendix.

We use three pseudo-proxies (P;, P, and P;) all anomalies derived from Tconys and with
varying levels of missing data and added noise to reduce the correlation with Teonus. P1 has
44% missing data and a Pearson correlation with Tconys of 0.808. P, is inverted, has 38%
missing data and a Pearson correlation with Toonys of -0.490. P5 has a non-linear (squared)
relationship with Toonus, has 19% missing data and a Pearson correlation with Teonus of
0.172. The reconstruction target is Tconus for 1950-2015 CE and we reconstruct it for the
period 1900-2015 CE. The target and IID noise pseudo-proxy datasets are shown in Fig 2.

Both the SLICKER and Gaussian kernel correlation reconstructed 20th century annual
average continental USA 2m air temperature reconstructions are shown in Fig 3 for all three
noise cases. As the added noise spectrum shifts from blue to white to red, SLICKER pro-
duces reconstructions with better correlations, lower RMS errors and more skill (higher RE).
In contrast, Gaussian kernel correlation produces reconstructions with worse correlation,
higher RMS error and less skill. For the blue noise case, Gaussian kernel correlation produces
a marginally better reconstruction, but is noticeably worse for the IID (white) and red noise
cases, see Table 1 for details.

The final test case we present is again a pseudo-proxy example, this time with an AR1
process for the target. In particular, the 200 time-sample target is given by

AR1;,=0.6 X AR1;_; + 0.3 X ¢ (1)

where ¢ is IID noise with a mean of zero and a standard deviation of one. The two pseudo-
proxies are anomalies derived from AR1 with added IID noise and missing data. P; has 35%
missing data and a Pearson correlation with AR1 of 0.643, while P, has 21% missing data, a
non-linear (squared) relationship with AR1 and a Pearson correlation with ARI of 0.393.
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Fig 2. 20th century annual average continental USA 2m air temperature Tconys from the 20CRv3 reanalysis [29] reconstruction target (light
cray line with open circles). IID noise pseudo-proxies P; (solid black line), P, (dotted black line) and P3 (dashed black line). Location of missing data
also shown at bottom of plot (gray filled circles), upper row for P;, middle row for P, and lower row for Ps.

https://doi.org/10.1371/journal.pone.0318825.g002

Both SLICKER and Gaussian kernel correlation produce skillful correlations in this case
(see Fig 4). Compared to the Gaussian kernel correlation reconstruction, the SLICKER recon-
struction has much smaller uncertainty estimates, better correlation (0.665 compared to
0.609) and RMS errors (0.292 compared to 0.314) and is more skillful (RE of 0.345 compared
to 0.243).

Climate reconstructions

Here we present four separate climate reconstructions based on proxy records from Antarc-
tic ice cores. Firstly, to demonstrate the utility of the SLICKER algorithm in reconstructing a
climate signal from multiple proxies of differing length and variable sampling frequency, we
use SLICKER to reconstruct 12 thousand years of annual average 2m air temperature aver-
aged over 60 °S-90 °S, providing a direct comparison with the lower resolution reconstruc-
tion of [12]. We then produce three new two thousand year climate reconstructions based
on proxy records from an East Antarctic ice core: namely, an Indian Ocean Dipole Moment
Index reconstruction, a Zonal Wave 3 Index reconstruction, and a Southern Annular Mode
reconstruction. All three reconstructions are the first multi-millennial reconstructions of their
type, and in the case of the Zonal Wave 3 Index, the first proxy (rather than model) based
reconstruction.

Twelve thousand year 60 °S-90 °S temperature

For our first example, we reconstruct the 60 °S-90 °S 2m air temperature over the last 12
thousand years using proxy data from [30]. As per [12], we only consider annually resolved
proxy records, and we further restrict the proxies to those that include a suitable distribu-
tion of data points and variability in the calibration period. We require proxy records with
average data spacing (especially over the calibration period) to be within a factor of approxi-
mately 25 of the reconstruction data spacing to meaningfully contribute to the reconstruction.
Furthermore, to allow for scaling of the reconstruction to match the target, we require suffi-
cient variability in the proxy over the calibration period. What constitutes sufficient variability
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is the median and standard deviation of the Gaussian kernel correlation reconstruction of [16] (grey dashed). a) blue noise, b) IID (white)
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https://doi.org/10.1371/journal.pone.0318825.g003

will be application specific, depending on both the reconstruction target and the other proxy
records, but must a) be non-zero for each proxy record and b) be large enough to ensure the
reconstruction ensemble center is not unduly quantized during the scaling step of SLICKER,
resulting in a non-smooth “stair-case” reconstruction.

These two constraints, and the fact that we are reconstructing at a much higher temporal
resolution than [12], result in a smaller subset of records than [12]. Specifically, we use five
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Table 1. Comparison of SLICKER and Gaussian kernel reconstruction for pseudo-proxy test case with various
added noise distributions.

