
RESEARCH ARTICLE

Impact of driving characteristic parameters

and vehicle type on fuel consumption and

emissions performance over real driving

cycles

Elmira Bagheri1, Masoud Masih TehraniID
1, Mohammad AzadiID

2*, Ashkan Moosavian3

1 School of Automotive Engineering, Iran University of Science and Technology, Tehran, Iran, 2 Faculty of

Mechanical Engineering, Semnan University, Semnan, Iran, 3 Department of Agricultural Engineering,

Technical and Vocational University, Tehran, Iran

* m_azadi@semnan.ac.ir

Abstract

With the growing need for sustainable transportation solutions, understanding the relation-

ship between driving characteristic parameters, vehicle type, and their impact on emissions

and fuel consumption over real driving scenarios is becoming increasingly important. In this

paper, four conventional vehicles and one hybrid vehicle with different technologies were

compared in four distinct routes in Tehran city. Nineteen real driving cycles were generated

using widely employed K-means and PCA algorithms. The vehicles were simulated on

MATLAB/Simulink according to their specifications. Twelve driving characteristic parame-

ters, fuel consumption, CO, NOx, HC, and CO2 of vehicles with different powertrains,

engines, and body styles were calculated over real and standard driving cycles. Notable

findings show that driving characteristic parameters exhibit distinct influences on fuel con-

sumption and emissions, depending on the specific driving conditions and vehicle type.

Additionally, the hybrid vehicle achieved 39% and 26% fuel savings compared to gasoline

and dual fuel vehicles, respectively. However, it emitted significantly higher levels of CO and

HC. In contrast, the turbocharged vehicle increased CO and HC emissions compared to the

naturally aspirated vehicle, but consumed less fuel (approximately 6%) and emitted lower

amounts of CO2 (approximately 19%). In real driving cycles, the sedan vehicle generally

exhibited slightly lower values compared to petrol SUV due to lower weight and drag

coefficient.

Introduction

In today’s world, where the increasing demand for energy resources and the reduction of fossil

fuels are pressing concerns, it is imperative to prioritize environmental preservation, minimize

air pollution, operate within fuel supply constraints, optimize fuel usage, and enhance engine

performance [1]. Implementing Intelligent transportation systems, such as electric vehicles,

car-sharing programs, and intelligent traffic management, can significantly contribute to these
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goals by reducing emissions and conserving energy [2, 3]. On the other hand, amount of fuel

consumed and the level of emissions are closely linked to the specific driving habits observed

in different geographical areas. One common method of illustrating these driving habits in a

particular region is by using driving cycles [4]. It is essential to thoroughly examine these

cycles, as they exhibit notable variations from one region to another.

Typically, driving cycles are employed to evaluate the performance of vehicles, including

emission rates and fuel consumption [5], as well as in vehicle simulations [6]. In recent years,

numerous studies have been conducted to decrease fuel consumption and emissions. These

studies can be analyzed from different perspectives and can be categorized according to their

common features, including cleaner internal combustion engines, hybrid or electric vehicles

[7], engine downsizing, alternative fuels, and improving the road network topography [8].

However, one crucial and often overlooked factor is the behavior of the driver, which signifi-

cantly impacts a vehicle’s fuel consumption and emissions. Researchers have observed that

driving habits and energy efficiency of vehicles are influenced by traffic conditions [9, 10].

Their findings suggest that in congested areas, average fuel consumption tends to increase,

regardless of the specific road section [11]. Furthermore, studying changes in driving charac-

teristic parameters, such as instantaneous acceleration and speed, is essential because they

have a significant effect on exhaust emissions and fuel consumption [12]. Recent advance-

ments in methodologies, particularly the application of Geographic Information Systems

(GIS), have provided valuable insights into the complexities of driving behavior [13]. For

instance, several studies have implemented GIS to georeference naturalistic driving data,

enhancing data representation and visualization, thus enabling researchers to better under-

stand driving patterns [14]. Moreover, innovative frameworks utilizing GIS allow for the

extraction and analysis of driving behaviors across various contexts and spatial scales, ulti-

mately contributing to a more comprehensive evaluation of how driver behaviors influence

performance metrics such as fuel consumption and emissions [15].

