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Abstract

Calmodulin is a calcium binding protein that is essential in calcium signalling in the brain.

There are many computational models of calcium-calmodulin binding that capture various

calmodulin features. However, existing models have generally been fit to different data sets,

with some publications not reporting their training and validation performance. Moreover,

there is no model comparison using a common benchmark data set as is common practice

in other modeling domains. Finally, some calmodulin models have been fit as a part of a

larger kinetic scheme, which may have resulted in parameters being underdetermined. We

address these three limitations of previous models by fitting the published calcium-calmodu-

lin schemes to a common calcium-calmodulin data set comprising equilibrium data from

Shifman et al. and dynamical data from Faas et al. Due to technical limitations, the amount

of uncaged calcium in Faas et al. data could not be predicted with certainty. To find good

parameter fits, despite this uncertainty, we used non-linear mixed effects modelling as

implemented in the Pumas.jl package. The Akaike information criterion values for our

reaction rate constants were significantly lower than for the published parameters, indicating

that the published parameters are suboptimal. Moreover, there were significant differences

in calmodulin activation, both between the schemes and between our reaction rate and

those previously published. A kinetic scheme with independent lobes and unique, rather

than identical, binding sites fit the data best. Our results support two hypotheses: (1) partially

bound calmodulin is important in cellular signalling; and (2) calcium binding sites within a cal-

modulin lobe are kinetically distinct rather than identical. We conclude that more attention

should be given to validation and comparison of models of individual molecules.

Introduction

Calmodulin is among the most important calcium binding proteins in the brain. It is essential

in the translation of intracellular Ca2+ signals to downstream processes, such as gene
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regulation, protein activation, metabolic regulation and synaptic plasticity [1, 2]. Calcium sig-

nals can provide information both via their amplitude (nanomolar to millimolar) and via their

duration (microseconds to hours) [1, 2]. Calcium-calmodulin binding kinetics underlie the

translation of Ca2+ signals, therefore correct kinetic models of binding are an important aspect

in studying calcium signalling in the brain.

Calmodulin’s signalling properties arise from its structure—it comprises a 148 amino acid

residue polypeptide with four EF hands divided into C and N lobes capable of binding two cal-

cium ions per lobe [3]. It can adopt many conformational states, especially when bound to dif-

ferent molecules [4]. Moreover, calmodulin lobes have been reported to differ in their kinetics

and affinity for Ca2+–the N lobe binding faster with lower affinity and the C lobe binding

slower with higher affinity [5–7].

There are at least 19 published computational models of synapses that include various mod-

els of calmodulin in their chemical reaction network [8]. The published kinetic schemes

describing calcium-calmodulin binding vary significantly in the number of calmodulin fea-

tures they capture. For example, some calmodulin models do not have independent lobes [9–

11] while others do [5, 12, 13]. Some schemes are event-based—only concerned about the

Ca2+ binding events [10, 11], whereas others explicitly indicate which lobe and/or site is being

bound to [5, 12, 13]. Moreover, some models assume that two Ca2+ ions bind to a lobe at the

same time [9, 10, 12], others leave this dependent on reaction rate constants [5, 11, 13]. Some

models assume that Ca2+ binding sites within a lobe are unique [11, 13] while others assume

that they are non-unique [5, 12]. Finally, some models include details such as calmodulin con-

formational states [14].

Most current computational calmodulin models suffer from three limitations. First of all,

different models have generally been tuned to different data sets, making their relative perfor-

mance difficult to compare. Secondly, most models have not been cross-validated, making

their generalization performance uncertain. Thirdly, some models have been tuned as a part of

a larger scheme, e.g. including CaMKII, potentially making calcium-calmodulin binding

parameters underdetermined. We discuss the sources of data to which calcium-calmodulin

models we investigate have been fit in the Methods section, therefore we will next elaborate on

the second and the third limitations.

The second limitation relates to cross-validation, a crucial step in the process of parameter

inference used to establish model performance outside of the training data and to avoid over-

fitting (see page 241 in [15]). Ideally different models are cross-validated on a single data set

across publications using consistent quantitative metrics. For example, the MNIST data set

[16] is used to compare the error rate of image processing models. Given the lack of rich open

access calmodulin data sets, none of the published calmodulin models were quantitatively

cross-validated during development. At best, publications that contain calmodulin kinetic

schemes include some indication (usually visual, rather than quantitative) of performance

compared to the source of data they are being tuned to. However, this is not a rigorous way of

ensuring that a model will perform well outside of the training data, leaving the generalization

performance uncertain.

The third limitation is that some calmodulin schemes have been tuned to data from experi-

ments that include other calmodulin-binding molecules, with large numbers of reaction rate

constants that have to be fit, for example the calcium-calmodulin-CaMKII cascade [13]. Sys-

tems biology models naturally exhibit sloppiness [17], which tends to get more pronounced

with an increasing number parameters being fit, resulting in loosely constrained parameter

values. It is often possible to trade off between reaction rate constants: a calcium-calmodulin-

CaMKII cascade being fit to CaMKII activity measurements may fit data better if Ca2+ binds

to calmodulin with higher affinity or calcium-calmodulin binds to CaMKII with higher
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affinity, or some mix of the two. Moreover, a similar trade-off is possible between the binding

sites and/or lobes even with only a calcium-calmodulin cascade. Because of these trade-offs,

the true reaction rate constants might be completely different to the ones obtained via the fit-

ting procedures. Some publications attempt to test for such parameter sloppiness via sensitivity

analyses [18] or by calculating the eigenvalues of the Hessian [17], but it usually is too difficult

to test the parameter combinations in a sufficiently dense and wide manner to ensure that the

reaction rate constants are not under-determined.

Calmodulin models, in particular some of the simpler ones [9, 12], have been used to inves-

tigate calmodulin interactions with other molecules [18–20] and in complex chemical reaction

networks [9, 21–23] to model higher order phenomena occurring in neurons, e.g. synaptic

plasticity. However, given the aforementioned model limitations, it is important to scrutinize

the previous modelling work, its basic assumptions, and to check whether the assumptions

made in previous work hold when tested under more rigorous conditions, with powerful

methods using richer data sets.

We address the three aforementioned limitations of existing calmodulin models by using a

common data set where the only free kinetic parameters are calcium-calmodulin binding reac-

tion rate constants. The common data set comprises subsets of data from Faas et al. [5] and

Shifman et al. [11]. Faas et al. [5] contains time-series of fluorescence measurements after

laser-induced Ca2+ uncaging and therefore is informative about calmodulin dynamics. In con-

trast, Shifman et al. [11] contains measurements of calmodulin properties at equilibrium. To

deal with incomplete experimental control of the amount of calcium uncaged by a laser flash

in Faas et al. [5] we use the novel and highly efficient non-linear mixed effects (NLME) model

fitting algorithms implemented in Pumas.jl [24]. NLME is a hierarchical modeling frame-

work that can deal with phenomena where there are constant intra-individual parameters, but

significant inter-individual variability due to individual level parameters [24, 25].

We use the common data set to fit reaction rate constants from scratch and compare our

results to the reaction rate constants in the literature. By calculating the Akaike information

criterion (AIC) [26] values for both our and the published reaction rate constants we show

that the published reaction rate constants are suboptimal. Moreover, using the same criterion,

we show that some kinetic schemes are suboptimal and fail to fit calmodulin dynamics and

equilibrium behaviour at the same time. We then compare the Ca2+ signal integration proper-

ties of different calmodulin schemes when either the published reaction rate constants or the

ones determined by our approach are used. We show that there are significant differences in

calmodulin calcium integration properties when using the suboptimal published reaction rate

constants. Similarly, we show that the models using suboptimal calmodulin schemes display

qualitatively different calcium integration behaviour compared to better performing schemes.

Finally, we calculate the partial rank correlations between the reaction rate constants that we

fit and show that for some calmodulin schemes our parameter fits are highly correlated which

is indicative of parameter sloppiness or underdetermination.

Our results highlight that a sufficiently expressive calmodulin model structure is essential

for capturing both calmodulin dynamics and equilibrium behaviour. Moreover, we conclude

that, given the suboptimality of the previously published parameter sets, arguments and find-

ings built on these models may warrant re-visiting.

Methods

Data

Dynamical calmodulin data. We use the calcium uncaging data from Faas et al. [5], in

which different concentration mixes of the fluorescent Ca2+ indicator OGB-5N, the light
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sensitive Ca2+ chelator DM-nitrophen (DMn), calmodulin and titrated free Ca2+ were used to

make seven different groups of solutions A–G (see S2 Appendix for specific concentrations).

For different batches of each group of solutions, a sequence of laser pulses of increasing

strength was used to induce Ca2+ uncaging from DMn while OGB-5N fluorescence was

observed at 35˚C. The stronger the pulse, the more calcium is released. Due to technical limita-

tions, it was not possible to predict the amount of released calcium for each laser pulse pre-

cisely. We elaborate on how we model the fraction of uncaged Ca2+ below. Fig 1 shows the

fluorescence time courses for three of the seven groups—A, B and G—and different uncaging

laser strengths. We use a subset of the data and split it into training, validation and test data

sets (see Supplemental Text S1 Appendix for more information).

