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Abstract

Diabetic retinopathy, a retinal disorder resulting from diabetes mellitus, is a prominent cause

of visual degradation and loss among the global population. Therefore, the identification and

classification of diabetic retinopathy are of utmost importance in the clinical diagnosis and

therapy. Currently, these duties are extensively carried out by manual examination utilizing

the human visual system. Nevertheless, manual examination is sometimes arduous, time-

consuming, and prone to errors. Deep learning-based methods have recently demonstrated

encouraging results in several areas, such as image categorization and natural language

mining. The majority of deep learning techniques developed for medical image analysis rely

on convolutional modules to extract the inherent structure of images within a certain local

receptive field. Furthermore, transformer-based models have been utilized to tackle medical

image processing problems by capitalizing on global connections among distant pixels in

the images. Considering these analyses, this work presents a comprehensive deep learning

model that combines convolutional neural network and vision mamba models. This model is

designed to accurately identify and classify diabetic retinopathy lesions displayed in fundus

images. Furthermore, the vision mamba component incorporates the bidirectional state

space method and positional embedding to enable the location sensitivity of visual data

samples and meet the conditions for global relationship context. An evaluation of the sug-

gested method was carried out by comparison experiments between state-of-the-art algo-

rithms and the proposed methodology. Empirical findings demonstrate that the suggested

methodology surpasses the most advanced algorithms on the datasets that are accessible

openly. Hence, the suggested approach may be regarded as a helpful tool for therapeutic

processes.

Introduction

Type 2 diabetes mellitus is a well recognized and significant public health concern, projected

to impact over 500 million individuals worldwide by 2045 [1]. The condition has substantial

effects on several human organs, such as the eyes, heart, and kidneys. Diabetic retinopathy
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(DR) is well recognized as a common condition resulting from diabetes [2]. It has the potential

to adversely impact the blood vessels in the retina, leading to diminished vision or possibly

complete loss of eyesight [3]. Significant proportion of diabetic people would ultimately

acquire DR. Moreover, prompt identification and therapy might decelerate the progression of

DR. Therefore, the identification and classification of DR in its early stage becomes a crucial

job in clinical settings.

Fundus images reveal several structural abnormalities, including as hard exudate, soft exu-

date, hemorrhage, microaneurysm, and neovascularization, which indicate the development

phases of DR. DR lesion identification involves identifying several categories of lesions,

whereas DR grading is the assessment of the extent of DR in a retinal image. Both approaches

are crucial for the early detection and management of DR in clinical settings. The identifica-

tion and classification of these abnormalities now depend on manual examination [3–5]. How-

ever, manually identifying DR lesions is arduous, time-consuming, and prone to errors.

Furthermore, the implementation of manual examination challenges arise from the scarcity of

ophthalmologists in the less developed regions. Hence, it is imperative to provide more focus

to the automated diagnosis and grading of DR.

Over the past few decades, deep learning methods have demonstrated encouraging results

in several use cases, including as image categorization and natural language processing.

Numerous deep learning models have been specifically developed for the purpose of detecting

and evaluating DR. For example, Rajan and Sreejith [6] introduced the convolutional neural

network (CNN) as a method to extract different retinal characteristics such as blood vessels,

optic discs, and lesions. This enabled the detection of retinal disorders using fundus images.

The present work employed data augmentation techniques, including rotation and transition,

to extend the image samples. The study conducted by [7] utilized a CNN model to accurately

categorize retinal images as either normal or pathological. The proposed approach started by

enhancing the contrast of retinal images to more accurately depict different pathologies. Wang

et al. [8] employed five distinct CNN architectures for the purpose of disease detection and

classification. During the training process, all CNN models were trained to minimize a modi-

fied version of binary cross-entropy loss. This paper introduced a hybrid deep learning model,

which combined DenseNet [9] and ShuffleNet [10], to address the task of classifying and seg-

menting retinal blood vessels. The technique proposed by Subramaniam and Naganathan [11]

involved the integration of the active gradient deep CNN model with the red spider optimiza-

tion algorithm. Compared to our method, their work focused on the integration of optimiza-

tion algorithms, while our approach emphasizes structural innovation of the model and depth

of feature extraction. Pandey and Kumar [12] proposed a cascade network using lightweight

CNN and CNN Xception network to perform binary classification and multi-grading of DR

and diabetic macular edema (DME). Our model can surpass their cascade network in terms of

feature extraction and classification accuracy. Recently, Abushawish et al. [13] presented a sur-

vey of the evolution in deep learning models for DR detection, focusing on the transition from

machine learning to deep learning algorithms such as CNNs. Our work complements their

research by further enhancing CNNs by integrating vision mamba model to improve the accu-

racy of DR detection.

CNN-based models can offer robust feature extraction capabilities, operate efficiently due

to parameter sharing and sparse connectivity, and exhibit translational invariance, making

them highly effective for image processing tasks. However, they have limitations in capturing

global image dependencies, may struggle with transformations such as rotation and scaling,

require substantial computational resources, and depend heavily on large annotated datasets

for training, which can be a challenge in scenarios with limited data availability.
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Considerable efforts have been made to develop vision transformer (ViT) models specifi-

cally designed for the purpose of retinal image categorization. In their study, Bi et al. [14]

developed a hybrid framework that combines the global representation capability of ViT [15]

with the local representation extraction capability of traditional multiple instance learning

