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Abstract 
Accurate and efficient automatic segmentation is essential for various clinical tasks such 

as radiotherapy treatment planning. However, atlas-based segmentation still faces chal-

lenges due to the lack of representative atlas dataset and the computational limitations 

of deformation algorithms. In this work, we have proposed an atlas selection procedure 

(subset atlas grouping approach, MAS-SAGA) which utilized both image similarity and 

volume features for selecting the best-fitting atlases for contour propagation. A dataset of 

anonymized female pelvic Computed Tomography (CT) images demonstrated that MAS-

SAGA significantly outperforms conventional multi-atlas-based segmentation (cMAS) 

in terms of Dice Similarity Coefficient (DSC) and 95th Percentile Hausdorff Distance 

(95HD) for bladder and rectum segmentation using a three-fold cross-validation strategy. 

The proposed procedure also reduced computation time compared to cMAS, making it 

a promising tool for medical image analysis applications. In addition, we have evaluated 

two distinct atlas selection methods: the Feature-based Atlas Selection Approach (MAS-

FASA) and the Similarity-based Atlas Selection Approach (MAS-SIM). We investigate the 

differences between these two methods in terms of their ability to select the best fitting 

atlases. The findings demonstrated that MAS-FASA selected different atlases than MAS-

SIM, resulting in improved segmentation performance overall. It highlighted the potential of 

feature-based subgrouping techniques in enhancing the efficacy of MAS algorithms in the 

field of medical image segmentation.

Introduction
Medical image segmentation predefines normal tissues for the purpose of their protection in 
radiation therapy planning, thus having broad applications in the field of radiation therapy 
[1,2]. Multi-atlas-based segmentation (MAS) uses the prior knowledge provided by finding 
the best-fitting images contoured previously and then propagating the delineation in the atlas 
onto the target image using Deformable Image Registration (DIR) [3]. In addition to image 
segmentation, MAS is also an important method for radiation therapy dose accumulation and 
prediction [4,5,6]. Unlike Deep Learning-based methods that typically predict the likelihood 
of each pixel belonging to a certain class, MAS calculates Deformation Vector Fields (DVF), 
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which provide an elastic mapping between image coordinates to adjust the alignment between 
the atlases and the target image. The DVF provided by such type of registration approach is 
continuous and interpretable. Compared to Deep Learning-based approaches which require 
extensive amounts of labeled data or computational resources, MAS offers a practical solu-
tion that only requires finite training data and yields accurate results across various imaging 
modalities.

MAS is typically composed of three steps: atlas selection, registration, and label fusion 
[7,8]. The choice of atlas selection significantly impacts the accuracy of image segmentation. 
Intensity-based similarity metric is a widely used method to find most fitting atlases. These 
similarity metric includes similarity index [9], the sum of squared difference of image inten-
sity [10], correlation coefficient [11], and mutual information (MI) [12]. Although these 
methods can quantify the overall similarity of the entire image, global similarity measures may 
be insensitive to local variations within specific anatomical structures, leading to less accurate 
comparisons in regions with unique imaging.

Recently, MAS has been challenged by deep learning-based segmentation. Deep learning 
based segmentation employs deep neural network models to learn features and semantic 
information from images, achieving excellent segmentation results in medical image segmen-
tation [13]. However, this method also exhibits certain drawbacks, such as challenges in data 
acquisition and annotation, limited model generalization capability, and poor interpretability. 
When employed in new tasks or with diverse types of imaging data, their performance may 
significantly decline [14]. In contrast, MAS is an interpretable method and does not require a 
large number of annotated images for training. Therefore, it is still being used in some fields, 
such as brain segmentation [15] and dose accumulation assessment in radiotherapy [16,17] 
and has not been replaced by deep learning. however, the lack of precise feature classification 
during the atlas search and deformation processes in MAS leads to a segmentation accuracy 
inferior to that achieved by deep learning methodologies.