Noise case Correlation |Correlation |RMS error RMS error RE RE
(SLICKER) |(Gaussian) [(SLICKER) |(Gaussian) |(SLICKER) |(Gaussian)
blue 0.723 0.721 0.443 0.428 0.426 0.465
IID (white) 0.765 0.682 0.387 0.447 0.562 0.416
red 0.790 0.647 0.362 0.632 0.619 -0.167
https://doi.org/10.1371/journal.pone.0318825.t001
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Fig 4. AR1 test case using pseudo-proxies. SLICKER reconstruction (black line), uncertainty (dark shading) and ensemble spread (light
shading) for the target (grey circles). Also shown is the median and standard deviation of the Gaussian kernel correlation reconstruction of
[16] (grey dashed).

https://doi.org/10.1371/journal.pone.0318825.g004

temperature records from the [30] dataset, derived from a combination of raw stable stable
water isotope data (“PlateauRemote.MosleyThompson.1996” record from the East Antarctic
Plateau [31], “TALDICE.Mezgec.2017” record from the Talos Dome ice core [32]), a linear
reconstruction of temperature from stable water isotope data (“Komosomolskaia.Ciais.1992”
record from multiple Antarctic ice cores [33-35]) and borehole temperature reconstructions
(“LawDome.Dahl-Jensen.1999” record from the Law Dome ice core site [36] and the “WAIS-
Divide.Cuffey.2016” record calibrated against borehole thermometry from the WAIS ice core
[37)).

Unlike the centennial resolution reconstruction of [12], we reconstruct temperature every
year with three different targets with approximately comparable timing (to simplify com-
parison): the HadCRUT 5.0.2 dataset [38] (1900-2010 CE), ModE-RA dataset [39] (1900-
2008 CE) and the ERA-20C 2m air temperature for the period 1900-2010 CE [40]. While we
have chosen these three reconstruction targets to highlight the influence of the target on the
reconstruction, other targets such as the Last Millennium Reanalysis [41] or PHYDA [42]
are equally valid targets. All three datasets were Gaussian smoothed with a three year (half
power) filter to improve the performance of the reconstruction relative to the target. Of the
three datasets only ERA-20C was in absolute temperature, with the other two being anomalies
compared to reference epochs. As SLICKER is correlation based, we can post-hoc add a con-
stant offset to both the HadCRUT and ModE-RA reconstructions to have the same median as
the ERA-20C reconstruction to simplify comparison.

We include three reconstructions using the three different targets as there is a dearth of
high southern latitude temperature data prior in the earlier part of the calibration period.
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10/ 27



https://doi.org/10.1371/journal.pone.0318825.t001
https://doi.org/10.1371/journal.pone.0318825.g004
https://doi.org/10.1371/journal.pone.0318825

PLOS ONE New insights from an East Antarctic ice core

2555 ~

255.0 =

254.5

254.0 1

60°S-90°S average 2m air temperature (K)

ERA-20C central tendency HadCRUT central tendency ModE-RA central tendency
ERA-20C jack-knife uncertainty HadCRUT jack-knife uncertainty ModE-RA jack-knife uncertainty
ERA-20C spread HadCRUT spread ModE-RA spread
— — Kaufman et al. mean value ---- Kaufman et al. inter-quartile
253.5 : : :
-10000 -8000 -6000 -4000 2000 0 2000
Year (CE)

Fig 5. 60 °S-90 °S mean temperature reconstruction. Gaussian smoothed (100 year half power) M-Estimator SLICKER reconstruction (solid
lines), uncertainty (colored shading) and ensemble spread (dotted lines) for the 60°S-90°S mean temperature, 100 year (half power) for three
calibration targets: ERA-20C (black), HadCRUT (red) and ModE-RA (blue). The HadCRUT and ModE-RA reconsturctions are for a temper-
ature anomaly based target, and have had a constant offset added to have the same median value as the ERA-20C based reconstruction. Also
shown is multi-method median result of [12] renormalised to have the same 1800-1900 CE mean value (long dashed line) and inter-quartiles
(short dashed lines).

https://doi.org/10.1371/journal.pone.0318825.9005

Specifically, while using ERA-20C as the target for un-calibrated data is consistent with [12],
it does have a post 1979 upward shift in Antarctic mean temperature [43] with increased
uncertainty pre 1979 CE [44]. However, we find this shift smaller than ModE (Fig S3), pos-
sibly due to the inclusion of the fringing ocean in our analysis. ERA-20C also has higher
variability than the other two target datasets.

The three different 12 thousand year 60 °S-90 °S mean temperature reconstructions are
shown in Fig 5. Their standard deviations range between 0.2-0.3 K, and the ERA-20C based
reconstruction has a mean value of 254.7 K (the other two reconstructions are based on tem-
perature anomalies, and require offsets of 254.8 K and 254.5 K for HadCRUT and ModE-RA,
respectively, to have the same median value as the ERA-20C based reconstruction).