(MIL). The implementation of a multiple instance vision transformer (MIL-ViT) involved the

independent generation of semantic probability distributions by the vanilla ViT branch and

the MIL branch. A bag consistency loss was used to reduce the training error. The study con-

ducted by Halder [16] investigated the capacity of the ViT model to effectively capture com-

plex patterns that were essential for medical image classification and surpassed the

performance achieved in benchmark results. Compared to Halder’s work, our study not only

focuses on model performance but also on the interpretability and practical clinical application

of the model. Hemalakshmi et al. [17] introduced a hybrid deep learning model that combined

SqueezeNet [18] and ViT models. This model leveraged the specific strengths of SqueezeNet

and ViT to effectively capture both local and global features of medical images, resulting in

precise classification. Our model, while integrating these technologies, also introduces addi-

tional innovations such as adaptive feature fusion and multi-scale analysis to further improve

classification accuracy. Moreover, in their study, Leite and Danilo introduced a ViT-based

model called ViT-BRSET [19], which was designed to identify individuals with heightened

excavation of the optic nerve. Our model extends beyond ViT by introducing novel attention

mechanisms to improve the recognition of subtle pathological features.

ViT models have emerged as a powerful alternative to CNNs in the field of computer vision,

offering several advantages such as the ability to capture long-range dependencies and process

inputs of varying sizes, which can enhance their flexibility and potential for greater generaliza-

tion. They have demonstrated superior performance on standard datasets, showcasing their

effectiveness in image classification and other vision tasks. However, ViTs also came with sig-

nificant challenges, primarily due to their high computational and memory costs associated

with the self-attention mechanism, especially when dealing with high-resolution images. This

quadratic computing cost can be prohibitive for real-time applications and large-scale deploy-

ments. Additionally, ViTs often require substantial labeled data to achieve optimal perfor-

mance, which can be a limiting factor in certain scenarios.

In this work, we provide a new framework that combines CNN and vision mamba models

to effectively detect and grade DR in retinal images. The suggested vision mamba module is

notably influenced by the research findings in [20]. The present CNN module is designed to

extract the internal structure of each image by utilizing the local receptive field. The suggested

vision mamba approach is utilized to achieve global context modeling and location-aware

visual recognition. Therefore, the vision mamba module that is being suggested combines

both positional embedding and class token. It should be noted that the insertion of the posi-

tional token into the suggested architecture enables the provision of position information for

each image patch. Moreover, the vision mamba component utilizes the bidirectional state

space paradigm (SSM), which incorporates positional awareness through the aforementioned

positional token. Although the attention mechanism is not included in the suggested model,

our framework offers equivalent capacity to ViT while limiting the computational cost in a

sub-quadratic manner. In order to assess the suggested methodology, we performed compara-

tive analyses between cutting-edge techniques and our approach using publically accessible

datasets for both lesion categorization and DR quantification. Empirical findings of the sug-

gested approach illustrate the superiority of this study compared to the current leading meth-

ods in terms of a range of assessment criteria.

In general, the contributions of this study can be described as follows:
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• We introduce a pioneering pipeline that synergizes CNN with a vision mamba for the pre-

cise identification of DR lesions. This integration is innovative as it leverages the strengths of

CNNs in feature extraction and the efficiency of vision mamba in processing visual data.

• The vision mamba component, which is central to the proposed pipeline, demonstrates a

performance parity with ViT in terms of accuracy but with a reduction in computational

complexity. This advancement is crucial for applications where resource constraints are

prevalent, such as in mobile health diagnostics.

• The experimental findings indicate that the proposed model surpasses existing state-of-the-

art algorithms in both the detection and grading of DR. This achievement is pivotal as early

and accurate diagnosis is essential for timely intervention and can potentially prevent vision

loss among diabetic patients.

To note that the computational complexity of ViT’s self-attention mechanism is a quadratic

function of the sequence length M, i.e., 4MD2 + 2M2D. In contrast, the computational com-

plexity of the SSM in vision mamba is a linear function of the sequence length M, i.e., 3M(2D)

N + M(2D)N, where N is a fixed parameter, defaulting to 16. This indicates that for long

sequences, vision mamba’s computational complexity is lower than that of ViT.

Methodology

Overall architecture of the proposed model

This work introduced a joint approach of CNN and vision mamba to tackle the tasks of detect-

ing and evaluating DR. The overall structure of the proposed model is illustrated as Fig 1.

As shown in the Fig 1, the process begins with the input image, which is a retinal scan, being

fed into the STEM module of the Inception-ResNet-V2 architecture [21]. This module serves as

the initial feature extractor, leveraging the strengths of the Inception-ResNet-V2 design to cap-

ture a rich set of features from the image. The Inception-ResNet-V2 is a well-established CNN

architecture that combines the Inception module’s ability to capture features at multiple scales

with the ResNet’s residual connections to ease the training process and improve performance.

Following the STEM module, the feature maps are processed through a series of ResNet-A and

ResNet-B blocks, which further refine the features and enhance the model’s ability to learn

Fig 1. The pipeline of the proposed CNN-Transformer model. MLP denotes multi-layer perceptron.

https://doi.org/10.1371/journal.pone.0318264.g001
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complex patterns. The Reduction-A and Reduction-B layers are then applied to downsample

the feature maps, reducing their spatial dimensions while increasing the depth, which is crucial

for capturing more abstract representations of the data. The output from the Inception-ResNet-

V2 feature extractor is then split into two paths. One path leads to the generation of a feature

map, which is a two-dimensional representation of the features extracted from the input image.

