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Abstract

Calmodulin is a calcium binding protein that is essential in calcium signalling in the brain.
There are many computational models of calcium-calmodulin binding that capture various
calmodulin features. However, existing models have generally been fit to different data sets,
with some publications not reporting their training and validation performance. Moreover,
there is no model comparison using a common benchmark data set as is common practice
in other modeling domains. Finally, some calmodulin models have been fit as a part of a
larger kinetic scheme, which may have resulted in parameters being underdetermined. We
address these three limitations of previous models by fitting the published calcium-calmodu-
lin schemes to a common calcium-calmodulin data set comprising equilibrium data from
Shifman et al. and dynamical data from Faas et al. Due to technical limitations, the amount
of uncaged calcium in Faas et al. data could not be predicted with certainty. To find good
parameter fits, despite this uncertainty, we used non-linear mixed effects modelling as
implemented in the Pumas . j1 package. The Akaike information criterion values for our
reaction rate constants were significantly lower than for the published parameters, indicating
that the published parameters are suboptimal. Moreover, there were significant differences
in calmodulin activation, both between the schemes and between our reaction rate and
those previously published. A kinetic scheme with independent lobes and unique, rather
than identical, binding sites fit the data best. Our results support two hypotheses: (1) partially
bound calmodulin is important in cellular signalling; and (2) calcium binding sites within a cal-
modulin lobe are kinetically distinct rather than identical. We conclude that more attention
should be given to validation and comparison of models of individual molecules.

Introduction

Calmodulin is among the most important calcium binding proteins in the brain. It is essential
in the translation of intracellular Ca** signals to downstream processes, such as gene
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regulation, protein activation, metabolic regulation and synaptic plasticity [1, 2]. Calcium sig-
nals can provide information both via their amplitude (nanomolar to millimolar) and via their
duration (microseconds to hours) [1, 2]. Calcium-calmodulin binding kinetics underlie the
translation of Ca** signals, therefore correct kinetic models of binding are an important aspect
in studying calcium signalling in the brain.

Calmodulin’s signalling properties arise from its structure—it comprises a 148 amino acid
residue polypeptide with four EF hands divided into C and N lobes capable of binding two cal-
cium ions per lobe [3]. It can adopt many conformational states, especially when bound to dif-
ferent molecules [4]. Moreover, calmodulin lobes have been reported to differ in their kinetics
and affinity for Ca®*~the N lobe binding faster with lower affinity and the C lobe binding
slower with higher affinity [5-7].

There are at least 19 published computational models of synapses that include various mod-
els of calmodulin in their chemical reaction network [8]. The published kinetic schemes
describing calcium-calmodulin binding vary significantly in the number of calmodulin fea-
tures they capture. For example, some calmodulin models do not have independent lobes [9-
11] while others do [5, 12, 13]. Some schemes are event-based—only concerned about the
Ca’" binding events [10, 11], whereas others explicitly indicate which lobe and/or site is being
bound to [5, 12, 13]. Moreover, some models assume that two Ca>" ions bind to a lobe at the
same time [9, 10, 12], others leave this dependent on reaction rate constants [5, 11, 13]. Some
models assume that Ca** binding sites within a lobe are unique [11, 13] while others assume
that they are non-unique [5, 12]. Finally, some models include details such as calmodulin con-
formational states [14].

Most current computational calmodulin models suffer from three limitations. First of all,
different models have generally been tuned to different data sets, making their relative perfor-
mance difficult to compare. Secondly, most models have not been cross-validated, making
their generalization performance uncertain. Thirdly, some models have been tuned as a part of
a larger scheme, e.g. including CaMKI], potentially making calcium-calmodulin binding
parameters underdetermined. We discuss the sources of data to which calcium-calmodulin
models we investigate have been fit in the Methods section, therefore we will next elaborate on
the second and the third limitations.

The second limitation relates to cross-validation, a crucial step in the process of parameter
inference used to establish model performance outside of the training data and to avoid over-
fitting (see page 241 in [15]). Ideally different models are cross-validated on a single data set
across publications using consistent quantitative metrics. For example, the MNIST data set
[16] is used to compare the error rate of image processing models. Given the lack of rich open
access calmodulin data sets, none of the published calmodulin models were quantitatively
cross-validated during development. At best, publications that contain calmodulin kinetic
schemes include some indication (usually visual, rather than quantitative) of performance
compared to the source of data they are being tuned to. However, this is not a rigorous way of
ensuring that a model will perform well outside of the training data, leaving the generalization
performance uncertain.

The third limitation is that some calmodulin schemes have been tuned to data from experi-
ments that include other calmodulin-binding molecules, with large numbers of reaction rate
constants that have to be fit, for example the calcium-calmodulin-CaMKII cascade [13]. Sys-
tems biology models naturally exhibit sloppiness [17], which tends to get more pronounced
with an increasing number parameters being fit, resulting in loosely constrained parameter
values. It is often possible to trade off between reaction rate constants: a calcium-calmodulin-
CaMKII cascade being fit to CaMKII activity measurements may fit data better if Ca** binds
to calmodulin with higher affinity or calcium-calmodulin binds to CaMKII with higher
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affinity, or some mix of the two. Moreover, a similar trade-off is possible between the binding
sites and/or lobes even with only a calcium-calmodulin cascade. Because of these trade-offs,
the true reaction rate constants might be completely different to the ones obtained via the fit-
ting procedures. Some publications attempt to test for such parameter sloppiness via sensitivity
analyses [18] or by calculating the eigenvalues of the Hessian [17], but it usually is too difficult
to test the parameter combinations in a sufficiently dense and wide manner to ensure that the
reaction rate constants are not under-determined.

Calmodulin models, in particular some of the simpler ones [9, 12], have been used to inves-
tigate calmodulin interactions with other molecules [18-20] and in complex chemical reaction
networks [9, 21-23] to model higher order phenomena occurring in neurons, e.g. synaptic
plasticity. However, given the aforementioned model limitations, it is important to scrutinize
the previous modelling work, its basic assumptions, and to check whether the assumptions
made in previous work hold when tested under more rigorous conditions, with powerful
methods using richer data sets.

We address the three aforementioned limitations of existing calmodulin models by using a
common data set where the only free kinetic parameters are calcium-calmodulin binding reac-
tion rate constants. The common data set comprises subsets of data from Faas et al. [5] and
Shifman et al. [11]. Faas et al. [5] contains time-series of fluorescence measurements after
laser-induced Ca** uncaging and therefore is informative about calmodulin dynamics. In con-
trast, Shifman et al. [11] contains measurements of calmodulin properties at equilibrium. To
deal with incomplete experimental control of the amount of calcium uncaged by a laser flash
in Faas et al. [5] we use the novel and highly efficient non-linear mixed effects (NLME) model
fitting algorithms implemented in Pumas . j1 [24]. NLME is a hierarchical modeling frame-
work that can deal with phenomena where there are constant intra-individual parameters, but
significant inter-individual variability due to individual level parameters [24, 25].

We use the common data set to fit reaction rate constants from scratch and compare our
results to the reaction rate constants in the literature. By calculating the Akaike information
criterion (AIC) [26] values for both our and the published reaction rate constants we show
that the published reaction rate constants are suboptimal. Moreover, using the same criterion,
we show that some kinetic schemes are suboptimal and fail to fit calmodulin dynamics and
equilibrium behaviour at the same time. We then compare the Ca** signal integration proper-
ties of different calmodulin schemes when either the published reaction rate constants or the
ones determined by our approach are used. We show that there are significant differences in
calmodulin calcium integration properties when using the suboptimal published reaction rate
constants. Similarly, we show that the models using suboptimal calmodulin schemes display
qualitatively different calcium integration behaviour compared to better performing schemes.
Finally, we calculate the partial rank correlations between the reaction rate constants that we
fit and show that for some calmodulin schemes our parameter fits are highly correlated which
is indicative of parameter sloppiness or underdetermination.

Our results highlight that a sufficiently expressive calmodulin model structure is essential
for capturing both calmodulin dynamics and equilibrium behaviour. Moreover, we conclude
that, given the suboptimality of the previously published parameter sets, arguments and find-
ings built on these models may warrant re-visiting.

Methods
Data

Dynamical calmodulin data. We use the calcium uncaging data from Faas et al. [5], in
which different concentration mixes of the fluorescent Ca** indicator OGB-5N, the light
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Fig 1. Relative fluorescence (AF/F,) time-series data from [5] for three different initial condition groups (A, B and G). Different lines within a plot
are due to different laser uncaging strength (the higher the laser strength, the larger the AF/F, value).

https://doi.org/10.1371/journal.pone.0318646.9001

sensitive Ca®" chelator DM-nitrophen (DMn), calmodulin and titrated free Ca** were used to
make seven different groups of solutions A-G (see S2 Appendix for specific concentrations).
For different batches of each group of solutions, a sequence of laser pulses of increasing
strength was used to induce Ca®* uncaging from DMn while OGB-5N fluorescence was
observed at 35°C. The stronger the pulse, the more calcium is released. Due to technical limita-
tions, it was not possible to predict the amount of released calcium for each laser pulse pre-
cisely. We elaborate on how we model the fraction of uncaged Ca** below. Fig 1 shows the
fluorescence time courses for three of the seven groups—A, B and G—and different uncaging
laser strengths. We use a subset of the data and split it into training, validation and test data
sets (see Supplemental Text S1 Appendix for more information).

