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Abstract 

The analysis of networks from cattle movements is an important approach to inves-

tigate areas and premises where disease outbreaks can occur and be contained. 

Vulnerability analysis allows a more profound understanding of the network by com-

bining network measures with the strategic removal of nodes, helping to identify more 

vulnerable areas and the best metrics to support disease control planning. Therewith, 

the aim of this study was to analyze the network vulnerability of cattle movements 

from 2013 to 2022, in Minas Gerais, Brazil and to identify the spatial spreaders into 

the network to improve infectious disease control programs by targeted risk-based 

surveillance and intervention. The vulnerability was calculated considering the 

graphs diameter and the spatial spreaders with a threshold distance of 300 km, for 

incoming (IN) and outgoing (OUT) movements. Additionally, a risk-based analysis 

was performed in the more vulnerable region. The results showed Triângulo Mineiro/ 

Alto Paranaíba with higher vulnerability and many IN spatial spreaders, as well as 

Vale do Mucurí region with many OUT spatial spreaders. The risk-based analysis 

revealed betweenness and out degree as the most effective measures to be consid-

ered for intervention. Therefore, the vulnerability analysis and the spatial spreader 

were observed as great tools for risk-based interventions and surveillance. Further-

more, Triângulo Mineiro/ Alto Paranaíba and Vale do Mucuri regions were important 

regions, considering restriction of animal infectious disease spread in Minas Gerais, 

Brazil.
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Introduction

Cattle movements are often the primary pathway for spreading infectious diseases 
in a population. Therefore, understanding cattle movement patterns is crucial for 
assessing the transmission risks of highly infectious diseases during epidemics. 
In this scenario, considering that animal movements constitute complex systems, 
network analysis can effectively untangle them to help in infectious disease control 
and prevention [1–5]. Indeed, the network analysis is an approach that elucidates 
the relationships among premises and the implications of those relationships in cattle 
infectious disease transmission [1]. In recent years, this technique has emerged as a 
valuable tool for understanding disease dynamics, designing surveillance strategies, 
and implementing targeted interventions [2–4]. This approach enables the identifi-
cation of network metrics that highlight key nodes within the system structure which 
should be the focus of intervention [5].

In fact, once the network is described, the identification of nodes to be intervened, 
to avoid disease spread, is usually based on the network metrics [6–8]. However, the 
graph can also be analyzed regarding its vulnerability, a function that measures how 
vulnerable a network is based on the number of nodes reached starting from random 
seeds (premises), similarly to the diffusion models based applied to networks in other 
contexts [8,9]. The vulnerability function accounts for connections and the diameter of 
the network, being more vulnerable the network that is more connected [10]. Addi-
tionally, vulnerability of a graph can also indicate the best measures to be considered 
for interventions inside the graph system, identifying the best nodes to be blocked 
in case of disease spread over the network [8–10], allowing for focused implemen-
tation of human and financial resources in animal disease surveillance and control 
programs.

Furthermore, animal disease control programs can also be improved with the 
identification of spatial spreaders (or hubs), which are the super spreaders and 
super susceptible nodes [11,12]. Super spreaders are nodes with the potential to 
spread diseases over very long distances and to many other nodes, and the super 
susceptible are places (premises) with a high probability of acquiring diseases 
since they receive movements from many other nodes [13]. The identification of the 
spatial spreaders allows for intervention in these nodes, therefore the spread of an 
infectious disease would be contained into a small area, increasing the efficacy of 
control measures and preventing diseases from disseminating far away through the 
network [13].

The network analysis of cattle movement in Minas Gerais was shown elsewhere 
[14], describing a very connected network with movements more focused in the west 
and east sides of the state, being the Triângulo Mineiro/ Alto do Paranaíba and Vale 
do Mucuri regions of great emphasis on movements and cattle population [15]

In this sense, the aim of our study was to analyze the network vulnerability of cat-
tle movements in Minas Gerais, Brazil, from 2013 to 2022 and to identify the spatial 
spreaders into the network to improve animal disease control programs by targeted 
risk-based surveillance and intervention.
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Materials and methods

Study location

Minas Gerais state is in the southeast region of Brazil, at latitudes 14°13’58“ and 22°54’00” south and longitudes 
39°51’32” and 51°02’35” west, divided into 853 municipalities, grouped into twelve regions: Northwest Minas, North Minas, 
Jequitinhonha, Vale do Mucuri, Triângulo Mineiro/Alto Paranaíba, the Central Minas, the metropolitan area of Belo Hor-
izonte, Vale do Rio Doce, West Minas, South/Southeast Minas, Campo das Vertentes and Zona da Mata, according to 
Instituto Brasileiro de Geobrafia e Estatística (IBGE) in 2022 (https://www.ibge.gov.br/geociencias/organizacao-do-territo-
rio/estrutura-territorial/23701-divisao-territorial-brasileira.html) (Fig 1). The state climate is classified as Aw (tropical savan-
nah climate with dry winter season), Cwa (humid temperate climate with dry winter and hot summer), and Cwb (humid 
temperate climate with dry winter and moderately hot summer) [16]. The state covers an area of 586,513,983 km2, with 
a population of 20,538,718 people in 2022 [17] and 22,993,105 cattle heads in 2022 [18]. To provide a clear geographi-
cal context for the analysis, Fig 1 illustrates the twelve regions of Minas Gerais, each marked with its respective number 
(01–12).