This feature map is then flattened and linearly projected to create a one-dimensional feature

vector. This vector is combined with positional embeddings and a class token, which are critical

for providing the model with information about the order of the features and the task of classifi-

cation, respectively. The other path from the Inception-ResNet-V2 leads directly to the Vision

Mamba model. The Vision Mamba is a transformer-based architecture that is designed to pro-

cess the sequence of features extracted by the CNN. It utilizes self-attention mechanisms to

weigh the importance of different features and their relationships within the sequence, allowing

the model to focus on the most relevant features for the task at hand. Finally, the processed fea-

tures from the Vision Mamba are fed into a Multilayer Perceptron (MLP) for classification. The

MLP serves as the final classifier, using the features and their relationships to make a decision

on the presence and severity of DR lesions in the input image.

This joint approach of CNN and Vision Mamba leverages the strengths of both architec-

tures: the CNN’s ability to extract local features and the transformer’s capacity to model global

dependencies and context. The integration of them is a robust framework for DR lesion detec-

tion and grading that has the potential to improve the accuracy and efficiency of automated

DR screening systems.

Stem module

In order to extract features from retinal images, the CNN model Inception-ResNet-V2

employs a sophisticated stem module, as illustrated in Fig 2. This module is designed to effi-

ciently capture a wide range of features from the input images, which is crucial for the subse-

quent layers to learn complex patterns.

The stem module begins with a standard 3 × 3 convolutional layer that serves as the initial

feature extractor. This is followed by two additional 3 × 3 convolutional layers, which further

refine the feature maps by increasing the depth and complexity of the features. The use of mul-

tiple 3 × 3 convolutions allows the network to capture spatial hierarchies in the data. After the

initial convolutional layers, the stem module incorporates a Max-Pooling layer. This operation

reduces the spatial dimensions of the feature maps while retaining the most significant fea-

tures, thus enhancing the model’s ability to generalize and reducing the computational load for

subsequent layers. The diagram also shows the use of concatenation layers, which combine the

Fig 2. The stem module in the proposed Inception-Resnet-V2 model.

https://doi.org/10.1371/journal.pone.0318264.g002
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feature maps from different branches of the network. This technique allows the model to inte-

grate features extracted at various scales and resolutions, providing a richer representation of

the input data. Furthermore, the stem module includes a combination of 1 × 1 and 5 × 5 con-

volutional layers. The 1 × 1 convolutions are used to linearly combine the features and reduce

the dimensionality, while the 5 × 5 convolutions enable the model to capture larger receptive

fields, which is beneficial for understanding the context within the retinal images. The final

concatenation layer in the stem module aggregates the features from all the previous layers,

resulting in a comprehensive set of features that are then passed on to the deeper layers of the

Inception-ResNet-V2 model. This comprehensive feature set is essential for the model to effec-

tively perform tasks such as detecting and classifying various pathologies in retinal images.

Overall, the stem module of Inception-ResNet-V2 is a critical component that sets the foun-

dation for the model’s feature extraction capabilities, enabling it to effectively process and ana-

lyze retinal images.

Vision mamba

This study presents the vision mamba model [20] for the purpose of lesion categorization and

DR grading in retinal images. The model is illustrated in Fig 3.

The input of the proposed vision mamba is derived from the output of the Inception-

Resnet-v2 model and is partitioned into image patches of linear embeddings, in a sequential

manner, as illustrated in Fig 3. The vision mamba is a deep learning architecture that utilizes

the SSM mechanism to optimally handle lengthy sequence data, particularly for computer

vision applications. Vision mamba enhances the efficiency of image data processing by using

the bidirectional SSM architecture, as seen in Fig 3. This architecture provides a notable bene-

fit when handling high-resolution images, in comparison to transformer-based deep learning

models. Vision mamba is primarily characterized by its use of positional embeddings to label

image sequences and compress visual representations. Furthermore, the architecture of vision

mamba draws inspiration from the seminal Kalman filter model [22], known for its ability to

capture long-range dependencies and its potential for parallel training. It positions vision

mamba as a highly promising substitute for transformers in the domain of machine vision.

Results

Dataset

The suggested vision mamba model was intentionally developed utilizing well-known public

datasets for grading DR, namely the APTOS2019 database [23] and the Messidor dataset [24].

Fig 3. The structures of the introduced vision mamba model. SSM denotes state space model introduced in the work

of [20].

https://doi.org/10.1371/journal.pone.0318264.g003
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Each of the 3,662 fundus images in the APTOS2019 database is tagged with one of the five clas-

ses of DR, as specified in Table 1. Pursuant to established standards [25–29], we utilized a

meticulous 10-fold cross-validation methodology to evaluate the effectiveness of our model on

the APTOS2019 dataset.

In contrast, the Messidor dataset consists of 1,200 fundus images that have been categorized

with DR grading and DME annotations, as described in Table 1. Using a 10-fold cross-valida-

tion technique, we conducted a binary classification job on images categorized as DR grades 0

and 1 from the Messidor dataset, in order to provide a fair comparison with current research

[27, 30]. Furthermore, we utilized the whole Messidor dataset to improve our model for the

drug resistance grading job, thereby increasing its practicality and resilience in clinical

settings.

In this study, we have meticulously partitioned the entire dataset to ensure that the training

(80%) and testing set (70%) are devoid of any overlapping patient data, which is a critical step

in preventing data leakage. We acknowledge the importance of maintaining the sanctity of our

model’s evaluation process and have thus implemented stringent measures to preclude the

inclusion of the same patient data in both sets. This meticulous exclusion is pivotal in uphold-

ing the impartiality of our model’s performance assessment and ensures that the generalization

capabilities of our model are accurately represented.

