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Abstract

Exophiala spinifera strain FM, a black yeast and melanized ascomycete, shows potential for

oil biodesulfurization by utilizing dibenzothiophene (DBT) as its sole sulfur source. However,

the specific pathway and enzymes involved in this process remain unclear due to limited

genome sequencing and metabolic understanding of E. spinifera. In this study, we

sequenced the complete genome of E. spinifera FM to construct the first genome-scale met-

abolic model (GSMM) for this organism. Through bioinformatics analysis, we identified

genes potentially involved in DBT desulfurization and degradation pathways for hazardous

pollutants. We focused on understanding the cost associated with metabolites in sulfur

assimilation pathway to assess economic feasibility, optimize resource allocation, and guide

metabolic engineering and process design. To overcome knowledge gaps, we developed a

genome-scale model for E. spinifera, iEsp1694, enabling a comprehensive investigation

into its metabolism. The model was rigorously validated against growth phenotypes and

gene essentiality data. Through shadow price analysis, we identified costly metabolites

such as 3’-phospho-5’-adenylyl sulfate, 5’-adenylyl sulfate, and choline sulfate when DBT

was used as the sulfur source. iEsp1694 encompasses the degradation of aromatic com-

pounds, which serves as a crucial first step in comprehending the pan metabolic capabilities

of this strain.

Introduction

Fuel oil consumption has remained a prominent energy source, and the demand for oil contin-

ues to escalate in response to rapid population growth. However, it is crucial to recognize that

oil pollutants present significant safety hazards, which lead to a substantial increase in treat-

ment costs [1]. Air pollution is a major environmental concern in several developing countries
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that experience industrialization. Sulfur dioxide, emitted by coal-fired power plants, is the

main pollutant that causes haze formation, which results in one million premature deaths

every year [2]. The increasing environmental concerns have driven the need to remove sulfur-

containing compounds from fossil fuels. Biodesulfurization can be used as a complementary

method of hydrodesulfurization, the prevalent method of petroleum desulfurization in refiner-

ies [3]. Many studies have been carried out to develop biological desulfurization of polyaro-

matic sulfur heterocycles (PASHs), like dibenzothiophene (DBT), with bacterial biocatalysts

[4–6]. However, fungi are known for their metabolic versatility and are expected to have the

capacity to assimilate a wide range of sulfur sources [7]. They are capable of metabolizing a

wide range of aromatic hydrocarbons through cytochrome P450 and their extracellular

enzymes [8, 9].

The fungal genus Exophiala, comprising black yeast anamorphs, melanized Ascomycete, is

known for highly polymorphic life cycles and remarkable dual ecology. Numerous species

exhibit significant human-pathogenic potential [10, 11] while others are known as polyextre-

motolerant microorganisms with extremotolerance to acidic pH, radiation, oxidative stress,

toxic heavy metals and harmful aromatic compounds [12]. Some Exophiala species have

unique ability to thrive in environments enriched by toxic hydrocarbons such as benzene, tolu-

ene and xylene [12, 13]. As a case in point, Exophiala spinifera strain FM isolated from oil-con-

taminated soil, is capable of utilizing 99% of DBT(0.3 mM) as sole sulfur source by co-

metabolism reaction with other carbon sources [14]. GC–MS and HPLC techniques showed

that this strain produced 2-hydroxy biphenyl, a sulfur free compound that is converted to

1,3-benzenediol, 5-hexyl during 7 days of incubation at 30˚C and 180 rpm shaking [14]. It

might be concluded this strain desulfurize DBT by passing through a way similar to 4S path-

way, an aerobic desulfurization pathway that converts dibenzothiophene (DBT) into 2-hydro-

xybiphenyl and sulfite [6, 15–18], making it a potential candidate for use in bioremediation

efforts.

Studying the mechanisms by which E. spinifera is able to survive and thrive in such chal-

lenging conditions may provide insights into the evolution and adaptation of fungi to extreme

environments. However, despite numerous efforts, desirable desulfurization rates are yet to be

attained likely due to the fact that most of studies have solely targeted the dsz genes, coding

enzymes involved in desulfurization of DBT via the 4S pathway [19, 20]. Given that cellular

phenotypes are the manifestations of complex interactions among various gene products and

environmental factors, a systems biology approach is useful for studying desulfurization pro-

cess [17].

The availability of the whole genome sequencing technologies presents an opportunity to

study the native potentials of E. spinifera strain FM at the system level. Genome-scale meta-

bolic models (GSMMs) can be used as a bottom-up systems biology tool to connect genes, pro-

teins, and reactions, enabling metabolic and phenotypic predictions based on specified

constraints [21]. GSMM reconstructions are useful knowledge-bases for numerous applica-

tions, including prediction of enzyme functions [22], comparative analysis between closely

related species [21, 23–25], improving antibiotic production [26] and metabolic engineering,

for instance, predicting gene modification strategies to overproduce desired compounds accel-

erating the process [27]. Moreover, GSMMs that incorporate sequencing, biochemical, physio-

logical, and ‘omics’ data, represent valuable organism-specific databases to obtain a better

understanding of the physiological response of a given microorganism towards different

milieu conditions. This enables the development of cost-effective bioremediation procedures

that surpass current techniques [28]. By understanding the pollutant degradation capability

and survival of E. spinifera [21, 29, 30], we can develop cost-effective biodesulfurization proce-

dures to enhance the ability of desulfurization in this strain.
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In recent decades, genome-wide reconstructions of metabolism have been produced for a

plethora of model organisms, spanning from bacteria to higher eukaryotes [31, 32]. Well-

known organisms like Saccharomyces cerevisiae have been studied more often and in greater

detail than other organisms to date [21, 33]. However, less extensive efforts have been dedi-

cated to other so-called non-conventional or non-Saccharomyces yeast species, despite their

relevance for biotechnological applications, as well as for basic and biomedical research. It is

important to note that yeast biodiversity is vast and extends beyond the models reconstructed

up to now.