Calmodulin equilibrium data. Steady-state calcium-calmodulin binding came from an

experiment in Shifman et al. [11], which measured the number of Ca2+ ions bound per cal-

modulin molecule at different free Ca2+ concentrations (their Fig 1B). Their experimental

chamber contained a fluorescent indicator Fluo4FF (5μM), calmodulin (5μM) and a varying

amount of free Ca2+. The amount of free Ca2+ was titrated until a required concentration

(between approximately 10−7M and 5.5 × 10−5M) was reached. We used a digital tool (https://

automeris.io/WebPlotDigitizer/) to extract this data from their plots, giving the 107 points

shown in Fig 2. This data was obtained at 25˚C but calmodulin does not show significant tem-

perature dependent changes in equilibrium behaviour [27], so we do not adjust for tempera-

ture dependent changes in calmodulin kinetics.

Kinetic schemes and published reaction rate constants

We investigated six different calcium-calmodulin binding schemes from the literature that

span the complexity of the most commonly used calmodulin models (Fig 3). The reference we

give for a scheme may be its original source, or a source that is frequently cited for the scheme.

There are more complex published calmodulin schemes that we did not use [14], because they

would be prohibitively computationally expensive to fit.

The simplest scheme (Scheme 1, Fig 3), from Kim et al. [9], is made up of three calmodulin

states—CaM0, CaM2Ca, CaM4Ca, respectively calmodulin bound to no, two and four Ca2+

ions. In Scheme 1, Ca2+ binding is assumed to be highly co-operative and binding of two Ca2+

Fig 1. Relative fluorescence (ΔF/F0) time-series data from [5] for three different initial condition groups (A, B and G). Different lines within a plot

are due to different laser uncaging strength (the higher the laser strength, the larger the ΔF/F0 value).

https://doi.org/10.1371/journal.pone.0318646.g001
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ions is treated as a single reaction. In principle Scheme 1 does not assume which lobe binds

first; the first two Ca2+ ions could bind to the C lobe or the N lobe. However, the parameterisa-

tion of Scheme 1 by Kim et al. [9] implies that they treat the first Ca2+ binding event as being

to the C lobe. The published reaction rate constants in Kim et al. [9] are based on stopped-flow

fluorescence measurements [7]. Scheme 1 is parameterised by four reaction rate constants

fkig
4

i¼1
, which can be used to derive two dissociation constants: KD1

¼
k2

k1
and KD2

¼
k4

k3
.

Fig 2. Equilibrium measurements of the number of Ca2+ ions per calmodulin molecule from [11]. Experiments were done using 5μM Fluo4FF and

5μM calmodulin.

https://doi.org/10.1371/journal.pone.0318646.g002

Fig 3. Six calmodulin kinetic schemes to which we fit parameters, and compare to performance with published parameter values. Scheme 1—due

to strong co-operativity, each calmodulin lobe binds two Ca2+ ions at a time, with the lobes modelled sequentially (first C lobe then N lobe). Scheme 1 is

parameterised by reaction rate constants fkig
4

i¼1
. Scheme 2—due to co-operativity the first reaction has two Ca2+ ions binding as a single event and then

the next two Ca2+ ions binding sequentially. It is parameterised by reaction rate constants fkig
6

i¼1
. Scheme 3—fully expanded sequential calmodulin

scheme where each binding event is represented individually. Depending on the reaction rate constants, the binding events could be mixed between the

lobes, e.g. first binding event could be in the C lobe, the second in the N lobe, or partial combinations of different lobes. The visualised scenario is where

the first two events are in the C lobe. This scheme is parameterised by reaction rate constants fkig
8

i¼1
. Scheme 4—calmodulin binds two Ca2+ ions at a

time and, contrary to Schemes 1–3, the lobes are independent. It is parameterised by eight reaction rate constants fkig
8

i¼1
which, along with free Ca2+,

are used to calculate the effective reaction rate constant fkssi g
4

i¼1
(see S3 Appendix for more details). Scheme 5—this scheme has independent N and C

lobes, with a single Ca2+ ion binding at a time. Binding sites within a single lobe are identical. It is parameterised by reaction rate constants fkig
8

i¼1
.

Scheme 6—this scheme has independent N and C lobes, with a single Ca2+ ion binding at a time. In contrast to Scheme 5, the binding sites within a

single lobe are distinct (indicated by different shades of green/purple). The scheme is parameterised by 16 reaction rate constants fkc=ni g
8

i¼1
. In all

schemes green circles indicate Ca2+-bound C lobe sites, purple circles indicate Ca2+-bound N lobe sites and arrows indicate bidirectional reactions

(Ca2+ ions not shown).

https://doi.org/10.1371/journal.pone.0318646.g003

PLOS ONE Comparison of calcium-calmodulin kinetic schemes to a common data set

PLOS ONE | https://doi.org/10.1371/journal.pone.0318646 February 7, 2025 5 / 30

https://doi.org/10.1371/journal.pone.0318646.g002
https://doi.org/10.1371/journal.pone.0318646.g003
https://doi.org/10.1371/journal.pone.0318646


The next scheme (Scheme 2, Fig 3), from Bhalla and Iyengar [10], is made up of four cal-

modulin states—CaM0, CaM2Ca, CaM3Ca, CaM4Ca, respectively calmodulin bound to no,

two, three and four Ca2+ ions. In Scheme 2, binding of the first two Ca2+ ions is assumed to be

highly co-operative and treated as a single reaction, whereas the next two Ca2+ ions bind indi-

vidually. The parameters in Bhalla and Iyengar [10] (as given in https://doqcs.ncbs.res.in/, also

see [28]) do not match neatly to either lobe and the description of how the rate constants were

derived was unavailable at the time of writing. Scheme 2 is parameterised by six reaction rate

constants fkig
6

i¼1
, which can be used to derive three dissociation constants: KD1

¼
k2

k1
, KD2

¼
k4

k3

and KD3
¼

k6

k5
.

The final linear scheme that ignores calmodulin lobe-based structure (Scheme 3, Fig 3) is

from Shifman et al. [11]. It comprises five calmodulin states—CaM0, CaM1Ca, CaM2Ca,

CaM3Ca, CaM4Ca—respectively calmodulin bound to no, one, two, three and four Ca2+ ions.

The dissociation constants based on experiments in Shifman et al. [11] are 7.9μM, 1.7μM,

35μM, 8.9μM respectively for Ca2+ binding events one to four. Reactions in this scheme do not

neatly map onto individual Ca2+ binding sites within calmodulin lobes; instead they are

abstract binding events where, depending on the parameters, they may be probabilistic combi-

nations between different binding sites. Scheme 3 is parameterised by eight reaction rate con-

stants fkig
8

i¼1
, which can be used to derive four dissociation constants KD1

¼
k2

k1
, KD2

¼
k4

k3
,

KD3
¼

k6

k5
and KD4

¼
k8

k7
. This scheme is the most complex linear CaM scheme possible (without

adding conformational calmodulin changes), modelling each Ca2+ binding site individually.

Our Scheme 4 (Fig 3) is from Pepke et al. [12] and comprises four states—CaM0, CaM2C,

CaM2N, CaM4Ca—respectively calmodulin bound to no Ca2+ ions, two at the C lobe, two at

the N lobe and four across both lobes. It is the simplest scheme that captures the lobe-based

structure of calmodulin. It has eight reaction rate constants fkig
8

i¼1
and is based on Scheme 5

(described below), but was simplified used a quasi-steady state approximation for calmodulin

species that have a single bound Ca2+ ion. This approximation results in elimination of par-

tially bound species from simulations by setting their derivatives to 0 and expressing the par-

tially bound species in terms of the unbound and the fully bound species and permitting the

appropriate substitutions in the equations for the unbound and the fully bound species (see S4

Appendix).