Calmodulin equilibrium data. Steady-state calcium-calmodulin binding came from an
experiment in Shifman et al. [11], which measured the number of Ca*" ions bound per cal-
modulin molecule at different free Ca®* concentrations (their Fig 1B). Their experimental
chamber contained a fluorescent indicator Fluo4FF (5uM), calmodulin (5uM) and a varying
amount of free Ca>". The amount of free Ca** was titrated until a required concentration
(between approximately 10~’M and 5.5 x 10"°M) was reached. We used a digital tool (https://
automeris.io/WebPlotDigitizer/) to extract this data from their plots, giving the 107 points
shown in Fig 2. This data was obtained at 25°C but calmodulin does not show significant tem-
perature dependent changes in equilibrium behaviour [27], so we do not adjust for tempera-
ture dependent changes in calmodulin kinetics.

Kinetic schemes and published reaction rate constants

We investigated six different calcium-calmodulin binding schemes from the literature that
span the complexity of the most commonly used calmodulin models (Fig 3). The reference we
give for a scheme may be its original source, or a source that is frequently cited for the scheme.
There are more complex published calmodulin schemes that we did not use [14], because they
would be prohibitively computationally expensive to fit.

The simplest scheme (Scheme 1, Fig 3), from Kim et al. [9], is made up of three calmodulin
states—CaM0, CaM2Ca, CaM4Ca, respectively calmodulin bound to no, two and four Ca**
ions. In Scheme 1, Ca®" binding is assumed to be highly co-operative and binding of two Ca**
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Fig 2. Equilibrium measurements of the number of Ca>" ions per calmodulin molecule from [11]. Experiments were done using 5uM Fluo4FF and
5uM calmodulin.

https://doi.org/10.1371/journal.pone.0318646.9002

ions is treated as a single reaction. In principle Scheme 1 does not assume which lobe binds
first; the first two Ca®* ions could bind to the C lobe or the N lobe. However, the parameterisa-
tion of Scheme 1 by Kim et al. [9] implies that they treat the first Ca>* binding event as being
to the C lobe. The published reaction rate constants in Kim et al. [9] are based on stopped-flow
fluorescence measurements [7]. Scheme 1 is parameterised by four reaction rate constants

{k,}" ,, which can be used to derive two dissociation constants: K, = and K, = .
iJi=1 Dy kq Dy ks
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Fig 3. Six calmodulin kinetic schemes to which we fit parameters, and compare to performance with published parameter values. Scheme 1—due
to strong co-operativity, each calmodulin lobe binds two Ca* ions at a time, with the lobes modelled sequentially (first C lobe then N lobe). Scheme 1 is
parameterised by reaction rate constants {k,}, ,. Scheme 2—due to co-operativity the first reaction has two Ca®* ions binding as a single event and then
the next two Ca®" ions binding sequentially. It is parameterised by reaction rate constants {k;},_,. Scheme 3—fully expanded sequential calmodulin
scheme where each binding event is represented individually. Depending on the reaction rate constants, the binding events could be mixed between the
lobes, e.g. first binding event could be in the C lobe, the second in the N lobe, or partial combinations of different lobes. The visualised scenario is where
the first two events are in the C lobe. This scheme is parameterised by reaction rate constants {k,}_,. Scheme 4—calmodulin binds two Ca®* ions at a
time and, contrary to Schemes 1-3, the lobes are independent. It is parameterised by eight reaction rate constants {k, };_, which, along with free Ca®",
are used to calculate the effective reaction rate constant { kf"}f:l (see S3 Appendix for more details). Scheme 5—this scheme has independent N and C
lobes, with a single Ca®" ion binding at a time. Binding sites within a single lobe are identical. It is parameterised by reaction rate constants {k,}; ,.
Scheme 6—this scheme has independent N and C lobes, with a single Ca** ion binding at a time. In contrast to Scheme 5, the binding sites within a
single lobe are distinct (indicated by different shades of green/purple). The scheme is parameterised by 16 reaction rate constants {k?"}; . In all
schemes green circles indicate Ca**-bound C lobe sites, purple circles indicate Ca**-bound N lobe sites and arrows indicate bidirectional reactions
(Ca*" ions not shown).

https://doi.org/10.1371/journal.pone.0318646.9003
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The next scheme (Scheme 2, Fig 3), from Bhalla and Iyengar [10], is made up of four cal-
modulin states—CaM0, CaM2Ca, CaM3Ca, CaM4Ca, respectively calmodulin bound to no,
two, three and four Ca®" ions. In Scheme 2, binding of the first two Ca®" ions is assumed to be
highly co-operative and treated as a single reaction, whereas the next two Ca®" ions bind indi-
vidually. The parameters in Bhalla and Iyengar [10] (as given in https://doqcs.ncbs.res.in/, also
see [28]) do not match neatly to either lobe and the description of how the rate constants were

derived was unavailable at the time of writing. Scheme 2 is parameterised by six reaction rate
K

6 . . . e . k.
constants {k;},_, which can be used to derive three dissociation constants: K, = > Kp, =1

and K, = ’;—(
The final linear scheme that ignores calmodulin lobe-based structure (Scheme 3, Fig 3) is

from Shifman et al. [11]. It comprises five calmodulin states—CaMO0, CaM1Ca, CaM2Ca,
CaM3Ca, CaM4Ca—respectively calmodulin bound to no, one, two, three and four Ca** ions.
The dissociation constants based on experiments in Shifman et al. [11] are 7.9uM, 1.7uM,
35uM, 8.9uM respectively for Ca*>* binding events one to four. Reactions in this scheme do not
neatly map onto individual Ca®* binding sites within calmodulin lobes; instead they are
abstract binding events where, depending on the parameters, they may be probabilistic combi-

nations between different binding sites. Scheme 3 is parameterised by eight reaction rate con-

8 . . . o s ke ky
stants {k;},_,, which can be used to derive four dissociation constants K, = o Kp, =15

Ky, = ’;—‘ and K, = ’;—f This scheme is the most complex linear CaM scheme possible (without

adding conformational calmodulin changes), modelling each Ca** binding site individually.
Our Scheme 4 (Fig 3) is from Pepke et al. [12] and comprises four states—CaMO0, CaM2C,

CaM2N, CaM4Ca—respectively calmodulin bound to no Ca** ions, two at the C lobe, two at

the N lobe and four across both lobes. It is the simplest scheme that captures the lobe-based
structure of calmodulin. It has eight reaction rate constants {k,}; , and is based on Scheme 5
(described below), but was simplified used a quasi-steady state approximation for calmodulin
species that have a single bound Ca®" ion. This approximation results in elimination of par-
tially bound species from simulations by setting their derivatives to 0 and expressing the par-
tially bound species in terms of the unbound and the fully bound species and permitting the
appropriate substitutions in the equations for the unbound and the fully bound species (see S4
Appendix).

We draw our Scheme 5 (Fig 3) from model 1 in Pepke et al. [12], which is identical to the
scheme used in [5]. It is made up of nine states—CaMO0, CaM1C, CaM1N, CaM2C, CaM2N,
CaM1CIN, CaM2CIN, CaM1C2N, CaM4—with the number of Ca** ions bound to calmodu-
lin indicated by numbers preceding C and N. Even though in total there are nine states, since
in this study calmodulin does not bind to any downstream species, we do not need to track
individual calmodulin molecules. Therefore, we simulate the lobes as independent species
which decreases the number of states we need to track from nine to six—CaMON, CaM1N,
CaM2N, CaMO0C, CaM1C, CaM2C—without changing the scheme itself. Scheme 5 is parame-

terised by eight reaction rate constants {k,} ,, which can be used to derive four dissociation

= %, Ky, = ’;—gand Ky, = % Pepke et al. [12] used two data sources on

=k
constants K, = ;% Kp, pt

.
calmodulin equilibrium behavior: (1) data from wild-type and tryptic calmodulin fragments
(one lobe expressed, other eliminated) [6]; (2) data from competition assays (calmodulin,
either wild type or mutants with one active and one inactive lobe, and fluorescent indicator
Fluo4FF) [11]. Pepke et al. [12] (in their supplemental information) give reaction rate con-
stants as ranges—we take specific numerical values from this model’s entry (model identifier:
MODEL1001150000) in the BioModels Database [29, 30]. Faas et al. [5] tuned the model to

their own UV-flash photolysis data.
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Finally, our Scheme 6 (Fig 3) is from Byrne et al. [13]. It is made up of sixteen states, but
similar to Scheme 5, we simulate the lobes as independent species which reduces the number
of states to eight—CaMON, CaMN,, CaMN,, CaM2N, CaM0C, CaMC,;, CaMC,, CaM2C,
where CaM0X denotes an unbound calmodulin lobe, CaMX, denotes Ca** bound to the first
site of a lobe, CaM X, denotes Ca®" bound to the second site of a lobe and CaM2X denotes a

fully bound lobe. This scheme is parameterised by 16 reaction rate constants {k’"}’ , which

kc/n kc/n kc/n

2 c/n _ Ky c/n __ %

kc/n’ KD2 - kc/n’ KDZ; - kc/n and
1 3 5

can be used to derive eight dissociation constants Kg/l "=

c/n
Kc/n kK

D, — n
k?