The Dome Summit South ice core, Antarctica

Here we focus on three climate index reconstructions using proxy records from the annually
resolved Dome Summit South (DSS) ice core from Law Dome, East Antarctica [45]. DSS is a
very high snowfall site (0.7 metres ice equivalent y') compared to most of the Antarctic con-
tinent due to its location at the southern margin of the mid-latitudes (66.77 °S, 112.81 °E).
This leads to the preservation of a unique, primarily maritime record that is highly resolved
at seasonal scale for the last 2300 years [46-48]. The ice core record from DSS has been inten-
sively studied for over three decades, resulting in a range of climate records that have been
derived, including: in situ greenhouse gas analyses [49], wind [50], high latitude atmospheric
pressures and moisture transport [51,52], sea ice extent [53] and annual snowfall variabil-

ity [47]. More recently, regional climate proxies that exploit Law Dome’s teleconnection to
lower latitudes via the synoptic to inter-annual scale variability present in the atmosphere of
the southern Indian Ocean has led to proxy records of modes of climate variability such as
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These records have been primarily derived from the primary ice core records of seasonal sea
salt aerosol concentration and annual snowfall accumulation.

Like many climate proxies, ice core based climate proxies respond to local, regional and
global influences [15,59]. The remote locations of high latitude ice cores limit the local human
influences [60], and so offer complementary information on remote climate processes. As
such, the high resolution ice core proxy data offers the potential for annually resolved, multi-
millennia reconstruction of important global climate indices. We will explore three such
reconstructions, noting the possibility of future work incorporating these proxy records into
multi-site reconstructions to further enhance the fidelity of the reconstructions.

In each of the three DSS proxy based climate reconstructions detailed below the skill of
the reconstruction is improved by smoothing, using a 3-year (half power) Gaussian filter. In
all cases the statistical significance of the reconstruction is estimated by generating 1000 syn-
thetic target datasets using the same model used to fit the respective target. For robustness, we
prefer using an ensemble center based measure of error, rather than the more typical RMS, to
reduce sensitivity to outliers, and similarly a reduction of error (RE) based on the ensemble
center rather than RMS values.

Indian Ocean Dipole Moment Index. The Indian Ocean Dipole Moment Index (DMI)
captures zonal inter-annual sea surface temperature anomalies [61]. The DMI state is known
to influence east African rainfall [61] and both Australian drought [62] and bushfire risk [63].
Due to these relationships, a two thousand year reconstruction of the DMI is useful even if it
is merely a manifestation of ENSO teleconnections as suggested by [64] because of its strong
correlation with the NINO 3.4 index [65].

As Law Dome is highly sensitive to atmospheric pressure variability (and subsequent wind
and moisture transport) across the southern Indian Ocean region, we investigated the ability
of DSS proxy records to reconstruct the DMI. The propagation of signals of tropical Indian
Ocean variability including the DMI to higher southern Indian Ocean latitudes is debated
[66], however a number of polar studies identify signatures of the DMI, e.g. in sea ice variabil-
ity [67]. A recent study of the southern Indian Ocean confirmed that certain synoptic types
in the mid-latitudes of the Indian Ocean are correlated to DMI variability in austral spring,
summer and autumn [68].

Our calibration target is the DMI calculated using the difference in monthly NOAA
ERSSTv5 [69] sea-surface temperature anomalies between 10 °S-10 °N, 50-70 °E and 10-0 °S,
90-110 °E for the period 1854-2016 CE, then averaged annually. To assess the stationarity (or
otherwise) of the DMI (units of °C), we fitted a fifth-order autoregressive (AR) model (Eq 2)
to the DMI using Burg’s method [70]:

DMIk =1.0DMIg_, - 0.227DMIk_;

-0.113DMIk_3 — 0.112DMIk_4 — 0.143DMIk_5 + €k @)
where the subscript K denotes observation number.

The order was determined by a corrected Kullback information criterion [71], and ek is
the unexplained variance. The (complex) roots of the associated homogeneous characteristic
equation all lie within the unit circle, indicating the DMI is stationary.

To reconstruct the DMI over the last two thousand years we use proxy data from the Law
Dome DSS ice core, using the stable water isotope (§'®0), winter sea-salt and summer sea-salt
records [48]. As both the DMI [64] and proxy records from Law Dome [55] show relation-
ships to ENSO, attempting to reconstruct DMI from Law Dome proxy records is reason-
able. To avoid over-fitting and including proxy records that do not contribute meaningfully
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to the reconstruction, the selection of proxies to include was determine via generalised cross-
validation [72], where proxies were only selected if their inclusion reduced the resulting rms
error of the reconstruction by a sufficient amount to account for the changed degrees of free-
dom associated with the inclusion of the proxy.

Smoothing of both the DMI record and reconstruction with a 3 year (half-power) 1-D
Gaussian filter improves the skill of the SLICKER non-linear reconstruction (ensemble center
based error 0.12 °C, RMS error 0.17 °C, correlation 0.55, REp.¢=0.09), noting the reduction
in the effective degrees of freedom, and possible reduction in statistical significance, associ-
ated with this smoothing. However, there is a downside of this smoothing, as the DMI con-
tains a considerable amount of variability in the 1-5 year band [73], and our 3 year Gaussian
filter will suppress this.