Some efforts have been made in determining the most representative atlas groups by 
combining image similarity with other image features. For instance, previous study using 
Location-Based Feature Matching atlas pre-selection approaches and compared them to ran-
dom and Mutual Information-based Methods [18] and genetic algorithm [19]. Zaffino et al. 
introduced an approach for selecting preregistration atlas subsets. They based this method on 
the pairwise feature selection of both the whole prostate and the left ventricle of the heart from 
magnetic resonance images. This approach relies on selecting the best performing group of 
atlases rather than the group of highest scoring individual atlases [20]. Another study reported 
an iterative atlas selection procedure with a cross-validation strategy where each dataset serves 
as an atlas set to segment each image in the other dataset [21]. Other approaches such as the 
selection of atlases using manifold parameters in head and neck CT images [22] and neigh-
borhood approximation forests [23] have also been proposed in the literature. However, these 
methods are often task-specific for particular segmentation and the extraction of key features 
as well as the specific deformation algorithms used subsequently can significantly influence 
the segmentation performance.

Our study is based on the following hypothesis that similarity-based atlas selection meth-
ods tend to search for atlases with high overall image similarity. However, when dealing 
with large-scale deformation, the accuracy of deformation modeling is often compromised 
due to the involvement of significant nonlinear deformations, geometric complexities, and 
the impact of intricate boundary conditions and constraints. It may lead to instability in 
segmentation results, making further refinement challenging. To assess the improvement of 
segmentation performance using different atlas selection methods, we conducted experiments 
comparing them against a conventional multi-atlas segmentation (cMAS) approach. We firstly 
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propose an atlas grouping method (subset atlas grouping approach, SAGA). This method 
utilizes both image similarity and volume features to enhance the accuracy of the Deformable 
Image Registration (DIR) step. By extracting image features and performing classification, 
subsets corresponding to specific classification tasks are established. We also suggested a 
feature-based atlas selection approach (MAS-FASA), where the atlas with the closest feature 
space distance is selected as the candidate for MAS segmentation. This method eliminates the 
need for additional atlases, resulting in reduced atlas search time.

Specifically, the contributions of our work are as follows:

1.	 A subgrouping atlas search approach was proposed. This enables the search strategies to 
select the most fitting atlases considering both similarity and volume features, thereby 
enhancing segmentation accuracy.

2.	 To further clarify the advantage of volume features in selecting atlases, this study then 
ranked the most fitting atlases obtained from two atlas selection approaches, based on 
similarity and volume features, and compared their differences in priority when selecting 
candidate atlases.

3.	 A comparison of the execution time efficiency of the four proposed atlas search methods 
was also performed.

Finally, we compared the differences in atlases obtained through similarity-based selection 
and feature-based selection methods to verify significant difference in segmentation perfor-
mance. Moreover, we analyzed the different images selected by these methods and the compu-
tational time required for each approach.

Materials and methods

Conventional Multi-Atlas Segmentation (cMAS)
Conventional Multi-Atlas Segmentation (cMAS) is a widely used technique in medical imag-
ing applications that utilizes prior knowledge provided by contoured atlas images to per-
form segmentation tasks on un-contoured target images. The process begins by selecting the 
best-fitting contoured atlas images, followed by identifying the corresponding DVF between 
the target and atlas images. Then, the acquired contours are projected onto the target image 
and assigned the same labels as those on the contoured atlas image. Finally, the contours 
contributed by each of the selected atlases are merged by label fusion methods on the target 
image.

This study conducted a retrospective analysis on CT data of 100 female pelvic region 
patients who underwent radiotherapy treatment at Zhejiang Cancer Hospital from August 24, 
2022 to May 31, 2023. The data used in this study was approved by the Medical Ethics Com-
mittee of Zhejiang Cancer Hospital (IRB-2023-175). The ethics committee waived the require-
ment for informed consent. These data were obtained from the hospital database on June 5, 
2023 for research purposes. To minimize data degradation from imaging artifacts, patients 
who had received contrast agents or metal implants (e.g., hip prosthetics) were exempt from 
enrollment. This collection of images was then divided into two subsets: 70 images were 
selected randomly to construct the atlas dataset and 30 images out of the atlas dataset were 
assigned as the validation set. Five contours were manually delineated by an expert radiation 
oncologist including the bladder, rectum, bone marrow as well as left and right femoral heads. 
The CT images were acquired using a GE LightSpeed CT scanner (General Electric Health-
care; Milwaukee, WI) and a Brilliance CT Big Bore scanner (Philips Medical Systems, Cleve-
land, OH, USA). To the best of our knowledge, there is no evidence indicating that different 
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CT scanners have a significant impact on atlas segmentation results. Therefore, we did not 
follow any extra criteria when selecting images.