To note that there is potential for bias introduced by the imbalance in diabetic retinopathy

grades within the used datasets. To mitigate this, we have implemented several strategies to

ensure the robustness and fairness of our model’s performance, including:

• Class Weight Adjustment: We have incorporated class weight adjustments during model

training to counteract the disproportionate representation of classes, thereby enhancing the

model’s sensitivity to minority classes.

• Comprehensive Evaluation Metrics: We have selected a suite of evaluation metrics that are

less sensitive to class imbalance, including precision, recall, F1-score, and AUC-ROC, to pro-

vide a balanced assessment of our model’s performance across all classes.

• Data Augmentation: To enrich the dataset and reduce the impact of class imbalance, we

have applied data augmentation techniques to the minority classes, creating a more diverse

and representative training set.

Implementation details

The suggested model was pre-trained using the extensive ImageNet ISLVRC2012 dataset,

which is a comprehensive collection of natural photos available at https://www.image-net.org/

challenges/LSVRC/index.php. This dataset consists of more than 120 million photos that

Table 1. The distribution of APTOS2019 and Messidor datasets.

Class No. of images in APTOS2019 No. of images in Messidor

DR 0 1,805 546

DR 1 370 153

DR 2 999 247

DR 3 193 254

DR 4 295 -

Total 3,662 1,200

https://doi.org/10.1371/journal.pone.0318264.t001
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cover 1000 different categories. In order to conform to the specifications of the vision mamba

architecture, we adjusted the dimensions of the images from the ImageNet ISLVRC2012 data-

set to a consistent resolution of 256 × 256 pixels throughout the pre-training phase. The ini-

tialization of our model differs from that of the original ViT described in [31], as we

eliminated the use of pre-trained weight parameters. Instead of using the conventional random

initialization approach, we choose to initialize the weight parameters of our model based on a

particular iteration of the ImageNet dataset [32].

In the pre-training phase of our model, we have strategically formulated a multi-classifica-

tion problem, optimizing the training process with a focus on the binary cross-entropy loss

function. This loss function, as represented by Eq (1), is pivotal in ensuring that our model is

finely tuned to the nuances of natural image data, specifically from the ImageNet ISLVRC2012

dataset. The binary cross-entropy loss is particularly effective for binary classification tasks,

where it measures the dissimilarity between the true binary label and the predicted probability,

thus driving the model to improve its predictions during training.

To enhance the training process, we have adopted several optimization strategies. Firstly,

we have utilized the Inception-ResNet-V2 architecture, excluding the last three layers to adapt

it to our specific requirements. This architecture is known for its efficiency in feature extrac-

tion, which is crucial for the initial phase of our model’s training. Secondly, we have incorpo-

rated the Vision Mamba model, which builds upon the features extracted by the Inception-

ResNet-V2. The Vision Mamba model, as described in [20], introduces a transformer-based

approach that further refines the feature representation and enhances the model’s ability to

capture complex patterns.

Lossðy; y0Þ ¼
XC

i¼1

yilogðy
0

iÞ; ð1Þ

where y and y0 denote the ground-truth label and prediction of the label, respectively.

Additionally, we have implemented a training strategy that includes a careful selection of

hyperparameters, such as learning rate, batch size, and the number of epochs. The learning

rate determines the step size at each iteration while moving toward a minimum of a loss func-

tion, and we have chosen an optimal value that allows for effective convergence without caus-

ing divergence. The batch size and the number of epochs were selected based on early

stopping to prevent overfitting while ensuring the model trains until convergence. The specific

hyper-parameters used in our suggested vision mamba model are thoroughly described in

Table 2. In order to handle the changing dimensions of image patches, we employ interpola-

tion to estimate the position embeddings for each patch. By providing suitable spatial context,

this interpolation approach guarantees that the model can efficiently handle a wide range of

Table 2. The leveraged hyper-parameters values of the proposed approach.

Parameter Setting

Batch size 8

classes 5 (DR grading) or 2 (Binary)

Image resolution 256 × 256

optimizer Adam

Learning rate 1e-6

Patch size 16

Depth 12

Epochs 200

https://doi.org/10.1371/journal.pone.0318264.t002
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image patches, which is crucial for the transformer’s attention mechanism to operate well.

Equation Eq (1) is the supervisory signal for both the feature extractor and the classification

module in the context of retinal image classification, where our model is trained using the

cross-entropy loss function. An essential role of this loss function is to direct the model in

acquiring discriminative characteristics that are crucial for precise categorization of retinal

disorders.

Throughout the training process, a rigorous set of data augmentation methods is used to

improve the resilience and applicability of the model. In order to diversity the input data and

replicate various views and transformations that the model may experience in real-world cir-

cumstances, a range of operations such as rotation, horizontal flipping, and cropping are

employed. The PyTorch framework [33] is well recognized for its adaptability and effectiveness

in deep learning algorithms, and it greatly facilitates the building and training of the model.

The training infrastructure is enhanced by the inclusion of 4 NVIDIA Tesla V100 GPUs,

which offer the requisite computing capabilities for supporting the intricate processes associ-

ated with neural network training. On average, the model analyzes each image within 420 mil-

liseconds, guaranteeing a prompt and effective execution of the training pipeline.

