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Abstract

In high-dimensional scenarios, trajectory planning is a challenging and computationally

complex optimization task that requires finding the optimal trajectory within a complex

domain. Metaheuristic (MH) algorithms provide a practical approach to solving this problem.

The Crayfish Optimization Algorithm (COA) is an MH algorithm inspired by the biological

behavior of crayfish. However, COA has limitations, including insufficient global search

capability and a tendency to converge to local optima. To address these challenges, an

Enhanced Crayfish Optimization Algorithm (ECOA) is proposed for robotic arm trajectory

planning. The proposed ECOA incorporates multiple novel strategies, including using a tent

chaotic map for population initialization to enhance diversity and replacing the traditional

step size adjustment with a nonlinear perturbation factor to improve global search capability.

Furthermore, an orthogonal refracted opposition-based learning strategy enhances solution

quality and search efficiency by leveraging the dominant dimensional information. Addition-

ally, performance comparisons with eight advanced algorithms on the CEC2017 test set

(30-dimensional, 50-dimensional, 100-dimensional) are conducted, and the ECOA’s effec-

tiveness is validated through Wilcoxon rank-sum and Friedman mean rank tests. In practical

robotic arm trajectory planning experiments, ECOA demonstrated superior performance,

reducing costs by 15% compared to the best competing algorithm and 10% over the original

COA, with significantly lower variability. This demonstrates improved solution quality,

robustness, and convergence stability. The study successfully introduces novel population

initialization and search strategies for improvement, as well as practical verification in solv-

ing the robotic arm path problem. The results confirm the potential of ECOA to address opti-

mization challenges in various engineering applications.

1. Introduction

With the continuous development of robotic arm technology, robotic arm trajectory planning

has become a hot topic in current robotics research. Trajectory planning is a crucial compo-

nent of robotic arm motion control system technology, affecting the robot’s movement pat-

terns and operational performance [1,2]. It can determine the relationship between time and
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space during the industrial robot’s working process, plan the robotic arm’s trajectory, and

ensure the accuracy and efficiency of the predetermined tasks [3]. Optimized trajectory plan-

ning not only saves movement time but also reduces collisions and extends the robotic arm’s

lifespan [4,5]. However, due to the complexity of robotic arm systems, including kinematic

and dynamic constraints as well as operational environment uncertainties, traditional trajec-

tory planning methods often fail to meet the demands for high efficiency and high precision.

To address this issue, traditional algorithms such as numerical optimization and discrete

search have been widely used but are often limited by computational resources or the inherent

limitations of the algorithms themselves. In contrast, metaheuristic algorithms, with their

global search capabilities and high adaptability to complex problems, show great potential in

handling high-dimensional and nonlinear problems in robotic arm trajectory planning.

Metaheuristic (MH) algorithms, inspired by the behavior of natural organisms, iteratively

optimize solutions by exploiting patterns found in nature, with the aim of achieving efficient

results in a limited amount of time [6,7]. In recent years, many advanced swarm intelligence

algorithms have emerged, such as Lévy Arithmetic Algorithm [8], Newton-Raphson-based

optimizer [9], Walrus optimizer [10], Prism refraction search [11]. These algorithms have

been applied to various fields and have achieved commendable results. Their simplicity, versa-

tility, and ease of use make this class of algorithms applicable to a variety of domains, including

but not limited to image segmentation [12], global optimization [13,14], path planning

[15,16], agricultural monitoring [17], engineering design problems [18,19], forest fire detec-

tion [20], rescue operations [21], UAV path planning [22,23], rotor system [24], and cubic

transmission [25]. This broad practical value underscores the importance of meta-heuristic

algorithms in solving a variety of optimization challenges, especially where traditional deter-

ministic methods are inadequate.

The "No free lunch" (NFL) theorem reminds us that there is no single algorithm that solves

all problems [26], highlighting the value of algorithms adapted to particular challenges. There-

fore, the MH algorithm specially developed for the path planning of robotic arms is crucial to

improve efficiency [27]. Robotic arm path planning is a complex optimization task, demand-

ing specialized approaches to ensure efficiency and high-quality solutions. In light of these

requirements, we propose a tailored metaheuristic (MH) algorithm to address the computa-

tional challenges specific to robotic arm trajectory planning. This approach aligns with the

NFL theorem, underscoring the need for targeted solutions to complex, real-world optimiza-

tion tasks.

Crayfsh Optimization Algorithm (COA) is a novel intelligent optimization algorithm pro-

posed by Jia Heming et al in 2023 [28]. Inspired by crayfish foraging, summer and competition

behavior, the algorithm has fast search speed, strong search ability, and can effectively balance

the global search and local search ability. However, despite these properties, COA also has lim-

itations, such as slower convergence and a tendency to fall into local optimality. To date, only

a few researchers have attempted to apply COA to manipulator trajectory planning. As with all

optimization algorithms, striking an optimal balance between exploration and exploitation is

crucial to determine the ideal path [29]. In essence, as an emerging algorithm, COA requires

additional research and improvement to more effectively address the complex needs of trajec-

tory planning for robotic arms.

In our study, to improve the convergence speed and exploration capability of the COA algo-

rithm, we proposed an improved COA algorithm. During the algorithm initialization process,

the tent chaotic map is used to enhance the algorithm’s randomness and diversity; Subse-

quently, a newly designed nonlinear dynamic adjustment factor is incorporated into the tradi-

tional COA exploration phase to dynamically adjust the search behavior for better solutions,

thereby improving global search efficiency. Additionally, in the later iterations, a orthogonal
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refracted opposition-based learning strategy is integrated to optimize the solution space,

enhancing the algorithm’s global search capability and solution quality. This ensures a bal-

anced interaction between exploration and exploitation. Finally, adaptive factors and random

factors are introduced into the contemporary population update strategy, significantly enhanc-

ing the overall performance of the algorithm.

The experimental results of 29 functions in the CEC2017 test set show that ECOA algo-

rithm significantly improves the global optimization ability of the algorithm. This improve-

ment effectively improves the convergence speed and accuracy of the algorithm. Experimental

results show that ECOA performs better than CPSOGSA[30], GQPSO[31], EDOLSCA[32],

WOA[6], SCA[33], CPO[34], SWO[35], and the original COA algorithm [28].

By solving the UAV three-dimensional trajectory planning problem, the high applicability

of the ECOA algorithm to engineering problems was verified. Addressing the limitations of

the COA algorithm, the ECOA algorithm was introduced and applied to robotic arm trajectory

planning.

The main contributions of this study are as follows:

1. To address the limitations of the traditional COA, several key improvements were made:

using the tent chaotic map for population initialization, incorporating a nonlinear dynamic

adjustment factor, and integrating orthogonal refracted opposition-based learning strategy.

2. The enhanced ECOA’s exploration and exploitation capabilities were rigorously evaluated

using the CEC 2017 benchmark test set. The experimental results validated the algorithm’s

significant ability in optimization performance and effective solution space exploration.

3. The ECOA algorithm was applied to robotic arm trajectory planning to assess its practical

application value, highlighting its high precision and efficiency in solving complex real-

world engineering problems.

The second part introduces the related work of COA and MH algorithms in robotic arm tra-

jectory planning. Section 3 provides an overview of the original algorithm structure and the pro-

posed method. In Section 4, we conducted relevant experimental tests and performed an in-

depth analysis of the proposed algorithm. Section 5 analyzes the application of the ECOA algo-

rithm in UAV three-dimensional trajectory planning. Section 6 is the conclusion of the paper.

2. Related work

In recent years, the field of manipulator trajectory planning has attracted a lot of research

interest due to the wide application of intelligent manipulators in various fields. Effective tra-

jectory planning is essential for manipulators to accomplish tasks efficiently [36]. Faced with

the inherent NP-hard complexity and the requirement of real-time reaction ability in manipu-

lator trajectory planning, many researchers have deeply studied a series of optimization algo-

rithms and strategies. Among them, swarm intelligence optimization algorithm has been

widely used in manipulator trajectory planning because of its efficient and fast response ability

[37]. This section aims to explore recent developments in the field, highlighting improved ver-

sions of COA and the utilization of various MH algorithms to solve trajectory planning prob-

lems in manipulator operations.

An environmental renewal mechanism, by simulating the survival habits of crayfish, was

presented by Jia Haiming et al. in which water quality factors guided crayfish to find a better

place. Moreover, the learning strategy based on ghost antagonism integrated in COA was help-

ful to enhance its ability to avoid local optimality [38]. Xiao Bingsong et al. used random search

radius to optimize the foraging range, thus improving the operation efficiency of the algorithm
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[39]. Nebojsa Bacanin et al. improved COA by integrating COA algorithm and firefly algo-

rithm, and improved the ability of the algorithm to escape from local optimization [40]. Meng

Jiang et al. improved COA through Circle chaotic mapping to obtain more powerful global

search capabilities [41].

In the past few years, the concept of oppositional learning has been widely used to improve

the global search and local development capabilities of algorithms, many scholars have intro-

duced Opposition-based Refraction Learning (ORL) into different optimization algorithms to

improve their performance. Wen Long et al. proposed a novel refraction learning strategy

based on the principle of light refraction, which assists the Whale Optimization Algorithm

(WOA) in escaping from local optima [42]. Bilal H. Abed-alguni et al. employed a specific type

of opposition-based learning, known as refraction learning, to enhance the Cuckoo Search

(CS) algorithm’s capability of avoiding sub-optimal solutions [43]. Noor Aldeen Alawad and

Bilal H. Abed-alguni introduced refraction learning combined with a triple mutation method

(DJRL3M) to improve the DJaya algorithm for solving the Permutation Flow Shop Scheduling

Problem (PFSSP) [44]. Therefore, optimization algorithms incorporating Opposition-based

Refraction Learning (ORL) are often more capable of effectively balancing exploration and

exploitation when addressing high-dimensional complex optimization problems, providing

new directions and methodologies for current research.

There are a number of heuristic algorithms applied to trajectory planning problems of

robotic arm operations recently. For instance, Lei Wang et al. in their study proposed TPBSO

algorithm for solving problems of trajectory planning, particularly in the cases of robotic

manipulators [45]. Jeong-Jung Kim et al. used particle swarm optimization (PSO) for trajec-

tory optimization in robotic arm motion planning [46]. Gurjeet Singh et al. used different

combinations of hybrid metaheuristic algorithms to address kinematic and trajectory planning

problems. Kinematic parameters, including acceleration, deceleration, and speed, primarily

affect the travel smoothness of the robot’s end effector along the trajectory path [47]. Pengfei

Xin et al. proposed a particle swarm optimization-based algorithm for residual vibration sup-

pression in spatial manipulator trajectory planning, achieving desirable results [48]. Xiaoman

Cao proposed an improved multi-objective particle swarm optimization algorithm for trajec-

tory planning in fruit-picking robotic arms [49]. Lunhui Zhang et al. proposed an efficient and

highly stable adaptive cuckoo search (ACS) algorithm for time-optimal trajectory planning in

serial robotic arms, minimizing total motion time under strict dynamic constraints [50]. H

Guo et al. demonstrated a trajectory planning method for the safflower harvesting robotic arm

based on the ant colony genetic algorithm. Then, the improved ant colony genetic algorithm

realized the tasks of picking for the safflower harvesting robotic arm. The method obviously

improved the picking efficiency in the safflower harvesting process [51].