The statistical significance of the SLICKER reconstruction was estimated by using SLICK
reconstructions based on the same proxy data and 1000 synthetic calibration targets gener-
ated randomly using the same AR model. Both the ensemble center error and correlation with
the actual DMI reconstruction are better than 95% of the results from the 1000 synthetic AR
targets.

The reconstructed DMI is shown in Fig 6. Note that the uncertainty of the ensemble cen-
ter is almost indistinguishable from the ensemble center itself, i.e. very low uncertainty on the
ensemble center calculation.

Zonal Wave 3 Index. The Zonal Wave Three (ZW3) pattern is a quasi-stationary atmo-
spheric feature of the high latitude Southern Hemisphere that captures the dominant zonal
asymmetry, and is associated with meridional flow [74,75]. As such, the ZW3 is important
for net poleward heat and moisture fluxes [52,76] with influences including atmospheric forc-
ing of Antarctic climate [77] and sea ice cover [76,78,79]. Previous work [52] has shown that
proxy records archived in in the DSS ice core are sensitive to the ZW3 pattern.

We reconstruct the Zonal Wave 3 (ZW3) Index of [75] using the ERA-20C [40] sea-level
pressure data. The ZW3 can be calculated using either sea level pressure or 500 hPa geopoten-
tial height with strong (r>0.84) correlation between them [75].

Again, we use generalised cross-validation to select the proxies for inclusion. In this case,
only the Law Dome annual mean stable water isotope was included [48]. Stationarity of the
ZW3 index was assessed by fitting an AR model (Eq 3) to the time series using Burg’s method
[70], with the order (third) determined by a corrected Kullback information criterion [71].

ZW3g =1.0ZW3k_; - 0.0909ZW3k_,

3)
-0.2366ZW3k_3 + €k

As for the DMI case, the complex roots of the associated homogeneous characteristic
equation all lie within the unit circle, indicating that the ZW?3 is stationary.

A three year (half-power) Gaussian smoothed two thousand year reconstruction of the
ZW3 index is skillful (REp.est=0.02) and well correlated (r = 0.489, p < 0.05). Again, the sta-
tistical significance was estimated using SLICKER reconstructions based on the same proxy
data and 1000 synthetic targets randomly generated by using the above AR(3) model. Both
the ensemble center error and correlation with the actual ZW3 index are better than 95% of
the results from the 1000 synthetic AR targets.

The reconstructed ZW3 index is shown in Fig 7. The uncertainty in the ensemble center
for this reconstruction, while still small, is noticeably larger than for the DMI reconstruction

(Fig 6).
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Fig 6. Indian Ocean Dipole Moment Index reconstruction. SLICKER reconstruction (black line), uncertainty (dark grey shading) and ensemble spread (light shad-
ing) for the Indian Ocean Dipole Moment Index. a) 3 year (half power) Gaussian smoothed M-Estimator. b) 10 year (half power) Gaussian smoothed M-Estimator,
also shown 50 year (half power) Gaussian smoothed M-Estimator (dotted line), linear breakfit analysis (dashed line) showing break in linear tread at 1907 CE+30
years, and timing of DMI positive years (black dots) defined from 10 year Gaussian smoothed M-Estimator. c) 30-year moving windowed standard deviation of Indian

Ocean Dipole Moment Index reconstruction.

https://doi.org/10.1371/journal.pone.0318825.g006

Southern Annular Mode. The Southern Annular Mode (SAM) is the leading pattern of
climate variability in the extratropical Southern Hemisphere [80,81]. The SAM describes the
movement of the Southern Hemisphere westerly wind belt to the meridional migration on
seasonal to centennial timescales, by characterising changes in the meridional pressure gradi-
ent across the Southern Hemisphere mid-latitudes that result from changes in the Antarctic
polar front jet meridional location and intensity [81]. The SAM drives regional patterns in
atmospheric circulation, temperature and precipitation from the Southern Hemisphere sub-
tropics to the high latitudes [81]. The SAM diversely impacts Antarctic surface climate, influ-
encing the strength of the Amundsen Sea Low [82]; near-surface temperature trends [83];
precipitation patterns [84]; Antarctic sea ice variability [85]; and Southern Ocean upwelling
[86]. Due to these extensive SAM impacts on Antarctic surface climate, and the sensitivity
of Law Dome to atmospheric pressure variability, we investigate the ability of the DSS proxy
records to reconstruct the SAM. Such a reconstruction, extending as it does for two thousand
years, provides valuable context for assessing the positive trend in summer SAM in recent
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Fig 7. Zonal Wave 3 Index reconstruction. SLICKER reconstruction (black line), uncertainty (dark grey shading) and ensemble spread (light shading) for the Zonal
Wave 3 Index. a) 3 year (half power) Gaussian smoothed M-Estimator. b) 10 year (half power) Gaussian smoothed M-Estimator, also shown linear breakfit analysis
(dashed line) showing break in linear tread at 1979 CE=+7 years.

https://doi.org/10.1371/journal.pone.0318825.g007

decades which is currently attributed to stratospheric ozone depletion [87]. Previous SAM
reconstructions, such as the [88] multi-proxy SAM reconstruction, include the DSS proxy
record, but extend only over the past one thousand years, meaning the SAM reconstruction
here is the first continuous record of SAM variability throughout the Common Era.