Segmentation was then performed using Raystation v9.0 (RaySearch Laboratories AB, 
Stockholm, Sweden) based on a DIR algorithm along with rigid registration before seg-
mentation. A hybrid registration (Anatomically Constrained Deformation Algorithm, 
ANACONDA) combines image similarity with anatomical information [24] as provided by 
contoured image sets was applied. The five highest performing atlases were integrated into 
the collaborative registration contour in the label fusion step. Majority voting was then used 
to assign a label to each voxel that most segmentation agree on for five candidate atlas images. 
Despite the recognition of potential improvements via the increase of the atlas, we maintained 
the size at five to balance quality gains against computational expenses.

Subset atlas grouping approach (MAS-SAGA)
This study proposed a subgrouping method for atlas selection to better identify the best-fitting 
atlas. An overall framework of the MAS-SAGA for pelvic segmentation was illustrated in Fig 
1. Firstly, atlases were grouped according to their volume features in each contour. Four dis-
tinct groups were derived following the application of K-means clustering. Subsequently, the 
target image was assigned to specific subgroups after estimating contour volumes.

Volume feature extraction.  The goal of this study is to investigate whether volume 
feature metric atlas selection is better than the intensity-based similarity metric approach. We 
employed a subset atlas grouping approach based on volume features. For each atlas Ai, we 
calculated the volume of each contour, V(Ai) =  (V1, . . ., Vn). Contours including the body 
external, bladder, rectum, femoral head, and bone marrow were obtained. Due to the variety 
in organ volume that may cause discrepancies when registering larger structures to smaller 
ones, a preliminary step was taken to normalize the volumes within the bounds of [0,1] and 
minimize negative impacts on segmentation accuracy.

Feature clustering.  In MAS application, poor contour propagation is usually caused by 
large volume deformation between the atlas image and target image. Previous studies have 
suggested that reducing the relative volume ratio can lead to better segmentation results [25]. 
The subgrouping method is a technique within atlas frameworks. For example, it can be 
applied in the segmentation of tumor targets at various stages. Employing grouping methods 

Fig 1.  Schematic of the atlas selection method.

https://doi.org/10.1371/journal.pone.0317801.g001
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decreases the likelihood of uncertainties in deformation algorithms. In this research, we utilize 
Gaussian Mixture Models (GMM) to create subset atlases that reflect volume variations within 
a target dataset to improve segmentation accuracy.

For each image Ai in atlas dataset, the feature vector 
�
V Aatlas i( )  is formed of normalized vol-

ume values as described above. The dimension of 
�
V Aatlas i( )  is equal to the number of contour 

labels in each image.
A major contribution of this work is to divide the atlas into subsets by volume feature clus-

tering. Given a set of n-dimensional vector
�
V A i natlas i( ), , ,= …{ }1 , k-means clustering aims to 

partition the N atlas images into k ( ≤ N) sets

	 argmin
C

i

N

x C
i

i

V
= ∈
∑∑ −

1

2
µ 	

where μi is the center of i-th clustering. The atlas dataset A then was divided into k subgroups 
here A Ajj

k
=

=1∪ .

The GMM divides a set of n images into k clusters so that each image belongs to the cluster 
whose centroid is closest to it [12]. In this research, four clusters were assigned without com-
promising segmentation performance or introducing difficulty in cluster selection. As a result, 
each cluster contains an average of approximately 18 images making the selection process 
time-saving. The volume of the ROI needs to be estimated prior to the segmentation process, 
and then the corresponding subgroup is assigned for segmentation.

Feature-based atlas selection approach (MAS-FASA)
MAS-SAGA defined subsets utilizing volume features and selected by the cMAS method 
according to similarity metric. Therefore, the image selected for label fusion is not completely 
selected according to volume features. Furthermore, identifying the atlas selection for the final 
label fusion process within a commercialized treatment planning system remains challenging. 
To further clarify the advantages of volume features metric relative to intensity-based simi-
larity metric in selecting atlas images, we proposed a feature-based atlas selection approach 
(MAS-FASA) which selected corresponding atlas images to combine in a label fusion process 
directly.