In the context of our experimental analysis, a comprehensive suite of metrics is meticu-

lously utilized to rigorously assess the efficacy of the model under scrutiny. This evaluation

encompasses the Area Under the Receiver Operating Characteristic Curve (AUC-ROC), a piv-

otal measure that delineates the model’s capacity to discern between disparate classes. Concur-

rently, the metric of Accuracy (Acc) is employed to quantify the ratio of predictions that align

with the ground truth. Furthermore, Sensitivity, also known as the True Positive Rate (TPR), is

incorporated to appraise the model’s proficiency in accurately identifying instances of the pos-

itive class. Conversely, Specificity, or the True Negative Rate (TNR), is measured to ascertain

the model’s aptitude in correctly identifying instances of the negative class. Precision, which is

the proportion of true positive predictions relative to all positive predictions, is also considered

to evaluate the model’s precision in identifying the positive class. Recall, synonymous with

Sensitivity, is another metric that gauges the model’s effectiveness in capturing all instances of

the positive class. Lastly, the F1 score, which is derived as the harmonic mean of Precision and

Recall, is deployed as a composite metric that harmoniously integrates the dual aspects of Pre-

cision and Recall, thereby providing a balanced assessment of the model’s performance.

Acc ¼
TP þ TN

TP þ TN þ FPþ FN
; ð2Þ

Sensitivity ¼
TP

TP þ FN
; ð3Þ

Specificity ¼
TN

TN þ FP
: ð4Þ

Precision ¼
TP

TP þ FP
; ð5Þ

Recall ¼
TP

TPþ FN
; ð6Þ

F1 ¼ 2∗
Precision� Recall
Precisionþ Recall

; ð7Þ
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The terms TP (True Positive), TN (True Negative), FP (False Positive), and FN (False Nega-

tive) have distinct conceptual definitions: The variable TP represents the count of occurrences

in which the model accurately predicted the positive class. The variable TN denotes the count

of instances in which the model accurately predicted the negative class. On the other hand, FP

represents the count of instances in which the model erroneously predicted the positive class

when it was actually negative. Lastly, FN represents the count of instances in which the model

erroneously predicted the negative class when it was actually positive.

Furthermore, two additional measures are included to enhance comprehension of the mod-

el’s performance: The Weighted F1 Score (wF1) is a specific form of the F1 score that considers

the distribution of the classes. It computes the F1 score for each class and then averages them,

taking into account the weight assigned to each class based on the number of instances. This is

especially advantageous when working with imbalanced datasets, since it guarantees that the

performance on the minority class is not eclipsed by the majority class. Weighted Kappa

(wKappa) is a metric of inter-rater agreement that takes into consideration the confounding

effect of chance agreement. The weighted Kappa applies this notion to the classification job by

quantifying the concordance between the predicted labels and the actual labels, taking into

account the class distribution. It is especially beneficial in the field of medical image analysis,

as it may offer valuable assessment of the model’s predictions in terms of their consistency and

dependability.

Experimental results

Lesion detection. In order to juxtapose the efficacy of the proposed methodology with the

prevailing deep learning paradigms, a comparative analysis was conducted, encompassing

both CNN and transformer-based architectures. This comparative evaluation included a spec-

trum of models such as U-Net [34], Mask R-CNN [35], ExtremeNet [36], TensorMask [37],

Visual Transformer [31], ViT [38], Multi-scale Vision Transformer (MViT) [39], Pyramid

Vision Transformer (PVT) [40], Perception Transformer (PiT) [41], and Swin Transformer

[42]. The comparative results, as delineated in Table 3, reveal that the proposed approach

exhibits a commendable performance when juxtaposed with the extant state-of-the-art

techniques.

The comparative analysis was conducted utilizing a diverse array of performance metrics to

ensure a holistic and rigorous assessment. The results, as depicted in Table 3, demonstrate that

the proposed method has achieved a notably superior performance across a multitude of

Table 3. Lesion detection comparison between the state-of-the-arts and the proposed approach on the Messidor dataset.

Model AUC Acc F1 Recall Precision

U-Net [34] 0.817 0.809 0.804 0.812 0.821

Mask R-CNN [35] 0.801 0.825 0.820 0.819 0.811

ExtremeNet [36] 0.794 0.815 0.818 0.803 0.808

TensorMask [37] 0.814 0.827 0.805 0.817 0.812

Visual Transformer [43] 0.819 0.829 0.822 0.818 0821

ViT [38] 0.823 0.834 0.826 0.831 0.822

MViT [39] 0.837 0.841 0.835 0.816 0.818

PVT [40] 0.845 0.862 0.853 0.837 0.841

PiT [41] 0.869 0.874 0.868 0.872 0.855

Swin Transformer [42] 0.884 0.892 0.876 0.886 0.871

The proposed approach 0.902 0.914 0.907 0.909 0.904

https://doi.org/10.1371/journal.pone.0318264.t003
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evaluation metrics. In particular, it has surpassed current state-of-the-art methodologies with

respect to AUC, Acc, F1 Score, Recall, and Precision. These metrics are pivotal in elucidating

the classification prowess of the models, offering a nuanced insight into their predictive capa-

bilities. To note that the statistical analysis has revealed that the differences in performance

metrics between the proposed approach and the state-of-the-art methods are statistically sig-

nificant (p< 0.05).

Meanwhile, the loss and accuracy curves of both training and testing processes for the pro-

posed approach on the Messidor dataset are provided in Fig 4.

Furthermore, the confusion matrix pertaining to the DR detection task, employing the pro-

posed approach, is presented in Fig 5. This matrix serves as a critical instrument for visualizing

the performance of the classification model, particularly in discerning the true positive, true

negative, false positive, and false negative predictions, thereby providing a comprehensive

overview of the model’s diagnostic accuracy.

These results in Fig 5 indicate that the model performs well in identifying both healthy and

DR cases, with high accuracy, precision, recall, and F1 scores. However, it is also important to

note that despite the model’s overall promising performance, a small number of healthy indi-

viduals were incorrectly predicted as DR (53 false positives) and a small number of DR individ-

uals were incorrectly predicted as healthy (50 false negatives).