Many researchers have applied metaheuristic algorithms to robotic arm trajectory planning

and have made improvements, achieving good results. However, although COA has been

applied in various fields, research on its application in the context of robotic arm trajectory

planning remains limited. To achieve optimal trajectory planning, it is still necessary to con-

duct in-depth research on the two core mechanisms of swarm intelligence algorithms: explora-

tion and exploitation.

In our study, an improved ECOA algorithm that integrates multiple strategies can effectively

balance exploration and production processes. Experimental results show that the improved

algorithm is superior to the existing algorithm, including CPSOGSA[30], GQPSO[31],

EDOLSCA[32], WOA[6], SCA[33], CPO[34], SWO[35], and the original COA algorithm [28].

The improved algorithm has achieved good results in the trajectory planning of the robot arm.
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3. The proposed methodology

This section briefly describes the behavior of the original COA and the corresponding mathe-

matical model. In addition, this paper focuses on the proposed ECOA algorithm, including

tent chaotic map, nonlinear dynamic adjustment factor and orthogonal refracted opposition-

based learning strategy.

3.1. The original COA

The crayfish, also known as the red swamp crayfish or freshwater crayfish, is a crustacean liv-

ing in freshwater. Due to its good feeding habits, rapid growth, fast migration, and strong

adaptability, it has formed an absolute advantage in the ecological environment. Temperature

changes often lead to changes in crayfish behavior. It is when the crayfish finds it too hot that

it chooses to enter burrows to avoid damage from the heat; when the temperature is suitable, it

chooses to crawl out of the burrows to forage. Among the crayfish, which are ectothermic ani-

mals, its behavior changes with temperature changes. It usually survives at temperatures rang-

ing from 20˚C to 35˚C. The formula for the calculation of temperature is given by:

temp ¼ rand � 15þ 20 ð1Þ

where temp represents the temperature of the crayfish’s environment, rand represents a num-

ber between [0,1].

3.1.1. Initializing the population. In the d-dimensional optimization problem of COA,

each crayfish is a 1×d matrix representing the solution of the problem. In a set of variables (X1,

X2, X3. . . . . . Xd), the position (X) of each crayfish lies between the upper boundary (ub) and

lower boundary (lb) of the search space. In each evaluation of the algorithm, an optimal solu-

tion is computed, and the solutions computed in each evaluation are compared, the optimal

solution is found and stored as the optimal solution for the whole problem. The position to ini-

tialize the crayfish population is calculated using the following formula.

Xi;j ¼ ubj � lbj
� �

� randþ lbj ð2Þ

where Xi, j represents the ith only crayfish in position of j-dimension, ubj represents upper

bound for the j-dimension, lbj represents lower bound for the j-dimension, rand is 0 ~ 1 ran-

dom number.

3.1.2. Summer escape stage (exploration stage). In this paper, the temperature is

assumed to be 30˚ C as the dividing line to determine whether the current living environment

is in a high temperature environment. When the temperature is greater than 30˚ C and it is in

summer, in order to avoid the harm caused by the high temperature environment, crayfish

will seek a cool and moist cave and enter the summer to avoid the influence of high tempera-

ture. The caverns are calculated as follows:

Xshade ¼ XG þ XLð Þ=2 ð3Þ

where, XG represents the current optimal position obtained by this evaluation number, XL rep-

resents the optimal location of the current population.

The behavior of crayfish fighting for a cave is a random event. To simulate the random

event of crayfish competing for the cave, we define a random number rand, rand< 0.5 indi-

cates that no other crayfish currently compete for the cave, and the crayfish will directly enter

the cave for summer. At this point, the crayfish position update calculation formula is as
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follows:

Xnew ¼ Xi;j þ C2 � rand� Xshade � Xi;j
� �

ð4Þ

where, Xnew represents the next generation location after the location is updated, C2 is a

decline curve. C2 calculation method is as follows:

C2 ¼ 2 � ðt=TÞ ð5Þ

where t indicates the current number of iterations, and T indicates the maximum number of

iterations

3.1.3. Competition stage (exploitation stage). When the temperature is greater than

30˚C and rand�0.5, it indicates that the crayfish has other crayfish competing with it for bur-

rows during the summer. At this point, the two crayfish will fight the cave, and crayfish Xi will

adjust its position according to the position of the other crayfish Xz. The adjustment position

is calculated as follows:

Xnew ¼ Xi;j � Xz;j þ Xshade ð6Þ

z ¼ roundðrand � ðN � 1ÞÞ þ 1 ð7Þ

where, z represents the random individual of crayfish and N represents the population size.

3.1.4. Foraging stage (exploitation stage). The foraging behavior of crayfish is affected

by temperature, and the temperature less than or equal to 30˚C is an important condition for

crayfish to climb out of the cave to find food. When the temperature is less than or equal to

30˚C, the crayfish will drill out of the burrow and judge the location of the food according to

the optimal location obtained by this assessment, so as to find the food to complete the forag-

ing. The position of the food is calculated as follows:

Xfood ¼ XG ð8Þ

How much food crayfish eat depends on the temperature. When the temperature is

between 20˚C and 30˚C, the crayfish has a strong foraging behavior, and the most food is

found at 25˚C, and the amount of food is also the largest. Thus, the food intake pattern of cray-

fish is approximately normal. Food intake is calculated as follows:

p ¼ C1 �
1

ffiffiffiffiffiffiffiffiffiffiffi
2� p
p

� s
� exp �

ðtemp � mÞ2

2s2

� �

ð9Þ

where μ indicates crayfish optimum temperature, σ and C1 denote crayfish feed intake under

the different temperature control parameters.

The food crayfish get depends not only on the amount of food they eat, but also on the size

of the food. If the food is too big, the crayfish can’t eat the food directly. Before eating food,

they need to tear it apart with their claws. The size of food is calculated as follows:

Q ¼ C3 � rand� fitnessi=fitnessfood
� �

ð10Þ

where C3 indicates food factor which represents the largest food, its value is 3. fitnessi repre-

sents the fitness value of the ith only crayfish, fitnessfood represents the fitness value of the loca-

tion of food.

Crayfish use the value of maximum food R to judge the size of the food obtained and thus

decide the feeding method. When Q> (C3+ 1)/2, the food is too big, small lobster cannot eat
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directly, need to use claws ripping food, eating alternately with the second and third leg. The

recipe for shredding food is as follows:

Xfood ¼ Xfood � exp �
1

Q

� �

ð11Þ

Once the food has been torn down to an easy-to-eat size, pick it up with your second and

third PAWS and place it alternately in your mouth. In order to simulate the bipedal feeding

process, the mathematical model of sine function and cosine function was used to simulate the

alternating feeding process of crayfish. The crayfish alternate feeding formula is as follows:

Xnew ¼ Xi;j þ Xfood � p� ðcosð2� p� randÞ � sinð2� p� randÞÞ ð12Þ

When Q�(C3 + 1)/2, it indicates that the food size at this time is suitable for crayfish to feed

directly, and crayfish will move directly to the food location and feed directly. The recipe for

feeding crayfish directly is as follows:

Xnew ¼ Xi;j � Xfood
� �

� pþ p� rand� Xi;j ð13Þ

3.2. The proposed ECOA

Considering the aforementioned analysis, we improved the COA algorithm from three

perspectives:

1. Using the tent chaotic map to initialize the positions of crayfish. Leveraging its nonlinear

and dynamic characteristics, this method can generate a more diverse set of initial solu-

tions, aiding the algorithm in searching a broader solution space.

2. During the crayfish’s Summer escape stage, a nonlinear dynamic adjustment factor is

designed to adaptively adjust the search step size, enhancing the exploitation capability.

3. Using orthogonal refracted opposition-based learning strategy to increase solution diversity

and reduce the risk of the algorithm getting trapped in local optima.

3.2.1. Improved population initialization with tent chaotic map. A discrete, high-qual-

ity initial population can accumulate rich search experience for COA, laying the foundation

for heuristic algorithm intelligent search. Existing algorithms typically use pseudo-random

numbers to initialize candidate solutions. Such a configuration can maximize the algorithm’s

global performance. However, the strong randomness of the algorithm prevents maintaining

stable objective optimization accuracy. Additionally, relying on pseudo-random number ini-

tialization can result in insufficient population traversal, leading to a decline in population

diversity. To enhance exploration capabilities and elevate the level of population diversity [52],

we use chaotic maps to improve the population initialization. The tent map is a chaotic system

that generates mapping relations based on probability density functions, helping to expand the

search range of the initial population and improve the algorithm’s global search ability [53].

The tent mapping process is as follows:

xnþ1 ¼

xn
g

xn < g

1 � xn
1 � g

xn � g
ð14Þ

8
>><

>>:
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where, xn represents current state map, xn+1 state for the next generation of mapping, γ for

mapping parameters, in order to ensure the initial population of ergodicity, γ = 1.1. where, xn
represents current state map, xn+1 state for the next generation of mapping, γ for mapping

parameters, in order to ensure the initial population of ergodicity, γ = 1.1.

The scatter plot of positions initialized by the tent map is shown in Fig 1. The sequence val-

ues generated by the tent map are more evenly distributed between 0 and 1 compared to those

generated by ordinary random numbers. Introducing the tent map into the initialization oper-

ation of the COA algorithm can increase population diversity and enhance the algorithm’s

global search capability.

In summary, using the tent chaotic map during the COA initialization phase ensures that the

initial population covers a wide solution space. This reduces the risk of premature convergence

to local optima. Moreover, by diversifying the initial population, the COA algorithm can explore

a broader search space, thus increasing the probability of finding the global optimal solution.

Fig 1. Initial population distribution. (a) Without tent chaotic map; (b) With tent chaotic map.

https://doi.org/10.1371/journal.pone.0318203.g001
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3.2.2. Nonlinear dynamic adjustment factor. In the original COA algorithm, C2 is

updated using Eq (5). Although this linear change can dynamically adjust the search step size

to some extent, the variation of C2 is fixed, reducing solution diversity and search space cover-

age. The linear adjustment factor changes are fixed in each iteration, lacking randomness,

which may easily lead to trapping in local optima. During the early exploration stage, the fast

rate of change may lead to insufficient exploration, while in the mid-term, it may not allow for

adequate leap searches. To enhance the algorithm’s global search capability, we introduced a

random factor and designed a new nonlinear dynamic adjustment factor as follows:

Cnew ¼ 2 � exp �
t2

T � rand

� �

ð15Þ

At this point, the crawfish position update calculation is replaced by Eq (4) with:

Xnew ¼ Xi;j þ Cnew � rand� Xshade � Xi;j
� �

ð16Þ

In Eq (5), C2 decreases linearly from 2 to 1. Although this linear change is simple and intui-

tive, the rapid decrease in the early stages may lead to a premature loss of exploration ability.