We draw our Scheme 5 (Fig 3) from model 1 in Pepke et al. [12], which is identical to the

scheme used in [5]. It is made up of nine states—CaM0, CaM1C, CaM1N, CaM2C, CaM2N,

CaM1C1N, CaM2C1N, CaM1C2N, CaM4—with the number of Ca2+ ions bound to calmodu-

lin indicated by numbers preceding C and N. Even though in total there are nine states, since

in this study calmodulin does not bind to any downstream species, we do not need to track

individual calmodulin molecules. Therefore, we simulate the lobes as independent species

which decreases the number of states we need to track from nine to six—CaM0N, CaM1N,

CaM2N, CaM0C, CaM1C, CaM2C—without changing the scheme itself. Scheme 5 is parame-

terised by eight reaction rate constants fkig
8

i¼1
, which can be used to derive four dissociation

constants KD1
¼

k2

k1
, KD2

¼
k4

k3
, KD3

¼
k6

k5
and KD4

¼
k8

k7
. Pepke et al. [12] used two data sources on

calmodulin equilibrium behavior: (1) data from wild-type and tryptic calmodulin fragments

(one lobe expressed, other eliminated) [6]; (2) data from competition assays (calmodulin,

either wild type or mutants with one active and one inactive lobe, and fluorescent indicator

Fluo4FF) [11]. Pepke et al. [12] (in their supplemental information) give reaction rate con-

stants as ranges—we take specific numerical values from this model’s entry (model identifier:

MODEL1001150000) in the BioModels Database [29, 30]. Faas et al. [5] tuned the model to

their own UV-flash photolysis data.
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Finally, our Scheme 6 (Fig 3) is from Byrne et al. [13]. It is made up of sixteen states, but

similar to Scheme 5, we simulate the lobes as independent species which reduces the number

of states to eight—CaM0N, CaMN1, CaMN2, CaM2N, CaM0C, CaMC1, CaMC2, CaM2C,

where CaM0X denotes an unbound calmodulin lobe, CaMX1 denotes Ca2+ bound to the first

site of a lobe, CaMX2 denotes Ca2+ bound to the second site of a lobe and CaM2X denotes a

fully bound lobe. This scheme is parameterised by 16 reaction rate constants fkc=ni g
8

i¼1
, which

can be used to derive eight dissociation constants Kc=n
D1
¼

kc=n
2

kc=n
1

, Kc=n
D2
¼

kc=n
4

kc=n
3

, Kc=n
D3
¼

kc=n
6

kc=n
5

and

Kc=n
D4
¼

kc=n
8

kc=n
7

. Reaction rate constants in Byrne et al. [13] are based on stopped-flow fluorescence

and competitive binding assay data [31].

For each of the six schemes we use the reaction rate constants from the associated publica-

tion (we use both Pepke et al. [12] and Faas et al. [5] for Scheme 5). All of the reaction rate con-

stants we used are given in S4 Appendix.

Ca2+ uncaging model

Faas et al. [5] used a linear model for laser induced Ca2+ uncaging

UðPCD; xÞ ¼ 0:0011� PCD � 0:39þ x ð1Þ

where U is the uncaged DMn fraction, PCD is the specified Pockels cell delay, where a larger

value results in a higher energy laser pulse and more Ca2+ uncaging, and x is used to account

for the uncertainty of the actual PCD value, i.e. the difference between the specified and physi-

cally realised values.

Even though Faas et al. [5] used the linear model successfully in their study, its performance

is not quantified and it has some limitations. Most importantly, U is not bounded to [0, 1] and

can take negative values or values above 1, which would result in physically unrealistic initial

conditions. Moreover, it is not clear that a simple linear relationship is optimal to accurately

model the relationship between the PCD value and the uncaging fraction. Finally, the variable

x is additive, and it is not clear that this formulation is optimal—it could be multiplicative or

some more complex functional relationship.

Due to lack of the necessary data, we could not develop our own model of how the fraction

of calcium uncaged depends on the PCD. Instead, of the linear model (Eq 1) we use an even

simpler model that performed better in practice than either the linear model from Faas et al.

[5] or a neural network. Our uncaging model does not take the specified PCD value and is a

simple sigmoid function, bounding its output to [0, 1].

UðxÞ ¼
1

1þ exp� x
ð2Þ

With this approach, we do not claim that uncaging is completely independent of PCD; rather

we use a single equation to capture both uncertainty in estimating the PCD, as well as other

sources of variance.

Fitting our reaction rate constants

We combine and adapt the definitions and notation of NLME provided in [24, 32] and we

present it using Scheme 1 as an example. NLME modeling framework comprises a two level

hierarchical structure (shown visually in Fig 4) with fixed effects Θ at the upper level, which

can be broadly grouped into
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• model parameters θ, e.g. for scheme 1—reaction rate constants fkig
4

i¼1

• random effect prior distribution parameters O, e.g. μ and ω used to parameterize the prior of

ηn for the Ca2+ uncaging fraction (see paragraph below)

• observation model noise parameters σ

and do not vary between recordings.

The lower level is random effects ηn which account for the inter-individual variability of the

observations ynj, generally, by individualizing model parameters θ. We assume that both Ca2+

and calmodulin molecules are identical between experiments, hence reaction rate constants do

not have the random effect-enabled individualization for each experimental run. The sole usage

of random effects in this paper is in fitting the fraction of uncaged Ca2+ by passing Zn � N ðm;oÞ
to Eq 2.

Furthermore, there is a set of covariates Zn associated with each recording, i.e. the total con-

centration of calmodulin, Ca2+ and OGB5N, which are known. These three sets of values are

collated via the parameter model g into the dynamical parameter vector pn of the nth record-

ing

pn ¼ gðY;Zn; ZnÞ ð3Þ

The dynamical parameters pn are then fed into the structural model (e.g. an ordinary differen-

tial equation (ODE) system)

u0n ¼ f ðun; pn; tÞ ð4Þ

where u are the dynamical variables being solved for (DMn, OGB5N, Ca2+ and their combina-

tions and the various calmodulin species determined by the scheme being used). For Scheme 1

the system of equations (for brevity omitting DMn, OGB5N, Ca2+ and means of its input

Fig 4. Visual representation of an NLME model, rectangle nodes in the top box denote parameters (fixed effects), circles

denote random quantities which are either latent (unfilled) or observed (filled), diamonds are deterministic given the

inputs, and nodes without a border are constant. Each symbol in the node can be either a number or a vector depending on the

context.

https://doi.org/10.1371/journal.pone.0318646.g004
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amplitude, frequency and duration into the model) would be

d½CaM0�=dt ¼ � k1½Ca�
2
½CaM0� þ k2½CaM2Ca�

d½CaM2Ca�=dt ¼ k1½Ca�
2
½CaM0� � k2½CaM2Ca�

� k3½Ca�
2
½CaM2Ca� þ k4½CaM4Ca�

d½CaM4Ca�=dt ¼ k3½Ca�
2
½CaM2Ca� � k4½CaM4Ca�

ð5Þ

Note that fkig
4

i¼1
enter into Eq 4 via pn, which can also be used to initialize the ODE system.

The final step is to link the numerical solution of the ODE system to the experimentally

observed quantities. The jth observable quantity ynj for the nth entity is calculated using the

simulated variables un(t) and the times tm at which the observations were made via the obser-

vational model h

ynjðt ¼ tmÞ ¼ hjðunðt ¼ tmÞ; pn;Zn; ZnÞ ð6Þ

In this study there are two observable quantities: the relative fluorescence ΔF/F0 over time

being fit to recordings from Faas et al. [5] and Ca2+ per calmodulin at equilibrium being fit to

Shifman et al. [11]. ΔF/F0 is derived from OGB5N as follows

DF=F0ðt ¼ tmÞ ¼
½OGB5N�ðt ¼ tmÞ þ ðFmax=FminÞ½CaOGB5N�ðt ¼ tmÞ
½OGB5N�ðt ¼ 0Þ þ ðFmax=FminÞ½CaOGB5N�ðt ¼ 0Þ

ð7Þ

where Fmax/Fmin = 39.364 [5] and Fmax, Fmin are maximal and minimal recorded fluorescence

values. Ca2+ per calmodulin is simply the sum of calmodulin species multiplied by the number

of bound Ca2+ ions for each species divided by total calmodulin. After obtaining the observable

quantities a Gaussian observation model is used to account for observational noise.

There are many ways to fit NLME models, both frequentist and Bayesian [33]. In this study

we use the maximum aposterior (MAP) conditional log-likelihood objective which can be

stated as

Y
∗
; Z∗ ¼ arg max

Y;Z
pðYÞ �

YN

i¼1

pðyn j Y; ZnÞ � pðZn j YÞ

 !

ð8Þ

where Θ* is the mode of the fixed effects, η* is the mode of the random effects for each subject

and p(Θ) is the fixed effect prior distribution. Conditional likelihood is much more numeri-

cally efficient due to Θ and ηn being optimized jointly whereas, for example, marginal likeli-

hood generally requires a two level optimization scheme and Markov Chain Monte Carlo

requires many more likelihood evaluations due to sampling. However, conditional likelihood

requires appropriate handling (either fixing or priors, see next section) of O to avoid overly

broad random effect distributions which barely penalize extreme ηn values and effectively

result in different individual models due to the learning being offloaded mostly to the random

effects.

We use the Pumas.jl [24] Julia package to fit to solve Eq 8. Pumas.jl contains efficient

and powerful algorithms for NLME modelling, which was essential when fitting the ηs used to

model the uncaging fraction. Specifically, we used the BFGS optimization algorithm from

Optim.jl with the gradient calculations handled by Pumas.jl.

All fitting was done on the JuliaHub (https://juliahub.com/) cloud computing platform

using nodes with 8 vCPUs and 64GB of memory. Individual fits took between one to ten min-

utes, depending on which scheme was used and whether some of the parameters were fixed.
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For each scheme we conducted 20 fitting runs with different initial conditions. All the code

that was used to define the models, run the simulations and perform the analysis is accessible

at https://github.com/dom-linkevicius/FaasCalmodulin.jl.git, the data is accessible at [34].