The distance of volume feature D is used to predict the registration performance of Ai 
image in the Euclidean dataset and target images.

	 D V A V i Natlas i target= − = …{ }
� �

( ) , , ,1 	

where
�
V Aatlas i( )  and 

�
Vtarget  denote the volumetric feature vectors of the atlas image and target 

image, respectively. The identical scaling transformation was applied to the feature vector of 
the target image. Atlas images with the lowest D were selected with the same number in cMAS 
and MAS-SAGA. This approach expedites the search for the most fitting image, achieved 
by computing the distance between 

� �
V A Vatlas i target( ),( )  without demanding image-to-image 

similarity evaluations. In this study, MAS-FASA was used to search five atlas images with the 
minimized distance of volume feature D for each target image. Then thirty independent atlas 
subsets were created corresponding to each target image.

Similarity selection (MAS-SIM)
To establish an intensity similarity metric atlas searching method that can be compared with 
MAS-FASA, MAS-SIM was proposed to further verify the effectiveness of the volume feature 
metric method. Since acquiring exact atlases for cMAS remains challenging as mentioned in 
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section 3, a routine to the Insight Segmentation and Registration Toolkit (ITK) was imple-
mented to calculate the mutual information similarity between target and atlas images. These 
routines compute the MI between two images after rigid registration using the method of 
Mattes [26]. Mutual information (MI) is a common metric that provides a measure of the 
intensity similarity between two images due to its robustness to outliers and calculation effi-
ciency [27]. MI assesses the image registration performance and will be maximized when two 
images are most accurately registered. To identify corresponding images for target volumes 
within this study, we computed the pairwise MI between every target image and candidate 
atlas before ranking the intensity similarity of atlas images and finding out the potential 
matching images to be selected. Then the same size of atlas images with MAS-FASA which 
were selected with intensity similarity metric were also constructed followed by the same label 
fusion approaches mentioned in section 3.

Data analysis
The Dice similarity coefficient (DSC) was used to evaluate the propagation performance of 
each contour. DSC A B A B A B( , ) /= ∩ +( )2 , Where A was the segmented contour and 
B was the ground truth contour. DSC obtained by MAS was compared to that one obtained 
by MAS-SAGA and MAS-FASA. The 95% Hausdorff distance (95HD) was also used which 
represents the largest surface-to-surface separation among the closest 95% of surface points. 
The difference between the MAS-SAGA/MAS-FASA approaches and the MAS approach was 
tested for statistical significance using a two-tailed, paired t-test, assessed by a 0.05 signifi-
cance level

Result

Sub-grouping and auto-segmentation procedure
The 100 atlas samples that were selected are representative, with bladder volumes ranging 
from 70.89cc to 437.09cc and rectal volumes ranging from 21.3cc to 115.04cc. To evaluate 
the performance of the proposed atlas selection approach on the MAS segmentation task, we 
addressed five contours using cMAS, MAS-SAGA, MAS-FASA, and MAS-SIM. In this work, 
we employed a cross-validation strategy, randomly assigning 30 images as the test set, while the 
remaining images were assigned to the atlas dataset. The atlas set was randomly selected three 
times with the following group results: (21, 19, 17, and 13)(20, 14, 15, and 21), and (17, 16, 18, 
and 19). The cMAS approach used a comprehensive atlas dataset comprising 70 images. Mean-
while, MAS-SAGA constructed four subgroups with variable sizes to generate the best match-
ing images. For MAS-FASA or MAS-SIM, five best-matching atlases were directly selected 
based on feature distance or similarity from a dataset of 70 atlas images. These selected atlases 
were then used in the label fusion process to generate the final segmentation results.

