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Abstract

A Directed Acyclic Graph (DAG) offers an easy approach to define causal structures among

gathered nodes: causal linkages are represented by arrows between the variables, leading

from cause to effect. Recently, industry and academics have paid close attention to DAG

structure learning from observable data, and many techniques have been put out to address

the problem. We provide a two-step approach, named SEMdag(), that can be used to

quickly learn high-dimensional linear SEMs. It is included in the R package SEMgraph and

employs a two-stage order-based search using previous knowledge (Knowledge-based,

KB) or data-driven method (Bottom-up, BU), under the premise that a linear SEM with equal

variance error terms is assumed. We evaluated our framework’s for finding plausible DAGs

against six well-known causal discovery techniques (ARGES, GES, PC, LiNGAM, CAM,

NOTEARS). We conducted a series of experiments using observed expression (or RNA-

seq) data, taking into account a pair of training and testing datasets for four distinct dis-

eases: Amyotrophic Lateral Sclerosis (ALS), Breast cancer (BRCA), Coronavirus disease

(COVID-19) and ST-elevation myocardial infarction (STEMI). The results show that the

SEMdag() procedure can recover a graph structure with good disease prediction perfor-

mance evaluated by a conventional supervised learning algorithm (RF): in the scenario

where the initial graph is sparse, the BU approach may be a better choice than the KB one;

in the case where the graph is denser, both BU an KB report high performance, with highest

score for KB approach based on topological layers. Besides its superior disease predictive

performance compared to previous research, SEMdag() offers the user the flexibility to

define distinct structure learning algorithms and can handle high dimensional issues with

less computing load. SEMdag() function is implemented in the R package SEMgraph, eas-

ily available at https://CRAN.R-project.org/package=SEMgraph.

Introduction

The two primary fields of causality research are causal inference and causal discovery. The for-

mer emphasizes testing causal knowledge directly from observable data. It is the process of

evaluating whether an observed association actually reflects a cause-and-effect relationship.
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The latter aims to deduce causal structure from data. In other words, find a causal model that

accurately reflects a dataset.

A formal representation of the interactions between the observable variables, such as a

casual graph, is crucial for causal inference, or the process of quantifying the influence of a

cause on its consequence. In a wide range of fields, such as genetics [1], finance [2], and social

science [3], a Directed Acyclic Graph (DAG) offers an elegant way to describe directional or

causal structures among collected nodes. Learning the DAG structures from observable data

has received a lot of attention recently from both academia and business.

Structure learning is a model selection problem in which one estimates or learns a graph

that best captures the dependence structure in a given data set [4]. DAG learning is well

known to be computationally difficult, and several algorithms have been proposed to solve it,

using one of three possible approaches: constraint-based algorithms [5], which use conditional

independence tests to learn the dependence structure of the data; score-based algorithms [6,

7], which maximize some goodness-of-fit scores in the potential graph space; and hybrid algo-

rithms, which combine both approaches [8, 9]. However, the majority of the aforementioned

methods can only restore a DAG’s Markov equivalence class. Exact DAG recovery has recently

received a lot of attention. It has been demonstrated that algorithms based on correct node

ordering are capable of differentiating between various DAGs in the same equivalence class.

This advantage is attributable to more data distributional assumptions than just conditional

independence relations. Several forms of the order-based algorithms have been shown to be

able to produce unique causal directions, and have received practical applications. By design-

ing the function and noise, a group of functional causal models are proposed, such as linear

model with equal error variances (EqVarDAG, [10]), linear model with non-Gaussian error

(LiNGAM, [11]), non-linear model with Gaussian error (ANM, [12]), and causal additive

model (CAM, [13]).

The main contribution of this article is the development of a two-step algorithm for learn-

ing high-dimensional sub-Gaussian linear SEMs with the same error variances [14], called

SEMdag() and included in the R package SEMgraph [15]. First, a 1) a node (vertex) or layer

(level) ordering of the p nodes is extracted and then 2) the DAG is estimated using penalized

(L1) regressions [16]. The estimated linear order is determined by a priori graph topological

vertex (TO) or level (TL) ordering, or by using a data-driven Bottom-up (BU) approach. To

investigate the utility of our approach, we used a training dataset for model training and a test

dataset for evaluating classification performance. We performed four sets of experiments on

Amyotrophic Lateral Sclerosis (ALS), Breast cancer (BRCA), Coronavirus disease (COVID-

19) and ST-elevation myocardial infarction (STEMI). We tested the ability of our framework

to discover plausible DAGs against six popular causal discovery methods, i.e. PC [5], GES [6],

ARGES [9], directLINGAM [17], CAM [13], NOTEARS [18] to provide a meaningful compar-

ison in terms of disease predictive performance.

The outline of the paper is as follows. Firstly, the problem setting is discussed, introducing

different classes of structure learning methods and, in the end, our contribution. Then, the

experimental design and the evaluation scheme is described. Finally, we present the main find-

ings and a brief concluding discussion.

Materials and methods

Graphical and structural equation models

A DAG is defined as G = (V, E), where V is the vertex set and E is the set of directed edges.

When there is an edge (j, k) 2 E, the edge k! j is implied. The parent set and the set of chil-

dren of the j-th node in the graph G are indicated, respectively, by the symbols pa(j) and sib(j).
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If pa(j) = ;, the vertex j is a source (root) vertex in G; if sib(j) = ;, the vertex j is a sink (leaf) ver-

tex in G, otherwise the vertex j is a connector vertex in G.

If each variable in the child set can be expressed as a linear combination of the variables in

its parent set, the system of linear equation represents a Structural Equation Model (SEM) as

follows:

Yj ¼
X

k2paðjÞ

bjkYk þ Uj; j 2 V ð1Þ

where Yj and Uj are an observed variable and an unobserved (hidden) error term, respectively,

while βjk is a regression (path) coefficient. The error terms U1, . . ., Up are independent with

Gaussian distribution, Uj* N(0, σj), j 2 V.

As a result, the joint distribution of Y factorizes according to the following decomposition

of the DAG, G: PðYÞ ¼
Qp

j¼1
PðYjjpaðjÞÞ. P is then called Markov w.r.t. G. Various assumptions

for the model defined in Eq 1 are specified:

• Causal sufficiency: The absence of hidden (or latent) variables is referred to as causal suffi-

ciency [5]. For modeling hidden variables, there are two typical approaches: (i) they may

appear as a dependence between the error terms, U or (ii) they may be explicitly modeled as

nodes in the structural equations. The absence of latent confounding in Eq (1) uses (i): the U
terms are considered to be independent, i.e., cov(Uj; Uk) = 0 for all pairwise (j, k).

• Causal faithfulness: If there are no Conditional Independence (CI) relations other than those

implied by the Markov property, the distribution of P(Y), produced by Eq (1), is faithful to a

DAG G. This indicates that using the so-called d-separation rule [5], all CI can be read out

from a DAG G if the distribution P is faithful to the DAG G. Given a set S, two nodes (k, j)
are said to be d-separated if the conditional correlation between node j and k (given S) is

equal to 0.