Moreover, since the step size and direction of each iteration are predictable, the risk of the

algorithm getting trapped in local optima increases. Eq (15) provides a new nonlinear dynamic

adjustment method, making Cnew have smaller initial values and slower changes, suitable for

stable exploration. In the mid-to-late stages, it gradually increases, which helps escape local

optima and enables broader searches. Its rate of change is influenced by a combination of fac-

tors and random numbers, providing high flexibility and adaptability. The iterative trend plot

of Cnew is shown in Fig 2. The random factor rand in Eq (15) introduces a certain randomness

to Cnew in each iteration, further increasing solution diversity and avoiding local optima.

3.2.3. Orthogonal refracted opposition-based learning strategy. In view of the weak

ability of MH algorithm to jump out of local optimum, lens imaging opposition-based learning

strategy (LOBL) [54,55] is usually introduced to improve the performance of the algorithm,

and the optimal solution is sought by generating the reverse position according to the current

individual position. The principle of lens imaging is shown in Fig 3.

As shown in Fig 3, suppose that there exists an individual P in the spatial extent of the inter-

val [lb, ub] with height h and projection X on the x-axis. By imaging with a convex lens placed

at point o (which is the midpoint of [lb, ub]), P'of height h' can be obtained, and its projection

on the x-axis is X'. Then the imaging principle can be obtained as follows:

ubþlb
2
� X

X0 � ubþlb
2

¼
h
h0

ð17Þ

where, let h/h0 = k, and transform the formula to get:

X0 ¼
ubþ lb

2
þ
ubþ lb

2k
�
X
k

ð18Þ

The scaling factor k is calculated as follows:

k ¼ 1þ ðt=TÞ2
� �10

ð19Þ

The lens imaging reverse learning strategy explores previously uncovered areas in the solu-

tion space by reflecting and scaling solutions, thereby increasing solution diversity and reduc-

ing the risk of the algorithm falling into local optima. Additionally, in the later stages of the

algorithm, when the k value is large, the newly generated solutions will be more concentrated
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around the current optimal solution. This helps the algorithm to fine-tune these solutions

more precisely, accelerating convergence to the global optimum or near-global optimum

solutions.

Orthogonal experimental design (OED) can find the optimal experimental combination of

multi-factor and multi-level verification through a small number of tests [56]. For example, for

an experiment with 2 levels and 7 factors, if a full factorial test is used to identify the optimal

combination, 27 = 128 tests are required. If the orthogonal experimental design is used, based

on the orthogonal table L8 (27) as shown in Eq (20), the optimal or near-optimal combination

can be found with only 8 tests, significantly improving the experimental efficiency. However,

due to the characteristics of the orthogonal experimental design, it cannot guarantee that the

solutions in the orthogonal table contain the true optimal solution of the experiment [56].

Therefore, when using orthogonal tables, it is generally necessary to perform factor analysis to

identify the theoretical optimal combination, and then determine the final optimal solution by

comparing it with all the combinations in the orthogonal table. Thus, for the experiment with

Fig 2. Nonlinear dynamic adjustment factor. In the mid-to-late stages, it gradually increases, which helps escape local optima and enables broader

searches.

https://doi.org/10.1371/journal.pone.0318203.g002
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2 levels and 7 factors, it is necessary to first obtain 8 candidate optimal solutions based on the

orthogonal table L8 (27), then conduct factor analysis to identify a theoretically optimal combi-

nation, and finally evaluate the 9 combinations to determine the overall optimal solution for

the experiment.

L8 27
� �

¼

1 1 1 1 1 1 1

1 1 1 2 2 2 2

1 2 2 1 1 2 2

1 2 2 2 2 1 1

2 1 2 1 2 1 2

2 1 2 2 1 2 1

2 2 1 1 2 2 1

2 2 1 2 1 1 2

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð20Þ

In order to enhance the ability of COA algorithm to jump out of local optimum, this paper

proposes a strategy called orthogonal lens opposition-based learning (OLOBL), and applies it

to the leader individual to generate new candidate individuals.

OLOBL is a strategy designed by integrating OED and LOBL techniques. The optimal solu-

tion executes the OLOBL strategy, jumping to more promising search areas, thereby enhanc-

ing population diversity and reducing the probability of the algorithm falling into local

optima. However, the study in reference [57] shows that for an individual, its opposite solution

is only superior to the current solution in certain dimensions. To address this issue, an orthog-

onal reflection opposite learning strategy is designed by integrating OED and LOBL tech-

niques, which fully explores each dimensional component of both the current and opposite

solutions and combines their advantageous dimensions to generate a partial reflection oppo-

site solution. To address this issue, an orthogonal reflection opposite learning strategy is

designed by integrating OED and LOBL techniques, which fully explores each dimensional

component of both the current and opposite solutions and combines their advantageous

dimensions to generate a partial reflection opposite solution.

Fig 3. Principle of lens imaging. The optimal solution is sought by generating the reverse position according to the

current individual position.

https://doi.org/10.1371/journal.pone.0318203.g003
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The OLOBL strategy is embedded into the COA algorithm, where the optimization prob-

lem’s dimension D corresponds to the factors in the orthogonal experimental design, and the

individual and its reflection opposite solution represent the two levels in the orthogonal exper-

imental design. The detailed process for constructing a partial reflection opposite solution is as

follows: an orthogonal experiment with 2 levels and D factors is designed for the current solu-

tion and its reflection opposite solution, generatingM partial reflection opposite solutions,

whereM is calculated according to Eq (21). Specifically, when generating partial opposite solu-

tions based on the orthogonal table, if the element in the orthogonal table is 1, the value of the

corresponding dimension in the trial solution is set to the value of the current solution; if the

element is 2, the value of the corresponding dimension is set to that of the reflection opposite

solution.

M ¼ 2
log2ðDþ1Þ½ � ð21Þ

According to the characteristics of the orthogonal experimental design, all elements in the

first row of the orthogonal table are 1, indicating that the first trial solution is identical to the

original individual and thus does not require evaluation. The remainingM-1 trial solutions are

combinations of the advantageous dimensions of the current individual and its reflection

opposite individual, i.e., partial reflection opposite solutions, which need to be evaluated.

When using orthogonal experimental design, it is necessary to perform factor analysis to iden-

tify a theoretically optimal combination that does not exist in the orthogonal table, which also

requires evaluation. Therefore, executing the OLOBL strategy requiresM function evaluations.

During the evolutionary iterations, the OLOBL strategy is only applied to the leader, and the

superior individual is selected from the leader and its orthogonal reflection opposite solutions

to enter the next generation. This approach effectively enhances the global exploration ability

of the algorithm, reduces the number of function evaluations, and improves the overall perfor-

mance of the algorithm.

In the orthogonal reflection opposite learning strategy, a reflection opposite learning

approach based on the lens imaging principle is employed to enhance exploration of the oppo-

site solution space, significantly reducing the probability of the algorithm falling into local

optima. The orthogonal experimental design is used to construct several partial opposite solu-

tions by taking reflection opposite values in certain dimensions, thoroughly exploring and pre-

serving the advantageous dimensional information of both the current individual and the

reflection opposite individual.

3.2.4. ECOA algorithm description. In the improved ECOA algorithm, the tent chaotic

map is used to obtain a higher quality initial solution. Additionally, during the Summer escape

stage, a novel nonlinear dynamic adjustment factor is designed to replace the search step update

method. This change can adaptively adjust the search step size, balancing the exploration and

exploitation process of the algorithm, and further enhancing the global search capability. The

OLOBL strategy is introduced in each iteration to generate and select new candidate solutions,

helping the algorithm to better explore and exploit the solution space. The pseudocode for

ECOA is as follows (Algorithm 1). The detailed process of ECOA is shown in Fig 4.

Algorithm 1 ECOA

Initialization phase
Initialization iterations T, population N, dimension dim
Utilize tent chaos mapping for population initialization
Calculate the fitness value of the population to get XG, XL
While (t< T) do
Defining temperature temp by Eq (1).
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If temp>30
Define cave Xshade according to Eq (3).
If rand<0.5
Crayfish conducts the summer resort stage according to Eqs (15) and

(16).
Else
Crayfish compete for caves through Eq (6).

End
Else
The food intake p and food size Q are obtained by Eqs (9) and (10).
If Q>2
Crayfish shreds food by Eq (11).
Crayfish foraging according to Eq (12).
Else
Crayfish foraging according to Eq (13).

End
Generate new the best candidate solution according to Eqs (17)-(21).
Calculate the fitness value of the population to get XG, XL.

End
Update fitness values, XG, XL
t = t+1
End

3.3. Computational complexity of ECOA

The computational complexity of the ECOA algorithm is primarily influenced by two key fac-

tors: solution initialization and the execution of core functions. These core functions encom-

pass fitness function calculations and solution updates. The computational complexity is

influenced by crucial variables, including the number of solutions (N), the maximum iteration

limit (T), and the problem’s dimension (D). Specifically, the complexity of initializing solu-

tions is represented as O(N), indicating its direct relationship with the number of solutions. As

N increases, the computational complexity of the initialization phase also rises accordingly.

The original DBO overall time complexity for the core functions of the algorithm is O
(T×N×D), considering the number of iterations (T), the count of solutions (N), and the

Fig 4. Flowchart of ECOA. The execution steps of our proposed algorithm are shown in detail.

https://doi.org/10.1371/journal.pone.0318203.g004
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problem dimension (D). ECOA modifies this with Eqs (14)-(19), including enhancements to

population diversity using the tent chaos mapping, a new nonlinear convergence factor is used

to balance exploration and exploitation, and OLOBL strategy is introduced to obtain better

solutions. The tent chaos mapping strategy, which requires computation for each individual,

exhibits a complexity of O(N). The update from Eqs (15) and (16) is independent of popula-

tion size and search dimensions, correlating only with the maximum number of iterations,

resulting in a time complexity of O(T). Similarly, The update of Eqs (17)-(21) is independent

of the population size, but only related to the maximum number of iterations and the search

dimension, resulting in a time complexity of O(T × D). Furthermore, the computational com-

plexity for both Eqs (11) and (12) is also O(T×N × D). Consequently, the overall time complex-

ity of ECOA is OðECOAÞ ¼ OðNÞ þOðTÞ þ OðT � DÞ þ OðT � N � DÞ ¼ OðT � N � DÞ,
consistent with the original algorithm.

4. Algorithm performance testing and analysis

The simulation environment of this study runs on a Windows 11 64-bit operating system, with

a CPU model of AMD Ryzen 74800H, a base frequency of 2.30GHz, and equipped with 16GB

RAM. The algorithms were implemented on the Matlab 2023b platform.

4.1. Test functions and parameter settings

To evaluate the effectiveness of the newly proposed ECOA algorithm, it was tested using the

CEC2017 test function set (dim = 30, 50, 100). The CEC series includes a set of basic test func-

tions that can serve not only as benchmarks for comparing the performance of various optimi-

zation algorithms but also as tools for simulating the complexity of real-world problems. This

test set includes 30 CEC2017 test functions, each composed of different basic test functions.

Among them, F1 to F3 are unimodal functions, F4 to F10 are multimodal functions, F11 to

F20 are hybrid functions, and F21 to F30 are composite functions, the F2 function was offi-

cially removed due to its instability in high-dimensional scenarios. The search domain of the

CEC2017 test function set is uniformly set to [–100, 100]D.