Segmentation performance
Table 1 presents the Dice Similarity Coefficient (DSC) and 95th Percentile Hausdorff Distance 
(95HD) of cMAS, MAS-SAGA, MAS-FASA, and MAS-SIM for five contours on 30 pelvic 
cancer patients. Compared to cMAS, the sub-grouping method MAS-SAGA has improved 
the segmentation accuracy. For the bladder, the Dice Similarity Coefficient (DSC) values 
were (0.83 ± 0.09) compared to (0.69 ± 0.15), and for the rectum, the values were (0.70 ± 0.07) 
compared to (0.56 ± 0.16), with statistically significant results. The feature-based method 
MAS-FASA, in comparison to the similarity-based method MAS-SIM, also achieved good 
performance. The DSC values for the bladder and rectum were (0.79 ± 0.04) and (0.67 ± 0.09) 
respectively, slightly lower than those of MAS-SAGA. The 95th percentile Hausdorff Distance 
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(95HD) values for each method showed a similar trend, with the sub-grouping method 
MAS-SAGA achieving the best results for the rectum (0.78 ± 0.21 cm), left femoral head 
(0.35 ± 0.13 cm), right femoral head (0.41 ± 0.06 cm), and bone (0.71 ± 0.07 cm). It is worth 
noting that the two similarity-related atlas selection methods, cMAS and MAS-SIM, obtained 
similar results and showed no statistically significant differences are shown in Fig 2 and 3.

Atlas ranking of strategies
The comparison between MAS-FASA and MAS-SIM regarding the selection of the best-fitting 
atlases is depicted in Fig 4, illustrating the outcomes of atlas selection derived from a randomly 
assigned grouping. In the analysis involving the separate application of both methods to the set 
of 30 test images, five best-fitting atlases were identified for each image, resulting in a total of 
300 candidate atlases. It was discerned that the two approaches coincided in selecting the same 
best-fitting image on only 12 occasions (4.0%). Among this array of atlases, image #41 emerged 
as the most frequently chosen by both approaches, having been selected in 18 instances, with 
two instances of concurrent selection by both methods. However, in the majority of cases, the 
two approaches diverged in their preferences for atlas selection. Within the entire set of 70 atlas 
images, a subset of 3 (4.3%) atlas images remained unselected (image #22, image #48, image #51)

Table 1.  Mean and standard deviation of the average dice score and 95% Hausdorff distance (in cm) incurred by the different method of atlas selection strategies.

Bladder Rectum Left Femoral Head Right Femoral Head Bone
cMAS DSC 0.69 ± 0.15 0.56 ± 0.16 0.92 ± 0.05 0.91 ± 0.04 0.92 ± 0.03
MAS-SAGA DSC 0.83 ± 0.09 0.70 ± 0.07 0.91 ± 0.04 0.91 ± 0.02 0.91 ± 0.06
MAS-SIM DSC 0.67 ± 0.13 0.49 ± 0.18 0.89 ± 0.04 0.88 ± 0.03 0.89 ± 0.06
MAS-FASA DSC 0.79 ± 0.04 0.67 ± 0.09 0.90 ± 0.05 0.92 ± 0.05 0.91 ± 0.04
cMAS 95HD 1.77 ± 0.34 1.01 ± 0.38 0.49 ± 0.40 0.56 ± 0.16 1.01 ± 0.38
MAS-SAGA 95HD 1.38 ± 0.20 0.78 ± 0.21 0.35 ± 0.13 0.41 ± 0.06 0.71 ± 0.07
MAS-SIM 95HD 1.83 ± 0.31 1.13 ± 0.33 0.52 ± 0.32 0.53 ± 0.12 0.99 ± 0.18
MAS-FASA 95HD 1.35 ± 0.32 1.13 ± 0.28 0.37 ± 0.14 0.43 ± 0.06 0.84 ± 0.13

https://doi.org/10.1371/journal.pone.0317801.t001

Fig 2.  This figure represents the segmentation performance for cMAS, MAS-SAGA, MAS-SIM, and MAS-FASA.

https://doi.org/10.1371/journal.pone.0317801.g002

https://doi.org/10.1371/journal.pone.0317801.t001
https://doi.org/10.1371/journal.pone.0317801.g002
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Computation time
The average time cost of the four methods were shown in Table 2. The offline time was the time 
for subgrouping or calculating the similarity of image pairs. The online time was the best-fitting 
image selected from the atlas dataset and propagated to the target image. For the MAS-SAGA, 
clustering takes approximately 2 minutes, and only one approach was required for the entire 
dataset. MAS-FASA required the contour volume statistics of the images in the dataset but 
did not increase the preparation time. MAS-SIM required the longest offline time due to the 
similarity calculation for each image pairwise. On a computer with Intel(R) Xeon(R) Gold 6132 
CPU @ 2.60GHz 2.59 GHz (2 processors) and 128GB memory, the time to calculate a pairwise 
were about 50s. It took about 58.3 minutes for a dataset of 70 images.