Prior distributions

We incorporated the existing knowledge about calmodulin reaction rate constants for different

kinetic schemes via per-scheme prior distributions that depend on the amount data available

for each scheme. All of our priors are in log10 space as optimizing rate constants in log-space

was more performant.

For Schemes 1 and 2, since they are simplified and contain fewer reaction rate parameters

than an actual calmodulin molecule would, mapping from experimental data to reaction rate

constants is difficult. Therefore, we opted to use wide uniform priors that reflects the small

amount of available prior information: Uð2; 9Þ for the forward reaction rate constants (corre-

sponds to 102 M-2ms-1 to 109 M-2ms-1) and Uð� 9; � 4Þ for the dissociation constants (corre-

sponds to a range of 1 nM2 to 10 μM2).

For Scheme 3, which models Ca2+ binding events individually, there is a significant amount

of prior information. Specifically, we use set priors on the dissociation constants based on Shif-

man et al. [11]. We used priors of the form N ðr; 1Þ, where r is a dissociation constant from

Shifman et al. [11] Table 2 in log10. Unfortunately, setting a prior that could similarly constrain

the forward reaction rate constants was not possible, therefore we again opted for wide uni-

form priors that we used for Schemes 1 and 2: Uð2; 9Þ.
For Schemes 4 and 5, since they share the same set of reaction rate constants, we used the

same set of prior distributions. For each forward reaction rate and dissociation constant we

used N ðr; 1Þ, where r are reaction rate constants from Faas et al. [5] in log10. We chose Faas

et al. [5], rather than Pepke et al. [12], because their rate constants are based on dynamical data

and upon initial simulation runs were performing better. Similarly for Scheme 6, we used the

same approach, but centered the Gaussian priors on parameters from Byrne et al. [13].

Finally, we restrict the values of μ and ω which parameterize the prior distribution of ran-

dom effects Zn � N ðm;oÞ to avoid over-fitting due to the usage of the MAP conditional likeli-

hood as the optimization objective. Specifically, we use pðoÞ ¼ N ð0; 1Þ and limit its domain

to [1,1], as well as limiting the domain of μ to be in [−5, 5]. We found that these were the

minimal set of restrictions that prevented over-fitting of O.

Numerical ODE solving

We use the Julia programming language for numerical ODE solving both during and outside

of parameter fitting. Specifically, we use the DifferentialEquations.jl package [35].

We use the Rodas5P numerical solver which can handle significant stiffness in the ODE sys-

tem and which performed the best of the methods tried. We used it with the default settings,

except for reducing the absolute error tolerance to abs_tol = 1e-16 since some simula-

tions that contained low concentrations of species suffered from significant errors in the

numerical solution.

Model comparison

There are many ways to compare model performance, but for the purposes of this study we

use two metrics: root-mean-square error (RMSE) and the Akaike information criterion (AIC)

[26]. The RMSE for a single experimental observation vector ynj 2 R
m

and model prediction
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y∗nj 2 R
m is defined as

RMSEðynj; y∗njÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm

i¼1

ðynj;i � y∗nj;iÞ
2

s

ð9Þ

We calculated the RMSE values for each recording in each of the test data sets for each of the

20 optimization runs for a given scheme, pooling them. We also calculated the RMSE values

for the same scheme but with published reaction rate constants, again pooling them. This gave

us two samples of RMSE values, r1 that was obtained using the reaction rate constants we fitted

and r2 that was obtained using the published reaction rate constants. We then compared r1

and r2 using a two sample T-test (assuming unequal variance) and calculated Cohen’s d to

establish the effect size of using our rates and the ones published in the literature. Cohen’s d is

defined as

d ¼
�r1 � �r2

s

�
�
�
�

�
�
�
� ð10Þ

where �r1 and �r2 are the means of each sample and s is the pooled variance. We used the RMSE

to focus directly on a models predictive performance.

In contrast, we used the AIC for selecting the model that performs the best when its com-

plexity is taken into account. The AIC for model M with parameters θ and given data d is

defined as

AICðd;M; yÞ ¼ 2k � 2LðdjM; yÞ ð11Þ

where k is the length of the parameter vector θ (in this paper—reaction rate constants for a par-

ticular scheme, noise parameter σ and random effect prior parameters μ and ω). Even though

in model optimization we use the conditional likelihood, in AIC calculations we used the mar-

ginal likelihood L obtained via the Laplace approximation [36]. The AIC is a measure that

evaluates model performance, but also penalizes model complexity via the 2k term. There are

many other model comparison metrics [37], but the AIC is sufficient for the present study due

to the inclusion of predictive model performance and penalizing model complexity along with

it being computationally simple to calculate. For each of the 20 different optimization runs we

calculated the AIC value for the test data set of a run using the given scheme with our reaction

rate constants, as well as if the published reaction rate constants were used. This gave us one

sample of AIC values per combination of scheme + reaction rate constants.

Results

General model fitting results

We fit each of the six kinetic schemes shown in Fig 3 to the fluorescence traces from Faas et al.

[5] and the steady state calcium-calmodulin binding data from Shifman et al. [11]. We used

the root mean square error (RMSE) to evaluate the goodness of fit between the models and the

data. The fitting procedure was repeated 20 times with different random seeds, which set the

random sampling of the training, validation and test data (see S1 Appendix) along with the ini-

tial parameters for optimization. Therefore, due to variability in training data and initial

parameters, RMSE values (especially for our parameter fits) for each seed can be significantly

different.

We now compare the performance of each kinetic scheme with the reaction rate constants

we fit and the published ones. Table 1 shows the training (split between dynamical data from

Faas et al. [5] and equilibrium data from Shifman et al. [11]), validation and test data set
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performance summary statistics for the six investigated kinetic schemes, reporting the average

RMSE values for the 20 different seeds used. The distribution of the test RMSE values is shown

in Fig 5. On average Schemes 5–6 performed the best, whereas other schemes were not able to

capture either the equilibrium data (Schemes 3–4) or both the dynamical and the equilibrium

data (Schemes 1–2).

Table 1. Summary of training, validation and test performance (RMSE ± SD) for different kinetic schemes with either parameters fit from scratch, fixed to values

from publications or our modifications.

Scheme + rate constants Training (Dynamical data) Training (Equilibrium data) Validation (Dynamical data) Testing (Dynamical data) Cohen’s d‡

Scheme 1 + our fits 0.74 ± 0.12 1.47 ± 0.17 0.80 ± 0.16 0.77 ± 0.17 -

Scheme 1 + Kim et al. 1.51 ± 0.20 2.31 1.16 ± 0.06 1.11 ± 0.08 * 2.07

Scheme 2 + our fits 0.72 ± 0.09 2.00 ± 0.28 0.85 ± 0.15 0.81 ± 0.17 -

Scheme 2 + Bhalla and Iyengar 1.03 ± 0.04 2.23 1.16 ± 0.06 1.11 ± 0.08 * 1.77

Scheme 3 + our fits 0.43 ± 0.03 0.83 ± 0.46 0.48 ± 0.05 0.46 ± 0.05 -

Scheme 3 + Shifman et al.† 0.61 ± 0.05 0.46 0.70 ± 0.11 0.66 ± 0.10 * 3.76

Scheme 4 + our fits 0.42 ± 0.06 0.88 ± 0.10 0.46 ± 0.12 0.44 ± 0.11 -

Scheme 4 + Pepke et al. 0.82 ± 0.05 0.78 0.84 ± 0.06 0.82 ± 0.09 ** 3.47

Scheme 5 + our fits 0.37 ± 0.02 0.44 ± 0.18 0.40 ± 0.03 0.38 ± 0.04 -

Scheme 5 + Faas et al. 0.45 ± 0.02 0.75 0.56 ± 0.03 0.53 ± 0.03 ** 4.17

Scheme 5 + Pepke et al. 0.86 ± 0.05 0.75 0.88 ± 0.07 0.86 ± 0.09 ** 13.5

Scheme 6 + our fits 0.35 ± 0.02 0.35 ± 0.03 0.38 ± 0.03 0.36 ± 0.03 -

Scheme 6 + Byrne et al. 0.47 ± 0.01 0.83 0.55 ± 0.03 0.53 ± 0.02 ** 5.83

Highlighted rows were the best performing for that scheme. Note that for models with fixed reaction rate constants trained on Shifman et al. [11] data, no SD is given

since all of the data is used for training and there is no variance in this metric. T-tests are done with reference to our reaction rate constants.
† Shifman et al. [11] only contained dissociation constant values, therefore we had to fit on-rate constants while fixing to their KD values.
‡ Effect sizes evaluated via Cohen’s d over 1.2 are considered very large and over 2.0 are considered huge [38].

* p< 10−6

** p< 10−10

https://doi.org/10.1371/journal.pone.0318646.t001

Fig 5. Violin plots of RMSE values for the test data set for each seed for all schemes for our own and the published parameter sets.

https://doi.org/10.1371/journal.pone.0318646.g005
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Dynamical behaviour. To illustrate the differences between model fits, Fig 6 shows the

measured fluorescence traces that were used as the validation data set for seed 1 and corre-

sponding model predictions for each kinetic scheme with our fitted rate constants and the

published rate constants. Each row shows the same 24 experimental traces (black), split

between the seven groups of solutions which were used experimentally in Faas et al. [5].