Comparative experiments were conducted between the ECOA algorithm and seven highly

cited algorithms: CPSOGSA[30], GQPSO[31], EDOLSCA[32], WOA[6], SCA[33], CPO[34],

SWO[35], and the original COA algorithm [28]. Table 1 provides a detailed summary of the

parameters used in these seven different MH algorithms. The parameters for the comparative

algorithms were consistent with those in the original literature. The experimental results were

meticulously recorded, including the mean (denoted as "Ave") and standard deviation (Std) of

each algorithm. To clearly compare performance, the best results among the nine algorithms

were highlighted in bold in the table. In this study, we selected the maximum number of itera-

tions (T) as the termination criterion because it provides a consistent and straightforward

measure of algorithm performance, especially for evaluating convergence behavior under con-

trolled computational conditions. In these tests, the population size (N) for each algorithm was

fixed at 30, and the maximum number of iterations (T) was set to 500, following the settings

suggested in the original COA algorithm paper and other comparison algorithms’ papers.

Each experiment was independently conducted 30 times, and the system recorded the best fit-

ness value for each trial.

4.2. Comparative analysis of ECOA and other algorithm

The CEC2017 series of functions is a valuable tool for simulating complex real-world prob-

lems. In this study, we compared the proposed algorithm with eight other competitive algo-

rithms: CPSOGSA[30], GQPSO[31], EDOLSCA[32], WOA[6], SCA[33], CPO[34], SWO[35],

PLOS ONE ECOA with Orthogonal Refracted Learning for Trajectory Planning

PLOS ONE | https://doi.org/10.1371/journal.pone.0318203 February 5, 2025 14 / 29

https://doi.org/10.1371/journal.pone.0318203


and the original COA algorithm [28]. To ensure consistency in the experimental setup, the

parameters such as the number of runs, population size, test dimensions, and maximum num-

ber of iterations were kept consistent with Section 4.1.

The experiments were conducted independently 30 times, and the best fitness value for

each set of trials was recorded. Tables 2–4 present the best fitness average (Ave) and standard

deviation (Std) obtained from 30 repeated experiments for CPSOGSA[30], GQPSO[31],

EDOLSCA[32], WOA[6], SCA[33], CPO[34], SWO[35], the original COA algorithm [28] and

ECOA. The superiority of the ECOA algorithm was highlighted through comprehensive statis-

tical analysis. The first row compiled the Wilcoxon rank-sum test results for all algorithms to

reflect their performance, assessing the statistical significance of ECOA compared to other

algorithms, with the significance threshold set at 5%. When the test result is p< 5%, it indi-

cates a statistical difference between ECOA and the comparative algorithms; when the test

result is p� 5%, it indicates no statistical difference between ECOA and the comparative algo-

rithms. The interpretation of these results is based on the rank-sum test: the symbols '+', '-',
and '=' indicate that the optimization performance of ECOA is better than, worse than, or

equal to the other algorithms, respectively. The second row provides overall ranking informa-

tion derived from the final rankings by Friedman. These tables prominently display the top-

ranked results, highlighting their superior performance. In each set of test functions, the algo-

rithm with the lowest mean and standard deviation is highlighted in bold, indicating its supe-

rior performance.

In the performance comparison experiments on the CEC2017 test set with eight other

advanced algorithms, ECOA performed the best. In the tests with dimensions of 30, 50, and

100, ECOA achieved the most first-place rankings out of the 29 test functions, attaining the

best or near-best optimization performance on all test functions, without being the worst on

any test function. This excellent performance of ECOA is mainly due to a number of key

improvements introduced in the algorithm.

First, ECOA uses Tent Chaos mapping to generate diverse initial populations, effectively

improving global search capabilities and reducing the risk of falling into local optima. In addi-

tion, the introduction of nonlinear dynamic adjustment factors enables ECOA to adjust the

step size adaptively according to different stages, balancing exploration and development, thus

improving the convergence speed and efficiency. OLOBL strategy further improves the diver-

sity and quality of understanding, and helps the algorithm to break out of the local optimal

and obtain higher quality solutions.

The statistical results of the Wilcoxon rank-sum test showed that ECOA consistently out-

performed the other eight advanced algorithms in the CEC2017 function suite, highlighting its

Table 1. Parameter configurations for competing algorithms.

Algorithms Parameter Value

CPSOGSA φ1, φ2 2.05, 2.05

GQPSO α, β 0.0001, 0.0001

EDOLSCA w, Jr [1,15], [0.1,1]

WOA a, a2, b [0,2], [– 1,–2], 1

SCA α 2

CPO N, α, Nmin, Tf, T 120, 0.1, 80, 0.5, 2

SWO TR, CR, Nm, N 0.3, 0.2, 20, 100

COA C1, C3, μ, σ 0.2, 3, 25, 3

ECOA C1, C3, μ, σ 0.2, 3, 25, 3

https://doi.org/10.1371/journal.pone.0318203.t001
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Table 2. Test results for CEC 2017 (dim = 30).