DR grading. We performed a set of comparative experiments on the APTOS2019 dataset

to evaluate the effectiveness of our method in DR grading. These tests involved comparing our

technique with many established methods. The results of these compared trials, as comprehen-

sively described in Table 4, demonstrate that the suggested methodology surpasses the current

cutting-edge methods in several assessment criteria. The system we propose has a distinct

superiority in the key measures, namely Acc, wF1, and wKappa scores. In the context of DR

Fig 4. The loss and accuracy curves of both training and testing processes for the proposed approach on the

Messidor dataset.

https://doi.org/10.1371/journal.pone.0318264.g004
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grading, these results highlight the resilience and efficacy of our suggested approach. By dem-

onstrating superior performance compared to a wide range of advanced algorithms, this study

positions itself as a prominent method for grading DR, providing possible advantages for the

early identification and treatment of this common eye disease.

The estimated values of Acc, wF1, and wKappa obtained by the suggested method demon-

strate that our model is very efficient in evaluating DR, even when there is an imbalance in

class distribution. An imbalance in class distribution can frequently result in a model that

exhibits bias towards the dominant class, therefore leading to worse performance for the

minority classes. Nevertheless, the performance of our model indicates its ability to precisely

assess both prevalent and uncommon DR grades, a critical aspect for timely identification and

suitable clinical intervention. One notable feature of our proposed method is its capability to

effectively address unbalanced classification problems, which are frequently encountered in

Fig 5. The confusion matrix for DR and healthy classification on the Messidor dataset.

https://doi.org/10.1371/journal.pone.0318264.g005

Table 4. DR grading comparison between the state-of-the-arts and the proposed approach.

Model AUC Acc wF1 wKappa

U-Net [34] 0.805 0.814 0.823 0.817

Mask R-CNN [35] 0.822 0.836 0.845 0.831

ExtremeNet [36] 0.854 0.848 0.842 0.857

TensorMask [37] 0.871 0.852 0.851 0.843

Visual Transformer [43] 0.903 0.856 0.859 0.862

ViT [38] 0.911 0.876 0.869 0.878

MViT [39] 0.933 0.882 0.874 0.895

PVT [40] 0.958 0.891 0.897 0.901

PiT [41] 0.971 0.897 0.904 0.908

Swin Transformer [42] 0.982 0.902 0.894 0.917

The proposed approach 0.985 0.906 0.903 0.926

https://doi.org/10.1371/journal.pone.0318264.t004
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real-world applications such as medical image analysis. Our model showcases its potential rele-

vance in practical applications by delivering precise and dependable predictions for all grades

of DR. This enables better-informed therapeutic decisions and enhanced patient outcomes. To

note that the statistical analysis has revealed that the differences in performance metrics

between the proposed approach and the state-of-the-art methods are statistically significant

(p< 0.05).

Meanwhile, the loss and accuracy curves of both training and testing processes for the pro-

posed approach on the APTOS2019 dataset are provided in Fig 6.

The training and testing curves for the proposed DR grading approach exhibit a rapid

decline in loss and a corresponding increase in accuracy, both stabilizing after approximately

100 epochs. The training curves indicate a model that has converged with high accuracy, while

the testing curves, although slightly higher in loss and slightly lower in accuracy, demonstrate

the model’s robust generalization capabilities. This suggests that while the model performs

exceptionally well on the training set, it also maintains a high level of accuracy on the test set,

albeit with a hint of overfitting as indicated by the slight discrepancy between the two sets’ per-

formance metrics.

Furthermore, the confusion matrix for the DR grading job calculated using the suggested

method can be seen in Fig 7.

The confusion matrix as shown in Fig 7 shows the number of instances for each actual DR

grade (Ground Truth) that were predicted to be each of the possible grades (Predicted label):

DR0: The model correctly predicted 1717 instances as DR0 (True Negatives for DR0). How-

ever, it misclassified 30 instances of DR1, 27 of DR2, 18 of DR3, and 13 of DR4 as DR0

(False Negatives for those grades, respectively).

Fig 6. The loss and accuracy curves of both training and testing processes for the proposed approach on the

APTOS2019 dataset.

https://doi.org/10.1371/journal.pone.0318264.g006
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DR1: For DR1, the model correctly predicted 311 instances (True Positives for DR1). It had 31

misclassifications from DR0, 12 from DR2, 8 from DR3, and 8 from DR4.

DR2: The model accurately predicted 915 instances as DR2 (True Positives for DR2), which

is a strong performance for this grade. It had 25 misclassifications from DR0, 14 from DR1,

9 from DR3, and 36 from DR4.

DR3: For DR3, the model correctly predicted 150 instances (True Positives for DR3). It had 22

misclassifications from DR0, 8 from DR1, 13 from DR2, and none from DR4.

DR4: The model correctly predicted 228 instances as DR4 (True Positives for DR4). It had 10

misclassifications from DR0, 7 from DR1, 32 from DR2, and 18 from DR3.

Moreover, we demonstrate the fundus images from the datasets used by the proposed

approach. The images showcase the progression from DR 0, DR1, DR 2, DR 3, and DR 4 (as

shown in Fig 8). Each image has been meticulously selected to represent the typical cases of

DR grading within the datasets. These images not only exhibit the capability of the CNN-Vi-

sion Mamba model in identifying and classifying different levels of DR but also visually attest

to the model’s accuracy and reliability when dealing with actual fundus images.