Within each group, each trace corresponds to a different laser uncaging strength used—the

stronger the laser, the more calcium gets released, the larger the ΔF/F0 values that are

measured.

The biggest differences in measured and predicted dynamics are for Scheme 1, for which

the RMSE differences are also the largest. In Fig 6 the main difference between our parameters

and rate constants from Kim et al. [9] is that our rate constants give rise to traces that follow

the experimental dynamics to some extent, whereas the published rate constants simply equili-

brate to a value and barely display any dynamics (e.g. groups D–G). However, even though

our rate constants result in dynamical behaviour, they do not show good equilibrium perfor-

mance and in fact do not reach equilibrium when the data has long reached it.

The comparison of dynamics for Scheme 2 is similar to that of Scheme 1. Comparing our

reaction rate constants with those in Bhalla and Iyengar [10], we see that the published reac-

tion rate constants make the system equilibrate and not follow the data closely, whereas our

reaction rate constants achieve a more accurate fit. However, with either our rate constants or

the published rate constants, the traces and the average RMSE values indicate that Scheme 2

fits the data quite poorly.

Models with the level of complexity of Scheme 3 and higher are able to capture the dynam-

ical data much better than the simpler Schemes 1 and 2. As shown in Fig 6, both Scheme 3

models perform adequately. However, our reaction rate constants trained from scratch still

perform better, especially in capturing the initial rise and fall in ΔF/F0 (for example see col-

umns D–F). Note that for this scheme the comparison is not entirely equivalent to other cases

as we had to fit the forward reaction rate constants while we kept the dissociation rate con-

stants fixed to those in Shifman et al. [11].

For Scheme 4, our reaction rate constants significantly outperform those of Pepke et al. [12]

as shown in Fig 6. This is reflected in a smaller mean RMSE value of our rate constants and is

evident in most experimental groups, where our rate constants result in reasonably accurate

predictions whereas the Pepke et al. rate constants significantly under-predict ΔF/F0.

Looking at the dynamics for Scheme 5, based on the RMSE values in Table 1, our rate con-

stants perform significantly better than the rate constants from either Faas et al. [5] or Pepke

et al. [12], but the gap is much smaller for the former than the latter. The differences in dynam-

ics between our fits and rate constants in Faas et al. are subtle, but generally our rate constants

perform better for small amounts of uncaged Ca2+. In contrast, comparing dynamics with our

rate constants to dynamics with rate constants in Pepke et al. [12], their reaction rate constants

result in significant mismatches to the data, to the point that the optimization procedure has to

inject amounts of Ca2+ that lead to incorrect equilibrium levels (see Fig 7, which shows that

their dissociation constants can fit equilibrium data well).

Finally, for Scheme 6, the main differences between the dynamics resulting from our reac-

tion rate constants and those in Byrne et al. [13] are generally seen for small amounts of

uncaged calcium (columns D–G bottom traces). Our reaction rate constants (for this seed)

managed to capture calmodulin behaviour with low amounts of Ca2+ more accurately. Even

though for some traces the published rate constants can outperform ours (e.g. top traces in

either groups A or C), our reaction rate constants on average show a smaller RMSE value.

Equilibrium behaviour. Fig 7 shows the equilibrium behaviours of our reaction rate con-

stants (for all 20 training seeds) and published ones. When using Scheme 1 (Fig 7, top row),
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Fig 6. Sample dynamics for validation data for seed 1 for all trained models. Each column is a single data group A–G from Faas et al.

[5], whereas each row is a different combination of scheme + reaction rate constants (specific combination given in the rightmost column).

In all subplots y axis is ΔF/F0 and x axis is time. Black lines are empirical data and red lines are model outputs. Scale bars are given at the

bottom row, each tick on the y-axis corresponds to the same value in each column.

https://doi.org/10.1371/journal.pone.0318646.g006
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Fig 7. Calmodulin equilibrium behaviour when the free amount of Ca2+ is varied for all kinetic schemes for the 20 seeds

that we tested (solid line is the median and shaded area is the 95% confidence interval). Model behaviour with our reaction

rate constants are plotted in blue, whereas published ones are in the colors indicated. Note that at times the published reaction

rate constants (Scheme 1 and Scheme 2) result in behaviours that are much more right-shifted, therefore show up as zero in

the relevant range. We also include data points for wild type calmodulin for an equivalent experimental setup in Shifman et al.

[11].

https://doi.org/10.1371/journal.pone.0318646.g007
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the fits to data from Shifman et al. [11] are generally poor. A single run was able to fit the equi-

librium data well, but in most fits, calmodulin was less sensitive to Ca2+ than indicated by the

data. Some of this behaviour can be attributed to the prior because most of the runs hit the

uniform distribution limits (especially the dissociation constants). When the limits were

wider, there was a significant amount of training failures (up to 30%) and trained models

showed step-like equilibrium behaviour that was overly sensitive to Ca2+. Therefore, we opted

to keep the narrower limits. Scheme 1 with our parameter sets is generally much more sensi-

tive to Ca2+than it is with the rate constants from Kim et al. [9], which result in calmodulin

behaviour that does not show appreciable Ca2+ binding in the relevant Ca2+ range and is

significantly right-shifted (Fig 7, top row pink line).

For Scheme 2 (Fig 7 second row from the top), our fits result in behaviour that is signifi-

cantly more sensitive to Ca2+ than the experimental data. Calmodulin would be close to fully

bound under resting neuronal Ca2+ levels, in contrast to the reaction rate constants from

Bhalla and Iyengar [10], which are significantly less sensitive to Ca2+ than the data indicate,

not reaching full calmodulin saturation in the experimental data range. The failure to fit the

equilibrium data is likely due to the inclusion of the dynamical data—reaction rate sets that

would allow this scheme to fit equilibrium data do not fit the dynamical data well. The failure

of Scheme 2 fitting both dynamical and equilibrium data is likely due to the first Ca2+ binding

event including two Ca2+ ions and needing to be relatively fast to fit the dynamical data.

For Scheme 3 (Fig 7 third row from the top), the parameters from Shifman et al. [11] per-

form very well because they were explicitly tuned to only this data set. However, when the

dynamical data from Faas et al. [5] is included in the fitting procedure, the resulting equilib-

rium behaviour varies between runs (blue shaded area). Similarly to Scheme 2, our fits result

in behaviour that is much more sensitive to Ca2+ than the data indicates. However, contrary to

Scheme 2, the range of behaviours is much more varied and a significant portion of fits match

data from Shifman et al. [11] reasonably well.

For Scheme 4 (Fig 7, fourth row from the top), even though in general the fits are much bet-

ter, there are still a few runs that do not perform as well. Moreover, our mean RMSE value is

slightly worse than that parameters from Pepke et al. [12] for the equilibrium data in Shifman

et al. [11]. Curiously the mean RMSE for the dynamics predicted via Scheme 4 with our rate

constants is much smaller compared to the rate constants from Pepke et al. [12]. A possible

explanation for this is that rate constants from Pepke et al. were first derived using Scheme 5

and then reduced to Scheme 4. Scheme 5 is a more powerful model due to having more state

variables which could make optimization easier than simply using Scheme 4 (see results

below).

Our fits to the Shifman et al. [11] equilibrium data follow a similar pattern for Schemes 5

and 6. For both Schemes the noisiness in model behaviour that was present for Schemes 1–4 is

either gone or significantly smaller, and most fits match the data from Shifman et al. [11] rea-

sonably well. In both cases, the average RMSE value using our rate constants is significantly

smaller compared to the published reaction rate constants.

Model comparison via AIC

We now compare both the published reaction rate constants to our reaction rate constants and

between the kinetic schemes via AIC evaluated on the test set of a random seed. AIC is a useful

model comparison tool because it takes into account both model predictive performance as

well as model complexity (number of parameters). Fig 8 shows the box plots for the AIC values

for all the combinations of kinetic scheme and parameter set for all 20 seeds. As shown in

Table 2, our reaction rate constants have lower median AIC values (lose less information)
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compared to the published ones. Moreover, the more complex the scheme, the lower the AIC

value, with Scheme 6 performing the best. The median AIC values seem to asymptote and

reach a lower value by Scheme 6 (the big change is after Schemes 2–3), so only qualitatively dif-

ferent model improvements are likely to decrease the AIC value more.

Calculating the relative likelihoods from median AIC values, where our reaction rate con-

stants are the reference, all the published parameter sets have negligibly low relative likelihoods

(largest being on the order of e−100). Therefore, our reaction rate constants are significantly

more likely compared to the published ones.

Since our reaction rate constants have lower AIC values (lose less information) compared

to the published ones, we use our reaction rate constants to compare between different kinetic

schemes. Given the results in Fig 8 and Table 2 and using the median AIC for Scheme 6 with

our rate constants as reference, the other schemes with our parameter sets have a negligibly

small relative likelihoods (again on the order of e−100). Therefore, of the combinations of

schemes + reaction rate constants that we found, Scheme 6 with our reaction rate constants is

relatively the most likely.