ID Metric CPSOGSA GQPSO EDOLSCA WOA SCA CPO SWO COA ECOA

CEC2017-F1 Std 5.0380E+09 3.0172E+10 2.6324E+10 4.8411E+09 2.1624E+10 3.7154E+10 4.2135E+10 7.3252E+08 1.1427E+08

Ave 3.0889E+09 1.8228E+09 7.2657E+09 1.9819E+09 4.0884E+09 7.5490E+09 9.6024E+09 1.0484E+09 3.2693E+08

CEC2017-F3 Std 2.4316E+05 7.5147E+04 7.2025E+04 2.5957E+05 8.5616E+04 2.0238E+05 1.4111E+05 1.1569E+05 6.6431E+04

Ave 7.0064E+04 5.4136E+03 1.0777E+04 7.5488E+04 1.8563E+04 6.3564E+04 5.7841E+04 2.8117E+04 7.6840E+03

CEC2017-F4 Std 1.2466E+03 5.7344E+03 4.1010E+03 1.3091E+03 3.2128E+03 9.3359E+03 9.7924E+03 6.0433E+02 5.5473E+02

Ave 4.7626E+02 4.2482E+02 2.1218E+03 3.3287E+02 1.1964E+03 2.5274E+03 3.9713E+03 1.0819E+02 2.9399E+01

CEC2017-F5 Std 7.9724E+02 8.5839E+02 7.8028E+02 8.6423E+02 8.2252E+02 9.0734E+02 9.1740E+02 7.7157E+02 6.9808E+02

Ave 6.6315E+01 1.6898E+01 3.5882E+01 6.9099E+01 2.9065E+01 2.8129E+01 4.5049E+01 4.8446E+01 6.0989E+01

CEC2017-F6 Std 6.6747E+02 6.7462E+02 6.5586E+02 6.8138E+02 6.6423E+02 6.8595E+02 6.8758E+02 6.5518E+02 6.5054E+02

Ave 1.0905E+01 3.9253E+00 6.1206E+00 1.1835E+01 7.0026E+00 7.7411E+00 9.3104E+00 1.3426E+01 1.2896E+01

CEC2017-F7 Std 1.7038E+03 1.2373E+03 1.2126E+03 1.3321E+03 1.2298E+03 1.4723E+03 1.4553E+03 1.2866E+03 1.1135E+03

Ave 2.1686E+02 1.7559E+01 8.6130E+01 1.0571E+02 4.3253E+01 7.6290E+01 8.0054E+01 9.3723E+01 1.2556E+02

CEC2017-F8 Std 1.0738E+03 1.0927E+03 1.0267E+03 1.0704E+03 1.0924E+03 1.1638E+03 1.1599E+03 9.7354E+02 9.7819E+02

Ave 5.9522E+01 1.5506E+01 3.4172E+01 4.8544E+01 2.4745E+01 3.1163E+01 3.3784E+01 3.5538E+01 3.5671E+01

CEC2017-F9 Std 8.8408E+03 8.8396E+03 6.6050E+03 1.1158E+04 8.2544E+03 1.4603E+04 1.3562E+04 7.9995E+03 8.0736E+03

Ave 2.6146E+03 7.2531E+02 1.3600E+03 3.3620E+03 2.2092E+03 2.1384E+03 3.1998E+03 1.7635E+03 2.2830E+03

CEC2017-F10 Std 5.3026E+03 8.6873E+03 6.7385E+03 7.5400E+03 8.9489E+03 9.6221E+03 9.4869E+03 6.2583E+03 5.8066E+03

Ave 4.8144E+02 2.7925E+02 6.9709E+02 9.2288E+02 3.1551E+02 3.8996E+02 3.3628E+02 8.4342E+02 9.5148E+02

CEC2017-F11 Std 6.1013E+03 5.1712E+03 5.4735E+03 1.0763E+04 4.0449E+03 1.2950E+04 9.4157E+03 1.7577E+03 1.4785E+03

Ave 4.2474E+03 5.9749E+02 1.8040E+03 4.4469E+03 8.7697E+02 4.0426E+03 3.6149E+03 3.4082E+02 2.3707E+02

CEC2017-F12 Std 2.0462E+08 6.9320E+09 3.1529E+09 5.5826E+08 2.9856E+09 6.5638E+09 6.2454E+09 1.2851E+07 4.6866E+06

Ave 5.9229E+08 8.5429E+08 2.3210E+09 3.0735E+08 9.5787E+08 1.6467E+09 1.9872E+09 1.1986E+07 3.3374E+06

CEC2017-F13 Std 6.6689E+07 4.1857E+09 1.5902E+09 1.9626E+07 1.0899E+09 2.9450E+09 3.2214E+09 2.6756E+05 1.4497E+05

Ave 3.2709E+08 1.1472E+09 2.5423E+09 2.6344E+07 4.7772E+08 1.3962E+09 2.1373E+09 5.5958E+05 2.0987E+05

CEC2017-F14 Std 1.6036E+06 1.8983E+06 8.9813E+05 2.8441E+06 8.7003E+05 4.4436E+06 3.0639E+06 5.3016E+05 3.0988E+05

Ave 2.3804E+06 4.6467E+05 7.9795E+05 3.3440E+06 6.6326E+05 3.2814E+06 2.3026E+06 7.8865E+05 5.3130E+05

CEC2017-F15 Std 6.1601E+04 1.4041E+08 1.4412E+07 7.3650E+06 3.7645E+07 3.0831E+08 2.5466E+08 3.2398E+04 1.2940E+04

Ave 4.9772E+04 8.3289E+07 2.5415E+07 1.2505E+07 3.5506E+07 2.1677E+08 3.6739E+08 2.9105E+04 1.0413E+04

CEC2017-F16 Std 3.2985E+03 4.6920E+03 3.2197E+03 4.1622E+03 4.1515E+03 5.0692E+03 5.0520E+03 3.1535E+03 3.1436E+03

Ave 3.4896E+02 2.4494E+02 3.7348E+02 7.6408E+02 2.5768E+02 4.8352E+02 4.5272E+02 3.6868E+02 4.2205E+02

CEC2017-F17 Std 2.6497E+03 3.1723E+03 2.5562E+03 2.8109E+03 2.8423E+03 3.4118E+03 3.3451E+03 2.2838E+03 2.2792E+03

Ave 3.2867E+02 1.7220E+02 2.5575E+02 3.4893E+02 2.2294E+02 2.6787E+02 3.9139E+02 2.2855E+02 2.4060E+02

CEC2017-F18 Std 2.5833E+06 1.0895E+07 9.3725E+06 1.5972E+07 1.4004E+07 6.4166E+07 2.7172E+07 3.2265E+06 1.3026E+06

Ave 2.7730E+06 2.5958E+06 1.0726E+07 1.7334E+07 7.9957E+06 4.2527E+07 2.3015E+07 3.2336E+06 1.5551E+06

CEC2017-F19 Std 6.0324E+06 1.2479E+08 6.6950E+07 2.6391E+07 9.7219E+07 4.3629E+08 4.3793E+08 3.5116E+04 1.1738E+04

Ave 3.2778E+07 4.4821E+07 1.4522E+08 2.1478E+07 8.0229E+07 2.0373E+08 4.1251E+08 6.2530E+04 1.1756E+04

CEC2017-F20 Std 2.8772E+03 2.8660E+03 2.7221E+03 2.9309E+03 2.9144E+03 3.3937E+03 3.2902E+03 2.7639E+03 2.6733E+03

Ave 2.6519E+02 1.1543E+02 1.7252E+02 2.3770E+02 1.7350E+02 1.3739E+02 1.6246E+02 2.6197E+02 1.8181E+02

CEC2017-F21 Std 2.5691E+03 2.6330E+03 2.5428E+03 2.6407E+03 2.6100E+03 2.6799E+03 2.6937E+03 2.4752E+03 2.4500E+03

Ave 4.0287E+01 1.8365E+01 2.9129E+01 7.3834E+01 2.8970E+01 3.1563E+01 5.2369E+01 4.1761E+01 4.2639E+01

CEC2017-F22 Std 6.1333E+03 6.0158E+03 7.7130E+03 8.2550E+03 9.6205E+03 8.8920E+03 8.1603E+03 3.9131E+03 3.0873E+03

Ave 1.6403E+03 3.1561E+02 1.2694E+03 1.8579E+03 1.7769E+03 1.7147E+03 1.6525E+03 2.3877E+03 1.7194E+03

CEC2017-F23 Std 3.0966E+03 3.3070E+03 2.9752E+03 3.1340E+03 3.0856E+03 3.3597E+03 3.3384E+03 2.8668E+03 2.8516E+03

Ave 1.1849E+02 3.4984E+01 4.1856E+01 1.0847E+02 4.7549E+01 9.5780E+01 7.6626E+01 7.2989E+01 6.9470E+01

CEC2017-F24 Std 3.2205E+03 3.5569E+03 3.1402E+03 3.2562E+03 3.2365E+03 3.5596E+03 3.5676E+03 2.9960E+03 2.9876E+03

Ave 1.1100E+02 3.8847E+01 5.4525E+01 1.0575E+02 4.1663E+01 1.0134E+02 1.0486E+02 7.0260E+01 4.0169E+01

CEC2017-F25 Std 3.3860E+03 3.5669E+03 3.7878E+03 3.2334E+03 3.6176E+03 4.7111E+03 4.8360E+03 2.9739E+03 2.9497E+03

(Continued)
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superior performance and proving the robustness of ECOA. It is the comprehensive applica-

tion of Tent chaotic mapping, dynamic adjustment factor and OLOBL strategy that makes

ECOA exhibit excellent performance in various dimensions and problem types, ensuring its

efficiency in complex solution Spaces.

To further analyze the convergence speed and iteration process of the aforementioned algo-

rithms, 12 different types of test functions are selected for comparison. As shown in Fig 5,

ECOA outperformed other algorithms in terms of both convergence speed and accuracy. The

experimental results indicate that ECOA consistently maintained the fastest convergence

speed and highest convergence accuracy, further verifying its superior performance.

In summary, ECOA is an intelligent optimization algorithm that can consistently obtain

high-quality solutions. It has robust stability, fast convergence, high precision convergence,

and the ability to avoid falling into local optima.

4.3. Ablation experiment

ECOA incorporates three improvement strategies: the tent chaotic map, a novel nonlinear

dynamic adjustment factor, and the OLOBL strategy. To further explore the impact of these

strategies on ECOA, we conducted ablation experiments in this section. Based on this, we pro-

posed three improved algorithms: ECOA1 incorporating the tent chaotic map strategy,

ECOA2 utilizing the nonlinear dynamic adjustment factor, and ECOA3 implementing the

OLOBL strategy. In order to explore the interaction between strategies, we also conduct the

combination of strategies. Specifically, we tested the combinations of two strategies, resulting

in three additional variants: ECOA12 (combining strategies 1 and 2), ECOA13 (combining

strategies 1 and 3), and ECOA23 (combining strategies 2 and 3). As shown in the experimental

results in Fig 6, the 3 strategies have varying effects on COA’s performance, with ECOA dem-

onstrating the most significant improvements.

The ablation experiments were conducted using the CEC 2017 benchmark suite

(Dim = 100). When handling unimodal and multimodal functions, the results of ECOA2 and

ECOA3 are relatively consistent, with both showing more noticeable improvements to COA

compared to ECOA1. However, when dealing with more complex hybrid modal functions,

ECOA3 demonstrates more significant enhancement effects compared to ECOA2, while the

ECOA algorithm, which integrates all three strategies, continues to exhibit the best

Table 2. (Continued)

ID Metric CPSOGSA GQPSO EDOLSCA WOA SCA CPO SWO COA ECOA

Ave 3.6399E+02 9.3590E+01 3.4954E+02 8.3572E+01 2.1405E+02 4.7932E+02 6.0538E+02 3.3381E+01 3.2750E+01

CEC2017-F26 Std 7.8157E+03 8.8717E+03 7.3494E+03 8.6358E+03 7.9438E+03 9.9720E+03 9.7886E+03 6.1314E+03 5.9944E+03

Ave 8.9463E+02 4.3319E+02 9.2583E+02 1.5459E+03 4.4179E+02 6.9638E+02 7.9358E+02 1.3011E+03 1.5899E+03

CEC2017-F27 Std 3.3946E+03 3.9272E+03 3.4305E+03 3.4679E+03 3.5706E+03 4.1476E+03 4.0324E+03 3.3051E+03 3.2712E+03

Ave 8.1370E+01 1.1760E+02 9.6321E+01 1.0670E+02 7.9177E+01 1.7444E+02 1.9239E+02 5.3015E+01 2.4805E+01

CEC2017-F28 Std 4.1697E+03 5.1309E+03 4.6378E+03 3.8956E+03 4.5787E+03 6.0272E+03 6.0834E+03 3.3837E+03 3.3170E+03

Ave 6.7399E+02 1.0332E+02 5.8498E+02 3.0034E+02 4.6259E+02 5.6225E+02 9.2726E+02 7.2309E+01 5.4850E+01

CEC2017-F29 Std 4.7911E+03 5.6055E+03 4.7129E+03 5.6000E+03 5.2509E+03 6.3226E+03 6.0339E+03 4.1343E+03 4.1219E+03

Ave 4.0342E+02 2.2748E+02 3.5163E+02 8.5721E+02 3.1464E+02 5.3318E+02 7.2456E+02 2.3945E+02 2.2279E+02

CEC2017-F30 Std 4.6016E+06 7.5089E+08 4.4282E+07 7.0491E+07 1.9432E+08 4.6015E+08 3.3740E+08 1.0196E+06 2.6598E+05

Ave 7.2374E+06 2.5518E+08 3.4372E+07 6.2063E+07 4.7113E+07 2.2855E+08 1.9770E+08 1.2322E+06 2.6935E+05

Wilcoxon (+/ = /-) 25/0/4 28/0/1 26/0/3 29/0/0 28/0/1 29/0/0 29/0/0 15/0/14 0/29/0

Friedman Rank 3 7 4 5 6 9 8 2 1

https://doi.org/10.1371/journal.pone.0318203.t002
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Table 3. Test results for CEC 2017 (dim = 50).