This study aims to perform a comprehensive bioinformatics analysis of the whole genome

sequence of E. spinifera strain FM, with the ultimate goal of reconstructing the first in silico
metabolic model for this organism. Bioinformatics analysis involved the use of state-of-the-art

tools and techniques to identify genes and pathways that are involved in the metabolic pro-

cesses of catabolizing sulfur-containing xenobiotics and other metabolic capabilities in this

strain. We validate the model using the available desulfurization and growth data in the litera-

ture and use it to study the effects of various medium components, such as carbon sources on

desulfurization activity of E. spinifera. We assess the properties of the metabolic network such

as flexibility and robustness, using Flux Balance Analysis (FBA), shadow price analysis and

gene essentiality analysis. The reconstructed metabolic model covers the key metabolic path-

ways, such as central metabolism, amino acids biosynthesis, nucleotide metabolism, and sulfur

metabolism, that describe the assimilation of sulfur into biomass and provide a detailed and

comprehensive understanding of the biochemical pathways and networks that underlie the

xenobiotic metabolism of this organism, and will serve as a valuable resource for future studies

aimed at understanding the biology of this important strain, and unveiling how to better

exploit its nature for industrial purposes, and suggesting further model-driven hypotheses.

Results

Genome sequencing and assembly

llumina sequencing achieved more than 85x coverage for the genome, yielding a total of

10,193,500 clean reads with Q20 quality at 98.06% and Q30 quality at 94.41%. The GC content

of the clean reads was 51.68%. We obtained a draft genome assembly of 33853152 bp in size

and organized into 779 contigs. Genome functional annotation was performed with Uniport

and KEGG. FM strain had 23107 unique genes resulting in over 49% of genes being protein

coding genes annotated with GO term (Fig 1). The whole genome of E. spinifera strain FM has

been deposited in the NCBI database under the accession number ASM3795415v1.

Through whole-genome sequencing and BLAST analysis, we have gained valuable insights

into the xenobiotic degradation pathways present in E. spinifera FM. The BLAST analysis,

based on the KEGG database, revealed significant matches to known xenobiotic degradation

enzymes (S2 File). The genome analysis of the FM strain uncovered several enzymes involved

in xenobiotic degradation pathways, underscoring their particular potential. Notably, we iden-

tified the presence of genes encoding enzymes associated with Benzoate, Aminobenzoate,

Fluorobenzoate, Chlorobenzene, Toluene, Polyethylene terephthalate (PET), Melamine, Ethyl-

benzene, and Atrazine degradation pathways in the E. spinifera FM strain. These findings

strongly suggest the strain’s ability to degrade a wide range of xenobiotic compounds. Further-

more, through experimental validation, it has been demonstrated that the E. spinifera FM

strain is capable of degrading Dibenzothiophene [14]. However, during the genome analysis,

the specific genes responsible for the enzymes involved in DBT degradation was identified

(Table 1) [6, 34–38]. In addition, the genome analysis revealed the presence of all the necessary

genes related to enzymes involved in the degradation of other polycyclic hydrocarbons,
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including Fluorine and Phenanthrene. These pathways involve key reactions, such as hydrox-

ylation, oxidation, conjugation, and ring cleavage, which collectively contribute to the break-

down and detoxification of various pollutants.

The AntiSMASH analysis revealed that strain FM exhibits a rich biosynthetic capacity, with

the presence of 15 biosynthetic gene clusters (BGCs) categorized into eight cluster types. These

cluster types include non-ribosomal peptides synthase (NRPS), NRPS-like, Beta-lactone, type

I, III polyketides synthase (T1PKS, T3PKS), non-alpha poly-amino acid (NAPAA), Terpene,

Fig 1. Genome diagram of strain FM, (from inside to outside: first circle shows GC skew, green is the above

average of GC skew, red is the below average part of GC skew; the second circle shows the GC content; the third

circle shows contigs).

https://doi.org/10.1371/journal.pone.0317796.g001

Table 1. Genes responsible for the enzymes involved in DBT degradation were identified by BLAST analysis.

Genes FM Current Gene Annotaion GeneBank no. FM query E-value Bitscore

DszD Flavin_Reduct domain-containing protein KIW10325 g2 10−11 47.4

DszA Bac_luciferase domain-containing protein KIW13470 g412 10−76 235

DszA Bac_luciferase domain-containing protein KIW09912 g1946 10−50 162

DszA Bac_luciferase domain-containing protein KIW10644 g4496 10−66 203

DszA Bac_luciferase domain-containing protein KIW13111 g4850 10−78 239

DszA Bac_luciferase domain-containing protein KIW14971 g7689 10−67 208

DszA Bac_luciferase domain-containing protein KIW17775 g8127 10−9 45.1

DszA Dimethyl sulfone monooxygenase SfnG KIW15895 g9837 10−10 47.0

DszC Uncharacterized protein KIW15893 9836 10−41 133

DszB Uncharacterized protein(Thioesterase) KIW13453 g430 10−20 72.8

DszB Carrier domain-containing protein KIW19939 g3175 10−21 68.6

https://doi.org/10.1371/journal.pone.0317796.t001
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and Fungal-RiPP-like (Table 2). This finding highlights the significant biosynthetic potential

of this environmental strain, indicating its ability to potentially produce a diverse range of sec-

ondary metabolites (Fig 2).