Discussion
The conventional MAS has its limitation on large volume registration which may cause unex-
pected propagation results in the second step mentioned above. In this paper, we introduced 
two novel atlas selection methods, MAS-SAGA and MAS-FASA, for multi-atlas-based seg-
mentation (MAS) in medical imaging. We first proposed a MAS-SAGA method that combines 

Fig 3.  Dice and 95HD results of the different selection strategies.

https://doi.org/10.1371/journal.pone.0317801.g003

Fig 4.  The images selected in the MAS-SIM and MAS-FASA approaches contain 30 * 70 color patches. The 
number of rows represents 30 testing images and the number of columns represents 70 atlas images. Each row 
contains 5 images selected by MAS-SIM indicated in yellow, and 5 images selected by MAS-FASA indicated 
in red. The orange patches indicate those images were selected by both MAS-SIM and MAS-FASA. The green 
patches indicate that the image was not selected.

https://doi.org/10.1371/journal.pone.0317801.g004

https://doi.org/10.1371/journal.pone.0317801.g003
https://doi.org/10.1371/journal.pone.0317801.g004
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the subset atlas grouping approach with volumetric selection and employs a k-means clus-
tering algorithm to partition the atlases based on their features. Experimental evaluation 
indicates that MAS-SAGA outperforms conventional cMAS by integrating both volumetric 
and similarity information from atlases. Moreover, our second method, MAS-FASA, selects 
the most suitable atlases based on their voxel-wise volumetric similarity with the target image, 
thereby reducing computational time without degrading accuracy. Quantitative analysis 
shows that both MAS-SAGA and MAS-FASA significantly improve computational efficiency 
while maintaining comparable segmentation quality to cMAS.

Previous studies evaluating the performance of multiple atlas-based segmentation approaches 
have yielded varying results depending on the specific algorithm utilized. Different warping tech-
niques can affect the fusion. Some algorithms achieve deformation by controlling the displacement 
of feature points, while others use finite element methods. Different algorithms and parameter 
settings handle various types of organs and boundaries differently, leading to varying final results. 
One such investigation focused on five atlas-based segmentation tools used to delineate the prostate 
and surrounding structures, including the bladder and rectum [28]. Findings indicated unsatisfac-
tory prostate contouring for the bladder (mean DSC = 0.59 ± 0.15 cm)(mean 95HD =  2.85 ± 1.31 cm) 
and rectum (mean DSC = 0.49 ± 0.12 cm, 95HD = 1.65 ± 0.37 cm). However, our current research, 
employing cMAS with Raystation software, achieved comparable outcomes relative to the earlier 
report for the bladder (mean DSC = 0.69 ± 0.15, mean 95HD = 1.77 ± 0.34 cm) and rectum (mean 
DSC = 0.56 ± 0.16, mean 95HD = 1.01 ± 0.38 cm), though they still presented room for improvement. 
Our novel approach, MAS-SAGA, further improved the precision of these segmentations for the 
bladder (mean DSC = 0.83 ± 0.09, mean 95HD =  1.38 ± 0.20 cm) and rectum (mean DSC = 0.70 ± 0.07, 
mean 95HD = 0.78 ± 0.21 cm) as compared to traditional cMAS using similarity selection strategies.