We use an extension of the [80] observation-based SAM index extending through to
present (https://legacy.bas.ac.uk/met/gjima/sam.html) as our reconstruction target.

Again, we use generalised cross-validation to select the proxies for inclusion. In this case,
the Law Dome annual mean stable water isotope and winter sea-salt records were included
[48]. Stationarity of the SAM index was assessed by fitting an AR model (Eq 4) to the time
series using Burg’s method [70], with the order (third) determined by a corrected Kullback
information criterion [71].

SAMgk =1.0SAMg_; — 0.2105SAMk_,

4)
- 0196ISAMK,3 + €k
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Southern Annular Mode

Southern Annular Mode

As for both the DMI and ZW?3 cases, the complex roots of the associated homogeneous
characteristic equation all lie within the unit circle, indicating that the SAM is stationary.

A three year (half-power) Gaussian smoothed two thousand year reconstruction of the
SAM index, is skillful (REp1.e=0.33) and well correlated with the target (r = 0.719, p < 0.05).
Again, the statistical significance was estimated using SLICKER reconstructions based on the
same proxy data and 1000 synthetic targets generated by randomly using the above AR(3)
model. Both the ensemble center error and correlation with the actual SAM index are better
than 95% of the results from the 1000 synthetic AR targets.

The reconstructed SAM index is shown in Fig 8. The two most notable features of this
reconstruction are: 1) the approximate 150 year period between 0 and 150 CE that is below
the long-term-average and with reduced variability in the ensemble center, 2) two extended
periods below average between 785-907 CE and 1295-1418 CE.

Discussion and conclusions
The SLICKER method

The SLICKER method presented here is a new tool to help with the reconstruction of cli-
mate time-series (and other data series in general), with particular application to real-world

500 1000 1500 2000

500 1000 1500 2000
Year (CE)

Fig 8. Southern Annular Mode Index reconstruction. Gaussian smoothed M-Estimator SLICKER reconstruction (black line), uncertainty
(dark grey shading) and ensemble spread (light shading) for the Southern Annular Mode Index. a) 3 year (half power) Gaussian smoothed
M-Estimator. b) 10 year (half power) Gaussian smoothed M-Estimator, also shown linear breakfit analysis (dashed line) showing break in linear
tread at 1979 CE=9 years.

https://doi.org/10.1371/journal.pone.0318825.g008
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data-sets. Specifically, SLICKER automatically accommodates data-sets with missing data or
uneven and differently sampled data, allows for non-linear relationships between proxy and
target data-series, produces robust estimates of uncertainty and calculate both uni-variate and
multi-variate reconstructions. Both linear and non-linear multi-variate reconstructions allow
for different relative weightings of the various proxy signals, and therefore allow for different
compound curves with different trend breakpoints, even when based on the same proxy data.
This is exemplified by the different reconstructions based on the same DSS ice core proxy
data. In addition, all of the real-world examples present here successfully and automatically
combine proxy records of different physical and chemical properties without pre-processing
homogenization.

However, including multiple proxies into a reconstruction must be handled with care. In
particular, checks should be undertaken to ensure that the extra degrees-of-freedom intro-
duced by the inclusion of additional proxies, and (hopefully) reduced errors, does not come at
the cost of reduced statistical significance. There are many ways to address this issue. For the
DSS ice core proxy examples shown here, we have chosen to use generalised cross validation
[72] to justify the inclusion of proxies. Statistical significance of the final reconstruction was
checked using a statistical sampling of 1000 random draws from the fitted AR model, which
is also used to check for stationarity of the target time-series. This statistical sampling from
the AR model automatically accounts for the effective reduced degrees-of-freedom associated
with series auto and/or cross correlations.