Calmodulin Ca2+ integration properties

Having established that our reaction rate constants are significantly more likely than the pub-

lished ones, we now ask whether this difference is meaningful practically. To answer this

Fig 8. AIC box plots for all the different combinations of kinetic schemes and either previously published or our own reaction rate constants.

Each box plot is based on training the model on 20 different random seeds, the AIC value is calculated on the test data set of a given seed.

https://doi.org/10.1371/journal.pone.0318646.g008

Table 2. Median AIC values for all combinations of kinetic schemes and reaction rate constants (our fits or published).

Median AIC values (×103)

Parameter source Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6

Ours 12.9 14.9 8.32 6.37 6.45 5.97

Published 17.9 18.4 11.5 14.2 10.2† / 14.8‡ 9.21

† when reaction rate constants from Faas et al. [5] are used.
‡ when reaction rate constants from Pepke et al. [12] are used.

https://doi.org/10.1371/journal.pone.0318646.t002
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question we probe the Ca2+ signal integration properties of calmodulin. CA1 pyramidal cell

Schaffer collateral synapses undergo long-term potentiation dependent on CaMKII (and

therefore on calmodulin) in response to three 1s trains of 50Hz stimulation [39]. Given these

results, it is likely that calmodulin integrates the Ca2+ signal within a single train. Therefore,

we set up a series of simulations where a model was stimulated by a 1s train of Ca2+ injections

but the frequency was varied from 2Hz to 100Hz. Based on the results in Sabatini et al. [40],

Ca2+ influx due to single synaptic stimulation event for a neuron at resting voltage is around

0.7μM (this mimics the experimental setup in Bayazitov et al. [39] best). To mimic the compe-

tition between calmodulin and other buffers and pumps we implemented a minimal Ca2+

extrusion model using values in Sabatini et al. [40] Table 1 for a CA1 pyramidal cell spine—

Ca2+ decaying to a baseline of 100nM with a time constant τ = 12ms. Finally, we use a biologi-

cally realistic calmodulin concentration of 20μM [41]. After the simulation, we evaluate the

calmodulin signal integration by calculating the area under the curve of both partially bound

calmodulin and fully bound calmodulin, where bigger values indicate a larger level of Ca2+ sig-

nal integration.

As shown in Fig 9 columns one and two, Schemes 1 and 2 are not capable of integrating

Ca2+ signals in the tested frequency range (except for a few outlier runs with Scheme 2). For

Scheme 1 it is likely due to the fact that the models are not sensitive enough to Ca2+ (see Fig 7

top row). The same interpretation, however, does not hold for Scheme 2, whose equilibrium

behaviour with our parameter fits was usually too sensitive to Ca2+ compared to experimental

data. This behaviour for Scheme 2 may be explained by slow reaction rate constants compared

to Ca2+ decay.

Fig 9. Ca2+ signal integration properties (measured as area under the curve) of partially (first row) and fully bound (second row) calmodulin

species in response to a 1sec train of 2–100Hz stimulation that delivers 0.7μM Ca2+ per spike (same general patterns hold if 12μM Ca2+ per spike

is delivered, results not shown). A different calmodulin scheme is used in each column and shows our parameter fits (deep blue lines) and the

published parameter values (all other colours). The solid lines are median model behaviour and shaded areas are the 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0318646.g009
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The results are somewhat different for Schemes 3 and 4 (Fig 9 columns three and four),

where both the published reaction rate constants and our own fits show significant Ca2+ inte-

gration in the partially bound calmodulin species, but barely any in the fully bound calmodu-

lin. In both cases our reaction rate constants result in significantly higher Ca2+ signal

integration. However, results for Scheme 3 with our reaction rate constants which show signif-

icant Ca2+ integration at 2Hz should be taken with caution due to the same fits being overly

sensitive to Ca2+ at equilibrium (Fig 7 third row from the top).

Finally, for Schemes 5 and 6 we see integration of Ca2+ signals that results in both fully and

partially bound calmodulin species (Fig 9 columns five and six). For both schemes our reaction

rate constants predict that Ca2+ signal integration would result in more partially bound cal-

modulin compared to predcitions from the published rate constants. As for fully bound cal-

modulin, our reaction rate constants predict a lower level of fully saturated calmodulin than

the predcitions from the published rate constants.

The difference between the partially and fully bound calmodulin signals is more pro-

nounced with our reaction rate constants than with the published ones. For Scheme 5 the dif-

ference is around an order of magnitude for our reaction rate constants and under 2-fold for

the published reaction rate constants, whereas for Scheme 6 the difference is around 4-fold for

our reaction rate constants and around 2-fold for the published reaction rate constants. Given

that our models reaction rate constants perform better, we predict that partially bound cal-

modulin species play a more significant part in Ca2+ signalling integration and propagation

than predicted by previously published models.

Parameter correlations

We next examine the relationships between our parameter fits within a given scheme. Analys-

ing relationships between parameters may point future experimental research questions. For

example, if some reaction rate constants are correlated, they may be under-determined. There-

fore, future model development would benefit from additional, more directed data to better

constrain the correlated parameters. We use partial correlation as a measure of relationship

between parameters [19]. Briefly, partial correlation quantifies the degree of association

between two variables when the variance from a set of controlling variables is taken into

account. For example, in Scheme 1 the partial correlation between k1 and k3 would indicate

the relationship between these two rate constants when KD1
and KD1

is accounted for.

Since structurally there is nothing to distinguish between the C and the N lobes for Schemes

4–6, we calculate the dissociation constant for the two binding reactions in Scheme 4 and for

the first binding reaction for both lobes in Scheme 5 and Scheme 6 and compare their values—

the one that has a lower KD value we call the C lobe and the one that has a higher value we call

the N lobe. This is to avoid what we call the C lobe being functionally the N lobe and vice

versa, which would result in artificially higher parameter spread or obscure parameter correla-

tions. We show the parameter pair plots for all six schemes in the S5 Appendix, along with

tables of individual reaction rate fits. We show partial correlation coefficients for all schemes

in Fig 10.

First of all, even though the data set we use is richer, as it includes both the dynamical and

the equilibrium data, there is still significant variance in our model parameter fits. For some

parameters the pairs can span 5 to 10 orders of magnitude (see S5 Appendix). Moreover, there

are significant correlations between multiple parameters in most schemes.

There is only one significant negative correlation for Scheme 1, between KD1
and KD2

. This

correlation is most likely due to a limited number of degrees of freedom offered by this

scheme. Assuming that a calmodulin molecule has an overall dissociation constant that is a
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Fig 10. Partial correlation coefficients for our reaction rate constant fits for all schemes. White stars in the rectangle indicate

p< 0.05 with null hypothesis that the partial correlation is zero.

https://doi.org/10.1371/journal.pone.0318646.g010
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function of the dissociation constants of individual reactions, the dissociation constants of

individual reactions have to co-vary in order to maintain the same overall behaviour.

Reaction rate constants for Schemes 2 have 8/15 significant correlations which indicates a

high level of sloppiness in the system. Similarly to Scheme 1, given the high level of simplifica-

tion used in this scheme, in order to maintain the same overall model behaviour, parameters

have to co-vary. This is especially true for the dissociation constants, which are all are nega-

tively correlated. We also see that the on-rate for the first reaction is not correlated to any

other parameter and is therefore fairly well-determined.

Scheme 3 has proportionally fewer correlations than Scheme 2 (7 out of 28 parameters cor-

related). Most correlations are with the dissociation constant for the final Ca2+ binding event.

This can be explained by thinking about a general dissociation constant for calmodulin, which

would be a function of KD1
, KD2

, KD3
and KD4

—since KD1
is likely better constrained due to the

first binding event needing to be of particular speed to fit the rising/falling phase of the indi-

vidual time series, the other dissociation constants may co-vary more freely and balance each

other out. The on-rate for the first binding event is only correlated to one variable, which indi-

cates that it is quite well determined.

Scheme 4 shows the largest fraction of correlations of all the schemes (15/28). This is most

likely due to the quasi-steady state approximation which results in steady state reaction rate

constants fkssi g
4

i¼1
that provide a lot of room for sloppiness via products and quotients of the

full set of reaction rate constants fkig
8

i¼1
.

The point that model structure is of utmost importance in determining the levels of sloppi-

ness in the system is further reinforced by Scheme 5, where 10 out of 28 reaction rate constants

were correlated. More importantly, a significant number of correlations are within-lobe, for

example k1 and k3—the first and second on-rate constants. There are also some cross-lobe cor-

relations, for example KD2
and KD4

which are the second Ca2+ binding events for C and N

lobes respectively.

Curiously, even though Scheme 6 is the most complex in terms of number of parameters

and number of states, it shows only six significant correlations between reaction rate constants.

Moreover, all correlations are within a lobe, rather than between lobes. More specifically, most

of them are for parameters in the C lobe, rather than the N lobe.