General characteristics of the reconstructed GSMM of Exophiala spinifera
FM

The final curated model, named iEsp1694, consists 4463 reactions, 1694 genes and 3038

metabolites, compartmentalized into 14 subcellular locations. The model includes 1096

Table 2. 15 biosynthetic gene clusters (BGCs) found by AntiSMASH analysis.

Region Location Total length Most similar known cluster Cluster type

1.1 93,664–161,596 67,933 nt Dimethylcoprogen(100%) NRPS

4.1 394,319–458,829 64,511 nt Choline(100%) NRPS-like

8.1 129,115–164,860 35,746 nt Oryzine A, oryzine B(48%) Betalactone

9.1 56,378–149,498 93,121 nt 1,3,6,8-tetrahydroxynaphthalene(100%) T1PKS,Terpene

11.1 248,564–337,962 89,399 nt Phomoidride(67%) T1PKS

16.1 114,063–178,112 64,050 nt Sesterfisherol(65%) T3PKS

29.1 166,241–237,328 71,088 nt Prolipyrone B, gibepyrone D(63%) T1PKS

30.1 275,724–309,889 34,166 nt Carotenoid(44%) Terpene

35.1 1–45,618 45,618 nt ε-Poly-L-lysine(48%) NAPAA

36.1 170,157–233,608 63,452 nt Zealexin B2, zealexin C2(67%) NRPS-like

37.1 101,168–132,630 31,463 nt Squalestatin S1 (66%) Terpene

44.1 1–52,627 52,627 nt Acetylaranotin(20%) NRPS-like

66.1 129,055–178,118 49,064 nt Metachelin C, metachelin A, metachelin A-CE, metachelin B(59%) NRPS

74.1 50,572–124,315 73,744 nt Enterobactin(61%) NRPS

101.1 53,340–119,587 66,248 nt Carbapenem MM4550(29%) Fungal-RiPP-like

https://doi.org/10.1371/journal.pone.0317796.t002

Fig 2. BGCs with 100% identity in strain FM responsible for biosynthesis of (a) Dimethylcoprogen (b) Choline (c)

1,3,6,8-tetrahydroxynaphthalene.

https://doi.org/10.1371/journal.pone.0317796.g002
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transport reactions, 304 exchanges and remaining 3063 (excluding the biomass reaction) are

metabolic reactions. In our model 95% of the metabolic reactions are associated to at least one

gene. Of those 1694 genes, 48.64% are monofunctional while the rest of the genes (776) con-

duct more than one reaction in the model. Taking connectivity as the number of reactions in

which, a metabolite participates, the model presents 1336 metabolites participate in two meta-

bolic reactions, 394 in three reactions, and 845 in more than three reactions. Table 3 represents

a summary of the GSMMs’ main features and how they compare with fully compartmentalized

model yeast8 of S. cerevisiae and iEde2091, E. dermatitidismodel.

Model evaluation

Flux balance analysis. The primary objective of reconstructing a model is to enable accu-

rate prediction of the physiological behavior of the specific organism. Evaluation of the model

was performed using available data on metabolism of E. spinifera in the scientific literature. To

validate the model, we utilized the desulfurization and growth data obtained from the experi-

ments conducted by Elmi et al. [14]. Elmi et al. conducted experiments involving various car-

bon sources. In our study, we employed iEsp1694 in silicomodel to simulate these experiments

and assess cell growth on the four different carbon sources. For each simulation, the carbon

content was kept constant for the different carbon sources, while using minimal media to max-

imize cell growth. Fig 3 presents a comparison of the relative effects of different carbon sources

on growth rates, both in silico and experimentally. Most of the growth predictions are in agree-

ment with the experimental data.

Table 3. Characteristics of the reconstructed GSMM of E. spinifera FM.

iEsp1694 Yeast8 iEde2091

Total Genes in Genome 12,047 6,060 9,391

Included number of genes 1694 1150 -

Total number of reactions 4463 4058 1661

Total Metabolites 3038 2742 1856

https://doi.org/10.1371/journal.pone.0317796.t003

Fig 3. Growth rates at 0.3 mM DBT and different carbon sources.

https://doi.org/10.1371/journal.pone.0317796.g003
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We further examined the utilization of DBT as a sulfur source at different uptake rates to

showcase the robustness of the model in predicting desulfurization activity. In the experiments

conducted by Elmi et al. investigated desulfurization activity in the presence of a fixed concen-

tration of glucose (1%) along with varying concentrations of DBT. To investigate this pheno-

type in silico, we set the uptake rate of glucose at a constant rate and analyzed the production

of 2-HBP as a final product of desulfurization (Fig 4) with different DBT concentrations. The

model simulation analysis confirms the experimental observations to some extent up to 0.5

mM of DBT. However, at higher concentrations of DBT, due to the lack of a regulatory system

and the model’s inability to account for the toxic effects of DBT, it cannot accurately predict

the behavior of this microorganisms.

Table 4 summarizes the in vitro vs in silico results. Using both experimental results and

available published literature to validate the predictions of iEsp1694, this model was able to

correctly predict the phenotypes in 83% of cases.

Shadow price analysis. In the context of metabolic modeling, shadow price represents the

cost to the objective (growth in this model) to produce one more unit (here mmol/gDW�h) of

a particular metabolite. The analysis is performed using the dual form of the FBA optimization

problem to determine the shadow price for each metabolite [42]. Shadow price analysis is a

powerful tool for investigating the involvement of metabolites in DBT biodesulfurization path-

way of E. spinifera FM and elucidating the metabolic costs associated with selecting carbon

sources. By quantifying the shadow prices, we can better understand of the organism’s overall

metabolism. This analysis allows us to assess the impact of different environmental conditions

on the metabolic flux distribution and identify key metabolites that play crucial roles in the

pathway of interest. This information is valuable for optimizing metabolic engineering strate-

gies and designing more efficient bioprocesses.

