

CORRECTION

Correction: Microglia-secreted TNF- α affects differentiation efficiency and viability of pluripotent stem cell-derived human dopaminergic precursors

The *PLOS ONE* Staff

Notice of Republication

This article was republished on January 14, 2025, to correct errors in the affiliations, in Figure 2, and in the captions for Figures 2 and S1, that were introduced during the typesetting process. The publisher apologizes for these errors. Please download this article again to view the correct version. The originally published, uncorrected article and the republished, corrected articles are provided here for reference.

Supporting information

S1 File. Originally published, uncorrected article.
(PDF)

S2 File. Republished, corrected article.
(PDF)

Reference

1. Wenker SD, Farias MI, Gradaschi V, Garcia C, Beauquis J, Leal MC, et al. (2023) Microglia-secreted TNF- α affects differentiation efficiency and viability of pluripotent stem cell-derived human dopaminergic precursors. *PLoS ONE* 18(9): e0263021. <https://doi.org/10.1371/journal.pone.0263021>

OPEN ACCESS

Citation: The *PLOS ONE* Staff (2025) Correction: Microglia-secreted TNF- α affects differentiation efficiency and viability of pluripotent stem cell-derived human dopaminergic precursors. *PLoS ONE* 20(1): e0318359. <https://doi.org/10.1371/journal.pone.0318359>

Published: January 24, 2025

Copyright: © 2025 The PLOS ONE Staff. This is an open access article distributed under the terms of the [Creative Commons Attribution License](#), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.