Data on cattle movements in Minas Gerais state, Brazil, from January 2013 to December 2022, were obtained from the 
Animal Transit Guide (GTA – Guia de Trânsito Animal), provided by the Instituto Mineiro de Agropecuária (IMA), the official 
animal health authority of Minas Gerais, Brazil. The datasets were organized following the same pattern (same number 
and names of variables) in all years. Therefore, all variables were reorganized, or excluded, in case it was not necessary 
for the network analysis (detailed ahead), so every yearly dataset presented the same format and structure. Additionally, 
when necessary, the local identification code, for origin and destination, was standardized for analysis. Therewith, the 
final GTA databases were structured according to the description performed elsewhere [14]. For all analysis, movements 

Fig 1.  Minas Gerais with numbered regions from 01 to 12 and a scale in kilometers. Data source and description.

https://doi.org/10.1371/journal.pone.0317275.g001
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to slaughterhouses were removed. The georeferenced premises were checked to ensure their geolocation was correct 
inside the Minas Gerais state, and incorrect ones were eliminated [19–23] The datasets were grouped by local of origin, 
local of destination, region (origin and destination) and month per year to create a list of the network objects, from which 
the vulnerability R function (S1 Function) was applied.

Definitions of network metrics used in this study

To clarify the key network measures used in this study and their relevance in understanding the dynamics of disease 
spread, a glossary is provided, which includes definitions of each measure, their network meaning disease implications, 
and the nodes and links/edges used in the analysis (Table 1) [24–28].

Local regions vulnerability analysis

Network vulnerability was defined as the structural potential of a network to propagate an infection starting from a limited 
number of initially affected nodes, based solely on its topology. This metric estimates how many nodes can be reached 
through directed links when a given proportion of premises is considered infected.

Table 1.   Glossary of key network measures, their level of use and their importance in understanding disease spread dynamics.

Measure Level Definition Application to disease relevance Reference

Average path length Network The average length of the shortest paths 
between all pairs of nodes in the network.

A shorter average path length indicates a higher 
potential for rapid disease transmission across 
the network.

Hearst et al., 
2023

Betweenness Node It measures how much a node acts as a bridge 
or “bottleneck” within a network by lying on the 
shortest paths between other pairs of nodes.

Highlights key locations acting as bridges in the 
network, crucial for controlling disease spread 
across regions.

Hearst et al., 
2024

Big Cliques Network A large subgraph where every node is con-
nected to every other node, forming a network 
of overlapping triangles.

A large group of nodes where each node is 
interconnected, forming extensive pathways that 
facilitate rapid disease spread.

Eppstein et al., 
2010

Cliques Network A subgraph where every node is fully con-
nected to every other node. The simplest form 
is a triangle of three interconnected nodes.

The idea of connectivity among the nodes, 
enabling rapid disease to spread due to the high 
level of connectivity among nodes.

Bryś & Lonc, 
1998)

Diameter Network The longest shortest path between any two 
nodes in the network.

Determines the maximum distance disease might 
need to travel between the most distant nodes, 
impacting the speed of spread.

Cardenas et 
al., 2021)

Edges Density Network The ratio of actual edges to the total possible 
edges in the network.

Indicates the overall connectivity of the network, 
with higher density suggesting a higher risk of 
widespread disease transmission.

Hearst et al., 
2023

Giant strongly con-
nected component 
(GSCC)

Network The largest subgraph of a directed network, 
where there is a path from each node to every 
other node within this subgraph.

If a pathogen enters the GSCC, it can easily 
be transmitted throughout all the nodes in this 
component.

Kolaczyk and 
Csárdi 2020)

Indegree Node The number of incoming connections that a 
node has in a directed network

Nodes with high indegree are very susceptible to 
became infected from multiple other nodes in the 
network.

Hearst et al., 
2023

Outdegree Node The number of outgoing connections that a 
node has in a directed network

Nodes with high outdegree are great spreaders 
of disease to multiple other nodes in the network.

Hearst et al., 
2024

Transitivity Network The ratio of the number of closed triplets 
(triangles) to the number of connected triplets 
of nodes.

Higher values of transitivity suggest easier dis-
ease transmission among the nodes composing 
the clusters within the network.

Luke, 2015

Unreachability Ratio 
(UR)

Network The ratio of node pairs in a directed graph that 
cannot reach each other, relative to the total 
number of possible pairs. It is calculated as the 
number of pairs with infinite distance divided 
by the total number of node pairs.