Chong et al. [16], analyzed vehicles using a Portable Emissions Measurement System

(PEMS) that included a Global Positioning System (GPS). They found that higher levels of

NOx emissions were associated with increased speeds, stronger accelerations, and reduced

exhaust gas recirculation. During engine conversions, excessive emissions of HC and CO were

frequently observed, particularly during acceleration. Sofwan and Latif [17], found that operat-

ing vehicles at low speeds, which improves fuel economy, leads to reduced emissions of CO

and NOx. The results were obtained through on-board emissions testing and were conducted

on main streets in the heart of Kuala Lumpur’s urban environment. However, this operating

condition is associated with increased emissions of CO2. Relying solely on average speed does

not adequately capture driving behavior.

The type of vehicle is another factor that can influence changes in emissions and fuel con-

sumption. Wang et al. [18], investigated the fuel consumption and emissions of Hybrid Elec-

tric Vehicles (HEVs) and conventional vehicles using Worldwide Harmonized Light Vehicle

Test Cycles (WLTC) and real driving emission tests. One of the conventional vehicles was tur-

bocharged, and the results showed that the fuel consumption was similar for both types of

vehicles, but HEVs had higher CO emissions, while conventional vehicles had higher NOx

emissions. The study also found that the behavior of naturally aspirated and turbocharged

vehicles differed on various routes. Huang et al. [19], compared the real-world fuel consump-

tion and emissions of conventional vehicles and HEVs. They found that both types of vehicles

consumed more fuel in real driving conditions, and HEVs had higher HC and CO emissions

than conventional vehicles. Wang et al. [20], examined how much emissions could be reduced

by using HEVs in comparison to conventional vehicles, using real driving cycles from Metro-

politan Beijing and Toronto. The results showed substantial reductions in CO2 and NOx
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emissions when using HEVs, particularly when the vehicles were operating at low power

demand in Beijing. However, in Toronto, the benefits of HEVs were minor due to more

aggressive driving patterns.

Pignatta and Balazadeh [21], assessed the emissions of six conventional vehicles, includ-

ing five sedans and one Sport Utility Vehicle (SUV), and two HEVs in real driving condi-

tions in Iran. The findings indicated that HEVs demonstrated lower fuel consumption and

relatively decreased exhaust emissions compared to conventional vehicles. In conventional

vehicles, NOx emissions increased with vehicle speed, whereas hybrid vehicles did not

exhibit a decisive trend between NOx emissions and vehicle speed. Additionally, the SUV

had greater exhaust emissions and fuel consumption compared to sedans. Baêta et al. [22],

studied the fuel consumption and emissions of a turbocharged engine. They found that

combining direct injection and turbocharging improved thermal efficiency and reduced

emissions of HC and NOx.

One limitation of previous research is that they often focus on a limited number of fac-

tors, neglecting others when studying the impact on a particular type of vehicle. In other

words, it is challenging to find a study that has thoroughly examined all the factors that

influence fuel consumption and emissions in various vehicles at the same time and com-

pared them to each other. Furthermore, comparisons of different powertrains, engines,

body styles, and driving characteristic parameters in real driving cycles are some other

examples. The wide range of vehicle types and their distinct characteristics make it imprac-

tical to adopt a single universal driving cycle for all of them, which can result in either

underestimating or overestimating emission factors. In contrast to previous studies that

relied on standardized drive cycles developed in America and Europe or real data of fuel

consumption and emissions, our study creates real driving cycles that are specifically tai-

lored to the unique driving patterns of emerging automobile markets like Iran. This is

achieved by collecting data along four different route types and using a combination of

Principal Component Analysis (PCA) and K-means clustering to develop driving cycles

that accurately represent the driving patterns of these regions.

The innovations of this paper can be summarized as follows:

• Development of real driving cycles using K-means clustering and PCA, combined with real

driving data from four distinct routes and one driver to capture representative driving

patterns.

• Utilization of a simulation-based approach with MATLAB Powertrain Blockset and Simu-

link Design to simulate reference vehicles and generate fuel consumption and emissions

data for real driving cycles, as well as two standard driving cycles.

• Comparative analysis is conducted to examine the impact of different powertrains, engines,

and body styles on driving characteristic parameters, exhaust emission behavior, and fuel

consumption of conventional vehicles and a hybrid vehicle.

The organization of the remaining sections of this paper is as follows: The methodology sec-

tion provides a detailed description of the methodology, including sample route selection,

vehicle selection, data acquisition, data processing techniques, and the development of driving

cycle. The vehicle and simulation section elaborates on the simulation of reference vehicles.