• Acyclicity: The DAG G needs to be acyclic, which implies that it is not feasible to start at any

variable in the DAG, go ahead along the directed arrows, and then return to the same vari-

able. Solution of the structural equations requires that (I − B) is invertible and can be inter-

preted as an instantaneous feedback system that converges to a stable equilibrium.

• Linearity and Gaussianity: Nodes (observed variables) of the DAG G can be expressed as a

linear combination of its parents plus independent the Gaussian noise random variables,

U* Np(0, Dσ2).

The different algorithm are discussed below, and their assumptions are summarized in

Table 1.

Table 1. The assumptions of the considered structure learning methods.

Method Causal faithfulness Causal sufficiency Graph acyclicity Model linearity Gaussian error Equal error variances

PC yes yes yes yes yes no

GES yes yes yes yes yes no

ARGES yes yes yes yes yes no

LiNGAM no yes yes yes no no

CAM no yes yes no ni no

NOTEARS no yes yes ni yes yes

SEMdag no yes yes yes yes yes

https://doi.org/10.1371/journal.pone.0317283.t001
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Structure learning methods

The problem of learning the structure of a SEM is as follows. Given an n × p data matrix,

Y≔ (Y1, . . ., Yp) with i.i.d n rows drawn from G and a SEM ðB; fs2
i gÞ, we want to learn a Ĝ

and a SEM ðB̂; fŝ2
i gÞ from Y such that G ¼ Ĝ.

There are many structure learning techniques in use, of which we consider three broad

approaches: CPDAG-based, order-based and gradient-based methods.

CPDAG-based methods. G is typically not identifiable from the distribution of Y, but we

may determine its Markov equivalence class, or in other words, its Completed Partially

Directed Acyclic Graph (CPDAG). Markov-equivalent DAGs have the same skeleton and v-

structures [19, 20]. A v-structure consists of the triple i! j k, where i and k are not adja-

cent. Each Markov equivalence class may be represented as a CPDAG that can include both

directed and undirected edges [21]. Only when the edge j! k is shared by all DAGs in the

equivalence class, a CPDAG has the edge j! k. If a DAG with j! k and a DAG with k k
are both present in the class, hence the CPDAG has the undirected j − k.

To learn the CPDAG (assuming causal faithfulness) the structure learning techniques may

be divided into three classes [5, 22].

(1) Constraint-based methods. The constraint-based approach [5, 23] tests pairwise causal

links using a local conditional independence criterion.

The PC algorithm [5] carries the names of its creators, Peter Spirtes and Clark Glymour. In

order to understand the structure of the underlying DAG, it does a number of conditional

independence tests. In particular, it learns the CPDAG of the underlying DAG in three steps

that determine: (a) the skeleton, i.e., the undirected graph that has the same edges as the DAG

but no edge orientations, (b) the v-structures, and (c) the additional edge orientations.

In step (a) the algorithm starts with a complete undirected graph. Then, for each edge (say,

between j and k) the constraint is tested, whether there is any conditioning set, S so that j and k
are conditional independent given S (i.e., the independence null hypothesis was not rejected at

some significance level, α). If such a set, called a separation set or S(j; k), is found, the edge

between j and k is removed and the corresponding conditioning set is stored. The algorithm

increases the size of the conditioning set step by step, and stops if all adjacency sets in the cur-

rent graph are smaller than the size of the conditioning set.

In step (b), the algorithm takes into account all unshielded triples, or triples i − j − k where i
and k are not contiguous. The algorithm decides whether or not to align the triple as a v-struc-

ture with i! j k based on the separating set that causes the removal of i − k.

In step (c), additional orientation criteria are applied to orient as many of the remaining

undirected edges as possible, for more details see [24].

The PC algorithm was shown to be consistent in certain high-dimensional settings [23].

Among all the various modifications of the algorithm, we consider the stable and order-inde-

pendent version [25].

(2) Score-based methods. Score-based methods [6, 7] rely on the fact that each DAG, G 2 G
may be scored in relation to the data, often using a penalized likelihood score, e.g, the BIC

[26]:

Ĝ 2 arg min
G2G

SðG; YÞ≔ � logLðY; GÞ þ ljEj ð2Þ

where L(Y; G) is the likelihood function of the SEM mapped on the DAG G, |E| represents the

number of parameter (edges) in the model, and λ is a penalized parameter (λ = log(n) for

BIC). The algorithm then looks for a CPDAG that gives the best score. Greedy techniques are

often utilized because the space of potential graphs,G, is too large. One of these is the well-
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known two-phase approach known as Greedy Equivalence Search (GES, [6]). Specifically, by

doing a search on the space of potential CPDAGs through the Markov equivalence classes,

GES discovers the CPDAG of the underlying causal DAG. In the forward phase of its greedy

search, it does single edge additions to maximize score improvement, and in its backward

phase, it performs single edge removals. High-dimensional consistency of GES was demon-

strated by [9].

(3) Hybrid methods. The hybrid methods learn the CPDAG by combining the ideas of con-

straint-based approach and score-based methods. Among the hybrid approaches, here we con-

sider a novel version of the GES algorithm, called adaptively restricted greedy equivalence

search (ARGES), introduced by [9]. ARGES uses a greedy search on a restricted search space

using as input the skeleton of the PC algorithm or an estimated conditional independence

graph (CIG), i.e. an undirected graph with an edge between j and k, cor(Yj; Yk|rest) 6¼ 0,

derived from a preliminary search. It also changes adaptively the forward phase of GES, by

restricting edge additions. Let G be the loop CPDAG and j and k be two of its non-adjacent

nodes. Then an edge connecting j and k is acceptable if (i) j and k are adjacent in the (esti-

mated) skeleton of G or (ii) there is a node v such that j! v k is a v-structure in G. At every

stage of the algorithm, shields of v-structures (or unshielded triples) in the current CPDAG are

allowed in addition to the CIG’s (or CPDAG-skeleton’s) edges. ARGES scales well to sparse

graphs with thousands of variables, and as GES, the output is a consistent estimate of the

CPDAG.

Order-based methods. Exact DAG recovery (without causal faithfulness assumption) has

recently received a lot of attention. It has been demonstrated that algorithms based on correct

model definition are capable of differentiating between various DAGs in the same equivalence

class. This advantage is attributable to more data distributional assumptions than just condi-

tional independence relations. Different studies have emphasized that under certain condi-

tions, such as linearity with constrained error variances, linearity with non-Gaussian errors,

and non-linearity with additive errors, unique identification is achievable by topological order-

ing search.

The topological ordering of the variables (nodes) of a DAG G is defined as a non-unique

permutation π of the nodes: Y1� Y2� . . .� Yp, where the relation k� j is understood to

mean that node k comes before node j (i.e., there is an acyclic route connecting node k and

node j). Formally, πk< πj, j 2 de(k) and k 2 an(j), where de(k) are the descendants of the k-

th node, and an(j) are the ancestors of the j-th node in the DAG G.

These algorithms decompose the DAG learning problem into two phases: (i) Topological

order learning under certain conditions; (ii) Graph estimation, depending on the learned

topological order, via a step-wise selection procedure of the ancestor nodes.