A high UR indicates a network with lower connec-
tivity, suggesting reduced potential for disease 
spread among nodes.

Kumar & 
Helmy, 2010)

https://doi.org/10.1371/journal.pone.0317275.t001

https://doi.org/10.1371/journal.pone.0317275.t001
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To calculate network vulnerability, we used a custom R function (Vulnerability.table) developed with the “igraph” and 
“tidyverse” packages. The function simulates the reachability of infected nodes by randomly selecting different percent-
ages of seed nodes (ranging from 1% to 30% of all nodes) and measuring the number of unique nodes reachable from 
them through directed paths. For each seed percentage, the function performs 1,000 simulations and returns the mean 
and standard deviation of the proportion of nodes reached. Reachability is calculated using ego-networks of radius equal 
to the network diameter, in “out” mode (i.e., considering all downstream connections). The vulnerability curve is defined 
by plotting the average proportion of infected nodes (y-axis) against the seed node proportion (x-axis). Higher curves 
indicate greater vulnerability. In some cases, the area under this curve (AUC) was used as a synthetic vulnerability index. 
The function also optionally returns a ggplot-based visualization with confidence bands. Then, network vulnerability was 
defined as the relationship between the average percentage of reachable nodes and the percentage of seed nodes. 
This approach, based on the reachability from randomly selected nodes using ego-networks, was adapted from methods 
described by Natale et al. [9], Keeling and Eames [29], and Cardenas et al. [10], where vulnerability is expressed in terms 
of the system’s structural capacity to propagate infection through network connections. The vulnerability was calculated 
within each region using monthly, static, directed networks. Movements to slaughterhouses, which usually have minimal 
impact on most directly transmitted diseases, were excluded from the analysis. To estimate network vulnerability, a fixed 
proportion of nodes was randomly selected as seed nodes (i.e., premises assumed to be infected). For each proportion 
tested (0.02%, 0.10%, 0.18%, 0.26%, 0.34%, and 0.50% of all nodes), 1,000 independent simulations were performed 
using the defined vulnerability metric, to estimate the average vulnerability, along with its standard deviation (SD). The 
average vulnerability was mapped per month and region of each year, and the SD was used to calculate the 95% confi-
dence interval of the vulnerability curve.

The vulnerability function was applied to the aggregated data. Then, the vulnerability of each region was plotted for 
each month of the years, from 2013 to 2022. The results of vulnerability at the lower seed percentage (0.02) by region and 
by month were used for the time series decomposition, employed to assess trend and seasonality components. Subse-
quently, a dissimilarity matrix was constructed based on the correlation between the vulnerability of Minas Gerais regions. 
Hierarchical cluster analysis was then conducted to identify regions with similar long-term vulnerability patterns. The cor-
relation and cluster analysis were performed with scaled (in average and standard deviation) vulnerability values.

The results of vulnerability per month and per region were also tested for Pearson´s correlation significance against the 
following global network metrics: the giant strongly connected component ratio (GSCCR), the number of cliques, the size 
of the big cliques, the number of big cliques, the transitivity, the edges density, the average path length and the unreach-
ability ratio (UR). Table 1 provides definitions and explanations of the above metrics.

Global vulnerability (Super spatial spreaders)

The vulnerability of each region, as described in the previous section, was assessed by considering only the internal 
movements within each region. This vulnerability indicator provides an estimation of how many nodes could be affected 
by an outbreak once one or more nodes in the region become exposed or infected. To provide a comprehensive picture of 
the state’s vulnerability, was developed a procedure that considers long-distance connections.

First, it was evaluated the distribution of edge distances at the state level for the year 2022, the most recent year 
analyzed. The year 2022 was chosen for the super spatial hubs analysis, since the previously years showed the 
same pattern in vulnerability and similar behavior in the network analysis performed elsewhere [14] and was the 
more recent year of the dataset. The threshold distance was determined with the seventy-five percentile of its dis-
tribution. Then, a specific function (S2 Function) was developed to calculate the weighted average distance (where 
the weight is the number of animals moved) and the strength for both incoming and outgoing movements for each 
network node. A simple example of these calculations for each node is shown in Fig 2. Links below the threshold dis-
tance were excluded from this calculation. This approach ensures that all nodes have a distance and strength value, 
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reflecting their behavior in terms of both incoming and outgoing long-distance trade. The Mahalanobis distance was 
used to identify nodes with high values in the joint distribution of distance and strength (greater than 75% on the 
log-transformed values) [30]. Nodes identified through this method are involved in the long-distance trade of many 
animals and are thus defined as spatial spreaders (or hubs). Spatial spreaders are further categorized into Spatial 
Spreaders (hub OUT), which are the origin of long-distance movements and can spread disease over a long-range, 
and Spatial Susceptible (hub IN), which are the destinations of movements originating from distant places and can 
introduce disease into a given region.