Reaction rate constants in Byrne et al. [13] are based on stopped-flow fluorescence

and competitive binding assay data [31].

For each of the six schemes we use the reaction rate constants from the associated publica-
tion (we use both Pepke et al. [12] and Faas et al. [5] for Scheme 5). All of the reaction rate con-
stants we used are given in 54 Appendix.

Ca”" uncaging model

Faas et al. [5] used a linear model for laser induced Ca** uncaging

U(PCD, x) = 0.0011 x PCD — 0.39 + x (1)

where U is the uncaged DMn fraction, PCD is the specified Pockels cell delay, where a larger
value results in a higher energy laser pulse and more Ca** uncaging, and x is used to account
for the uncertainty of the actual PCD value, i.e. the difference between the specified and physi-
cally realised values.

Even though Faas et al. [5] used the linear model successfully in their study, its performance
is not quantified and it has some limitations. Most importantly, U is not bounded to [0, 1] and
can take negative values or values above 1, which would result in physically unrealistic initial
conditions. Moreover, it is not clear that a simple linear relationship is optimal to accurately
model the relationship between the PCD value and the uncaging fraction. Finally, the variable
x is additive, and it is not clear that this formulation is optimal—it could be multiplicative or
some more complex functional relationship.

Due to lack of the necessary data, we could not develop our own model of how the fraction
of calcium uncaged depends on the PCD. Instead, of the linear model (Eq 1) we use an even
simpler model that performed better in practice than either the linear model from Faas et al.
[5] or a neural network. Our uncaging model does not take the specified PCD value and is a
simple sigmoid function, bounding its output to [0, 1].

V() = —

- - 2
1+ exp™ (2)

With this approach, we do not claim that uncaging is completely independent of PCD; rather
we use a single equation to capture both uncertainty in estimating the PCD, as well as other
sources of variance.

Fitting our reaction rate constants

We combine and adapt the definitions and notation of NLME provided in [24, 32] and we
present it using Scheme 1 as an example. NLME modeling framework comprises a two level
hierarchical structure (shown visually in Fig 4) with fixed effects © at the upper level, which
can be broadly grouped into
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Fig 4. Visual representation of an NLME model, rectangle nodes in the top box denote parameters (fixed effects), circles
denote random quantities which are either latent (unfilled) or observed (filled), diamonds are deterministic given the
inputs, and nodes without a border are constant. Each symbol in the node can be either a number or a vector depending on the

context.

https://doi.org/10.1371/journal.pone.0318646.9004

« model parameters 6, e.g. for scheme 1—reaction rate constants {k,}: ,

o random effect prior distribution parameters €, e.g. 4 and w used to parameterize the prior of
1, for the Ca®* uncaging fraction (see paragraph below)

o observation model noise parameters ¢

and do not vary between recordings.

The lower level is random effects 7,, which account for the inter-individual variability of the
observations y,;, generally, by individualizing model parameters 6. We assume that both Ca**
and calmodulin molecules are identical between experiments, hence reaction rate constants do
not have the random effect-enabled individualization for each experimental run. The sole usage
of random effects in this paper is in fitting the fraction of uncaged Ca** by passing 17, ~ N (i, @)
to Eq 2.

Furthermore, there is a set of covariates Z, associated with each recording, i.e. the total con-
centration of calmodulin, Ca>* and OGB5N, which are known. These three sets of values are
collated via the parameter model g into the dynamical parameter vector p,, of the nth record-
ing

p,=g©,Z,n,) (3)

The dynamical parameters p,, are then fed into the structural model (e.g. an ordinary differen-
tial equation (ODE) system)

u; :f(un,pn,t) (4)

where u are the dynamical variables being solved for (DMn, OGB5N, Ca** and their combina-
tions and the various calmodulin species determined by the scheme being used). For Scheme 1
the system of equations (for brevity omitting DMn, OGB5N, Ca®" and means of its input
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amplitude, frequency and duration into the model) would be
d[CaM0]/dt = —k,[Ca]’[CaMO0] + k,[CaM2Ca]
d[CaM2Ca]/dt = k, [Ca]*[CaMO0] — k,[CaM2Ca]
—k,[Ca]’[CaM2Ca] + k,[CaM4Ca]

d[CaM4Ca]/dt = k,[Ca]*[CaM2Ca] — k,[CaM4Cal]

Note that {k,}, , enter into Eq 4 via p,,, which can also be used to initialize the ODE system.

The final step is to link the numerical solution of the ODE system to the experimentally
observed quantities. The jth observable quantity y,; for the nth entity is calculated using the
simulated variables u,(t) and the times t,,, at which the observations were made via the obser-
vational model h

Yyt =1,) = hu,(t=1t,).p,, Z,1n,) (6)

In this study there are two observable quantities: the relative fluorescence AF/F; over time
being fit to recordings from Faas et al. [5] and Ca** per calmodulin at equilibrium being fit to
Shifman et al. [11]. AF/F, is derived from OGB5N as follows

[OGB5N](t =¢,) + (F,,../Foin) [CAOGB5N] (t = ¢,,) ;
[OGB5N](t = 0) + (F,,,./F.;.)|[CaOGB5N](t = 0) @

AF/F(t=t,) =

where Fpy/Fin = 39.364 [5] and F,,y Finin are maximal and minimal recorded fluorescence
values. Ca>* per calmodulin is simply the sum of calmodulin species multiplied by the number
of bound Ca*" ions for each species divided by total calmodulin. After obtaining the observable
quantities a Gaussian observation model is used to account for observational noise.

There are many ways to fit NLME models, both frequentist and Bayesian [33]. In this study
we use the maximum aposterior (MAP) conditional log-likelihood objective which can be
stated as

@, 7" = argmax <P(®) 1p0. 10.m,) - p(n, | ®)> (8)

where ©* is the mode of the fixed effects, n* is the mode of the random effects for each subject
and p(0O) is the fixed effect prior distribution. Conditional likelihood is much more numeri-
cally efficient due to © and 7,, being optimized jointly whereas, for example, marginal likeli-
hood generally requires a two level optimization scheme and Markov Chain Monte Carlo
requires many more likelihood evaluations due to sampling. However, conditional likelihood
requires appropriate handling (either fixing or priors, see next section) of Q to avoid overly
broad random effect distributions which barely penalize extreme 7,, values and effectively
result in different individual models due to the learning being oftfloaded mostly to the random
effects.

We use the Pumas . j 1 [24] Julia package to fit to solve Eq 8. Pumas . j 1 contains efficient
and powerful algorithms for NLME modelling, which was essential when fitting the ns used to
model the uncaging fraction. Specifically, we used the BFGS optimization algorithm from
Optim. j1 with the gradient calculations handled by Pumas . j 1.

All fitting was done on the JuliaHub (https://juliahub.com/) cloud computing platform
using nodes with 8 vCPUs and 64GB of memory. Individual fits took between one to ten min-
utes, depending on which scheme was used and whether some of the parameters were fixed.
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For each scheme we conducted 20 fitting runs with different initial conditions. All the code
that was used to define the models, run the simulations and perform the analysis is accessible
at https://github.com/dom-linkevicius/FaasCalmodulin.jl.git, the data is accessible at [34].

Prior distributions

We incorporated the existing knowledge about calmodulin reaction rate constants for different
kinetic schemes via per-scheme prior distributions that depend on the amount data available
for each scheme. All of our priors are in log;o space as optimizing rate constants in log-space
was more performant.

For Schemes 1 and 2, since they are simplified and contain fewer reaction rate parameters
than an actual calmodulin molecule would, mapping from experimental data to reaction rate
constants is difficult. Therefore, we opted to use wide uniform priors that reflects the small
amount of available prior information: (2, 9) for the forward reaction rate constants (corre-
sponds to 10° M?ms™ to 10° Mms™") and U(—9, —4) for the dissociation constants (corre-
sponds to a range of 1 nM? to 10 pMz).

For Scheme 3, which models Ca** binding events individually, there is a significant amount
of prior information. Specifically, we use set priors on the dissociation constants based on Shif-
man et al. [11]. We used priors of the form N/ (r, 1), where r is a dissociation constant from
Shifman etal. [11] Table 2 in log;o. Unfortunately, setting a prior that could similarly constrain
the forward reaction rate constants was not possible, therefore we again opted for wide uni-
form priors that we used for Schemes 1 and 2: 1/(2,9).

For Schemes 4 and 5, since they share the same set of reaction rate constants, we used the
same set of prior distributions. For each forward reaction rate and dissociation constant we
used N (r, 1), where r are reaction rate constants from Faas et al. [5] in log;o. We chose Faas
etal. [5], rather than Pepke et al. [12], because their rate constants are based on dynamical data
and upon initial simulation runs were performing better. Similarly for Scheme 6, we used the
same approach, but centered the Gaussian priors on parameters from Byrne et al. [13].