We present a brief review of the identifiability conditions:

(1) Linearity with constrained error variances. According to [14], when the observational

data are produced using a Gaussian linear SEM that captures the causal linkages and has equal

error variances, the causal graph may be distinguished from the joint distribution. In addition,

[27, 28] provide relaxed identifiability conditions with heterogeneous variances, requiring an

explicit order among the noise variances. In detail:

• Equal error variance assumption [14]: Cov½U� ¼ diagðs2
1
; :::; s2

pÞ ¼ s
2I;

• Bottom-up variance assumption [27]: the noise variance of the child node (variable) is

approximately larger that the one of its parents (ancestors), s2
j > s2

k; j ¼ pm 2 V; k ¼ anðjÞ;

• Top-down variance assumption [28]: the noise variance of the parent node (variable) is

approximately lower that the one of its child (descendants), s2
j < s2

k; j ¼ pm 2 V; k ¼ deðjÞ.

PLOS ONE SEMdag: Fast learning of Directed Acyclic Graphs via node or layer ordering

PLOS ONE | https://doi.org/10.1371/journal.pone.0317283 January 8, 2025 5 / 24

https://doi.org/10.1371/journal.pone.0317283


Along these lines, numerous order-based learning techniques are put forth to determine

the precise DAG structure [7, 10, 27, 29, 30].

For example, the top-down algorithm can be specified as follow. Stage (1) infers the order-

ing by successively finding sources. We start with the set which contains all nodes, R = V and

the empty set, S = ;. We iterate over R and S: for each node in R we calculate its conditional

(error) variance given all nodes in S. We select the node with the lowest variance and append it

to the ordering set, S, and we also remove it from the remaining set, R. With the updated R
and S, we repeat the process of finding the node with the lowest conditional (error) variance

given the nodes in S, we append it to the ordering set S and we remove it from the remaining

nodes in R, and so on until R = ;. Lastly, the node ordering in S is returned. Once the ordering

has been estimated, in Stage (2) existing linear (or nonlinear) variable selection methods

(glmnet, leaps, L0learn, etc) allow to learn the parent set pa(j) and hence the DAG G. Limita-

tion of this procedure is that can be challenging to actually confirm assumptions of equal or

ordered noise variances.

(2) Linearity with non-Gaussian errors. Recent research has demonstrated that, without

requiring any prior information of the network structure, the application of non-Gaussianity

may reveal the whole structure of a linear acyclic model, that is, a causal ordering of variables

and the strength of their connections. The linear non Gaussian DAG, often referred to as the

linear non-gaussian acyclic model (LiNGAM) [11], relaxes the Gaussianity condition and does

not call for an additional constrained noise variance assumption for identifiability. All external

unobserved errors, U are continuous random variables with non-Gaussian distributions, zero

means, non-zero variances, and are independent of each other such that no hidden confound-

ing factors exist.

As shown by [11], the causal ordering of a linear non-Gaussian DAG may be reconstructed

via iterative search methods. Specifically, [31] proposes a novel approach, called directLiN-

GAM, to estimate a causal ordering of variables that ensure the validity of the DAG identifica-

tion in the LiNGAM model. This procedure calculates the topological (causal) order of

variables by sequentially computing residual errors from the model’s input data. It is carried

out with a top-down procedure, starting at the root nodes, followed by the children of the root

nodes and so on until completion. In detail:

• (a) Given the observed data matrix Y and the order list π = ;, perform linear regressions of

Yj on Yk and compute the residual vectors, RðkÞj ¼ Yj � b̂ jkYk for all (j 6¼ k) 2 V/π. Then, the

root node, Y(1) in the order list, i.e. π = Y(1), is identified as the most independent variable:

Yð1Þ ¼ mink2V=p

P
j6¼kINDðYk; R

ðkÞ
j Þ, where IND is a non-parametric independence test;

• (b) collect the (p − 1) residuals of the root node in a new data matrix, R(1), i.e., removing the

effect of the root node, perform step (a) on these residuals, and append the new root Y(2) in

the order list, π = (Y(1), Y(2));

• (c) repeat (a)-(b) until R(p−1) = ;.

To note, non-Gaussian errors are crucial because, for a Gaussian random variable, uncorre-

lated and independent are equivalent, so the residual are always independent of its regressors.

Vice versa, when the errors are non-Gaussian, the independence of residuals and regressors

can be used to select the root sequence with the independence (IND) measure.

Once the causal ordering between the variables are established, it is simple to estimate the

strength of the relationships of a strictly triangular matrix B by following the order in π, using

a SEM covariance-based procedure such as least squares and maximum likelihood approaches,
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pruning the non-significant (P> 0.05) regression coefficients, or via a top-down nodewise-

based model selection procedure of ancestor nodes.

(3) Non-linearity with additive errors. Non-linear transformation is frequently used in data

generation in practice, hence it should be considered as an alternative to linear models. A func-

tional causal model, called additive noise model (ANM), depicts the causal effect on each Yj as

a function of the direct causes Ypa(j) and some additive unmeasurable noise, Uj [14]:

Yj ¼ fjðYpaðjÞÞ þ Uj; j 2 V ð3Þ

where Uj(j = 1, . . ., p) are (mutually) independent with Gaussian distribution, i.e., there are no

hidden variables. The function, fj is a suitably functional class and describes how the outcome,

Yj, is produced from its causes, Ypa(j)), supposed independent with noise errors. Since the inde-

pendence constraint between noise and cause holds only for the correct causal direction and is

broken for the incorrect direction, the unique causal structure can be identified.

Several methods have been developed, here we consider the approach in [13], for potentially

high-dimensional on a special (and more practical) ANN, or functional SEM, with (mutually)

independent and potentially misspecified Guassian errors, called Causal Additive Model

(CAM):

Yj ¼
X

k2paðjÞ

fj;kðYkÞ þ Uj; j 2 V ð4Þ

An important results is that if all functions fj,k(.) are nonlinear, the underlying DAG struc-

ture is identifiable from the observational distribution, P(Y). An efficient order-based algo-

rithm that can deal with many variables, proposed by [13], consists of three phases (stages). In

detail:

• Preliminary neighborhood selection. Fit an additive model with a boosting procedure for each

variable, Yj on all the other variables, Y{−j} for estimating a superset of the skeleton of the

underlying DAG with K (usually K< 10) “possible” parents of Yj;

• Estimating the topological order by greedy search. Order search for the variables starts with an

empty order and iteratively adds edges between the nodes that corresponds to the largest

gain in the negative log-likelihood score, S(Gπ; Y). The order search is “restricted” by consid-

ering edges compatible with the preliminary neighborhood selection. The graph is com-

pleted to a full connected DAG, Gp̂, in which each ordered node k has an directed arrow to

all j if k� j. Gp̂ corresponds to the best restricted permutation, p̂ðRÞ for the variable indices.

• DAG pruning by feature selection. For pruning the full DAG, nodewise additive models can

be used by applying significance testing on the covariate functions, usually with a P-value

<0.001, or with penalized additive models excluding expected non-parent variables if

f̂ j;k ¼ 0.

The limitation of the CAM is the heuristic computational complexity of the three stages. In

the absence of detailed knowledge of the data generation mechanism, the assumed functional

model must be able to capture complex non-linear relationships compared to the simple (and

fast) linear model.