Risk-based surveillance and interventions

The network vulnerability and spatial spreaders analyses were used to identify the region with higher vulnerability in terms 
of connections and with the greater number of super susceptible nodes in Minas Gerais state in 2022. To evaluate dif-
ferent intervention scenarios for network vulnerability reduction, several node metrics were considered. Specifically, the 
impact of eliminating 5% of the nodes with higher IN and OUT degree and higher betweenness centrality values, along 
with randomly selected nodes was assessed. In-degree, out-degree and betweenness centrality were selected for the 
intervention scenarios because they are widely used in veterinary epidemiology and have shown effectiveness in iden-
tifying high-risk nodes in livestock movement networks. These measures are especially relevant in directed movement 
networks, where flow direction matters [2,4,8,10].

The identification of super spatial susceptible and spreader nodes in the evaluated region enabled the detection of 
potential areas at risk for long-range introduction and diffusion. To quantify the sustainability of targeted surveillance 
based on previous years’ rankings, the proportion of nodes with the highest value for the measure most significantly 
impacting regional vulnerability was evaluated over a nine-year period (years one to nine) (S3 Fig) Furthermore, the vul-
nerability decrease was evaluated by removing the nodes with higher betweenness centrality values in the network of the 
previous year (2021) from the network of 2022.

Software

All analysis were conducted into R software version 4.3.0 [19], being the data organized with the packages “readxl” 
version 1.4.2 [20], “forecast” [21], “stringi” [22] and “tidyverse” [23]. All vulnerability analyses were performed with 
the packages “tidyverse” [23], “igraph” package [31] and “geobr” package [32]. Additionally, all spatial spreader 
analyses were performed with the packages “tidyverse” [23], “igraph” package [31], “geobr” package [32] and “geo-
sphere” [33].

Fig 2.  Spatial hub metrics calculation for node A: the average distance (DA) and strength (SA) of incoming and outgoing animal movements. 
D

A
 is the weighted average distance based on the number of animals moved, while S

A
 is the total number of animals moved. Red arrows indicate incom-

ing movements, and blue arrows indicate outgoing movements, with labels showing distances and strengths. The movement to node D is excluded due 
to its distance from A being less than the 300 km threshold.

https://doi.org/10.1371/journal.pone.0317275.g002

https://doi.org/10.1371/journal.pone.0317275.g002
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Results

Local vulnerability analysis inside regions

The vulnerability analysis per region and per month of the network from cattle movement in Minas Gerais, Brazil, from 
2013 to 2022, showed the Triângulo Mineiro/ Alto Paranaíba (05) as the most vulnerable except in July of 2017 and 2022, 
when Campo das Vertentes (11) region showed higher vulnerability, based on the threshold greater than 0.02% of seed 
used for the analysis. Over the years, 2020 stood out as the year with the lowest vulnerability across all regions in every 
month, compared with the years before and after. The regions that appeared less vulnerable throughout the months in all 
years were Jequitinhonha (03) and Metropolitan of Belo Horizonte (07). All regions appeared to increase in vulnerability 
during July throughout all analyzed years. The vulnerability by region and month for 2022 can be seen on Fig 3, while data 
for the years 2013–2021 can be found in S4 Fig.

The graph and map showing the mean vulnerability of the regions revealed a division of the state in two extremes 
of vulnerability, with the east and west regions of Minas Gerais showing distinct patterns (Fig 4). The cluster dendro-
gram based on the correlation of regions vulnerability identified two distinct clusters: one included Triângulo Mineiro/ 
Alto Paranaíba (05), South/ Southeast of Minas (10), Campo das Vertentes (11), Northwest (01) and West of Minas (09) 

Fig 3.  Network Vulnerability of cattle movement per month and region in Minas Gerais state, Brazil in 2022. The colored lines are the regions, 
and the light green represents the less possible vulnerability. The regions are 01: Northwest Minas, 02: North Minas, 03: Jequitinhonha, 04: Vale do 
Mucuri, 05: Triângulo Mineiro/Alto Paranaíba, 06: Central Minas, 07: metropolitan area of Belo Horizonte, 08: Vale do Rio Doce, 09: West Minas, 10: 
South/Southeast Minas, 11: Campo das Vertentes and 12: Zona da Mata.

https://doi.org/10.1371/journal.pone.0317275.g003

https://doi.org/10.1371/journal.pone.0317275.g003
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regions, and the other cluster comprised the regions North (02), Jequitinhonha (03), Vale do Mucuri (04), Central of Minas 
(06), Metropolitan of Belo Horizonte (07), Vale do Rio Doce (08) and Zona da Mata (12) (Fig 5).

The vulnerability trend per region demonstrated very different intensity changes, however all regions decreased in 
2020. The regions Jequitinhonha (03), Triângulo Mineiro/Alto Paranaíba (05), Central (06), South/Southeast Minas (10) 
and Campo das Vertentes (11) showed a strong increment in the vulnerability after 2021, in contrast to the other regions 
where the trend was very stable (Fig 6). On the other hand, the vulnerability seasonality per region showed different 
patterns among the regions, with peaks around June/ July, except for Triângulo Mineiro/ Alto Paranaíba (05), where no 
considerable peaks occurred (Fig 7). Noteworthy, in November most regions experienced a negative peak, except for the 
Northwest (01), North (02), Central (06) and Zona da Mata (12) regions.