Ablation study

The performance of the suggested technique was evaluated by an ablation study, which

involved pre-training on either ImageNet ISLVRC or a combination of ImageNet ISLVRC and

RFMiD. Furthermore, we assessed the suggested model using various combinations of the

embedding dimension for the newly presented vision mamba. It should be noted that the abla-

tion experiments were conducted using the APTOS2019 and Messidor datasets. Our chosen

metrics for the multi-classification DR grading job in the APTOS2019 dataset were AUC, Acc,

wF1, and wKappa. To assess the performance of DR detection in the Messidor dataset, we

employed the metrics of AUC, Acc, F1 score, Recall, and Precision. The results of the ablation

experiments are displayed in Tables 5 and 6.

Fig 7. The confusion matrix for DR grading on the APTOS2019 dataset by using the proposed approach.

https://doi.org/10.1371/journal.pone.0318264.g007
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Discussion. The present work underscores the importance of the class token in vision

algorithms, which traditionally may overlook the wealth of information embedded in individ-

ual image patches. Each patch, rich in relative information, holds the potential to enhance clas-

sification accuracy when adequately leveraged. In the context of clinical diagnostics, where

lesions can be ubiquitous within retinal images, the feature representation of the class token in

conventional ViTs could be enhanced by incorporating contextual information from these

image patches.

Our findings reveal that the positional information preserved in each image patch is crucial,

especially considering the origins of transformers in sequential data processing. This positional

Fig 8. The fundus images in the dataset using by the proposed approach. (Top) DR 0; (Middle Left) DR1; (Center)

DR 2; (Middle Right) DR 3; (Bottom) DR 5.

https://doi.org/10.1371/journal.pone.0318264.g008

Table 5. Outcome of the ablation study on the Messidor dataset.

Combination DR Detection

Pre-train Heads AUC Acc F1 Recall Precision

ImageNet ISLVRC 128 0.875 0.872 0.886 0.878 0.891

ImageNet ISLVRC 256 0.879 0.889 0.892 0.880 0.899

ImageNet+RFMiD 128 0.897 0.905 0.901 0.898 0.908

ImageNet+RFMiD 256 0.902 0.914 0.911 0.908 0.912

https://doi.org/10.1371/journal.pone.0318264.t005

Table 6. Outcome of the ablation study on the APTOS2019 dataset.

Combination DR Grading

Pre-train Heads AUC Acc wF1 wKappa

ImageNet ISLVRC 128 0.916 0.883 0.885 0.905

ImageNet ISLVRC 256 0.938 0.891 0.892 0.916

ImageNet +RFMiD 128 0.959 0.903 0.898 0.918

ImageNet+RFMiD 256 0.985 0.907 0.903 0.926

https://doi.org/10.1371/journal.pone.0318264.t006
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awareness allows our model to maintain the global context of the image, which is paramount

for accurate lesion detection in medical imaging. In addition, the incorporation of softmax

and pooling operations into the self-attention module, as suggested, is not only pivotal for

unveiling the global receptive field but also for optimizing computational efficiency. This inno-

vative approach addresses the trade-off between the expressive capacity required for complex

pattern recognition and the computational complexity inherent in the attention mechanism,

which is particularly relevant in resource-constrained clinical settings. Empirical results have

demonstrated that our proposed CNN-Vision Mamba model excels in capturing feature

embeddings and reliably detecting global interconnections within retinal images. This capabil-

ity is transformative for the comprehensive mapping of features, which is indispensable for the

identification of abnormalities. The simplified model framework presented in this work is not

only compatible with various ViT variants but also offers a modular integration option,

enhancing its applicability and flexibility in diverse clinical scenarios.

However, we acknowledge the inherent limitations of this study. The performance of deep

learning models is influenced by the dataset size, with the number of images being directly

proportional to model outcomes. Therefore, expanding the dataset could potentially enhance

model generalization and robustness. Additionally, our evaluation criteria, while standard,

may benefit from a broader scope. Incorporating a wider range of variables could provide a

more nuanced assessment of model performance, particularly in capturing the subtleties of

retinal pathologies. Finally, we acknowledge that while the proposed CNN-Vision Mamba

model demonstrates excellence in capturing feature embeddings and detecting global inter-

connections within retinal images, there are limitations that must be considered for real-world

deployment. For instance, the model’s reliance on high-quality, positional information may be

challenged by variations in image acquisition across different clinical settings. Additionally,

while we have optimized for computational efficiency, the practical constraints of clinical envi-

ronments, such as the availability of processing power and memory, may impact the model’s

scalability and speed of execution.

Conclusion

In addressing the intricate challenge of classifying retinal imagery, this study introduces an

innovative attention mechanism seamlessly integrated into the conventional ViT framework.

The research endeavor focuses on the exploration of the synergistic potential of linear and soft-

max attention modules within the context of retinal lesion identification. While CNNs have

garnered considerable acclaim for their prowess in image classification by unearthing intrinsic

properties of images through the emphasis on local features, they are inherently limited in

their ability to capture the broader contextual information. Conversely, ViTs, by leveraging

feature embeddings derived from CNNs, are adept at encapsulating the global contextual

nuances of the imagery. The proposed hybrid model, following a pre-training regimen on a

vast corpus of natural images and subsequent fine-tuning with specialized retinal image data-

sets, has evinced a remarkable proficiency in the detection of retinal lesions. This model has

demonstrated a superior performance when compared to the prevailing CNNs and ViTs,

thereby underscoring its efficacy in the domain of retinal image analysis.

As we chart the course for future research, we are poised to delve into the realm of diverse

backbone networks as potential feature extractors, and to scrutinize an array of classification

algorithms. Given the auspicious outcomes garnered in the realm of retinal image analysis, the

ambition is to extend the applicability of the proposed architectural paradigm to encompass a

wider spectrum of image classification tasks. This expansion is anticipated to further validate

the versatility and robustness of the model in diverse imaging contexts.
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on a publicly distributed image database: The messidor database, 2014.

25. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, 2016 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR) (2015) 770–778.

26. A. Rakhlin, Diabetic retinopathy detection through integration of deep learning classification framework,

bioRxiv (2017).

27. Li X., Hu X., Yu L., Zhu L., Fu C.-W., Heng P.-A., Canet: Cross-disease attention network for joint dia-

betic retinopathy and diabetic macular edema grading, IEEE Transactions on Medical Imaging 39

(2019) 1483–1493. https://doi.org/10.1109/TMI.2019.2951844 PMID: 31714219

28. S. Liu, L. Gong, K. Ma, Y. Zheng, Green: a graph residual re-ranking network for grading diabetic reti-

nopathy, in: MICCAI, 2020.

29. S. Yu, K. Ma, Q. Bi, C. Bian, M. Ning, N. He, et al, Mil-vt: Multiple instance learning enhanced vision

transformer for fundus image classification, in: International Conference on Medical Image Computing

and Computer-Assisted Intervention, 2021.

30. Luo L., Xue D., Feng X., Automatic diabetic retinopathy grading via self-knowledge distillation, Electron-

ics (2020). https://doi.org/10.3390/electronics9091337

31. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, et al, An image is

worth 16x16 words: Transformers for image recognition at scale, CoRR abs/2010.11929 (2020).

arXiv:2010.11929. URL https://arxiv.org/abs/2010.11929

32. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Imagenet: A large-scale hierarchical image data-

base, 2009 IEEE Conference on Computer Vision and Pattern Recognition (2009) 248–255.

33. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, et al, Pytorch: An imperative style,

high-performance deep learning library, in: Neural Information Processing Systems, 2019.

PLOS ONE Identification of retinal lesion

PLOS ONE | https://doi.org/10.1371/journal.pone.0318264 January 28, 2025 18 / 19

https://doi.org/10.1016/j.bspc.2024.106777
https://doi.org/10.1109/ACCESS.2024.3415617
https://doi.org/10.1109/ACCESS.2024.3415617
https://www.sciencedirect.com/science/article/pii/S1047320323002067
https://doi.org/10.1016/j.jvcir.2023.103956
https://doi.org/10.1016/j.jvcir.2023.103956
https://api.semanticscholar.org/CorpusID:225039882
https://api.semanticscholar.org/CorpusID:270172957
https://api.semanticscholar.org/CorpusID:270172957
https://doi.org/10.1038/s41598-024-63094-9
http://www.ncbi.nlm.nih.gov/pubmed/38821977
https://api.semanticscholar.org/CorpusID:267996715
https://api.semanticscholar.org/CorpusID:267996715
https://doi.org/10.1007/s00521-024-09564-7
https://api.semanticscholar.org/CorpusID:14136028
https://api.semanticscholar.org/CorpusID:14136028
https://arxiv.org/abs/2401.09417
https://arxiv.org/abs/2401.09417
https://doi.org/10.1007/978-3-031-00943-3_25
https://kaggle.com/competitions/aptos2019-blindness-detection
https://kaggle.com/competitions/aptos2019-blindness-detection
https://doi.org/10.1109/TMI.2019.2951844
http://www.ncbi.nlm.nih.gov/pubmed/31714219
https://doi.org/10.3390/electronics9091337
https://arxiv.org/abs/2010.11929
https://doi.org/10.1371/journal.pone.0318264


34. O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image segmenta-

tion, in: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th Interna-

tional Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, Springer,

2015, pp. 234–241.

35. K. He, G. Gkioxari, P. Dollár, R. Girshick, Mask r-cnn, in: Proceedings of the IEEE international confer-

ence on computer vision, 2017, pp. 2961–2969.

36. X. Zhou, J. Zhuo, P. Krahenbuhl, Bottom-up object detection by grouping extreme and center points, in:

Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 850–

859.

37. X. Chen, R. Girshick, K. He, P. Dollár, Tensormask: A foundation for dense object segmentation, in:

Proceedings of the IEEE/CVF international conference on computer vision, 2019, pp. 2061–2069.

38. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, et al., An image is

worth 16x16 words: Transformers for image recognition at scale, arXiv preprint arXiv:2010.11929

(2020).

39. H. Fan, B. Xiong, K. Mangalam, Y. Li, Z. Yan, J. Malik, C. Feichtenhofer, Multiscale vision transformers,

in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 6824–6835.

40. W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, et al, Pyramid vision transformer: A versatile back-

bone for dense prediction without convolutions, in: Proceedings of the IEEE/CVF international confer-

ence on computer vision, 2021, pp. 568–578.

41. B. Heo, S. Yun, D. Han, S. Chun, J. Choe, S. J. Oh, Rethinking spatial dimensions of vision transform-

ers, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 11936–

11945.

42. Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, et al, Swin transformer: Hierarchical vision transformer

using shifted windows, in: Proceedings of the IEEE/CVF international conference on computer vision,

2021, pp. 10012–10022.

43. B. Wu, C. Xu, X. Dai, A. Wan, P. Zhang, Z. Yan, et al, Visual transformers: Token-based image repre-

sentation and processing for computer vision, arXiv preprint arXiv:2006.03677 (2020).

PLOS ONE Identification of retinal lesion

PLOS ONE | https://doi.org/10.1371/journal.pone.0318264 January 28, 2025 19 / 19

https://doi.org/10.1371/journal.pone.0318264