The results and discussion section examines the effects of driving characteristic parameters,

powertrains, engine downsizing, body styles, and their impact on fuel consumption and emis-

sions. Finally, the conclusions and future works section summarizes this study by highlighting

the major findings and key outcomes.
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Methodology

In this section, the methodology employed in this study is explained in detail, with a represen-

tation of the steps outlined in Fig 1. The subsequent explanation is also provided.

Firstly, the sample routes are calculated by considering traffic data from various types of

roads and populous areas in Tehran city. Then, vehicles are selected based on their specifica-

tions, such as powertrain, engine types, and body styles, and choose the most popular ones.

This ensures that the test vehicles are representative of real driving conditions. To control for

individual driving behavior and focus on the impact of vehicle type on driving performance, a

single driver drove all sample routes. This allows to isolate the effect of vehicle characteristics

on the results. The naturalistic data are then processed to develop driving cycles, which are

crucial for understanding the behavior of vehicles under real-world conditions. The 12 driving

characteristic parameters calculated are indeed related to kinematic driving behavior, and

these parameters are used to identify the most influential factors on the results. By reducing

these parameters to two sensitive parameters using PCA, the underlying dynamics of vehicle

behavior can better understand.

The K-means algorithm is employed to construct driving cycles for five vehicles in all sam-

ple routes. After that, vehicles are simulated in MATLAB/Simulink according to their specifi-

cations, and input the related driving cycles as scenarios to each vehicle. By running

simulations, fuel consumption and emissions are obtained for each vehicle. This allows to

examine the impact of vehicle technologies on fuel consumption and emissions. After analyz-

ing the driving characteristic parameters of each driving cycle, the impact of vehicle technolo-

gies along with their corresponding fuel consumption and emissions data, to see how each

vehicle affects these parameters.

Sample route selection, vehicle selection, and data acquisition

Tehran, the capital of Iran and the most populous city in the country, is also the second most

populous metropolis in the Middle East. Therefore, dealing with air pollution is one of the

most necessary actions in this city. An optimal route for collecting driving data is a stepping

stone for developing a drive cycle that can closely represent real driving behavior in a city.

Fig 1. The steps of the research as a flowchart.

https://doi.org/10.1371/journal.pone.0317098.g001
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The sample routes should encompass a diverse range of urban roads [23], including both

densely populated and non-populated areas [24]. It is essential to consider the urban topologi-

cal structure, traffic flow, driving speeds, travel times, and patterns of origin and destination

[25]. The sample routes in this study were initiated by analyzing data obtained from the Trans-

port and Traffic Organization (TTO) of previous years in Tehran city. Despite the age of the

data, the ongoing relevance of the TTO data lies in the consistent traffic patterns and infra-

structure layouts of Tehran city, which have remained relatively stable over time. The report

provided statistics on major districts, quantifying the proportion of high-volume traffic in dif-

ferent types of routes in Tehran city. Based on these factors, four circular routes were selected.

Fig 2 shows two sample routes, 1 and 3. Additionally, Table 1 provides detailed information

about the sample routes, which was derived from GPS data. The remaining two sample routes

(2 and 4) were chosen randomly, while maintaining the same starting and ending points as

sample routes 1 and 3, respectively. Since sample routes 2 and 4 were selected randomly, their

distribution across different types of routes differed from those of sample routes 1 and 3.

In an urban area like Tehran city, the choice of vehicles should adhere to the principle of

selecting based on popularity. In selecting vehicles, various factors were considered, including

different types of powertrains, the presence of turbocharging, and body styles. To facilitate

comparisons of driving characteristic parameters, emissions, and fuel consumption, three

vehicle models were selected for each of three powertrains (gasoline, hybrid electric, and dual

fuel), two types of engines (turbocharged and naturally aspirated), and two body styles (sedan

and SUV).

Fig 2. Representative of sample routes 1 and 3. Figure created by the authors using Paint.NET, Adobe Photoshop,

Microsoft Visio Pro and Autodesk SketchBook.

https://doi.org/10.1371/journal.pone.0317098.g002

Table 1. Specifications of sample routes.