All tested measures (GSCCR, the number of cliques, the size of the big cliques, the number of big cliques, the 
transitivity, the edges density, the average path length and the unreachability ratio (UR)) were significantly cor-
related with vulnerability. The GSCC size and the unreachability ratio (UR) exhibited the strongest positive and 
negative correlation values (0.94 and −0.97, respectively) (Table 2). The correlation matrix between the descriptive 
measures can be found in the S5 Fig. A summary of the descriptive measures of the network per region can be 
found in Table 3.

Fig 4.  Network vulnerability mean per region in Minas Gerais, Brazil, from 2013 to 2022. The colors indicate greater values of vulnerability, dark 
red is more vulnerable and darker green less vulnerable. The regions are 01: Northwest Minas, 02: North Minas, 03: Jequitinhonha, 04: Vale do Mucuri, 
05: Triângulo Mineiro/Alto Paranaíba, 06: Central Minas, 07: metropolitan area of Belo Horizonte, 08: Vale do Rio Doce, 09: West Minas, 10: South/
Southeast Minas, 11: Campo das Vertentes and 12: Zona da Mata.

https://doi.org/10.1371/journal.pone.0317275.g004

https://doi.org/10.1371/journal.pone.0317275.g004
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Global vulnerability (Super Spatial Hub)

The threshold found using the distances distribution resulted in 300 km. The number of nodes trading locally, with all 
movements occurring within the threshold, was 189,522 and 237,548, for incoming and outgoing movements, respec-
tively. The number of nodes receiving/sending no animals at all were 127,550 and 72,968, respectively. Nodes moving 
cattle over the threshold were 8,844 (receiving) and 15,400 (sending).

The analysis identified 476 spatial spreaders and 332 spatial susceptible nodes. Overall, the hubs were concentrated 
between 2 and 3 log strength (corresponding to 100 and 1000 animals) and the log distance ranged from 5.72 to above 
6.5 (corresponding to 525 and 665.14 km), for both directions of movement (IN and OUT) (Fig 8). Considering the hub´s 
geographic distribution per region, those receiving animals from farther nodes were in Triângulo Mineiro/ Alto Paranaíba 
(05), while the region sending animals to faraway distances was the region Vale do Mucuri (04) (Fig 8).

The hubs ratio showed the Vale do Mucuri (04) as the region with greater values in both directions (IN, OUT), and the 
North region was the one with the major value of strength ratio, transporting more animals in relation to its population 
compared to the other regions, in both directions IN and OUT (S6 Fig). The number of nodes removed because of the 
wrong geolocation were 8,181 (1.33) from the remaining nodes without slaughterhouse movements (614,372).

Risk-based surveillance and interventions

The vulnerability analysis revealed region 05 (Triângulo Mineiro/ Alto Paranaíba) as the most vulnerable among all regions 
in Minas Gerais. The same region showed also the presence of many super susceptible nodes, making it more vulnerable 

Fig 5.  Vulnerability correlation between regions of Minas Gerais, Brazil. A) Cluster dendrogram build with the correlation between the vulnerability 
of each region. B) Colored matrix of regional vulnerability correlation, showing positive correlations (red) and negative correlations (magenta), the size of 
the circles indicates the magnitude of the correlation. The regions are 01: Northwest Minas, 02: North Minas, 03: Jequitinhonha, 04: Vale do Mucuri, 05: 
Triângulo Mineiro/Alto Paranaíba, 06: Central Minas, 07: metropolitan area of Belo Horizonte, 08: Vale do Rio Doce, 09: West Minas, 10: South/South-
east Minas, 11: Campo das Vertentes and 12: Zona da Mata.

https://doi.org/10.1371/journal.pone.0317275.g005

https://doi.org/10.1371/journal.pone.0317275.g005


PLOS One | https://doi.org/10.1371/journal.pone.0317275  December 1, 2025 10 / 18

to disease introduction from all over the state. Given these characteristics, we focused on this region to evaluate and find 
the most effective targeted surveillance or intervention scenario. The risk-based surveillance and intervention analysis 
revealed that, among the four tested scenarios, interventions targeting nodes with higher betweenness centrality signifi-
cantly reduced network vulnerability compared to the original graph. Interventions targeting nodes with higher out-degree 
values also led to a notable decrease in vulnerability. These interventions proved to be more effective than those exclud-
ing nodes with higher in-degree or randomly chosen. More details can be found in Fig 9.