Fig 4. Desulfurization activity (rate of 2-HBP production) fora constant uptake rate of Glucose (1%) and different

DBT concentrations.

https://doi.org/10.1371/journal.pone.0317796.g004
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The shadow prices serve as indicators of the relative importance of metabolites in the path-

ways and provide insights into how the organism’s metabolism adapts to different carbon

sources and the influence of substrate availability on metabolite production and pathway flux.

As we can see in Table 5, the model predicts that under the four carbon sources tested, the 3’-

Phospho-5’-Adenylyl Sulfate (PAPS) has a shadow price range of -0.83 to -0.98. This is approx-

imately 8 times more than the shadow price of Dibenzothiophene 5-sulfoxide (DBTO), which

has a range of -0.11 to -0.15. Metabolites with higher shadow prices, like PAPS, are likely to be

important control points that influence the overall system performance.

To gain a comprehensive understanding of the metabolic network, it is crucial to consider

the interconnected nature of pathways. Therefore, a thorough analysis should explore how the

Table 4. Utilization of various carbon and nitrogen sources by E. spinifera from previously published data and as predicted by the model. A) + (means the com-

pound can be utilized as a sole carbon/nitrogen source while a) − (means that it cannot be.

Carbon and nitrogen sources In vitro results In silico results Reference

D-glucose + + [14, 39, 40]

D-galactose + + [39, 40]

L-sorbose + - [39, 40]

D-Glucosamine + + [39, 40]

D-Ribose + + [39, 40]

D-Xylose + + [39, 40]

D-Arabinose + + [39, 40]

L-Arabinose + + [39, 40]

Ramnose + + [39, 40]

Sucrose + + [39–41]

Maltose + + [39, 40]

α,α-Trehalose + + [39, 40]

Cellobiose + + [39, 40]

Salicin + - [39, 40]

Arbutin - - [39, 40]

Melibiose -/+ + [39, 40]

Lactose - - [39, 40]

Raffinose + + [39, 40]

Glycerol + + [39, 40]

Ribitol + + [39, 40]

Xylitol + + [39, 40]

Arabinitol + + [39, 40]

D-Glucitol + + [39, 40]

D-Manitol + + [39, 40]

Galactitol - - [39, 40]

Inositol + - [39, 40]

D-Gluconate + + [39, 40]

DL-lactate + + [39, 40]

Succinate + + [14, 39, 40]

Citrate -/+ + [14, 39, 40]

Methanol - - [39, 40]

Ethanol + + [14, 39, 40]

Nitrate + + [39, 40]

Nitrite + + [39, 40]

Ethylamine + + [39, 40]

L-lysine + + [39, 40]

https://doi.org/10.1371/journal.pone.0317796.t004
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shadow prices of metabolites in the DBT biodesulfurization pathway relate to other pathways

involved in sulfur metabolism or general cellular metabolism. This investigation can identify

key metabolites that act as intermediates between pathways and help assess their regulatory

roles. Fig 5 illustrates the incorporation of the DBT biodesulfurization pathway and the sulfate

assimilatory pathway, with a comparison of shadow prices for metabolites involved in DBT

biodesulfurization and sulfate assimilatory pathways across different growth conditions (glu-

cose, ethanol, glycerol, and succinate). Notably, Fig 5 highlights that sulfite is a common inter-

mediate in the microbial metabolism of sulfur-containing compounds. It can be generated

through the oxidation of sulfide or the desulfurization of sulfur-containing compounds such

as DBT.

An intriguing result emerged regarding the shadow price of 2-hydroxybiphenyl. Unlike

most other intermediate metabolites, which displayed negative shadow prices, the shadow

price associated with 2-hydroxybiphenyl was positive. When applying shadow price analysis to

the model, the majority of shadow price values should be negative, indicating that producing

extra of any metabolite detracts carbon from biomass production. It may be the case that some

compounds have positive shadow prices indicating that if more is made then more biomass is

also made. These issues are likely indicators of mass or charge imbalance in some reaction

involving that particular metabolite, or a metabolite upstream of that metabolite in the reaction

network. This cannot be true as we have performed manual curation where we ensured that

the reactions are both mass and charge balanced.

In the shadow price analysis, results revealed that not all carbon sources are equally effective

in the DBT biodesulfurization. Specifically, the shadow costs associated with glucose exhibited

higher negative values compared to the other carbon sources. Intermediate metabolites

involved in the DBT degradation pathway are generally expensive to produce when grown on

glucose. Additionally, the results show that Adenosine 3’,5’-bismonophosphate is more expen-

sive to produce when DBT is degraded in the presence of these carbon sources (glucose, etha-

nol, glycerol, and succinate). Overall shadow costs of metabolites involved sulfate assimilatory

pathway in the presence of all carbon sources, are approximately two times higher than those

in the DBT pathway. This indicates that suppressing this pathway when DBT is the sole sulfur

source could potentially enhance the performance of the DBT desulfurization pathway.

For further investigation, we analyzed the shadow prices of sulfur-containing metabolites

within the metabolic model (Fig 6). When DBT is used as the sulfur source and glucose is the

constant carbon source, we observed that 3’-phospho-5’-adenylyl sulfate, 5’-adenylyl sulfate,

Table 5. Comparison of shadow prices for metabolites involved in DBT biodesulfurization (mmol2HBP/kgDCW.h) and sulfate assimilatory pathways across differ-

ent growth conditions (glucose, ethanol, glycerol, and succinate).