Type of roads Contribution to the data
traffic (%)

Contribution to the sample
route 1 (%)

Length of sample route
1 (km)

Contribution to the sample
route 3 (%)

Length of sample route
3 (km)

Highway 55.3 58 16.35 57 9.1

Main road 34.5 32 9.00 33 5.1

Secondary
road

11.2 10 2.80 10 1.5

https://doi.org/10.1371/journal.pone.0317098.t001
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In this study, five vehicles are examined, including conventional vehicles #1, #2, #3, and #4,

as well as a hybrid vehicle (#5). These vehicles are among the most popular domestic and for-

eign cars in Iran from 2017 to 2021. The benefits of these vehicles include four-cylinder

engines with a volume ranging between 1200 and 1800 cc, which is a common engine configu-

ration in the automotive industry, allowing for generalizability of the results to other vehicles.

Table 2 presents the key technical specifications of the five vehicles.

In this research, speed data from vehicles was collected using a GPS logger software, which

tracked positions and routes, enabling the monitoring of trips and the retrieval of location,

speed, altitude, direction, and various statistics. The software allows for the review of recorded

trips at any time and provides output in KML, TXT, and GPX formats. The data collection fre-

quency was set at 1 Hz, a decision made with careful consideration of the trade-offs between

data granularity and practicality in handling data. The software was installed on a Samsung

Galaxy S21 mobile phone.

The reported data in this study only involves recording data from the vehicles driven by the

corresponding author, who was aware of the study’s objectives. The driver, a citizen with

extensive driving experience of approximately 19 years and familiarity with the road condi-

tions in Tehran, navigated all routes to minimize the impact of their behavior on the test

results [26]. It is important to note that the driver’s proficiency was consistent across all vehi-

cles used in the study, ensuring a standardized approach to the assessment of factors affecting

fuel consumption and emissions, such as gear shift delays, acceleration from vehicle takeoff,

and lane changing patterns. This approach allows for a more reliable analysis of vehicle charac-

teristics, ensuring that any observed differences in fuel consumption and emissions can be

attributed primarily to the vehicle designs and technologies rather than the driver’s behavior.

The data collection process took approximately 16 hours and 30 minutes, with a total distance

traveled of around 570 kilometers. Data collection was conducted in February, June, and July

2022, under sunny weather conditions to eliminate any potential impact of unfavorable

weather. While this approach helps maintain reliable results, it is important to acknowledge

that variations in weather can significantly influence driving behavior and vehicle perfor-

mance. Adverse weather, such as rain or snow, often leads to changes in driving patterns. Also,

wet roads can increase drag, requiring more energy (and thus more fuel) to maintain speed.

Snow and ice can exacerbate these effects. Furthermore, adverse conditions, particularly cold

temperatures or heavy rain, can necessitate greater use of vehicle auxiliary systems like heating,

air conditioning, and windshield wipers, which draw additional power, impacting fuel

Table 2. Technical specifications of test vehicles.

Parameter Symbol Unit Vehicle
#1 #2 #3 #4 #5

Vehicle Name - - Dena Dena+ Haima S7 Pars Prius

Model - - 2020 2019 2020 2021 2017

Curb Weight me Kg 1258 1262 1545 1165 1394

Dimensions l×w×h Mm 4559×1944×1460 4559×1944× 1460 4498×1830× 1730 4498×1704×1410 4540×1760×1490

Powertrain Type - - Gasoline Gasoline Gasoline Gasoline /CNG Gasoline /Electric

Engine Type - - Naturally aspirated Turbocharged Turbocharged Naturally aspirated Naturally aspirated

Wheelbase L Mm 2671 2671 2619 2669 2700

Max Speed uemax km/h 189 205 170 190 180

Motor Peak Power pemax Kw 86 112 127 75 90

Motor Peak Torque Temax Nm 155 215 230 153 142

Transmission - - 5-Speed manual 5-Speed manual 6-Speed automatic 5-Speed manual CVT

https://doi.org/10.1371/journal.pone.0317098.t002
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efficiency and increasing emissions. Additionally, data was not collected during routes or peri-

ods of abnormal traffic conditions to ensure consistent results.

Data processing

After importing the text data files into the primary computational software, the unprocessed

data was organized into matrices. The data underwent a consistency check, and any irregulari-

ties or inconsistencies were subsequently removed. The data from each trip was then divided

into smaller segments known as micro-trips. Each micro-trip was defined by a specific start

and end point, where the vehicle is idle (speed of zero km/h) and remains in an idle state until

the vehicle returns to an idle state.