The number of super susceptible found at Triângulo Mineiro/ Alto Paranaíba (05) was 116 premises and number of 
super spreaders was 47 in the region, the number of nodes with both classifications was 13 nodes. Fig 10 highlights the 

Fig 6.  Vulnerability trend per region per year, from 2013 to 2022. The regions are 01: Northwest Minas, 02: North Minas, 03: Jequitinhonha, 04: Vale 
do Mucuri, 05: Triângulo Mineiro/Alto Paranaíba, 06: Central Minas, 07: metropolitan area of Belo Horizonte, 08: Vale do Rio Doce, 09: West Minas, 10: 
South/Southeast Minas, 11: Campo das Vertentes and 12: Zona da Mata.

https://doi.org/10.1371/journal.pone.0317275.g006

https://doi.org/10.1371/journal.pone.0317275.g006
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Fig 7.  Vulnerability seasonality per region and per month of 2022. The regions are 01: Northwest Minas, 02: North Minas, 03: Jequitinhonha, 04: 
Vale do Mucuri, 05: Triângulo Mineiro/Alto Paranaíba, 06: Central Minas, 07: metropolitan area of Belo Horizonte, 08: Vale do Rio Doce, 09: West Minas, 
10: South/Southeast Minas, 11: Campo das Vertentes and 12: Zona da Mata.

https://doi.org/10.1371/journal.pone.0317275.g007

Table 2.  Pearson Correlation between network vulnerability per region and per month of cattle movement and descriptions measures of the 
cattle movement network in Minas Gerais, Brazil, from 2013 to 2022.

Connectivity measure Pearson Correlation p-value 95% CI

Giant strongly component size ratio 0.94 <0.001 0.93 to 0.94

Number of cliques 0.73 <0.001 0.70 to 0.75

Size of the biggest clique 0.56 <0.001 0.53 to 0.60

Number of bigger cliques 0.08 0.002 0.03 to 0.13

Transitivity −0.47 <0.001 −0.51 to −0.43

Edge density −0.22 <0.001 −0.26 to −0.16

Average path length 0.68 <0.001 0.65 to 0.71

Unreachability ratio −0.97 <0.001 −0.98 to −0.97

95%CI: Confidence interval at 95%.

https://doi.org/10.1371/journal.pone.0317275.t002

https://doi.org/10.1371/journal.pone.0317275.g007
https://doi.org/10.1371/journal.pone.0317275.t002
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areas of the state connected to the region’s super spatial hub. Particularly, it shows the zones of potential spread and 
introduction of a possible disease over long distances. From the super susceptible plus super spreaders nodes, 48.47% 
(79/163) were nodes excluded in the risk-based analysis considering the higher betweenness; 44.17% (72/163) of the 
spatial spreaders were nodes excluded due to high in degree, 12.88% (21/163) were nodes with greater out degree and 
5.52% (9/163) of the super susceptible plus super spreaders nodes were among the nodes excluded at random in the 
risk-based analysis. Since node selection based on betweenness centrality includes a greater proportion of spatial hubs in 
the region compared to out-degree, betweenness centrality is the most suitable measure for reducing the region’s vulner-
ability. As the ranking persistence analysis (S3 Fig) showed values around 50% with a one-year interval, the vulnerability 
assessment was repeated using the betweenness values from the previous year, and the comparison is shown in Fig 9 B.

Discussion

This study highlights the significance of network and spatial dynamics analysis for enhancing animal disease control and 
prevention within the Minas Gerais state livestock sector. By identifying the most vulnerable regions (Triângulo Mineiro/ 
Alto Paranaíba and Vale do Mucuri) the research indicated places for targeted interventions, which can substantially 
mitigate the risk of animal disease spread/introduction. Therefore, our findings support the development of more effective 
control/prevention strategies for managing animal infectious diseases in Minas Gerais, Brazil.

The adopted vulnerability measure provides an estimate of an epidemic spread due to the network’s structure [29], by 
considering the number of nodes that can be reached from randomly chosen seed within the network. [29]. It is a precau-
tionary measure, as it offers a pessimistic estimate of the potential epidemic size, which is influenced by other factors, 
such as the actual sequence of movements and epidemiological parameters of the disease. However, it allows the com-
parison of the vulnerability of different networks (being a ratio) without depending on a specific disease. The correlations 
shown in Table 2 confirm the coherence and validity of the considered measure, being strongly correlated with the GSCC 
and inversely correlated with the Unreachability Ratio. The internal vulnerability analysis revealed the most fragile regions 
exposed to the risk of disease introduction due to contact with other positive regions capable of infecting a high number of 

Table 3.   Summary of the yearly network measures per regions of Minas Gerais, Brazil, from 2013 to 2022 (average values).