Metabolite ids Metabolite Names Ethanol Glycerol Succinate Glucose

s_5154[c] Dibenzothiophene 5-sulfoxide (DBTO) -0.115118633 -0.125459883 -0.12027581 -0.15534812

s_5155[c] Dibenzothiophene 5-sulfone (DBTO2) -0.230237266 -0.250919765 -0.24055162 -0.31069624

s_5156[c] 2-(2’-hydroxyphenyl)benzenesulfinate (HBPS) -0.345355899 -0.376379648 -0.360827429 -0.46604436

s_5157[c] 2-hydroxybiphenyl (2-HBP) 0.115118633 0.125459883 0.12027581 0.15534812

s_1469[c] Sulfite -0.479458475 -0.522528826 -0.50093764 -0.63929633

s_1467[c] Sulfate -0.546509763 -0.595603414 -0.570992746 -0.714492497

s_0717[c] FMNH2 -0.537878397 -0.462060914 -0.509082968 -0.440434694

s_0841[c] Hydrogen Sulfide 0.018983943 0.002298811 0.011019112 -0.00477436

s_0298[c] 5’-Adenylyl Sulfate (APS) -0.824940933 -0.866863055 -0.85308201 -0.978275878

s_0201[c] 3’-Phospho-5’-Adenylyl Sulfate (PAPS) -0.831268914 -0.873759487 -0.859693477 -0.989018187

s_0390[c] Adenosine 3’,5’-bismonophosphate -0.297415113 -0.298845367 -0.308535132 -0.292429539

https://doi.org/10.1371/journal.pone.0317796.t005
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and choline sulfate exhibited the most negative shadow prices. This information indicates that

these three sulfur-containing metabolites are expensive to produce when DBT is the sulfur

source.

Gene essentiality

Gene essentiality analysis is a critical step in validating the model and gaining insights into

fundamental cellular metabolism. In our study, we employed Bidirectional Blast to identify

25,822 orthologous genes in E. spinifera FM. Among these genes, 1,215 were present in the

model and also found in the essentiality datasets of S. cerevisiae. It is worth noting that many

of the genes orthologous to those in S. cerevisiae were not included in the GSMMs due to their

involvement in cellular and genetic information processing functions.

Fig 5. Interplay between DBT biodesulfurization pathway and sulfate assimilatory pathway, with a comparison of

shadow prices for intermediate metabolites involved in DBT and sulfate pathways across different carbon sources

(glucose, ethanol, glycerol, and succinate).

https://doi.org/10.1371/journal.pone.0317796.g005
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Using Cobrapy [43], we performed single gene knockout simulations in the model to pre-

dict a list of growth-essential genes. Among these genes, eight were identified as essential in

the model, contradicting the essentiality datasets (False Negative). This discrepancy may be

attributed to the absence of alternative genes or pathways in the model, resulting in the in silico
essentiality of certain genes that are non-essential in vitro. Furthermore, our model classified

105 genes as non-essential, while the essentiality data indicated their essentiality (False Posi-

tive) (Table 6). This can be partly explained by the use of rich media in both gene essentiality

datasets. When simulating gene deletions in rich media, we open all exchange reactions in the

model to mimic an experimental setup where all metabolites are present in the growth media.

However, if a metabolite is absent from the experimental growth media, a gene may be deemed

essential even though it would not be essential if the metabolite were present.

Discussion

The complete genome sequence of Exophiala spinifera FM provides valuable insights into the

metabolic potential of a novel hydrocarbon-oxidizing, dibenzothiophene-desulfurizing strain

Fig 6. Shadow prices of sulfur-containing metabolites for a constant glucose uptake rate and DBT as the sole sulfur source s_1469[c] = sulfite, s_4138

[c] = L-cysteate,s_0750[c] = glutathione, s_1012[c] = L-homocysteine, s_0980[c] = L-cystathionine, s_0981[c] = L-cysteine, s_0529[c] = coenzyme A_c,

s_1029[c] = L-methionine, s_0717[c] = FMNH2, s_5102[c] = choline sulfate_c, s_0298[c] = 5’-adenylyl sulfate_c, s_0243[p] = 3-oxohexacosanoyl-

CoA_p, s_0201[c] = 3’-phospho-5’-adenylyl sulfate_c, s_0045[p] = (S)-3-hydroxyhexacosanoyl-CoA_p.

https://doi.org/10.1371/journal.pone.0317796.g006

Table 6. Gene essentiality analysis and validation. Gene essentiality prediction was correct for 78.1% of tested genes.

E = Essential, NE = Non-Essential.

In silico
E NE

SGD database E 18

True negative

105

False positive

NE 8

False negative

931
True positive

https://doi.org/10.1371/journal.pone.0317796.t006
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of the genus Exophiala. In this study, we obtained a high-quality whole-genome sequence of E.

spinifera and conducted extensive gene prediction and annotation analysis. Through these

analyses, we identified new genome annotations that fill gaps in our understanding of the

organism’s functionalities. While the confirmation of 2-HBP production and 4S pathway

intermediates [44–46] by HPLC analysis in E. spinifera FM [14] provides some clarity regard-

ing the involvement of the 4S pathway, the current understanding of this process lacks genetic

evidence to support the claim. Nevertheless, it is worth noting that we have identified genome

annotations associated with enzymes involved in the DBT biodesulfurization pathway, which

suggests potential avenues for further investigation. Although the utilization of the 4S pathway

encoded by the dszABC operon-like structure for sulfur assimilation from DBT in E. spinifera
has not been definitively established, our analysis revealed that the genes DszA, DszB, DszD,

and DszC showed significant similarity to genes documented in KEGG database [34–38]. This

suggests a potential involvement of these genes in sulfur assimilation processes. However, we

believe it is crucial to conduct further investigations and experimental analysis to ensure the

accuracy of this gene annotation and verify its role in the DBT biodesulfurization pathway.