Finally, we restrict the values of y and w which parameterize the prior distribution of ran-
dom effects 17, ~ N(p, w) to avoid over-fitting due to the usage of the MAP conditional likeli-
hood as the optimization objective. Specifically, we use p(w) = A (0, 1) and limit its domain
to [1, 00], as well as limiting the domain of ¢ to be in [-5, 5]. We found that these were the
minimal set of restrictions that prevented over-fitting of Q.

Numerical ODE solving

We use the Julia programming language for numerical ODE solving both during and outside
of parameter fitting. Specifically, we use the Di fferentialEquations.j1 package [35].
We use the Rodas 5P numerical solver which can handle significant stiffness in the ODE sys-
tem and which performed the best of the methods tried. We used it with the default settings,
except for reducing the absolute error tolerance to abs_tol = le-16 since some simula-
tions that contained low concentrations of species suffered from significant errors in the
numerical solution.

Model comparison

There are many ways to compare model performance, but for the purposes of this study we
use two metrics: root-mean-square error (RMSE) and the Akaike information criterion (AIC)
[26]. The RMSE for a single experimental observation vector y,, € R" and model prediction
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¥, € R is defined as

RMSE(ynﬁy;j) = Zo/nj.i _y;j,i>2
i=1

We calculated the RMSE values for each recording in each of the test data sets for each of the
20 optimization runs for a given scheme, pooling them. We also calculated the RMSE values
for the same scheme but with published reaction rate constants, again pooling them. This gave
us two samples of RMSE values, r; that was obtained using the reaction rate constants we fitted
and r, that was obtained using the published reaction rate constants. We then compared r;
and r, using a two sample T-test (assuming unequal variance) and calculated Cohen’s d to

establish the effect size of using our rates and the ones published in the literature. Cohen’s d is
defined as

d= Q (10)

N

where 7, and 7, are the means of each sample and s is the pooled variance. We used the RMSE
to focus directly on a models predictive performance.

In contrast, we used the AIC for selecting the model that performs the best when its com-
plexity is taken into account. The AIC for model M with parameters 6 and given data d is
defined as

AIC(d, M, 0) = 2k — 2L(d|M, 0) (11)

where k is the length of the parameter vector 8 (in this paper—reaction rate constants for a par-
ticular scheme, noise parameter ¢ and random effect prior parameters ¢ and w). Even though
in model optimization we use the conditional likelihood, in AIC calculations we used the mar-
ginal likelihood £ obtained via the Laplace approximation [36]. The AIC is a measure that
evaluates model performance, but also penalizes model complexity via the 2k term. There are
many other model comparison metrics [37], but the AIC is sufficient for the present study due
to the inclusion of predictive model performance and penalizing model complexity along with
it being computationally simple to calculate. For each of the 20 different optimization runs we
calculated the AIC value for the test data set of a run using the given scheme with our reaction
rate constants, as well as if the published reaction rate constants were used. This gave us one
sample of AIC values per combination of scheme + reaction rate constants.

Results

General model fitting results

We fit each of the six kinetic schemes shown in Fig 3 to the fluorescence traces from Faas et al.
[5] and the steady state calcium-calmodulin binding data from Shifman et al. [11]. We used
the root mean square error (RMSE) to evaluate the goodness of fit between the models and the
data. The fitting procedure was repeated 20 times with different random seeds, which set the
random sampling of the training, validation and test data (see S1 Appendix) along with the ini-
tial parameters for optimization. Therefore, due to variability in training data and initial
parameters, RMSE values (especially for our parameter fits) for each seed can be significantly
different.

We now compare the performance of each kinetic scheme with the reaction rate constants
we fit and the published ones. Table 1 shows the training (split between dynamical data from
Faas et al. [5] and equilibrium data from Shifman et al. [11]), validation and test data set

PLOS ONE | https://doi.org/10.1371/journal.pone.0318646 February 7, 2025 11/30


https://doi.org/10.1371/journal.pone.0318646

PLOS ONE

Comparison of calcium-calmodulin kinetic schemes to a common data set

Table 1. Summary of training, validation and test performance (RMSE + SD) for different kinetic schemes with either parameters fit from scratch, fixed to values
from publications or our modifications.

Scheme + rate constants Training (Dynamical data) | Training (Equilibrium data) | Validation (Dynamical data) | Testing (Dynamical data) | Cohen’s d*
Scheme 1 + our fits 0.74 £0.12 1.47 £0.17 0.80 £ 0.16 0.77 £0.17 -
Scheme 1 + Kim et al. 1.51 £0.20 2.31 1.16 £ 0.06 1.11 £ 0.08 * 2.07
Scheme 2 + our fits 0.72 £ 0.09 2.00 £0.28 0.85 £ 0.15 0.81 +£0.17 -
Scheme 2 + Bhalla and Iyengar 1.03 £ 0.04 2.23 1.16 £ 0.06 1.11 +0.08 1.77
Scheme 3 + our fits 0.43 £0.03 0.83 £ 0.46 0.48 £ 0.05 0.46 £ 0.05 -
Scheme 3 + Shifman et al.’ 0.61 £ 0.05 0.46 0.70 £ 0.11 0.66 +0.10 * 3.76
Scheme 4 + our fits 0.42 + 0.06 0.88 +0.10 0.46 + 0.12 0.44 £ 0.11 -
Scheme 4 + Pepke et al. 0.82 £ 0.05 0.78 0.84 £ 0.06 0.82 +0.09 ** 3.47
Scheme 5 + our fits 0.37 £ 0.02 0.44 £0.18 0.40 £ 0.03 0.38 £ 0.04 -
Scheme 5 + Faas et al. 0.45 £ 0.02 0.75 0.56 £ 0.03 0.53 +£0.03 ** 4.17
Scheme 5 + Pepke et al. 0.86 + 0.05 0.75 0.88 + 0.07 0.86 + 0.09 ** 13.5
Scheme 6 + our fits 0.35 £ 0.02 0.35+0.03 0.38 £ 0.03 0.36 £ 0.03 -
Scheme 6 + Byrne et al. 0.47 +0.01 0.83 0.55 + 0.03 0.53 +0.02 ** 5.83

Highlighted rows were the best performing for that scheme. Note that for models with fixed reaction rate constants trained on Shifman et al. [11] data, no SD is given

since all of the data is used for training and there is no variance in this metric. T-tests are done with reference to our reaction rate constants.

" Shifman et al. [11] only contained dissociation constant values, therefore we had to fit on-rate constants while fixing to their Kp, values.

¥ Effect sizes evaluated via Cohen’s d over 1.2 are considered very large and over 2.0 are considered huge [38].

*p<107°
**p < 10710

https://doi.org/10.1371/journal.pone.0318646.t001
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performance summary statistics for the six investigated kinetic schemes, reporting the average
RMSE values for the 20 different seeds used. The distribution of the test RMSE values is shown
in Fig 5. On average Schemes 5-6 performed the best, whereas other schemes were not able to
capture either the equilibrium data (Schemes 3-4) or both the dynamical and the equilibrium
data (Schemes 1-2).
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Fig 5. Violin plots of RMSE values for the test data set for each seed for all schemes for our own and the published parameter sets.
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Dynamical behaviour. To illustrate the differences between model fits, Fig 6 shows the
measured fluorescence traces that were used as the validation data set for seed 1 and corre-
sponding model predictions for each kinetic scheme with our fitted rate constants and the
published rate constants. Each row shows the same 24 experimental traces (black), split
between the seven groups of solutions which were used experimentally in Faas et al. [5].
Within each group, each trace corresponds to a different laser uncaging strength used—the
stronger the laser, the more calcium gets released, the larger the AF/F, values that are
measured.

The biggest differences in measured and predicted dynamics are for Scheme 1, for which
the RMSE differences are also the largest. In Fig 6 the main difference between our parameters
and rate constants from Kim et al. [9] is that our rate constants give rise to traces that follow
the experimental dynamics to some extent, whereas the published rate constants simply equili-
brate to a value and barely display any dynamics (e.g. groups D-G). However, even though
our rate constants result in dynamical behaviour, they do not show good equilibrium perfor-
mance and in fact do not reach equilibrium when the data has long reached it.

The comparison of dynamics for Scheme 2 is similar to that of Scheme 1. Comparing our
reaction rate constants with those in Bhalla and Iyengar [10], we see that the published reac-
tion rate constants make the system equilibrate and not follow the data closely, whereas our
reaction rate constants achieve a more accurate fit. However, with either our rate constants or
the published rate constants, the traces and the average RMSE values indicate that Scheme 2
fits the data quite poorly.

Models with the level of complexity of Scheme 3 and higher are able to capture the dynam-
ical data much better than the simpler Schemes 1 and 2. As shown in Fig 6, both Scheme 3
models perform adequately. However, our reaction rate constants trained from scratch still
perform better, especially in capturing the initial rise and fall in AF/F, (for example see col-
umns D-F). Note that for this scheme the comparison is not entirely equivalent to other cases
as we had to fit the forward reaction rate constants while we kept the dissociation rate con-
stants fixed to those in Shifman et al. [11].

For Scheme 4, our reaction rate constants significantly outperform those of Pepke et al. [12]
as shown in Fig 6. This is reflected in a smaller mean RMSE value of our rate constants and is
evident in most experimental groups, where our rate constants result in reasonably accurate
predictions whereas the Pepke et al. rate constants significantly under-predict AF/F,.