Necessary structural components of a calmodulin model

As shown in Table 1 and in Fig 6, there is a large gap in training performance between

Schemes 1–4 and Schemes 5–6. Even though training RMSE in both dynamical and equilib-

rium data significantly decreases going from Scheme 2 to Scheme 3, only from Scheme 5

onwards can both dynamics and equilibrium behaviour be captured well. There are two main

differences between Schemes 1,2,4 and and 5–6: independence of lobes and structural assump-

tion of co-operativity. Both Scheme 3 and Schemes 5–6 allow co-operativity (via reaction rate

constants) but do not assume it structurally. Schemes 3 does not allow for independence of

lobes, while Schemes 5–6 assume it structurally. In this section we provide an empirical argu-

ment that links model features to gaps in performance, focusing on event-based (as opposed to

binding site-based) and structurally co-operative (especially for the C lobe) schemes to model

calmodulin.

Assuming that the real calmodulin dynamics operate in a k-dimensional space, any model

capable of modeling the dynamics would have to have at least that many dimensions (along

with an appropriate structure). Calmodulin models framed in terms of events (fully abstracted

from binding sites) can operate at most in a four dimensional linear subspace (since rank of

such a network is four, see page 30 in [42]) of the five dimensional state space (see Scheme 3 in
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Fig 3). Therefore, an immediate conclusion of this may be that k> 4, real calmodulin dynam-

ics operate in a higher dimensional space than an event-based model allows for. However,

Scheme 5, which is able to model both calmodulin dynamics and equilibrium behaviour (see

Table 1), has rank 4 as well. The main difference between Schemes 3 and 5 are the indepen-

dence of the lobes: Scheme 5 contains two independent subnetworks (each of which is rank 2).

Therefore, based on our results, in order to accurately model both calmodulin dynamics and

equilibrium behaviour, two independent subnetworks (independence of lobes) is a necessary

model feature.

We next analyze whether a structural assumption of co-operativity, modelling the binding

of two Ca2+ ions as a single event, within calmodulin lobes is reasonable. This is not the only

way of modelling co-operativity, but it results in models with a smaller state space vector and

therefore can be preferable computationally. Fractional calmodulin occupancy of the N and

the C lobes using a well performing model (Scheme 6 with parameters from Byrne et al. [13])

is shown in Fig 11 columns one and two. Starting with the dynamics of the partially occupied

N lobe, the model predicts around 20% of calmodulin molecules would have the first site occu-

pied, with a negligible fraction having the second site occupied. Moreover, the dynamics of

partially occupied sites in the N lobe do not show fast changes over the simulated time period,

so the quasi-steady state approximation would hold reasonably well. The dynamics of the C

lobe paint an opposite picture. It is immediately obvious that, due to its slower speed, the

quasi-steady state approximation (d[CaMC1]/dt = 0) does not hold for the C lobe as there are

calmodulin dynamics occurring over the whole simulated time of 35ms. Therefore, even

though it is a theoretically appealing tool to reduce the number of calmodulin states, the quasi-

steady state approximation is too inaccurate for the C lobe and results in significant errors in

either calmodulin dynamics or equilibrium behaviour.

Discussion

We used a rich dynamical [5] and equilibrium [11] data set to fit six calcium-calmodulin

kinetic schemes from scratch in order to compare to published models. Our comparison

resulted in a number of conclusions.First of all, the parameters we found, as opposed to the

published ones, resulted in significantly better fits on our dataset (Table 1). Secondly, we

showed that fully event-based schemes that do not utilize any features of the calmodulin physi-

cal structure (existence of C and N lobes) result in significantly worse generalization perfor-

mance as measured via AIC (Fig 8). Thirdly, we investigated calmodulin signal integration

properties by comparing our parameter fits to published reaction rate constants for different

calcium-calmodulin schemes. Some schemes showed no Ca2+ signal integration in response to

a stimulation protocol mimicking an empirically effective plasticity induction protocol

highlighting the importance using more detailed calmodulin schemes (Fig 9). Fourthly, we cal-

culated the partial correlations between our parameter fits (Fig 10). Partial correlations

revealed that even with our data set, that is richer than anything used before, some parameters

were correlated and therefore under-determined. Finally, we investigated the validity of the

quasi-steady state approximation used in [12] and by using Faas et al. [5] data we showed that

it is not accurate for the C lobe. We next discuss each of these conclusions individually.

First of all, model performance depends on the data which was used to parameterise it.

Even though usage of multiple data sources to fit a calmodulin model is not new and was done

in Pepke et al. [12], we are the first to combine a data source on calmodulin dynamics [5] and

a data source on calmodulin equilibrium behaviour [11]. We used this combined data set to fit

six different calcium-calmodulin kinetic schemes previously used in the literature. We then

compared our parameters to the published ones which revealed that a significant number of
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Fig 11. Scheme 6 behaviour with parameters from Byrne et al. [13] on dynamical data from Faas et al. [5]. Each line is one of the initial conditions

(solution + uncaging strenght) Faas et al. used. Calmodulin has been normalized to total calmodulin used in an experiment, the first row shows N lobe

dynamics, the second row shows C lobe dynamics. Each column shows a different calmodulin state—completely unbound (first column), Ca2+ bound

to the first site on a lobe (second column), Ca2+ bound to the second site on a lobe (third column), Ca2+ bound to both sites of a lobe (fourth column).

Above the plots we provide reaction rate constants from Byrne et al. [13] for the reactions a specific calmodulin state participates in. Note that time on

the x axis is in log10 space to better show the initial dynamics.

https://doi.org/10.1371/journal.pone.0318646.g011
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calcium-calmodulin models used in the literature are parameterized sub-optimally (see

Table 1). Most published models (except Faas et al. [5]) have relied on either only equilibrium

data [11, 12, 43] or dynamical data obtained under significant methodological limitations—

such as dead time in stopped flow fluorimetry or presence of other biochemical species [9, 13].

Undoubtedly, it would be unfair to criticize past work for operating under the limitations of

the day, but that does not prevent models from becoming outdated (much as this work will be

one day). Therefore, an important contribution in this paper are the improved model parame-

ters for calcium-calmodulin models—the best performing parameter sets for each scheme are

given in Table 3 (see S5 Appendix for all 20 parameter sets for each scheme).

Secondly, our calmodulin model comparison uncovered discrepancies in performance

between different kinetic schemes. The complexity of calmodulin schemes we investigated ran-

ged from a model with three states and four parameters [9] to a model with eight states and

sixteen parameters [13]. There were only two schemes (5 and 6, consisting of eight and sixteen

parameters respectively) that were able to fit both sources of data well—both schemes mod-

elled calmodulin lobes separately and consisted of individual, rather than lumped, Ca2+ bind-

ing reactions. Two further schemes (3 and 4), one of which modelled calmodulin lobes but not

Table 3. Our reaction rate sets that performed best on the test data and the published reaction rate constants from literature. All parameters are in log10, but are in

different units, depending on the context: for second order reactions the forward reaction rate constants are in M-1ms-1, dissociation constants in M, for third order reac-

tions the forward reaction rate constants are in M-2ms-1, dissociation constants in M2.

Source Parameters

Scheme 1 parameters

k1 KD1
k3 KD2

Our fits 8.10 -9.00 4.00 -9.00

Kim et al. 3.60 -5.69 5.0 -4.96

Scheme 2 parameters

k1 KD1
k3 KD2

k5 KD3

Our fits 8.13 -9.00 2.25 -9.00 4.52 -6.40

Hayer and Bhalla 4.86 -6.00 3.56 -5.55 2.67 -4.68

Scheme 3 parameters

k1 KD1
k3 KD2

k5 KD3
k7 KD4

Our fits 5.41 -4.87 2.36 -7.83 4.33 -6.40 5.04 -6.19

Shifman et al. - -5.10 - -5.77 - -4.46 - -5.05

Scheme 4 parameters

k1 KD1
k3 KD2

k5 KD3
k7 KD4

Our fits (S4) 4.33 -5.56 5.98 -6.01 7.03 -4.13 6.29 -5.73

Pepke et al. 3.60 -5.00 4.00 -6.03 5.0 -4.60 5.18 -5.30

Scheme 5 parameters

k1 KD1
k3 KD2

k5 KD3
k7 KD4

Our fits 4.50 -5.43 4.08 -5.84 5.69 -4.00 6.32 -5.30

Faas et al. 4.90 -4.60 4.40 -6.60 5.90 -3.70 7.50 -6.10

Scheme 6 parameters

kc
1

kc
3

kc
5

kc
7

Kc
D1

Kc
D2

Kc
D3

Kc
D4

kn
1 kn

3
kn

5
kn

7
Kn

D1
Kn

D2
Kn

D3
Kn

D4

Our fits 4.23 4.16 5.22 2.31 -5.40 -4.38 -5.38 -6.40 3.03 6.65 5.22 7.58 -4.06 -5.20 -2.88 -6.38

Byrne et al. 5.44 5.44 3.57 5.07 -4.73 -3.94 -6.42 -7.22 5.44 5.44 5.71 5.70 -4.48 -5.46 -3.64 -6.31

Shifman et al. only contained the dissociation constants, so the forward reaction rate constants have no point of comparison. The same set of reaction rate constants

from Pepke et al. has been used in both Schemes 4 and 5, but they are only shown for Scheme 4 to avoid repetition and misleading as the implementation of Scheme 5 in

Faas et al. and Pepke et al. is slightly different, structurally kPepke = 2kFaas for some reaction rate constants.

https://doi.org/10.1371/journal.pone.0318646.t003
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individual binding, another which modelled individual binding but not lobes, were able to fit

dynamical data, but not equilibrium data, reasonably well. Both of these schemes consisted of

eight parameters, same as one of the schemes that fit both sources of data well, indicating that

the number of parameters is not the only factor necessary for an accurate calcium-calmodulin

model. Finally, two of the simplest schemes (Schemes 1 and 2) that did not model calmodulin

lobes and modelled Ca2+ binding as lumped reactions were not able to fit either the dynamical

data or the equilibrium data well. These results, along with median AIC values (Table 2) lead

to the second contribution of this paper—Scheme 6 is the most accurate calcium-calmoduling

binding scheme and, compared to some simpler schemes, by a significant margin.