ID Metric CPSOGSA GQPSO EDOLSCA WOA SCA CPO SWO COA ECOA

CEC2017-F1 Std 3.2681E+10 6.4955E+10 7.0530E+10 1.9705E+10 6.5341E+10 9.3195E+10 1.0058E+11 1.1495E+10 4.3186E+09

Ave 1.4507E+10 2.0899E+09 8.1196E+09 4.6299E+09 7.9823E+09 9.3420E+09 1.2735E+10 5.1753E+09 2.7744E+09

CEC2017-F3 Std 4.4271E+05 1.6404E+05 1.6899E+05 2.9146E+05 2.2519E+05 6.3307E+05 3.3265E+05 3.3555E+05 2.4123E+05

Ave 1.1449E+05 1.0821E+04 2.6977E+04 1.0157E+05 3.0600E+04 9.7238E+05 1.0245E+05 5.5773E+04 6.3764E+04

CEC2017-F4 Std 5.6307E+03 1.6221E+04 1.3659E+04 4.7350E+03 1.3137E+04 2.9641E+04 2.8176E+04 1.7368E+03 1.1371E+03

Ave 2.5491E+03 1.1646E+03 4.2119E+03 1.2222E+03 2.8923E+03 4.5294E+03 6.2607E+03 7.1349E+02 3.4571E+02

CEC2017-F5 Std 1.0638E+03 1.1233E+03 1.0240E+03 1.1227E+03 1.1488E+03 1.2367E+03 1.2286E+03 9.0317E+02 8.8968E+02

Ave 8.5575E+01 1.8001E+01 3.9992E+01 7.7893E+01 4.2281E+01 3.5662E+01 4.2185E+01 2.5903E+01 3.1245E+01

CEC2017-F6 Std 6.7979E+02 6.9203E+02 6.7446E+02 6.9424E+02 6.8417E+02 7.0424E+02 7.0320E+02 6.6571E+02 6.6477E+02

Ave 1.0077E+01 2.6793E+00 7.5522E+00 1.1502E+01 5.2419E+00 6.7247E+00 8.0980E+00 5.6112E+00 8.4686E+00

CEC2017-F7 Std 3.1883E+03 1.7446E+03 1.7484E+03 1.9066E+03 1.8667E+03 2.1509E+03 2.0981E+03 1.7298E+03 1.6823E+03

Ave 3.9972E+02 2.9082E+01 9.1889E+01 1.4162E+02 1.1197E+02 1.2076E+02 9.6327E+01 1.0532E+02 1.4794E+02

CEC2017-F8 Std 1.3577E+03 1.3973E+03 1.3323E+03 1.4023E+03 1.4335E+03 1.5428E+03 1.5497E+03 1.2255E+03 1.2116E+03

Ave 7.8172E+01 1.9751E+01 5.1143E+01 6.7851E+01 3.6989E+01 5.6027E+01 4.0192E+01 3.1658E+01 5.8170E+01

CEC2017-F9 Std 2.3490E+04 3.2353E+04 2.4554E+04 3.8209E+04 3.2833E+04 4.8433E+04 4.5944E+04 2.9169E+04 2.8521E+04

Ave 5.3296E+03 1.9963E+03 4.3703E+03 1.2252E+04 5.4811E+03 5.7607E+03 7.5586E+03 6.0408E+03 6.6039E+03

CEC2017-F10 Std 8.6979E+03 1.4743E+04 1.1428E+04 1.3563E+04 1.5474E+04 1.6318E+04 1.6169E+04 1.3385E+04 1.2337E+04

Ave 8.3598E+02 5.3522E+02 8.1671E+02 1.2466E+03 3.7358E+02 6.0671E+02 4.8161E+02 1.1486E+03 1.6803E+03

CEC2017-F11 Std 1.9180E+04 1.4637E+04 1.2168E+04 8.7851E+03 1.2658E+04 2.9549E+04 2.5117E+04 6.2368E+03 3.1600E+03

Ave 1.2225E+04 8.3342E+02 3.0932E+03 2.2217E+03 2.8736E+03 5.6295E+03 6.6482E+03 3.5552E+03 8.1334E+02

CEC2017-F12 Std 4.1229E+09 4.2480E+10 2.1781E+10 4.9143E+09 2.2481E+10 4.4986E+10 4.2341E+10 2.6584E+08 9.5259E+07

Ave 3.2462E+09 4.0582E+09 9.0671E+09 2.8032E+09 6.2421E+09 8.3819E+09 1.0931E+10 2.9037E+08 4.8563E+07

CEC2017-F13 Std 8.4309E+08 2.0344E+10 7.7435E+09 5.7352E+08 6.8829E+09 2.0734E+10 1.8720E+10 1.1471E+06 5.7443E+05

Ave 2.8720E+09 3.1369E+09 8.2888E+09 2.8522E+08 3.0489E+09 5.7319E+09 7.1715E+09 1.5707E+06 4.4171E+05

CEC2017-F14 Std 5.0556E+06 2.2156E+07 5.7462E+06 6.5220E+06 8.9625E+06 5.2300E+07 3.8773E+07 1.2926E+06 1.5338E+06

Ave 5.7132E+06 7.0982E+06 7.1656E+06 6.3976E+06 5.1810E+06 2.2730E+07 2.8471E+07 8.7324E+05 1.2797E+06

CEC2017-F15 Std 1.7650E+06 2.8530E+09 1.5954E+09 4.3566E+07 1.0626E+09 3.7928E+09 4.0425E+09 9.2643E+04 5.8549E+04

Ave 9.2781E+06 5.3724E+08 1.1167E+09 4.2081E+07 4.4670E+08 1.6768E+09 2.5708E+09 4.7407E+04 2.5943E+04

CEC2017-F16 Std 4.4015E+03 6.6023E+03 4.7028E+03 6.4726E+03 6.4942E+03 8.0870E+03 7.9127E+03 4.3668E+03 4.1812E+03

Ave 5.6686E+02 2.8466E+02 6.1621E+02 1.0349E+03 4.5199E+02 6.0017E+02 8.3512E+02 6.7218E+02 7.6734E+02

CEC2017-F17 Std 4.3580E+03 5.7419E+03 4.8131E+03 4.6681E+03 5.0777E+03 7.2391E+03 7.0943E+03 3.5202E+03 3.4296E+03

Ave 7.0981E+02 2.6903E+02 1.3009E+03 4.9439E+02 3.1558E+02 2.2415E+03 3.8282E+03 4.3509E+02 3.8419E+02

CEC2017-F18 Std 1.4698E+07 8.3056E+07 3.5629E+07 6.5713E+07 5.4506E+07 1.3705E+08 9.5815E+07 8.3102E+06 4.9133E+06

Ave 2.1610E+07 2.6148E+07 4.0961E+07 3.9761E+07 2.8926E+07 4.8647E+07 5.7312E+07 9.1603E+06 4.5332E+06

CEC2017-F19 Std 6.6827E+05 1.4003E+09 1.2606E+09 1.9973E+07 6.7665E+08 1.4769E+09 1.6039E+09 3.7838E+05 1.0572E+05

Ave 1.0454E+06 3.1002E+08 1.2548E+09 1.7151E+07 2.8346E+08 5.2591E+08 9.3705E+08 2.5291E+05 1.2279E+05

CEC2017-F20 Std 3.8258E+03 4.1025E+03 3.6145E+03 4.0591E+03 4.2749E+03 4.9086E+03 4.6614E+03 3.7707E+03 3.7335E+03

Ave 3.2049E+02 1.4792E+02 3.5400E+02 2.9145E+02 2.2208E+02 2.5766E+02 3.0454E+02 1.5967E+02 2.5618E+02

CEC2017-F21 Std 2.9198E+03 2.9742E+03 2.8436E+03 3.0521E+03 2.9697E+03 3.1009E+03 3.0710E+03 2.7129E+03 2.6705E+03

Ave 9.2643E+01 2.4471E+01 5.7618E+01 7.9042E+01 3.3078E+01 4.4293E+01 7.4918E+01 8.5015E+01 7.0287E+01

CEC2017-F22 Std 1.0528E+04 1.6822E+04 1.3676E+04 1.4359E+04 1.7195E+04 1.8008E+04 1.7830E+04 1.4530E+04 1.0930E+04

Ave 1.1487E+03 3.8309E+02 1.0637E+03 1.1912E+03 5.1559E+02 6.4572E+02 5.3351E+02 1.3043E+03 4.8112E+03

CEC2017-F23 Std 3.6935E+03 3.9696E+03 3.5078E+03 3.8303E+03 3.7137E+03 4.2516E+03 4.2104E+03 3.2997E+03 3.2334E+03

Ave 1.8688E+02 5.4307E+01 1.0699E+02 1.8351E+02 1.0647E+02 1.4619E+02 1.5813E+02 1.3921E+02 1.1547E+02

CEC2017-F24 Std 3.7555E+03 4.5524E+03 3.6414E+03 3.9208E+03 3.8965E+03 4.6033E+03 4.4302E+03 3.4438E+03 3.4572E+03

Ave 1.5206E+02 1.0269E+02 7.4098E+01 1.5916E+02 7.2610E+01 1.7722E+02 1.4598E+02 1.5585E+02 1.5572E+02

CEC2017-F25 Std 6.8235E+03 8.3639E+03 8.2968E+03 5.4153E+03 9.5280E+03 1.4516E+04 1.4545E+04 3.9263E+03 3.4694E+03

(Continued)
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optimization performance. It is worth noting that, compared with the improvement of single

strategy, the performance improvement of ECOA is more obvious after the combination of

selected strategies, especially ECOA12 and ECOA13, which can conclude the effectiveness and

adaptability of OLOBL strategy. The ECOA algorithm successfully overcame COA’s issues

with local optima and premature convergence, significantly improving both convergence

speed and accuracy. The research findings provide valuable insights for the further develop-

ment and application of COA.

5. ECOA algorithm practical engineering application

This section is dedicated to studying the practical applications of the ECOA algorithm, partic-

ularly its application in robotic arm trajectory planning. To evaluate the performance of the

ECOA algorithm, simulation experiments were conducted on the motion trajectory of a

robotic arm. The simulation results verified the algorithm’s navigation capability in complex

environments, making it suitable for robotic arm trajectory planning applications.

5.1. Trajectory planning of robot arm model

5.1.1. Length of path cost. In robotic arm trajectory planning, the cost related to path

length is primarily associated with the energy consumed during task execution. A shorter path

generally means less energy consumption by the robotic arm during task execution. In indus-

trial applications, reducing energy consumption is one of the key factors in lowering opera-

tional costs. To quantify this cost, a formula is designed that accurately reflects this

relationship. Path length can be obtained by calculating the distance between all consecutive

points. For a path in three-dimensional space, the formula for calculating the path length cost

is as follows:

L ¼
XN� 1

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xiþ1 � xi
� �2

þ yiþ1 � yi
� �2

þ ziþ1 � zi
� �2

q

ð22Þ

where xi; yi; zið Þ; xiþ1; yiþ1; ziþ1

� �
represent two consecutive points on the path, and N is the

total number of points on the path.

5.1.2. Angle of turn cost. Frequent or sharp turns may increase wear on the manipulator

joints and actuation system. Optimizing the turning Angle can prolong the service life of

Table 3. (Continued)

ID Metric CPSOGSA GQPSO EDOLSCA WOA SCA CPO SWO COA ECOA

Ave 1.6159E+03 2.7059E+02 1.4276E+03 6.0838E+02 1.3524E+03 1.7229E+03 2.0487E+03 4.8993E+02 1.8990E+02

CEC2017-F26 Std 1.4445E+04 1.4051E+04 1.2774E+04 1.4737E+04 1.3967E+04 1.7410E+04 1.7082E+04 1.2038E+04 1.1478E+04

Ave 2.1945E+03 2.5455E+02 1.2910E+03 1.4568E+03 8.5714E+02 1.1116E+03 1.3818E+03 1.2487E+03 1.7197E+03

CEC2017-F27 Std 4.3495E+03 6.2949E+03 4.5302E+03 4.8188E+03 4.9971E+03 6.4983E+03 6.1880E+03 3.8781E+03 3.7242E+03

Ave 2.8749E+02 1.8979E+02 2.9086E+02 4.8277E+02 2.8196E+02 4.0943E+02 4.7151E+02 2.2452E+02 1.6695E+02

CEC2017-F28 Std 8.0401E+03 8.1973E+03 7.7137E+03 6.2115E+03 9.2785E+03 1.1237E+04 1.1196E+04 4.5403E+03 4.0402E+03

Ave 1.7282E+03 2.8305E+02 1.0123E+03 7.4661E+02 1.4296E+03 1.1921E+03 1.3156E+03 3.6907E+02 3.1339E+02

CEC2017-F29 Std 7.2978E+03 1.5237E+04 7.3572E+03 9.2432E+03 8.7591E+03 1.7787E+04 1.5645E+04 5.6680E+03 5.2824E+03

Ave 1.2553E+03 2.2376E+03 1.5492E+03 1.3700E+03 1.0094E+03 8.2234E+03 5.3390E+03 5.1606E+02 4.9959E+02

CEC2017-F30 Std 1.3719E+08 2.5991E+09 1.6270E+09 3.2674E+08 1.2867E+09 3.3089E+09 2.9904E+09 3.6085E+07 1.1899E+07

Ave 1.0260E+08 4.8499E+08 1.8957E+09 2.1157E+08 3.7668E+08 1.2943E+09 1.4244E+09 1.8133E+07 4.5008E+06

Wilcoxon (+/ = /-) 24/0/5 28/0/1 27/0/2 28/0/11 28/0/1 29/0/0 29/0/0 17/0/12 0/29/0

Friedman Rank 3 7 4 5 6 9 8 2 1

https://doi.org/10.1371/journal.pone.0318203.t003
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Table 4. Test results for CEC 2017 (dim = 100).