Looking at the dynamics for Scheme 5, based on the RMSE values in Table 1, our rate con-
stants perform significantly better than the rate constants from either Faas et al. [5] or Pepke
etal. [12], but the gap is much smaller for the former than the latter. The differences in dynam-
ics between our fits and rate constants in Faas et al. are subtle, but generally our rate constants
perform better for small amounts of uncaged Ca**. In contrast, comparing dynamics with our
rate constants to dynamics with rate constants in Pepke et al. [12], their reaction rate constants
result in significant mismatches to the data, to the point that the optimization procedure has to
inject amounts of Ca®* that lead to incorrect equilibrium levels (see Fig 7, which shows that
their dissociation constants can fit equilibrium data well).

Finally, for Scheme 6, the main differences between the dynamics resulting from our reac-
tion rate constants and those in Byrne et al. [13] are generally seen for small amounts of
uncaged calcium (columns D-G bottom traces). Our reaction rate constants (for this seed)
managed to capture calmodulin behaviour with low amounts of Ca** more accurately. Even
though for some traces the published rate constants can outperform ours (e.g. top traces in
either groups A or C), our reaction rate constants on average show a smaller RMSE value.

Equilibrium behaviour. Fig 7 shows the equilibrium behaviours of our reaction rate con-
stants (for all 20 training seeds) and published ones. When using Scheme 1 (Fig 7, top row),
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Fig 6. Sample dynamics for validation data for seed 1 for all trained models. Each column is a single data group A-G from Faas et al.
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bottom row, each tick on the y-axis corresponds to the same value in each column.

https://doi.org/10.1371/journal.pone.0318646.g006

PLOS ONE | https://doi.org/10.1371/journal.pone.0318646 February 7, 2025 14/30


https://doi.org/10.1371/journal.pone.0318646.g006
https://doi.org/10.1371/journal.pone.0318646

PLOS ONE

Comparison of calcium-calmodulin kinetic schemes to a common data set

4 —
3 —
2 -—
1 —
0 —
0 2.50x10~3 5.00x10->
4 —
3 -
2 -
1 -
o i
I I |
0 2.50%x10~> 5.00x10>
4
3
2
(%3 1
- 0
Q | I
& 0 2.50x10-3 5.00x10~>
3
el
(=
2 4
s}
# 3
2 —
1 —
o -
I I I
0 2.50x10~> 5.00x10~>
4 -
3 —
2 -
1 -
o —
I | I
0 2.50x10~> 5.00x10~>
4 - A A A%A A A
3 - A A
2 —
1 -
o —

I ! I
0 2.50%x10-> 5.00x10->

Free Ca?* (M)

Scheme 1

Our rates

Kim et al. rates

Shifman et al. data

Scheme 2

Our rates

Hayer and Bhalla rates

Shifman et al. data

Scheme 3

mes - OQur rates

Shifman et al. rates

Shifman et al. data

Scheme 4

s QuIr rates

Pepke et al. rates

Shifman et al. data

Scheme 5

mes - OQur rates

Faas et al. rates

Pepke et al. rates

Shifman et al. data

Scheme 6

mes - OQUr rates

Byrne et al. rates

Shifman et al. data

Fig 7. Calmodulin equilibrium behaviour when the free amount of Ca”" is varied for all kinetic schemes for the 20 seeds
that we tested (solid line is the median and shaded area is the 95% confidence interval). Model behaviour with our reaction
rate constants are plotted in blue, whereas published ones are in the colors indicated. Note that at times the published reaction
rate constants (Scheme 1 and Scheme 2) result in behaviours that are much more right-shifted, therefore show up as zero in
the relevant range. We also include data points for wild type calmodulin for an equivalent experimental setup in Shifman et al.

[11].
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the fits to data from Shifman et al. [11] are generally poor. A single run was able to fit the equi-
librium data well, but in most fits, calmodulin was less sensitive to Ca®* than indicated by the
data. Some of this behaviour can be attributed to the prior because most of the runs hit the
uniform distribution limits (especially the dissociation constants). When the limits were
wider, there was a significant amount of training failures (up to 30%) and trained models
showed step-like equilibrium behaviour that was overly sensitive to Ca**. Therefore, we opted
to keep the narrower limits. Scheme 1 with our parameter sets is generally much more sensi-
tive to Ca®"than it is with the rate constants from Kim et al. [9], which result in calmodulin
behaviour that does not show appreciable Ca** binding in the relevant Ca®* range and is
significantly right-shifted (Fig 7, top row pink line).

For Scheme 2 (Fig 7 second row from the top), our fits result in behaviour that is signifi-
cantly more sensitive to Ca>* than the experimental data. Calmodulin would be close to fully
bound under resting neuronal Ca** levels, in contrast to the reaction rate constants from
Bhalla and Iyengar [10], which are significantly less sensitive to Ca>* than the data indicate,
not reaching full calmodulin saturation in the experimental data range. The failure to fit the
equilibrium data is likely due to the inclusion of the dynamical data—reaction rate sets that
would allow this scheme to fit equilibrium data do not fit the dynamical data well. The failure
of Scheme 2 fitting both dynamical and equilibrium data is likely due to the first Ca®* binding
event including two Ca®" ions and needing to be relatively fast to fit the dynamical data.

For Scheme 3 (Fig 7 third row from the top), the parameters from Shifman et al. [11] per-
form very well because they were explicitly tuned to only this data set. However, when the
dynamical data from Faas et al. [5] is included in the fitting procedure, the resulting equilib-
rium behaviour varies between runs (blue shaded area). Similarly to Scheme 2, our fits result
in behaviour that is much more sensitive to Ca** than the data indicates. However, contrary to
Scheme 2, the range of behaviours is much more varied and a significant portion of fits match
data from Shifman et al. [11] reasonably well.

For Scheme 4 (Fig 7, fourth row from the top), even though in general the fits are much bet-
ter, there are still a few runs that do not perform as well. Moreover, our mean RMSE value is
slightly worse than that parameters from Pepke et al. [12] for the equilibrium data in Shifman
etal. [11]. Curiously the mean RMSE for the dynamics predicted via Scheme 4 with our rate
constants is much smaller compared to the rate constants from Pepke et al. [12]. A possible
explanation for this is that rate constants from Pepke et al. were first derived using Scheme 5
and then reduced to Scheme 4. Scheme 5 is a more powerful model due to having more state
variables which could make optimization easier than simply using Scheme 4 (see results
below).

Our fits to the Shifman et al. [11] equilibrium data follow a similar pattern for Schemes 5
and 6. For both Schemes the noisiness in model behaviour that was present for Schemes 1-4 is
either gone or significantly smaller, and most fits match the data from Shifman etal. [11] rea-
sonably well. In both cases, the average RMSE value using our rate constants is significantly
smaller compared to the published reaction rate constants.

Model comparison via AIC

We now compare both the published reaction rate constants to our reaction rate constants and
between the kinetic schemes via AIC evaluated on the test set of a random seed. AIC is a useful
model comparison tool because it takes into account both model predictive performance as
well as model complexity (number of parameters). Fig 8 shows the box plots for the AIC values
for all the combinations of kinetic scheme and parameter set for all 20 seeds. As shown in
Table 2, our reaction rate constants have lower median AIC values (lose less information)
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compared to the published ones. Moreover, the more complex the scheme, the lower the AIC
value, with Scheme 6 performing the best. The median AIC values seem to asymptote and
reach a lower value by Scheme 6 (the big change is after Schemes 2-3), so only qualitatively dif-
ferent model improvements are likely to decrease the AIC value more.

Calculating the relative likelihoods from median AIC values, where our reaction rate con-
stants are the reference, all the published parameter sets have negligibly low relative likelihoods
(largest being on the order of ¢'°°). Therefore, our reaction rate constants are significantly
more likely compared to the published ones.

Since our reaction rate constants have lower AIC values (lose less information) compared
to the published ones, we use our reaction rate constants to compare between different kinetic
schemes. Given the results in Fig 8 and Table 2 and using the median AIC for Scheme 6 with
our rate constants as reference, the other schemes with our parameter sets have a negligibly
small relative likelihoods (again on the order of e '*°). Therefore, of the combinations of
schemes + reaction rate constants that we found, Scheme 6 with our reaction rate constants is
relatively the most likely.

Calmodulin Ca”" integration properties

Having established that our reaction rate constants are significantly more likely than the pub-
lished ones, we now ask whether this difference is meaningful practically. To answer this

Table 2. Median AIC values for all combinations of kinetic schemes and reaction rate constants (our fits or published).