Thirdly, our results provide implications for models that include calmodulin. We investi-

gated the Ca2+ integration properties of calmodulin in response to a realistic Ca2+ spike train

(see Fig 9). The biggest practical difference between our reaction rate constants and published

ones is that there is a much more significant contribution from partially bound calmodulin

species, rather than fully bound calmodulin. As shown in Shifman et al. [11], CaMKII can be

activated by partially bound calmodulin. Moreover, calmodulin has many binding partners,

such as Calcineurin [44], Phosphodiesterase 1 [45], Adenylyl cyclases 1 and 8 [46], Neurogra-

nin [47, 48] and others [2]. Our results bring into question the accuracy of the results of publi-

cations where poorer performing schemes or parameterisations are used in larger models [9,

18, 19, 21–23, 49–52]. There are many ways to compensate for the poor performance of cal-

modulin scheme or parameters. For example, it is possible that in some cases the lack of cal-

modulin sensitivity to Ca2+ has been compensated for by an increased Ca2+ influx. However,

for example Scheme 1 is used in [23] in a dynamical setting, stimulating their large model with

many protein species with e. g. 180s of 5Hz or 1sec of 100Hz Ca2+ pulses. As our results show,

the calmodulin Ca2+ integration properties are significantly different in this range when our

reaction rate constants are used. Our third contribution is support to the hypothesis that par-

tially bound calmodulin molecules arising in response to different Ca2+ stimuli is an additional

dimension of signal encoding and propagation towards downstream pathways compared to

spatial/concentration based fully bound calmodulin signalling. Future investigations into

other calmodulin binding partners and their activation by partially bound calmodulin species

would be able to falsify this hypothesis.

Fourthly, our results on the partial correlations between reaction rate constants form our

fourth contribution—the call for more empirical investigations to test the distinctness of Ca2+

binding sites within a calmodulin lobe. Generally with increasing model complexity there

were fewer correlations (except for Scheme 4, which had more than Scheme 3) between

parameters, indicating the parameters were better determined by data. However, even for the

most complex Scheme 6, there were some correlations between parameters within the same

lobe. These correlations could only be eliminated by additional information on the properties

of individual binding sites. Existing studies with mutations of individual calmodulin binding

sites only include equilibrium measurements [11, 53, 54]. Since equilibrium behaviour only

informs the ratio between the Ca2+ binding and unbinding rate constants, they are of limited

usefulness in fitting. The closest to the necessary measurements were done in Faas et al. [5]

where dynamical measurements with one inactive calmodulin lobe (either C or N) were made.

Finally, we investigated the validity of the quasi-steady state approximation used in [12].

Both Scheme 4, in which partially bound calmodulin species are not modelled due to the

quasi-steady state approximation, and Scheme 5, which models them, can model calmodulin

dynamics to a similar accuracy. The main difference between the schemes is in equilibrium

behaviour, where in Scheme 4 the modelling of dynamics impedes modelling of steady state

behaviour. These results imply that the quasi-steady state approximation used in Pepke et al.

[12] does not hold in the context of the Faas et al. [5] data, at least not without significant
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decrease in the accuracy of model behaviour. Ideally, an empirical measurement of the occu-

pancy of individual calmodulin sites in a dynamical setting would be definitive in falsifying

this approximation. Unfortunately, such data does not exist therefore we used Scheme 6 with

Byrne et al. [13] parameters (since they fit the data reasonably well) and simulated the frac-

tional occupancy of individual calmodulin sites under [5] experimental conditions (see Fig

11). These results support our fifth contribution—that the quasi-steady state approximation is

not valid and results in a significant loss of accuracy, especially for the C lobe.

Having discussed the contributions of this paper we now reflect on their wider implications

and practical reality of computational modelling. Suboptimal schemes or parameterisations of

calcium-calmodulin models used in large models are a difficult challenge. It is not necessarily

the case that the conclusions drawn from large models are made invalid. In large models it is

likely possible to correct for the model-data mismatch arising due to inaccurate calmodulin

behaviour via the parameters of reactions involving downstream molecules. This, however,

may result in a panoply of different mechanistic hypotheses if different publications correct for

these inaccuracies arising due to poor calmodulin models in different ways. A more co-ordi-

nated community effort with some agreed upon set of model tests (such as the FindSim plat-

form suggested by [55]), akin to continuous integration in GitHub, may be necessary to

resolve such issues in the future and build performant large models.

Limited computational resources and the difficulty of writing large models mean that in some

cases it may not be feasible to use a more detailed calmodulin scheme because of an exponential

explosion in the number of species to be modelled and the subsequent increase in the computa-

tional cost of simulations. Rule-based modelling [56] with its “don’t care, don’t write” approach

(only having to specify the features of a species which impact a reaction) allows models contain-

ing exponentially large numbers of complexes to be written down but may still be too computa-

tionally costly. Modeling is a complex task that involves many behind the scenes choices about

acceptable trade-offs. Our results provide the information about the trade-offs in model accuracy

being made when choosing one calmodulin scheme (or parameter set) over another.

In the final two paragraphs we discuss the methodology we used, the available alternatives

and limitations. We used NLME fitting algorithms implemented in Pumas.jl to fit the reac-

tion rate constants of the different calcium-calmodulin kinetic schemes. There are many pub-

lished pipelines for fitting reaction rate constants of kinetic schemes. For example, Eriksson

et al. [57] propose and use a pipeline based on approximate Bayesian computation Markov

Chain Monte Carlo (ABC-MCMC, using R-vines). MCMC approaches are powerful tools

which benefit from inherently providing uncertainty on model parameters, rather than having

to run optimization on different random seeds as was done in this study. However, they are

generally much more computationally expensive. Another popular option is the Data2Dy-

namics toolbox [58], which streamlines construction of models of chemical reaction networks

and modeling of experiments while leveraging ODE solving capabilities of MATLAB, along

with stochastic optimization. However, there are few modern software packages that deal with

NLME models (which were required due to the nature of the dynamical data in Faas et al. [5]).

Of these packages Pumas.jl is currently the most performant one [24]. This is in part

because Pumas.jl is implemented in the Julia programming language which contains state

of the art ODE solving capabilities, outperforming its competitors in terms of speed by orders

of magnitude (see benchmarks.sciml.ai).

Even with a powerful computational pipeline, there are still many nuances, practical consid-

erations and limitations. For example, the length of the time series to which parameters are

being fit impacts the complexity of the loss surface—the more points, the more complex it is

[59]. Therefore, we downsampled the initial part of the dynamical data from Faas et al. [5] (see

S1 Fig). However, invariably, downsampling results in loss of signal, therefore more
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performant downsampling techniques or multiple shooting based approaches may have

resulted in even better fits. Moreover, we simplified the Ca2+ uncaging model used in [5] to

make parameter optimization more stable. Also, [5] used Pockels cell delay (PCD) as the inde-

pendent variable to predict the fraction of uncaged Ca2+ whereas we omitted this variable as it

did not perform as well in practice. More data on the relationship between PCD and Ca2+

uncaging fraction would have allowed us to derive a better Ca2+ uncaging model that poten-

tially could have improved model predictions with both published and our own reaction rate

constants. Finally, in order to prevent training failures due to numerical instabilities in ODE

solutions when using some schemes, we had to restrict the range of possible values taken by

their reaction rate constants. Usage of novel ODE solvers capable of handling stiff systems is a

potential avenue to remedy this limitation in future studies. Therefore, even with a more pow-

erful software pipeline, some trial and error and practical trade-offs were necessary to fit our

own parameters and efficiently and accurately compare different calmodulin models.

In conclusion, we believe that we have provided a number of important contributions that

advance calcium-calmodulin modelling. We conducted a data-driven evaluation of both cal-

cium-calmodulin kinetic schemes and parameter sets used in existing publications and showed

which schemes or parameter sets performed poorly. It may be argued that behaviour of single

molecules in large models matters less than the behaviour of the overall model. However, if

large models are to be useful in predicting the behaviour of real biological systems, the individ-

ual molecules and their accurate generalization performance are of utmost importance.
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