There are several situations where SLICKER would be particularly useful. First, meta-
analysis studies that combine data from different sources which were never originally planned
to be combined, and are therefore sampled at different frequencies or with a phase offset in
the sampling. Second, when using proxies, such as corals and ice-cores, where uniform phys-
ical distance sampling results in irregular sampling in the time domain. Third, when one, or
more, of the proxy datasets has missing data, perhaps due to instrument failure, for example
rainfall datasets frequently contain missing data (e.g. [89]). Fourth, for low and variable tem-
poral resolution proxies such as speleotherms and marine and lake sediment cores, which fre-
quently involve non-linear transfer functions between the proxy record and the environmen-
tal parameter of interest. Fifth, when both the spread of the reconstruction and uncertainty
estimates for the ensemble center are required. Unlike many methods, SLICKER inherently
produces estimates of both of these quantities. Sixth, as noted in [12], there is no universal
best reconstruction method, with every method having strengths, weaknesses and underlying
assumptions. Using multiple different methods, with different inherent assumptions allows
for robust interpretation of the reconstructions. Unlike many methods, SLICKER makes no
underlying assumption about normality of datasets and uses robust statistical methods where
data outliers have minimal impact on the reconstructions. However, there are some situa-
tions where SLICKER might not be the most appropriate reconstruction method. First, when
there is reasonable grounds to expect a lack of long-term stationarity then SLICKER would
produce erroneous results, e.g. across climate regime shifts. Second, when there is no miss-
ing data, and the relationships between the proxies and target are linear, then other compu-
tationally cheaper reconstruction methods might be more appropriate. Compared to many
linear reconstruction methods, which may produce only one or a small number of recon-
structions, SLICKER generates several thousand ensemble members, each of which may
require tens-to-hundreds of thousand trail reconstructions. Therefore, SLICKER may take
several hours to produce a reconstruction that a simpler method might produce in a few
seconds.
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12ky high southern latitude temperature

The Segmented Linear Integral Correlation Kernel Ensemble Reconstruction method was
used to produce three annually resolved 12 thousand year reconstructions of average 2m air
temperature between 60 °S-90 °S, each based on a different modern era target temperature
time series.

Like the multi-model median reconstruction of [12], all three reconstructed temperatures
are relatively constant, with no trend or significant break in slope, based on a linear break-in-
slope analysis [90], although this might be impacted by the rapid temperature decrease after
a reconstructed maximum temperature in 1986 CE, which might not be present if the proxy
data extended further in time and allowed for a reconstruction beyond 2005 CE.

The ModE-RA based reconstruction is in good agreement with the multi-model median
reconstruction of [12] with a statistically significant correlation (0.38, p<0.05 taking into
account the temperature reconstructions auto-correlations) when the ModE-RA reconstruc-
tion is sub-sampled (from the 100 year half-power Gaussian smoothed dataset) onto the
same 100 year temporal resolution as [12]. Neither the HadCRUT (correlation 0.31) or ERA-
20C (correlation 0.01) are significantly correlated with [12]. It should be noted that the rela-
tive constancy seen in the multi-model median reconstruction of [12] mutes the variability
seen in some reconstruction methods, notably the composite plus scale. It is possible that the
SLICKER method better reconstructs some of the actual Holocene variability.

The HadCRUT and ModE-RA based reconstructions are in very good agreement with each
other, with a statistically significant correlation (0.80, p<0.05 taking into account the temper-
ature reconstructions auto-correlations), and a rms difference of 0.17 K which is around one-
half the rms difference for either when compared to the ERA-20C based reconstruction, and
around two-thirds of the rms difference between all three reconstructions and [12]. Neither
the HadCRUT or ModE-RA based reconstructions are significantly correlated to the ERA-
20C reconstruction. The differences between ERA-20C reconstruction and our other two
reconstructions are small (within the standard deviation) but there is a low frequency (period
of around 9950 years) small amplitude (0.3K) sinusoidal difference between them. Com-
mon features of the three temperature reconstructions are a cool period just before -7000 CE
and soon after -6000 CE and a relatively warm millennium starting around —9000 CE and
-3000 CE.

Local wavelet power spectrum analysis [91] of the HadCRUT based temperature recon-
struction shows primarily multi-centennial variability throughout most of the 12 thousand
year reconstruction (Fig 9), with some quiescent periods between -4000-0 CE. There are
also intermittent periods where 5-100 year variability is significant, which appears largely
independent of the proxy data sampling.

Dome Summit South ice core based climate reconstructions

The Segmented Linear Integral Correlation Kernel Ensemble Reconstruction method was
used to produce the multi-millennial Holocene climate reconstructions using proxy records
from the Dome Summit South, Law Dome, East Antarctic ice core. The Indian Ocean Dipole
Moment Index, Zonal Wave 3 Index and Southern Annular Mode reconstructions are all the
first multi-millennial reconstructions of their type that we are aware of. Due to the non-linear
relationships between these climate indices and the ice core proxies, and inherent missing
data in the proxy records, SLICKER is promising reconstruction method to try. All of the
reconstructions are statistically significant, skillful and include robust uncertainty estimates.
All three reconstructions show no significant trend prior to the twentieth century CE, and
significant upward trends thereafter, with breaks in slope around 1907 CE for the DMI and

PLOS ONE | https://doi.org/10.1371/journal.pone.0318825  April 2, 2025 18/ 27



https://doi.org/10.1371/journal.pone.0318825

PLOS ONE

New insights from an East Antarctic ice core

Scale (y)

data density (samples/yr)

10
20

50
100

200

500

1000

-10000 -9000

1.0
0.95

09 |
0.85

0.8

075 |
07

0.65

- b)