Region Giant strongly  
component size  
ratio

Number of 
cliques

Size of the  
biggest  
clique

Number of  
bigger cliques

Transitivity Edge 
density

Average  
path length

Unreachability 
ratio

Northwest Minas (01) 0.08 3,914.13 3.47 35.49 0.01 0.00 5.43 0.95

North Minas (02) 0.01 7,394.53 3.33 37.11 0.02 0.00 4.55 1.00

Jequitinhonha (03) 0.01 2,165.89 3.09 11.34 0.02 0.00 1.99 1.00

Vale do Mucuri (04) 0.02 2,035.22 3.19 17.70 0.03 0.00 3.02 0.99

Triângulo Mineiro/Alto 
Paranaíba (05)

0.15 21,200.38 4.30 20.56 0.01 0.00 5.99 0.86

Central Minas (06) 0.10 3,366.16 3.46 35.46 0.01 0.00 5.01 0.93

Metropolitan area of 
Belo Horizonte (07)

0.01 2,056.30 3.08 14.31 0.03 0.00 2.21 1.00

Vale do Rio Doce (08) 0.01 4,745.69 3.18 24.81 0.02 0.00 2.51 1.00

West of Minas (09) 0.07 4,537.03 3.55 34.98 0.02 0.00 5.65 0.96

South/Southeast of 
Minas (10)

0.07 10,087.08 4.02 21.75 0.02 0.00 6.61 0.97

Campo das Vertentes 
(11)

0.09 1,774.20 3.38 14.55 0.02 0.00 4.58 0.96

Zona da Mata (12) 0.01 4,098.33 3.17 19.51 0.03 0.00 2.43 1.00

https://doi.org/10.1371/journal.pone.0317275.t003

https://doi.org/10.1371/journal.pone.0317275.t003
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properties, in the absence of control measures. Overall, the results have shown that the Triângulo Mineiro/ Alto Paranaíba 
region has been the most vulnerable over the years, with other regions varying in their vulnerability across the analyzed 
years (2013–2022), due to their sizes, connectivity and livestock production profile [34]. Due to being a spatial suscepti-
ble, Triângulo Mineiro/ Alto Paranaíba is likely to become exposed to infection from faraway positive premises, and with its 
internal vulnerability could then rapidly spread the infection to most of the region’s cattle herds. The greater vulnerability of 
Triângulo Mineiro/ Alto Paranaíba among the regions of Minas Gerais may be justified by high connectivity and the higher 
ratio of the GSCC among all the regions (Table 3). Indeed, the region exhibited more movement from 2013 to 2022, 
with a higher concentration of cattle population and livestock events [14,15] compared to the other regions. On the other 
hand, the regions with lower vulnerability (Jequitinhonha, Metropolitan of Belo Horizonte, Vale do Rio Doce and Zona da 
Mata) were regions with fewer cattle movements and smaller cattle populations [14,15], lower values of GSCC and fewer 
connections. The trend of vulnerability over time used for the correlation and cluster analysis suggests possible groups of 
regions with similar vulnerability behavior. Regions that are very close to each other in terms of vulnerability time series 
(Fig 5) were also found to be geographically closer (Fig 4). Indeed, whether a threshold dividing the dendrogram into two 
clusters is set, it splits the state into two contiguous macro areas: one with higher levels of vulnerability on the western 
side, and on the eastern side lower levels of vulnerability would be observed. Interestingly, the Central region, which lies 
geographically between these two clusters, would be included in the western group, despite having higher vulnerability. 

Fig 8.  Spatial spreaders (hubs) distribution. In the left, ingoing and outgoing nodes distribution in relation to strength and distance. The green to 
red points represents the nodes that had Mahalanobis distance above the threshold, being the hubs, being green the lower distance and red the higher 
distance. On the right is the ingoing and outgoing geographic distribution of the hubs. The dark red color points are nodes that received or sent animals 
faraway. The transparency of the points was plotted in accordance with the Mahalanobis distance, and the size was considering the strength (number of 
transported animals).

https://doi.org/10.1371/journal.pone.0317275.g008

https://doi.org/10.1371/journal.pone.0317275.g008
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Fig 9.  Risk-Based Assessment of the Triângulo Mineiro/ Alto Paranaíba Region. Reduction in vulnerability when 5% of nodes are eliminated based 
on higher betweenness centrality, higher in-degree, higher out-degree, and randomly for the year 2022 (A). Impact on vulnerability when nodes are 
removed from the 2022 network based on the betweenness centrality values calculated from the 2021 network (‘Betweenness 21’), compared to other 
strategies (B).

https://doi.org/10.1371/journal.pone.0317275.g009

Fig 10.  A) Ingoing and B) outgoing hubs at Triângulo Mineiro/ Alto Paranaíba region in 2022. The dark red points are the nodes receiving or 
sending animals far away and dark green are nodes receiving or sending animals to far livestock properties, however closer than the dark red points. 
The transparency of the points is the value of Malahanabis distance, and the size is the strength of the movements (number of transported animals). 
The blue points are the sending (outgoing movements) and the receiver (incoming movements) nodes. The grey lines are the movements, where the 
linewidth is the number of animals transported divided by 100. The darker the line the more the movements.

https://doi.org/10.1371/journal.pone.0317275.g010

https://doi.org/10.1371/journal.pone.0317275.g009
https://doi.org/10.1371/journal.pone.0317275.g010
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This suggests that it shares a similar temporal trend with the western group but generally exhibits higher values. This 
information is very important to plan interventions, such as blocking movements in some regions, transit and hubs surveil-
lance, since it considers the vulnerability similarity of the regions composing each cluster.