Gradient-based methods. Aciclicity is the most common assumption in causal discovery

and score-based methods uses heuristic greedy algorithms for solving non-convex optimiza-

tion without feedback loops, i.e., a combinatorial problem that scales super-exponentially with

the number of variables. Recent work called NOTEARS [18] provides a new algorithmic

framework for score-based learning of DAG models. The procedure is based on a new
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algebraic characterisation of acyclicity constraint, which recasts the score-based optimization

issue as a continuous problem rather than using the conventional combinatorial technique.

In the linear situation, the matrix B 2 Rp�p
properly encodes the graph G, i.e., an edge j 

k in G is present if and only if βkj 6¼ 0. The entire problem may be expressed in terms of B.

Given a score function, S(B; Y) the solution of B is defined by optimizing S(B; Y) subject to the

continuous constraint, h(B) = 0::

arg min
B2Rp�p

SðB; YÞ s:t: hðBÞ ¼ 0 ð5Þ

where h is a non-negative non-convex differentiable function used to enforce acyclicity in the

estimated graph. Some possible score functions include:

• Least squares-EV:
Pp

j¼1
jjYj �

P
bjkYkjj

2

2
for linear SEM with equal error variances [14];

• Negative log-likelihood-EV:
p
2
log
Pp

j¼1
jjYj �

P
bjkYkjj

2

2
for linear SEM with Gaussian equal

error variances [32];

• Negative log-likelihood-NV: 1

2

Pp
j¼1

logjjYj �
P
bjkYkjj

2

2
for linear SEM with Gaussian not-

equal errors variances [32].

The function h quantifies the “DAG-ness” of the graph, and nowadays the literature con-

tains many different proposals:

• The NOTEARS condition [18]. The first differentiable aciclicity characterization of a DAG: h
(B) = tr[exp(B � B)] − p;

• A polynomial condition [33]. Proposed to ease the coding effort as the matrix exponential,

may not be available in all deep learning platforms: h(B) = tr[I − (B � B)/p]p − p;

• The DAGMA condition [34]. For a non-negative matrix with spectral radius less than one

that has better gradients and runs faster than exponential and polynomial conditions: h(B) =

−log det[I − (B � B)].

Where � denotes the Hadamard product, ½B � B�jk ¼ b
2

jk. Usually, the score function

includes a sparsity (regolarized) L1-penalty, followed by a thresholding step of the estimated

weighted adjacency matrix using a relatively large cut-off of 0.3.

Continuous optimization methods are pervasive in the field of deep learning, whereby

highly parameterized networks are optimized using variations on the well-studied gradient-

based solvers [35]. In general, these methods are more global than other approximate greedy

or 2-3 stages methods. This is because they update all edges at each step based on the gradient

of the score and on the acyclicity constraint, and usually have a faster training time since the

optimization run is known to be highly parallelizable on GPU.

This has resulted in the confluence of black-box deep learning approaches, and causal struc-

ture discovery based on non-linear SEM with Gaussian errors in Eq 4, i.e., NOTEARS-MLP,

GraNDAG, DAG-GNN, MCSL, and many others proposal can be found in the recent review

[36]. gCastle Python package [37] includes many development gradient-based methods

with optional GPU acceleration. In R, the gnlearn package [18] implements linear

NOTEARS with least squares EV loss. [38] investigates cases of poor performance of structure

learning with continuous optimization.

Table 2 provides a summary of the structure learning methods in terms of the type of algo-

rithm employed, category and output with the main papers for reference. Besides the type of

algorithm, these methods differ in three main aspects: (i) the input requirements; (ii) the
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category; (iii) the output. All the methods require as input a data matrix, Y(n, p) where n is the

number of subjects and p is the number of genes, with the exception of SEMdag that requires

also a graph object. The latter can be derived from existing knowledge or can be an empty

graph object (if the user decides to implement a full data-driven procedure). Each method rep-

resents a different category, in order to provide a comprehensive overview of existing structure

learning approaches. Then, PC, GES, and ARGES give as output a CPDAG while the others

are able to recover a DAG object. The goal is to find a structure learning method that provides

an optimal solution while controlling the computing time of the algorithm.

SEMdag algorithm

Our SEMdag() function uses a two-stage order-based search with prior knowledge-based or

data-driven approach, under the assumption that a linear SEM with equal variance error terms

is assumed [14]. After determining the vertex (node) or level (layer) order of nodes in stage

(1), the DAG may be trained using penalized (L1) regressions in stage (2) [16].

Learning ordering. The estimated linear order is determined via a prior graph topological

vertex (TO) or level (TL) ordering, or by using a data-driven node or level bottom-up (BU)

procedure.

Knowledge-based ordering. Topological sorting or ordering of a directed graph’s vertices is

only feasible if and only if the knowledge-based graph is a directed acyclic graph, which means

we must convert the graph in a DAG. At least one topological ordering exists in every DAG.

For DAGs, topological vertex sorting is a linear ordering of the vertices such that vertex u
occurs before vertex v for each directed edge u! v. We can construct a topological sort with

computing time linear to the number of vertices plus the number of edges, i.e., O(V + E).

Examples are the Kahn’s algorithm or the Depth First Search algorithm. However, there can

be more than one topological sorting for a DAG. To overcome this issue, we consider DAG

topological layer (level) sorting.

Given a DAG G, define a collection of sets as follows (cf. [30]): L0, denotes the set of the

root (source) nodes in the top layer, Lj ¼ [
j
m¼0Lm and for j> 0, Lj is the set of all the source

nodes in the subgraph G[V − Lj−1] formed by removing the nodes in Lj−1. So, e.g., L1 is the set

of source nodes in G − L0. This decomposes G into d + 1 layers, L(G)≔ (L0; . . .; Ld) where

each layer Lj consists of the nodes that are sources in the subgraph G[V − Lj−1], and Lj is an

ancestral set for each j. The number d of “layers” denotes the longest possible distance from

some nodes in the DAG to a root node and measures the “depth” of a DAG.

The idea of a topological layer enables us to transform a DAG into a distinct and unique

topological structure with (d + 1) levels, where a node’s parents must be located in the node’s

upper layers and acyclicity is thus naturally ensured [39]. In particular, given a DAG G, we

Table 2. Overview of the considered structure learning methods.

Method Reference R package Algorithm Category Output

PC [5] pcalg Peter & Clark algorithm Constraint CPDAG

GES [6] pcalg Greedy Equivalence Search Score CPDAG

ARGES [9] pcalg Adaptively Restricted GES Hybrid CPDAG

LiNGAM [17] CausalXtreme Top-down order search Order DAG

CAM [13] CAM Greedy order search Order DAG

NOTEARS [18] gnlearn NOTEARS (linear) algorithm Gradient DAG

SEMdag [15] SEMgraph Bottom-up ordering (TO/TL) Order DAG

Knowledge-based ordering (TO/TL) Order DAG

https://doi.org/10.1371/journal.pone.0317283.t002
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derive the topological structure of the DAG by allocating each node to a single layer with an

iterative leaf-removal procedure. The leaf-removal method is a bottom-up process that elimi-

nates all leaf nodes from the network as well as the edges that are incident on them, at each

iteration. Leaf nodes are those that have no outgoing edges. In detail:

• Starting with a DAG, the algorithm first creates the transpose of the DAG by flipping the ori-

entation of the DAG’s edges;

• The iterative leaf-removal procedure is applied on the DAG and the transpose of the DAG.