—_

HOO0OLSNNWOARNNODNNPOOOO
CUIOUI0CUICUIOVLIOUIOUIOVLIOUIOULIOUIO
log4o Power

T

T 1 1 1 1 1 1 17

1 1 1 1 1
-8000 -7000 -6000 -5000 -4000 -3000 -2000 -1000 O 1000 2000
Year (CE) ]

Fig 9. 60 °S-90 °S 2m air temperature power spectrum. a) Local wavelet power spectrum of the 60 °S-90 °S mean HadCRUT temperature reconstruction
using Morlet wavelets. 95% significance level for a 0.902 lag-one correlation red-noise process is shown (black lines). The cone-of-influence where edge-effects
may impact the results is shown in gray hatching. b) Average combined proxy sampling density for running 256 year windows.

https://doi.org/10.1371/journal.pone.0318825.g009

1979 CE for both ZW3 and SAM. The start of a multi-centennial below trend epoch in the
DMI reconstruction appears coincident with the 1257 CE Lombock volcanic eruption. This
eruption is well resolved in the DSS ice core in other proxy records not used in our recon-
structions, but with identical dating to the proxy records that were used. In both the ZW3
and SAM reconstructions the first approximately 150 years are below trend and show reduced
variability. The stable water isotope proxy record appears to be the primary driver of this
feature.

Each of these reconstructions are discussed in more detail below.

DMI

The most obvious feature of the DMI reconstruction is the upward trend since the early twen-
tieth century CE, consistent with observations of stronger warming trends in the western
Indian Ocean than in the equatorial eastern Indian Ocean leading to positive DMI trend [92].
Specifically, for our reconstruction, a linear break-in-slope analysis [90], again using the more
robust median and median-absolute-deviation statistics, shows a slight increasing (but not
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significant) trend (0.019+0.012 °C millennium™") prior to 1907 CE=30 years, followed by a
significant increase in trend to 2.030.99 °C millennium ™. Also noteworthy is the extended
period when the DMI is below its long term average which is clearly visible on the 50 year
smoothed DMI (Fig 6 dotted line) from the mid thirteenth to mid sixteenth centuries CE.
The start of this downturn is coincident with the 1257 CE Lombok volcanic eruption, and
extends through a period of increased volcanic activity [46]. This below trend period might
be a regional reflection of the Little Ice Age, consistent with the volcanic inception posited
by [93]. A decrease in Little Ice Age sea-surface temperatures in the western tropical Indian
Ocean and a muted eastern Indian Ocean response [94] would lead to a decreased DMI,
although there remains significant uncertainty around local timing and response magnitude.
The large negative DMI value around 960 CE is only of a short duration, evidenced by the
attenuation relative to other negative “spikes” in the 10 year (half power) Gaussian smoothed
curve (Fig 6b), and does not coincide to a corresponding large value of any of the individual
proxies. Both the uncertainty of the ensemble center and the spread of the SLICKER ensem-
ble for this spike are consistent with the rest of the reconstruction, eliminating a temporally
localised conflict between the proxies as a cause of this spike. Without additional supporting
evidence of this record negative DMI event over the last two millenium, we suggest that it may
be due to local processes impacting the proxy records. This highlights the caution that must be
applied in interpreting reconstructions based on remote proxy data and tele-connections [23].
We are unaware of any other multi-millennial DMI reconstructions, with the longest pre-
vious reconstruction being the reconstruction of [23], a discontinuous record of six segments
covering five centuries during the last 800 years. Unlike our reconstruction, [23] has monthly
resolution, allowing for higher utility for climate studies. However, our longer, but lower tem-
poral resolution reconstruction allows for some independent verification of the findings of
[23]. In particular, they found a decreasing frequency of DMI positive events further back in
time. Even with our lower temporal resolution, we find a similar decrease in DMI positive
events (defined herein as any year where the 10 year Gaussian smoothed DMI reconstruc-
tion is positive) in the past (Fig 6b), with 18 DMI positive events after 1994 CE, but only 15
in the prior 1995 years. In terms of the variability of the DMI over the last millennium, we
find broad-scale agreement with [23], with relatively low and decreasing variability in the
13th century, increasing variability in the 16th century, high variability in the latter part of the
17th century and relatively low but increasing variability in the latter part of the 18th century
(Fig 6¢). Contrary to [23], we find enhanced variability in the late 15th century and between
approximately 1850-1930 CE, although neither epoch is associated with DMI positive events.

ZW3

This is the only known ZW3 reconstruction from proxy data, although ZW3 derivations from
model simulations have been reported through the deglacial period [95], over the past 500
years [96], through the twentieth century CE [76] and projected through the twenty first
century CE [79].