In addition, the trend of network vulnerability (Fig 6) showed a decrease in vulnerability in 2020 compared to other 
years and across all regions, likely due to the SARS-Cov2 pandemic when the livestock events, such as fairs and auc-
tions, were restricted [35], even though the movement among farms did not decrease [14]. Furthermore, the analysis of 
the vulnerability seasonality revealed a noticeable increase between May and July, the months when livestock events are 
concentrated in Minas Gerais state, and a decrease in the following months, with a little increase in November (Fig 7). The 
variation in seasonality coincided with the foot-and-mouth disease vaccination period in Minas Gerais, possibly due to the 
mandatory vaccination required for GTA issuance to move the animals in Brazil [36].

Moreover, the correlations exhibited in Table 2 with measures of network connectivity highlighted the options to be con-
sidered for targeted interventions in the whole network of Minas Gerais. For instance, our results showed that networks 
characterized by larger giant strongly connected components, a higher number of cliques, larger clique sizes, and longer 
average path lengths tend to exhibit higher vulnerability to disease spread. These findings highlight the importance of 
understanding network structure for effective disease control and prevention strategies.

The spatial spreaders analysis (Fig 8) identified several nodes within the state that consistently receive large numbers 
of animals from distant locations, termed “super spatial susceptible.” The region identified as having the highest concen-
tration of these nodes was Triângulo Mineiro/ Alto Paranaíba. These nodes are often associated with livestock events and 
cattle feedlots, experience multiple instances of animal arrivals from various livestock properties across the state, thereby 
increasing the risk of introducing diseases from distant, infected regions. Conversely, nodes characterized by extensive 
long-range outgoing connections, referred to as “super spatial spreaders,” represent critical areas where, in the event of 
an infection, the disease could potentially disseminate across the entire state. The eastern part of the state, particularly 
the Vale do Mucuri region, was found to have a high density of super spatial spreader premises. These nodes are there-
fore of strategic importance for implementing tailored, risk-based interventions, towards the mitigation of risks by priori-
tizing these hubs for specific interventions according to their classification (spatial susceptible or spatial spreader). For 
instance, any disease that could be vaccinated against could concentrate efforts of vaccination of animals in these key 
areas, or yet, restrictions could be imposed on the importation of cattle from regions known to be positive. By strategically 
fragmenting the network, the introduction and spread of disease could be effectively controlled.

In fact, the risk-based analysis of network vulnerability focused on the Triângulo Mineiro/ Alto Paranaíba region, since it 
emerged as the most vulnerable in Minas Gerais, both in terms of internal susceptibility and external disease introduction. 
The analysis demonstrated that by applying centrality measures, such as betweenness, out-degree and in-degree in this 
order, to identify and exclude certain nodes, the region’s vulnerability could be significantly reduced (Fig 9). This reduc-
tion in vulnerability was attributed to the fragmentation of the network, achieved by eliminating the more highly connected 
nodes [10]. In addition, the comparison between spatial spreaders and node elimination in the vulnerability analysis 
revealed a significant overlap of nodes identified by both methods. This reinforces the effectiveness of these analytical 
techniques and highlights the success of targeted interventions over random approaches.

Therefore, the present findings support the development of more effective control strategies for managing infectious 
diseases in Minas Gerais, Brazil, since vulnerability and spatial spreader analyses have been revealed as great tools for 
improving control and surveillance programs. They pinpoint the most important livestock properties for interventions, vali-
dating the advantages of targeted measures in reducing network vulnerability. Furthermore, it is important to highlight the 
significance of Triângulo Mineiro/ Alto Paranaíba and Vale do Mucuri regions in applying restriction of movements, as well 
as vaccination to contain the spread of infectious disease in Minas Gerais, Brazil.

One limitation of this study is the exclusion of data points with incorrect geolocation values, which were removed prior 
to the analysis. However, these excluded values constituted less than 10% of the entire dataset, allowing the integrity of 
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the study to be maintained. Another limitation was the use of data from 2022 instead of 2023, due to data availability con-
straints. Nevertheless, the ranking persistence analysis demonstrated a consistent pattern across years, suggesting that 
the findings are likely applicable to future years with similar results.

Conclusion

In conclusion, our results showed the regions with more variability and the premises that were super spreaders and super 
susceptible, revealing targeted risk-based surveillance and intervention strategies to be used to improve disease control 
programs in Minas Gerais state, Brazil. Additionally, it is important to highlight the significance of Triângulo Mineiro/ Alto 
Paranaíba and Vale do Mucuri regions for cattle movement among the state and their importance when applying mea-
sures for containing infectious disease spread.
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