The leaf nodes are stored in layers step by step, and the algorithm ends when the network is

entirely deconstructed;

• The leaf nodes of the DAG and the transpose of the DAG (identical to the top-down order of

nodes in the DAG) are placed in the last and first layers (Ld, L0), respectively;

• The topological ordering of the network’s nodes is ultimately determined by reversing the

bottom-up ordering of the nodes in the transpose of the DAG and combining it with the bot-

tom-up ordering of the nodes in DAG.

We refer the reader to Fig 1 for an example about the leaf-removal algorithm.

Any node, j 2 Lj has some parents in the previous layer, Lj−1 and some child in the next

layer, Lj+1. Learning G is equivalent to learning the sets L(G) = (L0; . . .; Ld), since any topologi-

cal sort π of G can be determined from L(G), and from any sort π, the graph G can be recov-

ered via variable selection. Unlike a topological sort of G, which may not be unique, the layer

decomposition L(G) is always unique.

Bottom-up ordering. The proposed algorithm for learning DAG works by constructing the

DAG in a bottom-up fashion as in [27], estimating with a backward procedure the inverse

covariance matrix, Ô ¼ Ŝ � 1 of the sample covariance (correlation) matrix, S≔ (YTY)/n using

the graphical lasso algorithm [40]:

Ô 2 arg min
O�0

trðOSÞ � log detðOÞ þ l
X

j6¼k

jojkj ð6Þ

and define step by step a reversed causal ordering recovering the minimum precision: var(Yj|

Y{−j})
−1, i.e., the maximum full conditional variance, from its diagonal elements. To note, if

λ! 0 and n>> p, then the Maximum Likelihood Estimate (MLE) is given as: Ô ¼ S� 1.

In detail, starting with the empty set (P = ;), each element of the ordering is approximated

through the following steps:

1. Select the node with the highest full conditional variance as terminal vertex, Yp, i.e. the ver-

tex with minimum value in the diagonal values of the precision matrix, ô ¼ min ðdiagðÔÞÞ
or the terminal layer (>1 vertices, Ld) with ô 2 min ðdiagðÔÞÞ þ Z. The latter means that

all nodes with a maximum distance of η from the precision value of the terminal vertex’s

can be combined to determine the terminal layer rather than just one terminal vertex.

2. Append Yp or Ld to the ordering set, P and also remove the selected node(s) from the col-

umn(s) of the data matrix. With the updated data matrix repeat the process of estimating

the precision matrix and identify the vertex (or vertices) with the lowest precision(s);

3. Repeat (1) and (2) until the source node, Y1 or the top layer, L0 is found.

Lastly, the reverse of the node (or level) ordering in the set P is returned. For the glasso pro-

cedure, we use the penalized parameter, λ = 0.001 or l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðpÞ=n

p
for low (n> p) or high

(n< p) dimensional data, respectively.
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Fig 1. Application of the leaf-removal algorithm on the network of interest (dag) and its transpose (t(dag)) in step(1) e (2) to

determine the layers ordering of the network’s nodes by the combination in step(4) of the node structure in step(1) and (3).

https://doi.org/10.1371/journal.pone.0317283.g001
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Learning parents. After finding the topological vertex (node) or level (layer) ordering, the

challenge of estimating the DAG structure (edge set), as stated by [16], may be viewed in terms

of penalized likelihood. Assuming as fixed the node or layer ordering from stage (1): Y1� Y2

� . . .� Yp, or L0� L1� . . .� Ld, the stage (2) executes parent estimations by doing LASSO

(Least Absolute Shrinkage and Selection Operator) regressions of the j-th outcome variable on

the predictor (ancestor) variables, Sj≔ {Yk:Yk� Yj} or Sj≔ {Yk:Lk� Lj} in the vertex or level

order list:

b̂ 2 arg min
b 2 Rk�j

jjYj �
X

k�j

bjkYkjj
2

2
þ lj

X

k�j

wjkjbjkj ð7Þ

It is possible to estimate the DAG adjacency matrix, Â removing (nodewise) the beta coeffi-

cients equal zero (Ajk = 0 if b̂ jk ¼ 0 and 1 otherwise) or using a threshold on the beta absolute

values. To allow for differential shrinkage, various penalty factors wjk might be given to each

beta coefficient. There is no shrinkage if wjk = 0 for some variables, and those variables are

always included in the chosen model. If the input graph is known (knowledge-based

approach), weights can be based on the graph edges: 0 (i.e., edge present) and 1 (i.e., edge

absent).

The λj parameter for each outcome variable in the LASSO regression is chosen by tuning a

vector of λ values, or by cross-validation (p� 100) or BIC-based (p> 100) lambdas selection.

To further improve efficiency, some tuning-free schemes (such as λ = (N(0,1)-quantile at α/

[2p(j − 1)]) /
ffiffiffi
n
p

, suggested in [16], or l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðpÞ=n

p
, suggested in [41] for graphical lasso)

can also be enabled.

User interface. The example code of the function SEMdag() is as follows.

SEMdag(graph, data, LO = “TO”,

beta = 0, eta = NULL, lambdas = NA,

penalty = TRUE, verbose = FALSE, . . .)

The inputs are: an igraph object (graph) that can be a priori graph topological order or a

graph with no edges (data-driven procedure: note that in this case it can be created with the

function make_empty_graph() of the igraph package, specificying the number of nodes n
as input); a matrix with rows corresponding to the subjects and columns to the graph nodes

(data); the linear order method (LO, default = “TO”); the minimum absolute LASSO beta coef-

ficient for a new direct link to be retained in the final model (beta, default = 0); the minimum

fixed eta threshold for glasso bottom-up search (eta, default = 0.05); a vector of regularization

LASSO lambda values (lambdas, default = NA); penalty factors for differential shrinkage (pen-
alty, default = TRUE).

Using a two-step order search methodology, the recovered DAG is approximated. Following

the determination of the vertex (node) or level (layer) order of p nodes obtained with the

glasso() function of the glasso R package [42] in step 1), the DAG may be trained using

penalized (L1) regressions with the glmnet() function of the glmnet R package [43] in step 2).

When choosing between node or layer ordering, the user has to keep in mind the reduced

computational burden in the layer-based approached compared to the node one. In detail, in

step 1), the layer approach has to identify the order of d + 1 layers, where d represents the

“depth” of the DAG, instead the node approach needs to find the order of p + 1 nodes, where p
is the number of nodes in the DAG. As a result, an high dimensional graph could impact the

computation time of the latter step in the nodewise approach. Same consideration could be

done for the step 2) where the number of L1 regressions in the nodewise approach is equal to

PLOS ONE SEMdag: Fast learning of Directed Acyclic Graphs via node or layer ordering

PLOS ONE | https://doi.org/10.1371/journal.pone.0317283 January 8, 2025 12 / 24

https://doi.org/10.1371/journal.pone.0317283


(p − 1); instead, for the layer-based one, the number of regressions is equal to p—(number of

layers), a smaller set compared to the latter.