The proxy reconstruction here shows no overall trend in ZW3, as also generally seen in
the simulations through both the pre-twentieth century CE and late twentieth century CE.
The ZW3 reconstruction does have two notable features: 1) the period of approximately 150
years between 0 and 150 CE that is below the long-term-average and exhibits reduced vari-
ability, and 2) the upward trend from the late twentieth century CE. Linear break-in-slope
analysis [90] shows a statistically significant break at 1979 CE (+7 years) with a trend after-
wards of 0.044 + 0.013 year™". This is broadly consistent with the findings of [76], who found
an increasing trend in the period 1960-2005 CE of 0.386 over the 45 years due to a more
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meridional pattern of circulation associated with global warming. This trend is approximately
one-fifth the trend we find, consistent with their Index being based on 500 hPa geopotential
heights, and therefore being more attenuated than our sea-level pressure based Index. [76]
also note the timing of the shift occurring in the late 1970s CE, pointing to other large scale
atmospheric changes around this time. Onset of long-term drought in South-West Western
Australia (SWWA) has been characterised by an change in winter rainfall in 1971 CE (+7
years) [97]. This drought has been linked via ZW3 influence to meridional flow and increased
snowfall at Law Dome [52].

The late twentieth century CE shift is not generally seen in twentieth century CE simula-
tions [76], suggesting that internal, rather than forced, variability may be the cause. Model
simulations (1900-2100 CE, historical and SSP5-8.5) show no ZW3 trend in the multi-model
mean [79] despite climatic warming through this period. Turning to a period of very different
boundary conditions, simulation of Antarctic warming during Heinrich Stadial 1 does show
strengthening ZW3 trend that contributed to Antarctic warming [95].

While there are no other known proxy based ZW3 reconstructions, long term paleo-
climate reanalysis including sea-level pressure allow for the estimation of a historical ZW3.
Unlike our reconstruction, both of the long-term paleo-climate reanalysis based ZW3 indices
show a pre-industrial downward trend. Specifically, the ZW3 index based on 1421-2008 CE
reconstruction [39] shows a downward trend (-0.069+0.036 century™) prior to 1905 CE
(+18 years) followed by a significant upward trend (1.261+0.332 century™"). The common
era reanalysis [41] also shows a significant early downward trend (-0.066+-0.021 century) in
this case prior to 1682 CE (+145 years) followed by a upward trend (0.271+0.256 century™').
However, the ZW3 index, being based on the location of three Southern Hemisphere atmo-
spheric pressure centres, is challenging to reconstruct, with neither of these two reanalysis
based ZW3 (or a ZW3 calculated using observationally based sea-level pressure data [98])
agreeing, even over the (relatively) observationally rich 20th century (see 54 Fig). This high-
lights the need for additional multi-millennial ZW3 reconstuctions to allow for the identifica-
tion of robust common features.

Notwithstanding the model results, it is clear from this long proxy reconstruction that the
change since the 1970s is unusual - there is no comparable positive anomaly in two millen-
nia. This sharpens focus on whether internal variability may indeed play a role. However, oft-
set against this is the sustained period of low ZW?3 in the first 150 years of the reconstruction
which has no obvious forcing and would appear to be an example of internal variability at
least causing a decrease in zonal asymmetry.

SAM

Like the DMI and ZW?3 reconstructions, the two thousand year Southern Annular Mode
reconstruction shows a upward trend from the late twentieth century CE. Specifically, a linear
break-in-slope analysis [90], shows no trend (slope 0.000+0.000 year™') prior to 1979 CE+9
years, followed by a statistically significant break in slope of 0.068+0.025 year™".

Compared to the one thousand year SAM reconstructions of [88] and [99], the new two
thousand year SAM reconstruction is more attenuated, and trendless: a similar linear break-
in-slope analysis applied to the one thousand year SAM reconstruction of [88] shows sta-
tistically significant slopes (-0.003 +0.001 and 0.006:0.001 year~! respectively before and
after 1520 CE=+59 years), and when applied to the one thousand year annual (correlation
plus stationarity proxy selection) SAM reconstruction of [99] also shows statistically signifi-
cant slopes (~0.0010.000 and 0.003+0.001 year respectively before and after 1663 CE+57
years). All three reconstructions share many common features, such as a relatively quiescent,
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but slightly above average, period from around 1100 to 1300 CE, a below average century
starting around 1400 CE, and slightly elevated values post 1800 CE. However, our reconstruc-
tion noticeably differs from the other two between 1300 to 1400 CE with a prolonged below
average epoch, while the two other reconstructions have some of their highest values. This
discrepancy may be due to the lack of perfect SAM zonal symmetry [100] combined with the
various proxy records sampling different regions of the globe.

The SLICKER method presented here is a new approach to reconstructions of climate
proxies. Although it comes at a greater computational expense than some other methods, it
enables flexibility where data are unevenly sampled and for climate processes that are inher-
ently non-linear, and allows a robust estimate of uncertainty. We have applied the SLICKER
method to proxy records from Antarctic ice cores, generating a new reconstruction of 12ky
temperature, and, for the first time, reconstructions of the DMI, ZW3 and SAM that extend
over the last two thousand years. These reconstructions have significant potential utility in
characterising pre-industrial climate variability, over larger spatial domains than may be
represented by current reconstructions.
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