ID Metric CPSOGSA GQPSO EDOLSCA WOA SCA CPO SWO COA ECOA

CEC2017-F1 Std 1.8383E+11 1.9068E+11 1.9295E+11 1.0804E+11 2.1332E+11 2.6358E+11 2.5745E+11 7.0424E+10 4.9009E+10

Ave 5.8559E+10 4.1852E+09 1.3117E+10 1.2894E+10 1.3996E+10 2.0999E+10 1.6950E+10 1.2392E+10 9.8938E+09

CEC2017-F3 Std 9.7912E+05 3.4933E+05 5.2107E+05 9.2511E+05 5.8034E+05 5.4405E+06 1.9100E+06 7.4204E+05 3.7055E+05

Ave 1.7619E+05 1.5202E+04 1.1629E+05 1.2646E+05 7.6312E+04 9.3314E+06 4.1466E+06 1.1605E+05 4.5487E+04

CEC2017-F4 Std 4.2153E+04 5.1164E+04 3.9997E+04 2.0132E+04 5.1863E+04 8.3974E+04 8.0912E+04 9.1185E+03 5.5541E+03

Ave 1.3852E+04 3.2909E+03 9.6501E+03 3.4603E+03 4.8199E+03 1.1314E+04 1.5104E+04 3.0002E+03 1.8231E+03

CEC2017-F5 Std 2.0207E+03 1.9699E+03 1.8014E+03 1.9487E+03 2.0495E+03 2.2045E+03 2.2009E+03 1.5384E+03 1.5264E+03

Ave 1.4588E+02 2.9225E+01 8.2625E+01 1.0860E+02 7.4314E+01 7.2077E+01 6.7146E+01 4.4735E+01 7.4618E+01

CEC2017-F6 Std 6.9136E+02 7.0535E+02 6.9051E+02 7.0942E+02 7.0454E+02 7.1679E+02 7.1743E+02 6.7359E+02 6.7378E+02

Ave 8.3222E+00 2.0442E+00 6.0962E+00 1.1631E+01 4.4481E+00 6.5596E+00 5.6867E+00 2.4274E+00 4.0837E+00

CEC2017-F7 Std 7.6765E+03 3.5259E+03 3.5361E+03 3.8265E+03 4.1300E+03 4.2828E+03 4.1712E+03 3.4001E+03 3.2610E+03

Ave 7.8931E+02 7.6886E+01 1.3694E+02 1.4521E+02 2.4715E+02 1.9639E+02 1.5544E+02 1.3219E+02 2.5056E+02

CEC2017-F8 Std 2.4525E+03 2.3585E+03 2.2053E+03 2.3713E+03 2.4330E+03 2.6298E+03 2.6280E+03 2.0016E+03 1.9869E+03

Ave 1.6478E+02 2.5085E+01 7.9241E+01 1.5708E+02 5.9131E+01 6.8234E+01 8.3409E+01 4.8475E+01 8.9742E+01

CEC2017-F9 Std 5.2007E+04 7.1950E+04 6.4353E+04 7.6113E+04 9.2414E+04 1.0559E+05 1.0145E+05 4.7498E+04 4.9235E+04

Ave 5.4649E+03 3.3082E+03 1.1594E+04 1.7626E+04 1.2451E+04 9.9542E+03 9.4742E+03 1.0500E+04 1.2840E+04

CEC2017-F10 Std 1.9142E+04 3.2217E+04 2.7468E+04 2.9587E+04 3.3000E+04 3.4333E+04 3.3914E+04 2.3583E+04 2.3393E+04

Ave 1.5580E+03 5.0615E+02 1.8823E+03 1.3680E+03 7.3583E+02 6.9332E+02 7.7299E+02 3.4407E+03 3.2729E+03

CEC2017-F11 Std 3.3428E+05 1.6298E+05 1.2294E+05 3.0320E+05 1.7350E+05 3.6077E+05 2.6535E+05 2.9639E+05 2.2953E+05

Ave 8.4320E+04 1.7017E+04 2.3015E+04 1.1769E+05 3.2784E+04 7.3904E+04 7.5256E+04 8.2150E+04 6.9757E+04

CEC2017-F12 Std 4.2821E+10 1.2241E+11 9.7178E+10 3.3136E+10 9.9306E+10 1.5286E+11 1.5053E+11 1.4866E+10 5.5926E+09

Ave 1.7183E+10 5.2153E+09 1.5044E+10 8.7061E+09 1.3219E+10 1.9625E+10 2.5593E+10 7.8628E+09 3.4347E+09

CEC2017-F13 Std 3.5396E+09 2.7670E+10 2.3053E+10 2.6088E+09 1.7486E+10 3.1405E+10 3.1383E+10 8.1110E+08 3.4080E+07

Ave 2.3211E+09 1.1609E+09 6.0179E+09 9.6414E+08 3.0945E+09 4.7979E+09 6.3716E+09 1.5051E+09 3.3510E+07

CEC2017-F14 Std 3.0970E+07 3.0335E+07 2.0434E+07 1.9698E+07 6.4094E+07 1.2051E+08 9.4438E+07 9.9549E+06 6.6059E+06

Ave 2.1574E+07 4.4924E+06 1.1885E+07 6.0368E+06 2.5532E+07 5.3707E+07 4.4330E+07 5.2028E+06 3.1973E+06

CEC2017-F15 Std 1.2118E+09 1.2837E+10 8.7813E+09 4.3710E+08 6.5977E+09 1.3354E+10 1.3350E+10 1.6823E+07 1.3941E+06

Ave 2.1794E+09 1.2708E+09 4.2999E+09 1.7614E+08 2.0723E+09 3.3884E+09 4.1754E+09 3.8628E+07 2.2155E+06

CEC2017-F16 Std 9.6767E+03 1.6986E+04 1.2480E+04 1.6005E+04 1.5059E+04 1.9521E+04 1.9157E+04 8.8968E+03 8.4377E+03

Ave 1.2126E+03 5.6800E+02 1.9667E+03 2.1657E+03 1.0416E+03 1.1918E+03 2.4640E+03 1.6148E+03 1.5959E+03

CEC2017-F17 Std 4.1571E+04 2.2523E+05 1.9814E+05 2.9162E+04 7.2850E+04 1.1936E+06 1.3552E+06 7.0518E+03 6.5665E+03

Ave 9.6153E+04 8.3074E+04 3.5560E+05 2.2180E+04 5.7310E+04 1.1082E+06 1.3244E+06 1.1080E+03 1.0319E+03

CEC2017-F18 Std 2.7068E+07 5.2830E+07 2.6142E+07 2.1053E+07 1.2696E+08 2.3134E+08 1.5159E+08 1.1857E+07 7.1203E+06

Ave 1.8218E+07 1.0219E+07 1.8198E+07 1.3530E+07 5.3613E+07 9.1491E+07 6.4901E+07 1.0713E+07 4.5736E+06

CEC2017-F19 Std 8.0092E+08 1.1295E+10 8.6089E+09 5.3161E+08 5.2283E+09 1.3973E+10 1.3544E+10 1.5007E+07 6.2846E+06

Ave 1.9855E+09 1.0448E+09 3.2617E+09 2.4906E+08 1.0662E+09 3.1163E+09 4.8281E+09 1.1430E+07 8.5714E+06

CEC2017-F20 Std 6.1397E+03 7.6410E+03 6.6121E+03 7.3092E+03 8.0244E+03 8.8428E+03 8.6649E+03 6.9722E+03 7.0272E+03

Ave 6.1042E+02 2.8472E+02 6.5493E+02 6.2344E+02 2.1202E+02 3.8099E+02 3.4331E+02 5.9245E+02 4.6649E+02

CEC2017-F21 Std 4.1342E+03 4.1547E+03 3.9275E+03 4.4118E+03 4.1863E+03 4.6023E+03 4.5373E+03 3.7144E+03 3.6107E+03

Ave 1.7869E+02 5.0503E+01 8.2554E+01 2.2803E+02 8.7967E+01 1.0954E+02 1.5153E+02 1.9527E+02 1.7718E+02

CEC2017-F22 Std 2.2020E+04 3.4366E+04 3.0429E+04 3.1678E+04 3.5389E+04 3.7074E+04 3.6516E+04 3.0492E+04 2.7632E+04

Ave 1.6541E+03 5.9726E+02 1.5922E+03 1.2263E+03 6.2226E+02 6.3605E+02 6.6970E+02 2.8741E+03 2.6645E+03

CEC2017-F23 Std 4.9446E+03 6.8150E+03 4.7102E+03 5.3375E+03 5.2155E+03 6.6638E+03 6.5121E+03 4.2670E+03 4.1898E+03

Ave 2.0775E+02 2.1491E+02 1.4192E+02 1.9393E+02 1.3265E+02 3.3018E+02 4.6209E+02 1.7588E+02 2.1252E+02

CEC2017-F24 Std 6.8542E+03 9.6259E+03 6.1909E+03 6.8106E+03 7.2842E+03 1.0183E+04 1.0142E+04 5.3641E+03 5.3037E+03

Ave 5.8802E+02 2.9568E+02 3.0438E+02 3.6611E+02 3.4866E+02 7.8672E+02 7.2200E+02 3.3871E+02 5.2099E+02

CEC2017-F25 Std 2.6844E+04 1.7329E+04 1.8190E+04 1.0969E+04 2.2392E+04 2.9669E+04 2.7408E+04 7.6502E+03 6.6224E+03

(Continued)
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mechanical equipment. Then the cost function of the bending Angle is:

C ¼
XN� 1

i¼1
cos

p

2

� �
�

vi � viþ1

kvik kviþ1k

� �

ð23Þ

vi ¼ dxi; dxi; dxið Þ ð24Þ

where υi and υi+1 represent on the path to the continuous two points.

5.1.3. Height variation cost. In complex environments, such as factories or warehouses,

the robotic arm needs to move among multiple objects and obstacles. Reasonably planning

height changes can prevent the robotic arm from colliding with objects in the environment.

Height variation H evaluates the vertical fluctuation of the path, which can be represented by

the sum of the absolute differences between the heights of all points and the average height.

Thus, the cost function for height variation is:

H ¼
XN

i¼1
jzi � �zj ð25Þ

where �z represent average value of zi.
5.1.4. Performance measurement function of trajectory planning of robot arm. The

Trajectory planning of robot arm considers three main costs: path length, angle of turn, and

height variation cost. These costs have a weight coefficient w1, w2, w3. On this basis, the objec-

tive function of trajectory planning of robot arm is transformed into the weighted sum of dif-

ferent cost components. The formula is designed to strike a balance between various factors to

determine the most efficient operating trajectory. The objective function of trajectory planning

of robot arm is defined as follows:

F ¼ w1 Lþ w2 C þ w3 H ð26Þ

where w1, w2, w3 denote the weight of each item.