The output of SEMgdag() is represented by a list containing four objects: dag, the esti-

mated DAG; dag.new, new estimated connections; dag.old, connections preserved from the

input graph; LO, the estimated vertex ordering.

To read more about SEMdag() function, in terms of description, usage, function argu-

ments and value, see help documentation: ?SEMdag or refer to https://rdrr.io/cran/

SEMgraph/man/SEMdag.html.

Experimental design

Benchmark data

For each specific disease, two different datasets have been selected: one for the training process

and the other for testing the proposed modelling scheme. Before selecting the data, we’ve

checked that each pair of datasets had the same study type (expression profiling by high

throughput sequencing, i.e. RNA-seq data), the same platform and a similar number of sub-

jects. This selection procedure resulted in 4 × 2 datasets as shown in Table 3.

Amyotrophic Lateral Sclerosis (ALS). Amyotrophic lateral sclerosis is a rare kind of neurode-

generative illness that causes the gradual loss of motor neurons that regulate voluntary mus-

cles. For training, we selected postmortem cortex ALS RNA-seq expression data (GSE124439)

from [44] with 139 ALS cases and 21 healthy controls. For testing, postmortem cortex RNA-

seq data from the NYGC ALS Consortium (GSE153960) were selected, with 206 ALS cases and

67 controls. Network information has been extracted from the KEGG pathway “Amyotrophic

lateral sclerosis”, consisting of 364 nodes and 333 edges. For computational purposes, the larg-

est connected component has been retained, corresponding to 190 nodes and 261 edges.

Breast Cancer (BRCA). Breast cancer develops when cells in the breasts multiply and expand

out of control, resulting in a mass of tissue known as a tumor. For training, we make use of the

(pre-processed) breast cancer RNA-seq dataset from TCGA project [45], which has n = 224

human samples, comprising 112 BRCA samples and 112 control samples. For testing, two

RNA-seq datasets were combined: GSE81538 [46] for 190 breast cancer cases and GSE205725

[47] for 187 healthy controls. Network information has been extracted from the KEGG path-

way “Breast cancer”, consisting of 147 nodes and 488 edges. For computational purposes, the

largest connected component has been retained, corresponding to 133 nodes and 483 edges.

Coronavirus disease (COVID-19). The severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) is the cause of the respiratory infection known as coronavirus disease of 2019

(COVID-19), which is extremely contagious. RNA-seq data from [48] (GSE157103) were

Table 3. Description of the selected training/testing datasets for each disease.

Data Type Split GSE n case control p KEGG pathway vcount ecount

ALS RNA-seq Train GSE124439 160 139 21 100 Amyotrophic lateral sclerosis 190 261

Test GSE153960 273 206 67 100

BRCA RNA-seq Train TCGA 224 112 112 100 Breast cancer 133 483

Test GSE81538 + GSE205725 377 190 187 100

COVID-19 RNA-seq Train GSE157103 126 100 26 100 Coronavirus disease—COVID-19 54 83

Test GSE152641 86 62 24 100

STEMI RNA-seq Train GSE59867 157 111 46 99 Lipid and atherosclerosis 191 420

Test GSE62646 42 28 14 99

https://doi.org/10.1371/journal.pone.0317283.t003
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considered for training, with a total of n = 126 samples with 100 COVID-19 patients and 26

non-COVID-19. Conversely, RNA-seq data (GSE152641, [49]) from whole blood of 62

COVID-19 patients and 24 healthy controls was considered for testing. Network information

has been retrieved from the KEGG pathway “Coronavirus disease—COVID-19”, consisting of

232 nodes and 208 edges. For computational purposes, the largest connected component has

been retained, corresponding to 54 nodes and 83 edges.

ST-elevation myocardial infarction (STEMI). A heart attack known as a STEMI, happens

when an elevation in the ST segment, often results in myocardial injury or necrosis. As train-

ing data, we made use of the RNA-seq dataset (GSE59867) from [50] that reports a total of 157

subjects, among which 111 are cases and 46 are healthy controls. As testing data, we selected

the RNA-seq dataset (GSE62646) from [51], where 28 subjects were cases and 14 controls. Net-

work information has been extracted from the KEGG pathway “Lipid and atherosclerosis” (a

pathway associated with myocardial disease) consisting of 215 nodes and 428 edges. For

computational purposes, the largest connected component has been retained, corresponding

to 191 nodes and 420 edges.

DAG structure recovery

The causal DAG discovery procedure implemented in this analysis is visually summarised in

the first two boxes of Fig 2 and is better explained in this section.

• Data filtering (gene extraction). To reduce the computational burden of structure discovery

methods, genes of the data matrix have been filtered according to Differential Expression

Analysis (DEA). In detail linear models for DEA were fitted with the limma R package [52]

and p-values were adjusted for multiple testing using the method of Benjamini-Hochberg

[53]. In this way, the p = 100 most significant Differentially Expressed Genes (DEGs) were

filtered out for each dataset, implementing a fully data-driven procedure for causal structure

discovery. The differential expression patterns for each pair of datasets of each specific dis-

ease is shown in Fig 3. Each pair of datasets share similar differential expression structure,

highlighting same biological differences between healthy and diseased states. As a result, the

Fig 2. Experimental design scheme.

https://doi.org/10.1371/journal.pone.0317283.g002
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model fitted on the training (learning) data should be well generalizable to the testing (vali-

dation) data.

• DAG/CPDAG structure recovery. The considered methods run using the default arguments

of their R functions, and recover the DAG structure in three different formats:

(i) adjacency matrix: the functions pc() and ges() from pcalg R package [23] estimate

the connectivity matrix of a DAG specifying one of various possible methods (PC, GES, or

ARGES). On the other side, the causalXtreme R package [54] provides wrapper functions

for fitting the DirectLiNGAM algorithm and obtaining an adjacency matrix output. In the

end, an igraph object has been retrived from the graph_from_adjacency_matrix
() function of the igraph package [55];

(ii) edgelist: the function CAM() from the CAM R package [13] estimates the edge list of a

DAG using the CAM algorithm. From the edgelist output, an igraph object has been

obtained from the graph_from_edgelist() function of the igraph package;

(iii) graph: the function notears() from the gnlearn R package [56] estimates the DAG

structure as an igraph object, without the need for further refinements; the function

SEMdag() from the SEMgraph package [15] using as argument LO=(BU, TO, or TL)

gives as output the igraph object of interest.

All the methods require as input the data matrix, with the exception of SEMdag() that

also requires a graph object. So, an empty graph with a number of genes equal to the number

of selected DEGs (p = 100) is generated and the data-driven bottom-up (BU) search of vertex

(or layer) order is performed using the vertices of the empty graph.

Fig 3. Heatmap of differentially expressed genes (DEGs) for each train/test dataset of each specific disease. The heatmap illustrates expression levels for

all DEGs, where red indicates high expression and blue indicates low expression.

https://doi.org/10.1371/journal.pone.0317283.g003
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Evaluation metrics

The last step of the experimental design scheme is summarised in the last box of Fig 2. We aim

to be able to make out-of-sample disease predictions using the graph structure recovered by

the causal discovery algorithms.