Identifying the first DszB enzyme in fungi would be a significant discovery and could poten-

tially provide insights for metabolic engineering approaches aimed at enhancing biodesulfuri-

zation rates [7].

Moreover, the discovery of xenobiotic degradation pathways in E. spinifera FM holds signif-

icant implications for environmental and industrial applications. The strain’s ability to metab-

olize specific xenobiotic compounds such as Polyethylene terephthalate (PET), Benzoate,

Cholorobenzoate, Aminobenzoate, Fluorobenzoate, Ethylbenzene, Toluene, phenanthrene,

Atrazine and melamine suggests potential applications in bioremediation [47–51], where it

can be employed to mitigate environmental pollution caused by these compounds. Further-

more, the identified pathways may find utility in biotechnological processes, such as the bio-

synthesis of valuable compounds from xenobiotic precursors, contributing to the development

of sustainable and environmentally friendly production strategies [52].

Additionally, AntiSMASH analysis of strain FM revealed that three out of fifteen biosyn-

thetic gene clusters (BGCs) showed 100% similarity with known gene clusters. This suggests

that Exophiala spinifera FM has the potential to produce other secondary metabolites. Notably,

in a commercial oil biodesulfurization process, cost-effective treatment of large volumes of oil

is crucial [53]. However, the potential of biodesulfurization biocatalysts extends beyond their

application in desulfurization alone. They can also be employed for the production of valuable

products, such as the detoxification of chemical warfare agents, as well as the synthesis of sur-

factants, antibiotics, polythioesters and a range of specialty chemicals. This diversification of

applications not only enhance the economic viability of the process but also expands its poten-

tial for the production of higher value products with various industrial and commercial uses

[52].

We have developed the first GSMM for E. spinifera FM, which provides a comprehensive

framework to understand its metabolic capabilities and offers a computational platform for

investigating these significant abilities. iEsp1694 successfully predicts and explains the experi-

mental observations reported in the literature [14, 39, 40, 54].

The shadow price analysis conducted in this study indicates that the production of interme-

diate metabolites during DBT degradation is more costly when glucose is the sole carbon

source which is in agreement with experimental results [14]. These findings have practical

implications for optimizing microbial biodesulfurization processes and understanding the

metabolic strategies of organisms in the presence of different carbon sources. While investigat-

ing the shadow price analysis of sulfur-containing metabolites, we observed metabolites such

as 3’-phospho-5’-adenylyl sulfate and 5’-adenylyl sulfate are more expensive when DBT is the
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sulfur source (Fig 6). This finding is consistent with the observations in Fig 5, which demon-

strate that the pathway to produce these metabolites in the presence of DBT is considerably

long and energy-consuming. Based on this, one of the model-driven suggestions for enhancing

desulfurization activity is to incorporate Adenosine-3’,5’-bisphosphate into the growth

medium while simultaneously knocking down enzymes 2.7.7.4 or 2.7.1.25. This approach has

been proposed based on the understanding that Adenosine-3’,5’-bisphosphate is the sole

essential product of the sulfate uptake pathway. Since there are predicted transporter in the

annotated genome that could mediate the uptake of Adenosine-3’,5’-bisphosphate (g10904 in

S2 File), by providing this metabolite in the medium and reducing the activity of sulfate uptake

pathway enzymes, it is hypothesized that cell growth and desulfurization activity can be signifi-

cantly enhanced.

Our findings indicate that a significant proportion of gene deletions in iEsp1694 yield the

expected outcomes. Specifically, the gene essentiality prediction was accurate for 78.1% of the

tested genes, which validates the effectiveness of metabolic modeling in this context. However,

despite the relatively high success rate, discrepancies between the model predictions and the

experimental data still persist. It is important to note that the experimental results were

obtained from a different yeast species, S. cerevisiae, which could contribute to the observed

differences. Additionally, when interpreting these disparities, it is crucial to consider the meth-

odology used to obtain the essentiality data and the inherent variations that exist between dif-

ferent species. These factors can contribute to the observed differences and should be taken

into account when evaluating the results and concluding them.

In conclusion, iEsp1694 provides a reasonable confirmation of the experimental observa-

tions and effectively captures the inter-relationships among the diverse metabolic activities

within E. spinifera. This enables us to explore additional properties of its metabolic network

and develop metabolic engineering strategies to obtain enhanced strains.

Materials and methods

DNA isolation and genome sequencing

The FM strain was isolated and purified from oil contaminated soil samples collected from dif-

ferent regions of Iran [14].To prepare DNA for genome sequencing, fungal mycelia were har-

vested from fresh culture on Sabouraud Dextrose Agar (SDA), and Genomic DNA was

extracted following DNA Extraction Protocol [55]. The extracted DNA of E. spinifera FM was

sequenced by Illumina 150-bp paired-end sequencing (genewiz, United States).

Genome analysis

The raw Illumina reads were examined by using FASTQC v0.11.8 and followed by adaptor

removal and quality-based trimming performed with TRIMMOMATIC v0.36 [56]. High-qual-

ity reads were assembled by SPAdes v3.10.0 [57]. BUSCO v3 [58] was used to assess the com-

pleteness of the final assembled genomes. The first step in building a metabolic model of an

organism is to identify all the genes present in that organism [59]. Hence, AUGUSTUS, state-

of-the-art software, was used to perform functional annotation and predict protein coding

sequences [60]. To enhance the annotations even further, Pathway analysis and Basic Local

Alignment Search Tool (BLAST) was performed using a variety of databases, including the

Kyoto Encyclopedia of Genes and Genomes (KEGG) database [26], NCBI and UniProt [61] to

complete functional annotation of all predicted genes and the resulting metabolic pathways

were integrated into the genome-based metabolic model.