Median AIC values (x10%)

Parameter source Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6
Ours 12.9 14.9 8.32 6.37 6.45 5.97
Published 17.9 18.4 11.5 14.2 10.27/ 14.8* 9.21
T when reaction rate constants from Faas et al. [5] are used.
¥ when reaction rate constants from Pepke et al. [12] are used.
https://doi.org/10.1371/journal.pone.0318646.t1002
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question we probe the Ca®" signal integration properties of calmodulin. CA1 pyramidal cell
Schaffer collateral synapses undergo long-term potentiation dependent on CaMKII (and
therefore on calmodulin) in response to three 1s trains of 50Hz stimulation [39]. Given these
results, it is likely that calmodulin integrates the Ca>* signal within a single train. Therefore,
we set up a series of simulations where a model was stimulated by a 1s train of Ca** injections
but the frequency was varied from 2Hz to 100Hz. Based on the results in Sabatini et al. [40],
Ca®" influx due to single synaptic stimulation event for a neuron at resting voltage is around
0.7uM (this mimics the experimental setup in Bayazitov et al. [39] best). To mimic the compe-
tition between calmodulin and other buffers and pumps we implemented a minimal Ca**
extrusion model using values in Sabatini et al. [40] Table 1 for a CA1 pyramidal cell spine—
Ca”" decaying to a baseline of 100nM with a time constant 7= 12ms. Finally, we use a biologi-
cally realistic calmodulin concentration of 20uM [41]. After the simulation, we evaluate the
calmodulin signal integration by calculating the area under the curve of both partially bound
calmodulin and fully bound calmodulin, where bigger values indicate a larger level of Ca®* sig-
nal integration.

As shown in Fig 9 columns one and two, Schemes 1 and 2 are not capable of integrating
Ca’" signals in the tested frequency range (except for a few outlier runs with Scheme 2). For
Scheme 1 it is likely due to the fact that the models are not sensitive enough to Ca>* (see Fig 7
top row). The same interpretation, however, does not hold for Scheme 2, whose equilibrium
behaviour with our parameter fits was usually too sensitive to Ca** compared to experimental
data. This behaviour for Scheme 2 may be explained by slow reaction rate constants compared

to Ca** decay.
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Fig 9. Ca®" signal integration properties (measured as area under the curve) of partially (first row) and fully bound (second row) calmodulin
species in response to a 1sec train of 2-100Hz stimulation that delivers 0.7uM Ca®" per spike (same general patterns hold if 12uM Ca®" per spike
is delivered, results not shown). A different calmodulin scheme is used in each column and shows our parameter fits (deep blue lines) and the
published parameter values (all other colours). The solid lines are median model behaviour and shaded areas are the 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0318646.g009
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The results are somewhat different for Schemes 3 and 4 (Fig 9 columns three and four),
where both the published reaction rate constants and our own fits show significant Ca®" inte-
gration in the partially bound calmodulin species, but barely any in the fully bound calmodu-
lin. In both cases our reaction rate constants result in significantly higher Ca** signal
integration. However, results for Scheme 3 with our reaction rate constants which show signif-
icant Ca** integration at 2Hz should be taken with caution due to the same fits being overly
sensitive to Ca** at equilibrium (Fig 7 third row from the top).

Finally, for Schemes 5 and 6 we see integration of Ca>* signals that results in both fully and
partially bound calmodulin species (Fig 9 columns five and six). For both schemes our reaction
rate constants predict that Ca** signal integration would result in more partially bound cal-
modulin compared to predcitions from the published rate constants. As for fully bound cal-
modulin, our reaction rate constants predict a lower level of fully saturated calmodulin than
the predcitions from the published rate constants.

The difference between the partially and fully bound calmodulin signals is more pro-
nounced with our reaction rate constants than with the published ones. For Scheme 5 the dif-
ference is around an order of magnitude for our reaction rate constants and under 2-fold for
the published reaction rate constants, whereas for Scheme 6 the difference is around 4-fold for
our reaction rate constants and around 2-fold for the published reaction rate constants. Given
that our models reaction rate constants perform better, we predict that partially bound cal-
modulin species play a more significant part in Ca®* signalling integration and propagation
than predicted by previously published models.

Parameter correlations

We next examine the relationships between our parameter fits within a given scheme. Analys-
ing relationships between parameters may point future experimental research questions. For
example, if some reaction rate constants are correlated, they may be under-determined. There-
fore, future model development would benefit from additional, more directed data to better
constrain the correlated parameters. We use partial correlation as a measure of relationship
between parameters [19]. Briefly, partial correlation quantifies the degree of association
between two variables when the variance from a set of controlling variables is taken into
account. For example, in Scheme 1 the partial correlation between k; and k; would indicate
the relationship between these two rate constants when K;, and K, is accounted for.

Since structurally there is nothing to distinguish between the C and the N lobes for Schemes
4-6, we calculate the dissociation constant for the two binding reactions in Scheme 4 and for
the first binding reaction for both lobes in Scheme 5 and Scheme 6 and compare their values—
the one that has a lower Kp, value we call the C lobe and the one that has a higher value we call
the N lobe. This is to avoid what we call the C lobe being functionally the N lobe and vice
versa, which would result in artificially higher parameter spread or obscure parameter correla-
tions. We show the parameter pair plots for all six schemes in the S5 Appendix, along with
tables of individual reaction rate fits. We show partial correlation coefficients for all schemes
in Fig 10.

First of all, even though the data set we use is richer, as it includes both the dynamical and
the equilibrium data, there is still significant variance in our model parameter fits. For some
parameters the pairs can span 5 to 10 orders of magnitude (see S5 Appendix). Moreover, there
are significant correlations between multiple parameters in most schemes.

There is only one significant negative correlation for Scheme 1, between K|, and K, . This
correlation is most likely due to a limited number of degrees of freedom offered by this
scheme. Assuming that a calmodulin molecule has an overall dissociation constant that is a
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PLOS ONE | https://doi.org/10.1371/journal.pone.0318646 February 7, 2025 20/30


https://doi.org/10.1371/journal.pone.0318646.g010
https://doi.org/10.1371/journal.pone.0318646

PLOS ONE

Comparison of calcium-calmodulin kinetic schemes to a common data set

function of the dissociation constants of individual reactions, the dissociation constants of
individual reactions have to co-vary in order to maintain the same overall behaviour.

Reaction rate constants for Schemes 2 have 8/15 significant correlations which indicates a
high level of sloppiness in the system. Similarly to Scheme 1, given the high level of simplifica-
tion used in this scheme, in order to maintain the same overall model behaviour, parameters
have to co-vary. This is especially true for the dissociation constants, which are all are nega-
tively correlated. We also see that the on-rate for the first reaction is not correlated to any
other parameter and is therefore fairly well-determined.

Scheme 3 has proportionally fewer correlations than Scheme 2 (7 out of 28 parameters cor-
related). Most correlations are with the dissociation constant for the final Ca** binding event.
This can be explained by thinking about a general dissociation constant for calmodulin, which
would be a function of K, , K5, K, and K;, —since K}, is likely better constrained due to the
first binding event needing to be of particular speed to fit the rising/falling phase of the indi-
vidual time series, the other dissociation constants may co-vary more freely and balance each
other out. The on-rate for the first binding event is only correlated to one variable, which indi-
cates that it is quite well determined.

Scheme 4 shows the largest fraction of correlations of all the schemes (15/28). This is most
likely due to the quasi-steady state approximation which results in steady state reaction rate

constants {k*} . that provide a lot of room for sloppiness via products and quotients of the

full set of reaction rate constants {k;}: ,.

The point that model structure is of utmost importance in determining the levels of sloppi-
ness in the system is further reinforced by Scheme 5, where 10 out of 28 reaction rate constants
were correlated. More importantly, a significant number of correlations are within-lobe, for
example k; and k;—the first and second on-rate constants. There are also some cross-lobe cor-
relations, for example K, and K;, which are the second Ca®* binding events for C and N
lobes respectively.

Curiously, even though Scheme 6 is the most complex in terms of number of parameters
and number of states, it shows only six significant correlations between reaction rate constants.
Moreover, all correlations are within a lobe, rather than between lobes. More specifically, most
of them are for parameters in the C lobe, rather than the N lobe.

Necessary structural components of a calmodulin model

As shown in Table 1 and in Fig 6, there is a large gap in training performance between
Schemes 1-4 and Schemes 5-6. Even though training RMSE in both dynamical and equilib-
rium data significantly decreases going from Scheme 2 to Scheme 3, only from Scheme 5
onwards can both dynamics and equilibrium behaviour be captured well. There are two main
differences between Schemes 1,2,4 and and 5-6: independence of lobes and structural assump-
tion of co-operativity. Both Scheme 3 and Schemes 5-6 allow co-operativity (via reaction rate
constants) but do not assume it structurally. Schemes 3 does not allow for independence of
lobes, while Schemes 5-6 assume it structurally. In this section we provide an empirical argu-
ment that links model features to gaps in performance, focusing on event-based (as opposed to
binding site-based) and structurally co-operative (especially for the C lobe) schemes to model
calmodulin.

Assuming that the real calmodulin dynamics operate in a k-dimensional space, any model
capable of modeling the dynamics would have to have at least that many dimensions (along
with an appropriate structure). Calmodulin models framed in terms of events (fully abstracted
from binding sites) can operate at most in a four dimensional linear subspace (since rank of
such a network is four, see page 30 in [42]) of the five dimensional state space (see Scheme 3 in

PLOS ONE | https://doi.org/10.1371/journal.pone.0318646 February 7, 2025 21/30


https://doi.org/10.1371/journal.pone.0318646

PLOS ONE

Comparison of calcium-calmodulin kinetic schemes to a common data set

Fig 3). Therefore, an immediate conclusion of this may be that k > 4, real calmodulin dynam-
ics operate in a higher dimensional space than an event-based model allows for. However,
Scheme 5, which is able to model both calmodulin dynamics and equilibrium behaviour (see
Table 1), has rank 4 as well. The main difference between Schemes 3 and 5 are the indepen-
dence of the lobes: Scheme 5 contains two independent subnetworks (each of which is rank 2).
Therefore, based on our results, in order to accurately model both calmodulin dynamics and
equilibrium behaviour, two independent subnetworks (independence of lobes) is a necessary
model feature.