In detail, a SEM is fitted for each DAG recovery method, considering the train (learning)

disease data of interest together with the graphs of each method. The matrix of the predicted

values of train (learning) and test (validation) data are extracted using the path coefficients,

Ŷ train ¼ YtrainB̂ and Ŷ test ¼ YtestB̂ where B̂ represents the MLE of the path coefficients matrix

from train data of each CPDAG/DAG model.

Given the predicted data, Ŷ ¼ ðŶ train; Ŷ testÞ a Random Forest (RF) approach [57] has been

used for making disease predictions for the four (ALS, BRCA, COVID-19, STEMI) disease

dataset, being the best performing and most used model in the Machine Learning (ML) frame-

work. It guarantees great predicted precision, adaptability, and immediacy, and is thus

regarded as an effective ensemble learning model [58].

RF is performed with the rfCMA() function of the CMA R package [59]. In this way, com-

parisons are made within different causal recovery methods. In addition, RF is also performed

on the original data, Y = (Ytrain, Ytest) as reference (null graph) benchmark.

Once the disease predictions have been obtained, the aforementioned structure recovery

methods have been evaluated with the following metrics:

• MultiDimensional Scaling (MDS): Once obtained the estimated graph structures from each

method, the Structural Hamming Distance (SHD) has been computed to generate a measure

of structural similarity between graphs by comparing their adjacency matrices. This might

be interpreted as how many addition/deletion operations are necessary to transform the

edge set of G1 into that of G2. To obtain a distance measure between 0 and 1, the measure-

ment was related to the size (number of nodes) of each graph; the higher the number, the

more distant the objects. Then, a visual representation (MDS) of distances between the

obtained SHDs has been generated to identify more or less similar structures (respectively,

objects with shorter or longer distances) via the cmdscale() function of the stats R pack-

age. The graph objects have been divided into k clusters, with each observation belonging to

the cluster with the closest mean, using the K-means algorithm. The number of cluster (K) is

selected via hierarchical clustering (hclust() function of the stats R package, with com-

plete linkage method as default). After plotting the dendogram, the optimal height for cut-

ting the tree has been chosen to be the one that better reflects the more distant clusters of

objects, joining together the ones with really low SHD values.

• Matthews correlation coefficient (MCC): Out-of-sample predictions for each disease predic-

tion method, categorized as positive and negative cases, have been obtained for testing data-

sets and compared with ground truth. The confusion matrix, also known as the error or

contingency matrix, has been used to assess the diagnostic capacity of classifiers. True posi-

tives (TP) and true negatives (TN) are the positive and negative cases that have been cor-

rectly identified by the classifier. False positives (FP) are cases where the classifier mistakenly

classified a negative as positive, and false negatives (FN) are situations when the classifier

mistakenly classified a positive as negative. In binary classification tasks, accuracy and F1

score calculated using confusion matrices continue to be among the most often used mea-

sures. However, on unbalanced datasets, these statistical techniques can dangerously show

inflated and too optimistic outcomes. Alternatively, a more faithful statistical rate is the

MCC, which yields a high score only when the prediction performed well in each of the four

confusion matrix categories (TP, FN, TN, FP), proportionately to the size of the dataset’s
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positive and negative elements (see [60–62] for reference). As a result, DAG structure recov-

ery methods and RF algorithm have been compared with each other using MCC. To note

that a MCC = −1 denotes complete disagreement between the prediction and the observa-

tion, C = 0 is for a prediction that is no better than random, and C = 1 shows perfect

agreement.

To note that, regarding the procedure with SEMdag() function, all four causal structure

recovery strategies have been implemented: (i) Knowledge-based ordering (TO/TL) based on

the KEGG pathway of the disease of interest, i.e. a biologically validated network structure:

SEMdag_KB_TO and SEMdag_KB_TL; (ii) Data-driven Bottom-Up ordering (TO/TL) based

on the empty graph with p = 100 nodes (DEGs): SEMdag_BU_TO and SEMdag_BU_TL.

Results

DAG/CPDAG. Table 4 reports a descriptive analysis of the recovered graph structures in terms

of graph dimension (vertex and edges), number of source and target nodes and measures of

centrality as degree and betweenness.

In terms of node dimension, we have the same number of 100 DEGs for almost all methods

except for the STEMI case where we have 99 nodes. Only the SEMdag_KB methods differ in

terms of node dimension, since it depends on the largest component of the KEGG pathway of

reference, matched with the nodes in the data. The largest DAGs, with the higher number of

nodes together with the most dense structure of connections, are the SEMdag_KB_TL and

SEMdag_KB_TO of the ALS and STEMI dataset, where the starting graphs are the largest ones

(in terms of nodes) compared to BRCA and COVID-19. After these two methods, the most

densely connected graphs are the ones of LiNGAM and SEMdag_BU methods. Lower density

graphs are reported by ARGES, GES and PC methods.

It is interesting to understand the number of source and sink nodes reported by each causal

discovery method. The highest number of source-sink nodes is reported by PC and SEM-
dag_KB_TL methods for all datasets together with the ARGES method for the COVID-19 and

STEMI datasets. It can also be pointed out that an high number of sink nodes is reported for

all SEMdag() methods. Conversely, the lowest number of source-sink nodes is shown by

GES.

Degree centrality instead involves counting the number of direct connections a node has; as

a result, if high, there is an high number of nodes with high degree (hub nodes). It is

Table 4. Descriptive table of recovered DAG/CPDAG structures for each method. V counts the number of Vertices in the network and E the number of Edges; S reports

the number of Source nodes and T the number of Targer nodes; D stands for mean(Degree) and B for mean(Betweenness).

ALS BRCA COVID-19 STEMI

method G(V,E) G(S,T) G(D,B) G(V,E) G(S,T) G(D,B) G(V,E) G(S,T) G(D,B) G(V,E) G(S,T) G(D,B)

ARGES 100;125 3;22 2;58 100;175 1;16 4;124 100;38 62;62 1;0 99;79 21;28 2;8

CAM 100;276 1;15 6;91 100;335 1;9 7;105 100;99 1;43 2;48 99;190 1;17 4;159

GES 100;148 1;5 3;75 100;197 1;5 4;152 100;50 50;50 1;0 99;99 1;1 2;409

LiNGAM 100;436 2;19 9;50 100;471 2;15 9;47 100;470 2;13 9;55 99;503 2;16 10;52

NOTEARS 100;198 6;25 4;58 100;186 6;25 4;72 100;210 4;28 4;26 99;203 3;22 4;82

PC 100;148 18;23 3;13 100;175 25;26 4;8 100;144 29;29 3;3 99;156 29;28 3;4

SEMdag_BU_TL 100;284 2;39 6;11 100;306 2;43 6;10 100;293 3;37 6;9 99;290 6;36 6;8

SEMdag_BU_TO 100;278 1;20 6;45 100;284 1;27 6;60 100;288 2;28 6;40 99;283 2;26 6;36

SEMdag_KB_TL 168;522 12;131 6;8 105;259 28;37 5;19 49;118 10;20 5;8 148;331 27;63 4;27

SEMdag_KB_TO 168;486 3;47 6;80 106;256 3;31 5;21 49;115 3;12 5;16 146;270 14;60 4;49

https://doi.org/10.1371/journal.pone.0317283.t004
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interesting to note that the higher mean degree is shown by LiNGAM, followed by SEMdag
methods and the lower one by ARGES, GES, PC and NOTEARS.