5.2. Simulation and analysis of trajectory planning of robot arm

5.2.1. Algorithm application and experimental simulation. According to the three loss

functions introduced in Section A. Trajectory planning of robot arm model, the performance

Table 4. (Continued)

ID Metric CPSOGSA GQPSO EDOLSCA WOA SCA CPO SWO COA ECOA

Ave 6.2076E+03 5.2306E+02 2.6980E+03 1.0180E+03 2.9089E+03 2.8816E+03 2.7255E+03 1.0066E+03 7.5814E+02

CEC2017-F26 Std 4.0626E+04 3.7516E+04 3.5982E+04 3.8243E+04 4.0782E+04 4.9711E+04 5.2074E+04 3.1480E+04 2.7795E+04

Ave 4.7597E+03 8.6214E+02 2.6566E+03 3.1076E+03 2.7566E+03 3.3173E+03 5.4100E+03 3.6681E+03 4.6562E+03

CEC2017-F27 Std 5.6126E+03 1.0959E+04 6.6423E+03 6.2927E+03 8.8283E+03 1.1686E+04 1.1207E+04 4.5495E+03 4.3317E+03

Ave 6.7259E+02 7.0444E+02 5.1939E+02 7.6633E+02 6.5487E+02 9.6362E+02 9.7517E+02 2.8432E+02 2.6630E+02

CEC2017-F28 Std 2.7351E+04 1.9309E+04 2.2913E+04 1.4553E+04 2.8562E+04 3.2243E+04 3.2961E+04 1.1174E+04 9.1137E+03

Ave 3.9230E+03 5.5523E+02 2.5052E+03 1.2645E+03 3.0250E+03 3.0219E+03 3.5605E+03 1.6162E+03 1.2935E+03

CEC2017-F29 Std 2.4516E+04 8.3159E+04 5.0599E+04 2.1113E+04 3.9919E+04 1.8439E+05 1.9581E+05 1.1724E+04 9.6959E+03

Ave 1.1169E+04 1.9129E+04 8.6821E+04 4.3582E+03 1.5738E+04 1.1112E+05 2.4738E+05 1.4068E+03 9.4739E+02

CEC2017-F30 Std 2.9574E+09 2.6461E+10 1.8699E+10 2.9750E+09 1.2831E+10 2.6029E+10 2.3112E+10 1.1465E+09 1.0546E+08

Ave 5.2401E+09 1.6169E+09 7.2269E+09 1.0070E+09 2.7885E+09 5.3650E+09 5.5172E+09 1.5422E+09 1.4064E+08

Wilcoxon (+/ = /-) 28/0/1 29/0/0 29/0/0 28/0/1 29/0/0 29/0/0 28/0/1 17/0/12 0/29/0

Friedman Rank 3 66 4 5 7 9 8 2 1

https://doi.org/10.1371/journal.pone.0318203.t004
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measurement function of robot arm trajectory planning is defined to carry out the optimal

path planning, find the path with the minimum comprehensive loss, check whether the path

collide with obstacles, and abandon the path selection through obstacles, To demonstrate the

performance of ECOA on the robotic arm trajectory planning problem, CPSOGSA[30],

GQPSO[31], EDOLSCA[32], WOA[6], SCA[33], CPO[34], SWO[35], the original COA

Fig 5. Comparison of convergence curves with different advanced algorithms. ECOA outperformed other algorithms in terms of both convergence speed

and accuracy. The experimental results indicate that ECOA consistently maintained the fastest convergence speed and highest convergence accuracy.

https://doi.org/10.1371/journal.pone.0318203.g005

PLOS ONE ECOA with Orthogonal Refracted Learning for Trajectory Planning

PLOS ONE | https://doi.org/10.1371/journal.pone.0318203 February 5, 2025 22 / 29

https://doi.org/10.1371/journal.pone.0318203.g005
https://doi.org/10.1371/journal.pone.0318203


algorithm [28] and ECOA were also applied to the same trajectory planning problem. The

parameter settings for the algorithms are as follows: population size (N) is 30, and the maxi-

mum number of iterations (T) is 200. The parameter configurations for the comparative algo-

rithms are consistent with Section 4.1. The simulation results are shown in the figures: Fig 7

shows the three-dimensional trajectory planning results. This comprehensive simulation and

analysis highlight the effectiveness of the ECOA algorithm in navigating complex environ-

ments and its potential advantages in robotic arm trajectory planning compared to other

algorithms.

5.2.2. Analysis of simulation result. From the analysis of the paths given by different

algorithms in Fig 7, the experimental results indicate that the paths generated by the CPO and

CPSOGSA algorithms tend to be longer, resulting in increased energy consumption. More

importantly, their turning angles are too sharp, leading to abrupt turns, which pose significant

safety hazards and increase the likelihood of robotic arm malfunctions. The trajectories of the

Fig 6. Comparison of different improvement strategies. ECOA12 (combining strategies 1 and 2), ECOA13 (combining strategies 1 and 3), and ECOA23

(combining strategies 2 and 3).

https://doi.org/10.1371/journal.pone.0318203.g006
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WOA and SCA algorithms exhibit significant height variations, greatly increasing the risk of

collisions. Although the routes planned by the GQPSO and SWO algorithms avoid obstacles

and have smoother trajectories, they increase the path length. In contrast, the optimized

ECOA algorithm successfully mitigated these issues. Overall, ECOA not only has a shorter

path length but also exhibits smoother trajectories with less severe height variations, signifi-

cantly reducing the risk of malfunctions.

Under the same test conditions, 30 independent simulation experiments are carried out for

the nine algorithms. The comprehensive cost models of the 9 algorithms are statistically ana-

lyzed, and the relevant statistics are listed in Table 5.

The analysis of the 8 sets of experimental data consistently shows that the ECOA algorithm

achieved the best results across various metrics, including the optimal cost, worst cost, average

Fig 7. Best three-dimensional trajectory planning by each algorithm. This comprehensive simulation and analysis highlight the effectiveness of the ECOA

algorithm in navigating complex environments and its potential advantages in robotic arm trajectory planning compared to other algorithms.

https://doi.org/10.1371/journal.pone.0318203.g007
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cost, and median, and obtained nearly the smallest standard deviation. These results empha-

size the excellent optimization performance of the ECOA algorithm, particularly in the field of

robotic arm trajectory planning, where its optimization results demonstrate higher stability.

The Wilcoxon rank-sum test results indicate that, except for WOA and COA, ECOA showed

statistically significant performance improvements over most of the comparative algorithms.

In the Friedman ranking, ECOA achieved first place, demonstrating the leading performance

of the algorithm. Notably, compared to other algorithms, the ECOA algorithm starts from a

significantly lower initial best fitness value, indicating its proximity to the global optimum.

This characteristic significantly reduces the likelihood of the algorithm getting trapped in local

optima. This characteristic significantly reduces the likelihood of the algorithm getting trapped

in local optima. This stability and reliability are crucial in practical applications. In summary,

the ECOA algorithm performs outstandingly in handling robotic arm trajectory planning

problems.

5.2.3. Discussion. The experimental results in Section 5.2 highlight the superiority of the

ECOA algorithm in robotic arm trajectory planning compared to eight other algorithms. This

section provides an in-depth analysis of the factors contributing to ECOA’s superior

performance.

The results consistently demonstrate ECOA’s superiority over other competitive algo-

rithms. ECOA achieved the lowest Worst Cost, Best Cost, and Average Cost, along with an

exceptionally low Standard Deviation (5.57E-13), reflecting both high-quality solutions and

significant robustness across multiple trials. Statistical analyses, including the Wilcoxon rank-

sum test and Friedman ranking, consistently positioned ECOA as the top-performing algo-

rithm, underscoring its superior and reliable performance.

ECOA’s remarkable performance can be attributed to several key enhancements, particu-

larly the nonlinear dynamic adjustment factor and the orthogonal refracted opposition-based

learning strategy. The nonlinear dynamic adjustment factor adapts the search behavior to the

optimization phase, enabling extensive exploration during initial stages and intensifying

exploitation in later stages. This adaptive mechanism is crucial for preventing premature con-

vergence and guiding the search toward the global optimum. Additionally, the orthogonal

refracted opposition-based learning strategy plays a vital role in maintaining population diver-

sity and avoiding local optima, thereby enhancing solution quality. Together, these integrated

strategies enable ECOA to outperform other algorithms by achieving shorter, smoother, and

more consistent solution paths, as evidenced by the experimental data.

Table 5. Statistics of trajectory planning of robot arm results.

Algorithm Worst Cost Best Cost Average Cost Midia Standard Deviation Wilcoxon (+/ = /-) FriedmanValue FriedmanRank

CPSOGSA 2.4105E+02 2.2280E+02 2.3181E+02 2.3182E+02 4.9188E+00 (+) 8.97 9

GQPSO 2.2056E+02 2.2055E+02 2.2055E+02 2.2055E+02 5.2742E-04 (+) 5.37 6

EDOLSCA 2.2055E+02 2.2055E+02 2.2055E+02 2.2055E+02 1.6850E-05 (+) 3.80 4

WOA 2.2057E+02 2.2055E+02 2.2055E+02 2.2055E+02 3.2177E-03 (-) 3.17 3

SCA 2.2055E+02 2.2055E+02 2.2055E+02 2.2055E+02 6.8729E-05 (+) 4.73 5

CPO 2.3228E+02 2.2205E+02 2.2510E+02 2.2424E+02 2.5493E+00 (+) 7.90 8

SWO 2.2410E+02 2.2116E+02 2.2244E+02 2.2218E+02 8.8934E-01 (+) 7.13 7

COA 2.2055E+02 2.2055E+02 2.2055E+02 2.2055E+02 2.4398E-13 (-) 2.08 2

ECOA 2.2055E+02 2.2055E+02 2.2055E+02 2.2055E+02 5.5700E-13 (=) 1.85 1

https://doi.org/10.1371/journal.pone.0318203.t005
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6. Conclusion

In this study, we conducted a detailed analysis of the COA algorithm, identifying its computa-

tional challenges and limitations. To address these issues, we proposed and integrated three

strategic improvements: tent chaotic mapping, nonlinear perturbation factors, and orthogonal

refracted opposition-based learning strategy which improves the exploration ability of the

algorithm and solves the dimension degradation problem of opposition-based learning. The

integration of these three strategies not only enhanced the global search capability of the COA

algorithm but also improved its precision during the local optimization phase, thereby signifi-

cantly accelerating the convergence speed.

Evaluations based on the CEC2017 test set in 30, 50, and 100 dimensions showed that, com-

pared to a series of well-known algorithms, ECOA exhibited rapid convergence performance

and global optimization capability. We used the Wilcoxon rank-sum test and Friedman rank-

sum test to statistically verify the superiority of ECOA. The ECOA algorithm was applied to

robotic arm trajectory planning and compared with eight advanced algorithms, verifying its

versatility and superiority. Experimental results showed that the ECOA outperformed

CPSOGSA, GQPSO, EDOLSCA, WOA, SCA, CPO, SWO, and the original COA.

Given the excellent performance demonstrated by ECOA, its application is expected to

expand to a broader range of real-world challenges, such as logistics, healthcare, and energy

management.

However, ECOA also has certain limitations. Our comparison with cec award-winning

algorithms such as LSHADE_cnEpSin, LSHADE_SPACMA, EA4eig, and MadDE shows that

ECOA does not achieve state-of-the-art performance on these challenging benchmarks.

ECOA has the best applicability for manipulator trajectory planning, but does not achieve per-

formance beyond the state-of-the-art competition algorithms on the CEC test suit. To address

these challenges and further enhance the algorithm, future research will focus on integrating

multiple metaheuristic strategies to better balance the efficiency of exploration and exploita-

tion, thereby improving both efficiency and scalability.
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