We next analyze whether a structural assumption of co-operativity, modelling the binding
of two Ca®" ions as a single event, within calmodulin lobes is reasonable. This is not the only
way of modelling co-operativity, but it results in models with a smaller state space vector and
therefore can be preferable computationally. Fractional calmodulin occupancy of the N and
the C lobes using a well performing model (Scheme 6 with parameters from Byrne et al. [13])
is shown in Fig 11 columns one and two. Starting with the dynamics of the partially occupied
N lobe, the model predicts around 20% of calmodulin molecules would have the first site occu-
pied, with a negligible fraction having the second site occupied. Moreover, the dynamics of
partially occupied sites in the N lobe do not show fast changes over the simulated time period,
so the quasi-steady state approximation would hold reasonably well. The dynamics of the C
lobe paint an opposite picture. It is immediately obvious that, due to its slower speed, the
quasi-steady state approximation (d[CaMC,]/dt = 0) does not hold for the C lobe as there are
calmodulin dynamics occurring over the whole simulated time of 35ms. Therefore, even
though it is a theoretically appealing tool to reduce the number of calmodulin states, the quasi-
steady state approximation is too inaccurate for the C lobe and results in significant errors in
either calmodulin dynamics or equilibrium behaviour.

Discussion

We used a rich dynamical [5] and equilibrium [11] data set to fit six calcium-calmodulin
kinetic schemes from scratch in order to compare to published models. Our comparison
resulted in a number of conclusions.First of all, the parameters we found, as opposed to the
published ones, resulted in significantly better fits on our dataset (Table 1). Secondly, we
showed that fully event-based schemes that do not utilize any features of the calmodulin physi-
cal structure (existence of C and N lobes) result in significantly worse generalization perfor-
mance as measured via AIC (Fig 8). Thirdly, we investigated calmodulin signal integration
properties by comparing our parameter fits to published reaction rate constants for different
calcium-calmodulin schemes. Some schemes showed no Ca** signal integration in response to
a stimulation protocol mimicking an empirically effective plasticity induction protocol
highlighting the importance using more detailed calmodulin schemes (Fig 9). Fourthly, we cal-
culated the partial correlations between our parameter fits (Fig 10). Partial correlations
revealed that even with our data set, that is richer than anything used before, some parameters
were correlated and therefore under-determined. Finally, we investigated the validity of the
quasi-steady state approximation used in [12] and by using Faas et al. [5] data we showed that
it is not accurate for the C lobe. We next discuss each of these conclusions individually.

First of all, model performance depends on the data which was used to parameterise it.
Even though usage of multiple data sources to fit a calmodulin model is not new and was done
in Pepke et al. [12], we are the first to combine a data source on calmodulin dynamics [5] and
a data source on calmodulin equilibrium behaviour [11]. We used this combined data set to fit
six different calcium-calmodulin kinetic schemes previously used in the literature. We then
compared our parameters to the published ones which revealed that a significant number of

PLOS ONE | https://doi.org/10.1371/journal.pone.0318646 February 7, 2025 22/30


https://doi.org/10.1371/journal.pone.0318646

PLOS ONE

Comparison of calcium-calmodulin kinetic schemes to a common data set

N lobe (fraction)

CaM + 0Ca

ko1 =2.75%x10°> M~'ms~*
KoiP = 33x10-¢ M

koz = 2.75%x10°> M—'ms~*
KozP = 229.88x10-° M

CaM + 1Ca
First site

ko1 = 2.75%x10° M~'ms~"*
KoiP = 33%x10-° M

ki3 = 5.072%x10°> M—'ms—’
K13 = 3.45%x10-° M

CaM + 1Ca
Second site

Koz =2.75%x10°> M~'ms~*
Ko2P = 229.88x10-° M

k23 = 5%10° M-'ms—*
K23 =0.5x10-° M

CaM + 2Ca

kiz = 5.072x10°> M—'ms~*

K13P=3.45%x10-° M

k23=5%10> M—'ms—*
K23P=0.5%10-¢ M

b
&
]

0.0

ko1 =2.75%x10> M~'ms—'
Ko1P = 18.5%10-° M

koz =2.75%x10°> M~'ms—*

N—

ko1 =2.75%x10°> M—'ms—"*
Ko1P = 18.5x10-° M

kis =3.71%x10°* M~'ms~*

| B — |

koz =2.75%x10> M~'ms—*
KozP = 116x10-° M

k23 =1.18%x10°> M~'ms—*
K2sP = 0.06%x10-° M

kis =3.71x10* M~'ms~'

Kis® =0.38x10-¢ M

k23 =1.18%x10° M—'ms—"*

K2sP = 0.06x10-° M

Koz = 116x10-° M K13 =0.38x10-° M

o
o
|

C lobe (fraction)

S—

35.00 0.16 1.00 500 35.00 0.16
logzo(t (mMs))

0.0 —

0.16 35.00

1.00 5.00
logao(t (Ms))

1.00 5.00
logao(t (Ms))

1.00 5.00 35.00 0.16

logio(t (Ms))
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the x axis is in log10 space to better show the initial dynamics.

https://doi.org/10.1371/journal.pone.0318646.9011
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calcium-calmodulin models used in the literature are parameterized sub-optimally (see

Table 1). Most published models (except Faas et al. [5]) have relied on either only equilibrium
data [11, 12, 43] or dynamical data obtained under significant methodological limitations—
such as dead time in stopped flow fluorimetry or presence of other biochemical species [9, 13].
Undoubtedly, it would be unfair to criticize past work for operating under the limitations of
the day, but that does not prevent models from becoming outdated (much as this work will be
one day). Therefore, an important contribution in this paper are the improved model parame-
ters for calcium-calmodulin models—the best performing parameter sets for each scheme are
given in Table 3 (see S5 Appendix for all 20 parameter sets for each scheme).

Secondly, our calmodulin model comparison uncovered discrepancies in performance
between different kinetic schemes. The complexity of calmodulin schemes we investigated ran-
ged from a model with three states and four parameters [9] to a model with eight states and
sixteen parameters [13]. There were only two schemes (5 and 6, consisting of eight and sixteen
parameters respectively) that were able to fit both sources of data well—both schemes mod-
elled calmodulin lobes separately and consisted of individual, rather than lumped, Ca®* bind-
ing reactions. Two further schemes (3 and 4), one of which modelled calmodulin lobes but not

Table 3. Our reaction rate sets that performed best on the test data and the published reaction rate constants from literature. All parameters are in log,, but are in
different units, depending on the context: for second order reactions the forward reaction rate constants are in M™'ms™, dissociation constants in M, for third order reac-
tions the forward reaction rate constants are in M*ms ™, dissociation constants in M.

Source

Our fits

Kim et al.

Our fits
Hayer and Bhalla

Qur fits

Shifman et al.

Our fits (S4)
Pepke et al.

Our fits

Faas et al.

Our fits
Byrne et al.

ky
541

ky
4.33
3.60

ky
4.50
4.90

ki
423
5.44

ky
8.10
3.60

ky
8.13
4.86

k
4.16
5.44

Parameters

Scheme 1 parameters

Ko, ks Ky,
-9.00 4.00 -9.00
-5.69 5.0 -4.96
Scheme 2 parameters
Ky, ks K, ks K,
-9.00 2.25 -9.00 4.52 -6.40
-6.00 3.56 -5.55 2.67 -4.68
Scheme 3 parameters
Ky, ks K, ks K, k, Ky,
-4.87 2.36 -7.83 4.33 -6.40 5.04 -6.19
-5.10 - -5.77 - -4.46 - -5.05
Scheme 4 parameters
K, ks K, ks K, ks K,
-5.56 5.98 -6.01 7.03 -4.13 6.29 -5.73
-5.00 4.00 -6.03 5.0 -4.60 5.18 -5.30
Scheme 5 parameters
K, ks K, ks K, k; K,
543 4.08 5.84 5.69 -4.00 6.32 -5.30
-4.60 4.40 -6.60 5.90 -3.70 7.50 6.10
Scheme 6 parameters
ks Ky, Ky, Ky, Ko, ki ks ks k; Ky, K, K, K,
2.31 -5.40 -4.38 -5.38 -6.40 3.03 6.65 5.22 7.58 -4.06 -5.20 -2.88 -6.38
5.07 -4.73 -3.94 -6.42 -7.22 5.44 5.44 5.71 5.70 -4.48 -5.46 -3.64 -6.31

Shifman et al. only contained the dissociation constants, so the forward reaction rate constants have no point of comparison. The same set of reaction rate constants

from Pepke et al. has been used in both Schemes 4 and 5, but they are only shown for Scheme 4 to avoid repetition and misleading as the implementation of Scheme 5 in

Faas et al. and Pepke et al. is slightly different, structurally kpepke = 2Kpqqs for some reaction rate constants.

https://doi.org/10.1371/journal.pone.0318646.t003
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individual binding, another which modelled individual binding but not lobes, were able to fit
dynamical data, but not equilibrium data, reasonably well. Both of these schemes consisted of
eight parameters, same as one of the schemes that fit both sources of data well, indicating that
the number of parameters is not the only factor necessary for an accurate calcium-calmodulin
model. Finally, two of the simplest schemes (Schemes 1 and 2) that did not model calmodulin
lobes and modelled Ca®* binding as lumped reactions were not able to fit either the dynamical
data or the equilibrium data well. These results, along with median AIC values (Table 2) lead
to the second contribution of this paper—Scheme 6 is the most accurate calcium-calmoduling
binding scheme and, compared to some simpler schemes, by a significant margin.