Betweenness centrality instead involves calculating how often a node occurs on all shortest

paths between other pair of nodes. Thus, high betweenness indicate that the structure is char-

acterised by vertices with high influence over the network. Overall, higher betweenness values

can be highlighted for CAM and GES for all datasets and the lower ones for PC.

MDS. Fig 4 shows the MDS plots divided by disease (ALS, BRCA, COVID-19, STEMI). The

figures give a quick overview about how the causal discovery methods are grouped together

based on the SHD of the recovered graph structures. Generally, a cluster between ARGES--

CAM-GES-NOTEARS-PC can be identified, showing similar causal structures (except for

BRCA dataset where CAM belongs to a standalone cluster). LiNGAM appears to be distant, in

most cases, from all the other clusters, showing a different causal structure. Conversely,

SEMdag() methods show a different clustering depending on the dataset of interest: (i) for

ALS and STEMI cases, SEMdag_KB methods are close to each other, belonging to the same

cluster together with SEMdag_BU_TO; for BRCA and COVID-19, SEMdag_BU methods cre-

ate a cluster with NOTEARS and are distant from SEMdag_KB methods that belong to differ-

ent clusters.

MCC. Fig 5 report the MCC score divided by disease (AD, ALS, BRCA, COVID-19). Over-

all, higher MCC score is reported for BRCA dataset where MCC reaches almost the level of 1,

indicating perfect agreement between the observation and prediction. In the STEMI case, high

predictive performance (around 0.75—0.8) is reported by the almost all the methods with the

exception of lower metrics showed by LINGAM and NOTEARS. Regarding COVID-19 data,

SEMdag_BU methods report the highest MCC score around 0.7, exceeding the level of 0.5

reported by most of the methods. To note that the worst score is shown by SEMdag_KB
approaches. Conversely, the ALS case is the worst performing one, with all the performances

around 0.3 or below. This result was expected since, as shown in Table 3, in the train dataset,

the number of case subjects is almost 7 times higher than control ones, resulting in a really

imbalanced data design. However, it can be reported that knowledge based methods have the

lower MCC score.

To conclude, it seems that when the reference disease graph is sparse (ALS and COVID-

19), the data-driven BU approach of the SEMdag() algorithm works better than the KB one.

Thus, in this case, previous knowledge is not needed to reach an higher predictive perfor-

mance. On the contrary, when the graph is denser (BRCA and STEMI), KB approach is able to

recover the BU predictive performance.

Note that fitting an RF approach to original RF(Y) or predicted RFðŶ Þ data has almost the

same or slightly better MCC performance in BRCA and STEMI prediction. However, for ALS

and COVID, the DAG recovery structure improves disease prediction, most notably with

SEMdag_BU methods.

Discussion

Building on existing literature, we have discussed the problem of learning high-dimensional

linear SEMs introducing a two-stage DAG search algorithm. First, (1) the linear order is esti-

mated via a priori graph topological vertex (TO) or level (TL) ordering, or by using a data-

driven node or level bottom-up (BU) procedure; then, (2) the DAG is estimated using penal-

ized (L1) regressions.

This methodology stands within the class of order-based methods and assumes equal vari-

ance of the error terms. SEMdag() differs from the other methods since it requires a graphi-

cal structure as input and makes use of different procedures for learning the ordering.
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In the experimental design scheme, we performed a set of experiments on observed expres-

sion (or RNA-seq) data considering a pair of training and testing dataset for four different dis-

eases, where the latter has been used for disease predictive performance evaluation.

Comparisons have been made within a set of structure discovery methods to find a structure

learning method that provide an optimal solution while controlling the computing time of the

algorithm.

Fig 4. MDS plots across causal discovery methods divided by disease (AD, ALS, BRCA, COVID-19).

https://doi.org/10.1371/journal.pone.0317283.g004
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Based on the results, the SEMdag() algorithm shows the best performance compared to

the other methods. In detail, the BU approach is able to reach the highest disease predictive

performance when the graph is sparse; instead the KB approach is not able to reach that level

of MCC score. Conversely, when the starting graph is more densely connected, the KB

approach is able to recover the same predictive performance of the BU methods or exceed it.

Unlike SEMdag(), the other methods are case-sensitive, having a lower or higher perfor-

mance depending on the data matrix given as input, not representing a generally optimal

solution.

Finally, it’s important to note that to achieve an effective performance of the SEMdag()
algorithm, its inputs need to be properly tuned. Among the various inputs, the user has the

ability to adjust two specific arguments:

• beta (default = 0): Minimum absolute LASSO beta coefficient for a new direct connection to

be included in the final model. To obtain a graph with a sparser graph structure (i.e., fewer

connections) with the aim of dealing with high dimensionality issues, the user needs to tune

a value > 0 for the beta parameter. In general, our experience suggests that values in the

range of (0.05, 0.1), produces satisfactory results.

• eta (default = 0): Minimum fixed eta threshold for the bottom-up search of graph ordering.

By default, eta = 0, meaning that the order search is done vertex-wise. If the user wants to set

an order search layer-based, the eta parameter needs to be tuned, in order to find the layers

in the bottom-up procedure. In general, taking sufficiently small value <0.05 works well in

practice. Alternatively, with n> 100 samples, we suggest to fix eta = NULL, since the eta
parameter is estimated adaptively using half of the sample data.

Fig 5. MCC score of RF predictions across causal discovery methods divided by disease (AD, ALS, BRCA, COVID-19).

https://doi.org/10.1371/journal.pone.0317283.g005
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The estimated linear order (node-wise or layer-wise) can be obtained by employing either a

priori graph topological (TO) ordering, or a data-driven bottom-up (BU) method. However,

for larger graphs or genes, the layer-wise order is the first choice from both a computational

and an interpretational perspective.

Conclusion

We have addressed the issue of learning high-dimensional linear SEMs by improving previous

research and presenting a two-stage approach called SEMdag() and included in the R pack-

age SEMgraph. Using penalized (L1) regressions, the DAG is estimated after first extracting a

node (vertex) or layer (level) ordering of the p nodes. The SEMdag() method produces

favourable results in terms of MCC metric and, in contrast to existing literature, has the advan-

tage of requiring less computational effort. Furthermore, it permits the user to select different

procedures for learning the structure and enables the recovery of a graph structure with pre-

dicted data that closely matches a disease of interest.

Further studies might examine alternative approaches to determine the optimal topological

order of a DAG. This could be achieved by reducing the distances between vertices in the

ordering, taking into account the constraints imposed by the direction of edges. In the future,

we intend to develop an algorithm based on the distances between vertices in the topological

ordering, with the aim of reducing the complexity of the system represented by the known (or

data-driven) DAG, as outlined in reference [63]. Moreover, we will examine the potential of

deep neural networks (DNNs) for nonlinear SEM fitting based on DAG layer-wise ordering.

This investigation aims to enhance the interpretability of the black-box neural network, partic-

ularly with regard to its depth (number of hidden layers) and width (number of hidden nodes

at a given layer).
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