Biosynthetic gene clusters for the synthesis of secondary metabolites were predicted using

antiSMASH version 6.1.1 (https://antismash.secondarymetabolites.org/, v.6.1.1, accessed on
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10 December 2022). AntiSMASH can accurately identify all known secondary metabolic gene

clusters when it can use specific profile hidden Markov models [62]. Overall, this comprehen-

sive bioinformatics analysis provided a detailed understanding of the genetic makeup and met-

abolic capabilities of the FM strain, and served as a foundation for the reconstruction of the

first metabolic model for this organism.

Reconstruction of the model

The RAVEN Toolbox 2.0 [63], an open-source MATLAB package, was utilized to generate a

draft model. The getModelFromHomology function was executed using the Yeast8 GSMM of S.
cerevisiae [21] as a template model. This choice was based on the close phylogenetic relation-

ship between E. spinifera and S. cerevisiae [64] and Yeast8 has exceptional annotation accuracy,

particularly in the area of fatty acid metabolism. Additionally, the model provided an extensive

amount of information regarding its metabolites and genes, further justifying its selection.

Consequently, a compartmentalized draft model was successfully constructed.

Furthermore, the first draft model contained gaps due to incorrect annotation in the tem-

plate model and lacked reactions in parts of metabolism that were unique to E. spinifera. Fur-

thermore the gapfilling function of Cobrapy [43] was utilized to improve the network. This

function suggests reactions that were not included based on the template. Extensive manual

curation was also undertaken pathway-by-pathway, involving aligning reactions to KEGG

databases and the subsequent addition of these reactions to the model. E. spinifera is a species

of highly melanized black fungus and there is currently limited information available regard-

ing its melanin and carotenoid metabolic processes. In order to gain insights into these path-

ways, we have adapted the melanins (DHN-melanin, eumelanin and pyomelanin) and

carotenoid biosynthesis pathways from Exophiala dermatitidis [12], a closely related species

with more established knowledge in this area.

The subcellular localization of reactions was refined based on the information from the

databases UniProt and SGD [65]. Information pertaining to transport proteins was sourced

from TransportDB [66]. Some reactions were defined manually to best fit the biochemistry of

E. spinifera. Biodegradation of DBT is the best examples of these kinds of reactions. The mech-

anism of DBT biodesulfurization was based on the pathway proposed by Elmi et al. [14].

Biomass composition

The biomass composition of microorganisms is a highly intricate and dynamic system that is

influenced by various factors. In order to accurately simulate the growth of E. Spinifera using a

GSMM, it is crucial to incorporate a biomass reaction that encompasses the essential constitu-

ents and macromolecular components of cells or organisms. These components typically

include carbohydrates, proteins, lipids, DNA, and RNA, with ATP consumption playing a

dominant role [30]. However, due to the lack of available quantitative information regarding

the biomass constituents of E. Spinifera in the current literature, we have adapted the lipid,

protein, carbohydrates, DNA and RNA composition in the biomass equation from the most

recent GSMM of the ascomycete fungus, S. cerevisiae with some manual adjustments [21].

Additionally, we have integrated the contributions of carotenoids and melanins from the E.

dermatitidismodel [12]. Such adaptation from related organisms is an established practice in

the reconstruction of metabolic models [67]. This approach allows us to approximate the bio-

mass composition of E. Spinifera. Furthermore, we have included specific properties in the

biomass composition of desulfurizing microorganisms, such as precursors containing sulfur

or involved in sulfur metabolism, as well as higher levels of sulfur-containing amino acids,

nucleotides, and cofactors [16]. These adjustments appropriately reflect the sulfur
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requirements and adaptations to the desulfurization process. This allows for a more compre-

hensive understanding of E. Spinifera growth and metabolic capabilities in the context of sulfur

metabolism and desulfurization processes.

The stoichiometric ratio of these pseudometabolites in the biomass reaction was deter-

mined by using the solver tool in Microsoft Excel whose objective was a biomass molecular

weight of 1,000 g/mol [42]. However, it is important to acknowledge that the accuracy of the

model predictions may be affected by the assumption of using a biomass equation from a dif-

ferent organism. Therefore, further experimental validation is highly recommended to

enhance the reliability of the model.

Model evaluation

Constraints-based flux analysis and simulations. For analyzing and predicting pheno-

types, the constraint-based GSMMs typically solve the linear optimization problem Flux Bal-

ance Analysis (FBA) [68], a widely used computational method, is based on psudo-steady-state

assumption, the concentrations of the cellular metabolites remains constant during the analy-

sis [23]. FBA finds a metabolic flux distribution in steady-state that maximizes a defined objec-

tive, e. g., biomass production rate, Vbiomass. Briefly, FBA is formulated as a linear

programming problem;

Maximize Z = Vbiomass
Subject to S.v = 0

Vi,min� Vi� Vi,max (for i = 1, . . .., n)

Where Z denotes the objective function, C is a row vector showing the influence of individ-

ual fluxes on the objective function, v is the reaction flux vector, n denotes the number of reac-

tions. Vi,min and Vi,max are the lower and upper bounds of the flux Vi [23, 68].