Thirdly, our results provide implications for models that include calmodulin. We investi-
gated the Ca®" integration properties of calmodulin in response to a realistic Ca>* spike train
(see Fig 9). The biggest practical difference between our reaction rate constants and published
ones is that there is a much more significant contribution from partially bound calmodulin
species, rather than fully bound calmodulin. As shown in Shifman et al. [11], CaMKII can be
activated by partially bound calmodulin. Moreover, calmodulin has many binding partners,
such as Calcineurin [44], Phosphodiesterase 1 [45], Adenylyl cyclases 1 and 8 [46], Neurogra-
nin [47, 48] and others [2]. Our results bring into question the accuracy of the results of publi-
cations where poorer performing schemes or parameterisations are used in larger models [9,
18,19, 21-23, 49-52]. There are many ways to compensate for the poor performance of cal-
modulin scheme or parameters. For example, it is possible that in some cases the lack of cal-
modulin sensitivity to Ca®" has been compensated for by an increased Ca** influx. However,
for example Scheme 1 is used in [23] in a dynamical setting, stimulating their large model with
many protein species with e. g. 180s of 5Hz or 1sec of 100Hz Ca* pulses. As our results show,
the calmodulin Ca>* integration properties are significantly different in this range when our
reaction rate constants are used. Our third contribution is support to the hypothesis that par-
tially bound calmodulin molecules arising in response to different Ca®" stimuli is an additional
dimension of signal encoding and propagation towards downstream pathways compared to
spatial/concentration based fully bound calmodulin signalling. Future investigations into
other calmodulin binding partners and their activation by partially bound calmodulin species
would be able to falsify this hypothesis.

Fourthly, our results on the partial correlations between reaction rate constants form our
fourth contribution—the call for more empirical investigations to test the distinctness of Ca**
binding sites within a calmodulin lobe. Generally with increasing model complexity there
were fewer correlations (except for Scheme 4, which had more than Scheme 3) between
parameters, indicating the parameters were better determined by data. However, even for the
most complex Scheme 6, there were some correlations between parameters within the same
lobe. These correlations could only be eliminated by additional information on the properties
of individual binding sites. Existing studies with mutations of individual calmodulin binding
sites only include equilibrium measurements [11, 53, 54]. Since equilibrium behaviour only
informs the ratio between the Ca** binding and unbinding rate constants, they are of limited
usefulness in fitting. The closest to the necessary measurements were done in Faas et al. [5]
where dynamical measurements with one inactive calmodulin lobe (either C or N) were made.

Finally, we investigated the validity of the quasi-steady state approximation used in [12].
Both Scheme 4, in which partially bound calmodulin species are not modelled due to the
quasi-steady state approximation, and Scheme 5, which models them, can model calmodulin
dynamics to a similar accuracy. The main difference between the schemes is in equilibrium
behaviour, where in Scheme 4 the modelling of dynamics impedes modelling of steady state
behaviour. These results imply that the quasi-steady state approximation used in Pepke et al.
[12] does not hold in the context of the Faas et al. [5] data, at least not without significant
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decrease in the accuracy of model behaviour. Ideally, an empirical measurement of the occu-
pancy of individual calmodulin sites in a dynamical setting would be definitive in falsifying
this approximation. Unfortunately, such data does not exist therefore we used Scheme 6 with
Byrne et al. [13] parameters (since they fit the data reasonably well) and simulated the frac-
tional occupancy of individual calmodulin sites under [5] experimental conditions (see Fig
11). These results support our fifth contribution—that the quasi-steady state approximation is
not valid and results in a significant loss of accuracy, especially for the C lobe.

Having discussed the contributions of this paper we now reflect on their wider implications
and practical reality of computational modelling. Suboptimal schemes or parameterisations of
calcium-calmodulin models used in large models are a difficult challenge. It is not necessarily
the case that the conclusions drawn from large models are made invalid. In large models it is
likely possible to correct for the model-data mismatch arising due to inaccurate calmodulin
behaviour via the parameters of reactions involving downstream molecules. This, however,
may result in a panoply of different mechanistic hypotheses if different publications correct for
these inaccuracies arising due to poor calmodulin models in different ways. A more co-ordi-
nated community effort with some agreed upon set of model tests (such as the FindSim plat-
form suggested by [55]), akin to continuous integration in GitHub, may be necessary to
resolve such issues in the future and build performant large models.

Limited computational resources and the difficulty of writing large models mean that in some
cases it may not be feasible to use a more detailed calmodulin scheme because of an exponential
explosion in the number of species to be modelled and the subsequent increase in the computa-
tional cost of simulations. Rule-based modelling [56] with its “don’t care, don’t write” approach
(only having to specify the features of a species which impact a reaction) allows models contain-
ing exponentially large numbers of complexes to be written down but may still be too computa-
tionally costly. Modeling is a complex task that involves many behind the scenes choices about
acceptable trade-offs. Our results provide the information about the trade-offs in model accuracy
being made when choosing one calmodulin scheme (or parameter set) over another.

In the final two paragraphs we discuss the methodology we used, the available alternatives
and limitations. We used NLME fitting algorithms implemented in Pumas . j1 to fit the reac-
tion rate constants of the different calcium-calmodulin kinetic schemes. There are many pub-
lished pipelines for fitting reaction rate constants of kinetic schemes. For example, Eriksson
etal. [57] propose and use a pipeline based on approximate Bayesian computation Markov
Chain Monte Carlo (ABC-MCMC, using R-vines). MCMC approaches are powerful tools
which benefit from inherently providing uncertainty on model parameters, rather than having
to run optimization on different random seeds as was done in this study. However, they are
generally much more computationally expensive. Another popular option is the Data2Dy-
namics toolbox [58], which streamlines construction of models of chemical reaction networks
and modeling of experiments while leveraging ODE solving capabilities of MATLAB, along
with stochastic optimization. However, there are few modern software packages that deal with
NLME models (which were required due to the nature of the dynamical data in Faas et al. [5]).
Of these packages Pumas . j1 is currently the most performant one [24]. This is in part
because Pumas . j1 is implemented in the Julia programming language which contains state
of the art ODE solving capabilities, outperforming its competitors in terms of speed by orders
of magnitude (see benchmarks.sciml.ai).

Even with a powerful computational pipeline, there are still many nuances, practical consid-
erations and limitations. For example, the length of the time series to which parameters are
being fit impacts the complexity of the loss surface—the more points, the more complex it is
[59]. Therefore, we downsampled the initial part of the dynamical data from Faas et al. [5] (see
S1 Fig). However, invariably, downsampling results in loss of signal, therefore more

PLOS ONE | https://doi.org/10.1371/journal.pone.0318646 February 7, 2025 26/30


http://benchmarks.sciml.ai
https://doi.org/10.1371/journal.pone.0318646

PLOS ONE

Comparison of calcium-calmodulin kinetic schemes to a common data set

performant downsampling techniques or multiple shooting based approaches may have
resulted in even better fits. Moreover, we simplified the Ca®" uncaging model used in [5] to
make parameter optimization more stable. Also, [5] used Pockels cell delay (PCD) as the inde-
pendent variable to predict the fraction of uncaged Ca** whereas we omitted this variable as it
did not perform as well in practice. More data on the relationship between PCD and Ca**
uncaging fraction would have allowed us to derive a better Ca®* uncaging model that poten-
tially could have improved model predictions with both published and our own reaction rate
constants. Finally, in order to prevent training failures due to numerical instabilities in ODE
solutions when using some schemes, we had to restrict the range of possible values taken by
their reaction rate constants. Usage of novel ODE solvers capable of handling stiff systems is a
potential avenue to remedy this limitation in future studies. Therefore, even with a more pow-
erful software pipeline, some trial and error and practical trade-offs were necessary to fit our
own parameters and efficiently and accurately compare different calmodulin models.

In conclusion, we believe that we have provided a number of important contributions that
advance calcium-calmodulin modelling. We conducted a data-driven evaluation of both cal-
cium-calmodulin kinetic schemes and parameter sets used in existing publications and showed
which schemes or parameter sets performed poorly. It may be argued that behaviour of single
molecules in large models matters less than the behaviour of the overall model. However, if
large models are to be useful in predicting the behaviour of real biological systems, the individ-
ual molecules and their accurate generalization performance are of utmost importance.
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