The size of atlas datasets can greatly affect both the accuracy and time efficiency of seg-
mentation implementation. Although large datasets have the potential to produce high-
quality segmentations, their increased processing time could become inefficient. According 
to ANACONDA's recommendations, a smaller atlas comprising just 25 images would suffice, 
with subsequent evaluation beginning from the fifth image. Some previous works investigate 
how many images are adequate when necessary to enhance segmentation outputs. Kim et al 
evaluated three different atlas libraries for ABAS in groups of 20, 40, or 60 [29]. They found 
a poor performance of bladder segmentation with a DSC <  0.6 and a mean HD >  40 mm in 
all libraries. Increasing the size of libraries did not improve the results of segmentation. Our 
clustering procedure allowed us to extract a representative set of atlas images from the candi-
date images pool, each subgroup consisted of fewer than 25 images, resulting in substantially 
enhanced segmentation performance compared to conventional methods.

We believe that the success of segmentation depends on whether the task falls within the 
reasonable computational scale of the deformation registration algorithm. The results showed 
that SAGA achieved better performance because it initially filters out large-volume deforma-
tions, which pose significant challenges to deformations. Intensity-based metrics are the most 

Table 2.  Average time cost of cMAS, MAS-SAGA, MAS-SIM, and MAS-FASA.

cMAS MAS-SAGA MAS-SIM MAS-FASA
Offline(min) N/A 2 58.3 N/A
Online(min) 6.3 2.6 0.70 0.69

Although MAS-FASA performed slightly worse than MAS-SAGA, it is considerably faster, with a mean of 41.6 
seconds, as only one step of registration needs to be performed online. The cMAS approach register all atlas images 
which had slightly better results as reported previously but the computation time was inevitably large (6.3min). 
MAS-SAGA reduces the computation time significantly (2.6min) by sub-grouping atlases.

https://doi.org/10.1371/journal.pone.0317801.t002

https://doi.org/10.1371/journal.pone.0317801.t002
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frequently applied atlas selection method for medical image registration. Although the diffi-
culty of deforming dissimilar images is much greater than that of deforming similar images, 
ROI volume deformation may be quite the opposite. Images with high overall similarity but 
significant differences in ROI often result in poor segmentation. However, studies have shown 
that differences in overall image similarity may not accurately represent variations in local 
regions of interest. Few publications have examined the impact of employing both similarity 
and volumetric features for atlas selection on segmentation outcomes. Our study was the first 
exploration revealing dissimilar performance from intensity versus volume-driven selection 
techniques, with merely 4% of chosen atlases being consistent between them. Notably, the 
proposed volumetric feature-based selection led to superior segmentation accuracy of the 
bladder and rectum in the MAS-SAGA and MAS-FASA, coupled with accelerated computa-
tion times beneficial for clinical implementation.

One limitation of current research lies in its dependency on selecting the external contour 
as the primary region of interest for deformation registration-based segmentation. This choice 
may lead to variations in segmentation quality due to variable slice thicknesses, patient body size, 
and bladder volumes [8]. Therefore, optimized scanning protocols and image pre-processing 
would probably enhance the quality of segmentation. Additionally, more accurate segmentation 
performances could be acquired by determining the volume of ROIs effectively during the exam-
ination. Further investigations should concentrate on developing effective methods to estimate 
the volume of the ROI. Such methods might involve computing the bladder's dimensions and 
quantifying the intersection area of the rectum in imaging slices. Another challenge arises from 
deformable registration, wherein the regularization terms of different deformable registration 
methods vary, leading to different degrees of algorithmic flexibility. This study achieved rela-
tively favorable results by employing the ANACONDA registration method in RayStation. Addi-
tionally, the required number of groups needs to be determined based on the specific deformable 
algorithm when implementing other deformable registration methods.

Conclusion
This study proposed a subgrouping method for MAS, which aided in searching for the most 
fitting atlases based on multiple features. The proposed MAS-SAGA revealed improvements 
in segmentation performance compared to conventional MAS (cMAS) approach, with the 
DSC for the bladder and rectum escalating from 0.69 ± 0.15 to 0.83 ± 0.09 and from 0.56 ± 0.16 
to 0.70 ± 0.07, respectively. Furthermore, we conducted a comparative analysis between two 
atlas selection methods, similarity and volume features, and found that the consistency in can-
didate atlas selection between the two methods was only 4%, indicating significant disagree-
ment between the two approaches. Hence, the integration of volume features into atlas search 
contributes to enhancing the segmentation performance of MAS.
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