Gurobi was used as the optimization solver for the FBA analysis. The model refinement

process involved simulating various growth conditions, including the utilization of different

carbon sources such as ethanol, glucose, and succinate. All simulations pertaining to gene

essentiality, utilization of carbon sources were conducted by FBA. The optimizeCbModel func-

tion was employed to execute FBA for these simulations. For all metabolites present in the

media, the upper and lower bounds of its Exchange reaction were set to -1 and 1 mmol/g/h,

respectively. The model can be further constrained by setting fixed fluxes for one or more

extracellular metabolites, which are determined based on experimentally measured uptake or

release rates. By FBA analysis, we can obtain potential flux distributions that reflect the meta-

bolic state of a cell under specific environmental conditions. To pursuit this goal, a cellular

objective function is required, such as maximizing cell growth, minimizing substrate utiliza-

tion, or minimizing maintenance energy [16]. Among these objectives, cell growth is the most

commonly used, as microbial cells have evolved to optimize growth. After the refinement of

the metabolic network, the GSMM needed to be further evaluated for the accurate simulation

of the metabolic process for some important precursors and synthesis of biomass. Evaluation

of the model was performed based on available data on metabolism of E. spinifera in the exper-

imental literature [14]. Subsequently, for each case, exchange reactions were defined to simu-

late the growth conditions. S1 File, shows the media content used in the growth simulations

for carbon and sulfur sources.

The predictions of the model were then compared to experimental observations. Inconsis-

tencies were checked manually and corrected for adding, removing or changing correspond-

ing reactions whenever possible. Experimental values were used for all simulations. We

sequentially opened the exchange reaction for the carbon sources and tested for growth of the

model.
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Shadow price analysis

Shadow price analysis, which is the dual formulation of FBA [69], is a technique in linear pro-

gramming and optimization that helps assess the importance or marginal value of constraints

or variables in a metabolic model. Specifically, it quantifies the impact of producing one addi-

tional unit (mmol.gDW−1.h−1) of a metabolite on the objective function used in FBA (growth).

The shadow price associated with variable i is defined as the reduction in the optimization

objective caused by producing one more unit of i [12]. In the COBRApy [43], shadow prices

and reduced costs can be calculated by optimizeCbModel. Flux balance analysis (FBA) problem

maximizing the biomass production was solved, and then shadow prices of metabolites were

calculated by shadow_price function.

The model was subjected to condition with glucose as the carbon source and DBT as thesul-

fur source. Then, We calculated the shadow prices of compounds that contain sulfur atoms,

including methionine, cysteine, coenzyme A (CoA), and CoA-containing metabolites such as

malonyl-CoA and acetyl-CoA. By analyzing the per-sulfur atom shadow costs of these sulfur-

containing compounds, we aimed to assess the sulfur requirements of Exophiala spinifera. Fur-

thermore, we investigated how much biomass would need to be catabolized in order to pro-

duce an additional mole of a sulfur-containing compound.

In a separate analysis, we conducted simulations for four different conditions, each based

on a specific carbon source (glucose, ethanol, glycerol, or succinate). The carbon content was

kept constant for the different carbon sources. The focus of this analysis was to calculate the

shadow cost of intermediate metabolites involved in sulfur pathways when DBT served as the

sole sulfur source. By assessing the shadow costs of these intermediate metabolites, we aimed

to gain insights into the metabolic impact and resource allocation associated with sulfur utili-

zation in the presence of DBT. This analysis contributes to our understanding of sulfur metab-

olism and its modulation under different carbon sources, providing valuable information for

studying sulfur assimilation in relevant biological systems.

Gene essentiality

The validation of GSMMs through gene essentiality prediction is a valuable approach to assess

and enhance the accuracy of predictions while providing a framework to contextualize knock-

out mutant studies [70]. Gene essentiality analysis in metabolic models involves simulating the

effects of gene knockout or knockdown on the metabolic network. This is typically achieved

by constraining the model to simulate the behavior of a cell in which a specific gene has been

deleted or inactivated [16]. Subsequently, a computational analysis is performed to determine

whether the cell can still grow and function normally. A growth rate of zero indicates that the

deleted gene is essential for growth under the tested conditions. Conversely, a non-zero growth

rate suggests that the deleted gene is non-essential for growth. COBRApy [43] contains a func-

tion, which allows all genes in the model to be deleted individually, and for each gene deletion

growth is assessed. This function is similar to in vivo experiments of tn-seq and transposon

mutagenesis experiments [71]. Since all gene essentiality experiments were carried out in rich

media (e.g. Broth), we performed gene essentiality testing by simulating an in silico rich media

conditions. To mimic these conditions, we opened all exchange reactions in the model, allow-

ing the unrestricted uptake and secretion of metabolites. We employed Cobrapy, to perform

gene knockout simulations. Gene removal involves setting the fluxes of all associated reactions

to zero. However, if a reaction was controlled by two or more isozymes, then the reaction was

kept active in the absence of any one of the associated genes. To assess the robustness of E. spi-
niferametabolism, we investigated its ability to exhibit in silico growth in the case of gene

knockouts or mutations.
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Since experimental gene essentiality data for E. spinifera is unavailable, we employed a com-

parative approach using NCBI Bidirectional Blast to identify orthologous genes. We compared

E. spinifera with the closely related species S. cervisiae, utilizing an E-value threshold of 1e-6 to

indicate a higher degree of similarity between the query sequence and the S. cerevisiae
sequence. We utilized experimental data on gene essentiality from the S. cerevisiae database

(SGD).

"This study was conducted primarily using computational and bioinformatic analyses, and

did not involve any field work or experiments requiring permits. All data used in the analyses

were obtained from publicly available databases. As such, no specific permits were required for

the completion of this work."
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