In the next step, a set of selected driving characteristic parameters, including percentage of

driving, idling, cruising, accelerating, decelerating, average speed of trip, average driving

speed, maximum speed, maximum negative/positive acceleration, and the standard deviation

of acceleration/speed, were employed to describe the attributes of each micro-trip [27]. This

comprehensive selection of parameters is grounded in previous research, highlighting their

significance in understanding driving behavior, and their relation with fuel consumption and

emissions. The percentage of driving time is calculated from (1), where, Ttotal is the total driv-

ing time. Ttotal and Tdrive are calculated from (2) and (3). Also, the idling time can be calculated

from (4).

Tdriveð%Þ ¼
Tdrive

Ttotal
� 100 ð1Þ

Ttotal ¼ t2 � t1 þ
Xn

i¼2
ðti � ti� 1Þ ð2Þ

Tdrive ¼ Ttotal � Tidle ð3Þ

Tidle ¼
ðt2 � t1Þ : n1 ¼ 0 \ a1 ¼ 0

0 : else
þ
Xn

i¼2

ðti � ti� 1Þ : ni ¼ 0 \ ai ¼ 0

0 : else
ð4Þ

8
<

:

8
<

:

The percentage of idling time and the percentage of cruising time are obtained from (5)

and (6), respectively.

Tidleð%Þ ¼
Tidle

Ttotal
� 100 ð5Þ

Tcruiseð%Þ ¼
Tcruise

Ttotal
� 100 ð6Þ

The value of Tcruise is calculated from (7) and the values of Tacceleration and Tdeceleration are
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obtained from (8) and (9), respectively.

Tcruise ¼ Tdrive � Tacceleration � Tdeceleration ð7Þ

Tacceleration ¼
ðt2 � t1Þ : a1 > acc threshold

0 : else
þ
Xn

i¼2

ðti � ti� 1Þ : ai > acc threshold

0 : else
ð8Þ

8
<

:

8
<

:

Tdeceleration ¼
ðt2 � t1Þ : a1 < � acc threshold

0 : else
þ
Xn

i¼2

ðti � ti� 1Þ : ai < � acc threshold

0 : else
ð9Þ

8
<

:

8
<

:

The percentage of acceleration time and the percentage of deceleration time are calculated

from (10) and (11).

Taccelerationð%Þ ¼
Tacceleration

Ttotal
� 100 ð10Þ

Tdecelerationð%Þ ¼
Tdeceleration

Ttotal
� 100 ð11Þ

Mean driving speed, average travel speed, and maximum driving speed are obtained from

(12), (13), and (15), respectively, where the distance value is obtained from (14).

Vd� m ¼ 3:6�
dist
Tdrive

ð12Þ

Vt� m ¼ 3:6�
dist
Ttrip

ð13Þ

dist ¼ ðt2 � t1Þð
n1

3:6
Þ þ

Xn

i¼2
ðti � ti� 1Þð

ni
3:6
Þ ð14Þ

Vmax ¼ MaxðVÞ ð15Þ

The average negative acceleration and the average positive acceleration are calculated from

(16) and (17), respectively.

an m ¼
Xn

i¼1

1 : a1 < 0

0 : else

( !� 1

�
Xn

i¼1

ai : ai < 0

0 : else
ð16Þ

(0

@

ap m ¼
Xn

i¼1

1 : a1 > 0

0 : else

( !� 1

�
Xn

i¼1

ai : ai > 0

0 : else
ð17Þ

(0

@

Additionally, the deviation from speed and deviation from acceleration are obtained from
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(18) and (19), respectively.

�nsd ¼ sn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n � 1

Xn

i¼1
n2

i

r

ð18Þ

�asd ¼ sa ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n � 1

Xn

i¼1
a2

i

r

ð19Þ

Subsequently, the PCA algorithm was applied to reduce the original data to a set of underly-

ing factors, known as principal components. This process involved discarding minor details

and retaining the essential information [28]. Each principal component is formed by combin-

ing the original variables in a way that captures the most independent information in the data

[29]. By employing this approach, new combinations of the original variables referred to k(x1,

x2,. . .,xK), were generated to identify the most significant independent component k denoted

as (PC1,PC2,. . .,PCp).

Each principal component can be represented by the following expressed in (20) [28].

PCK ¼ wK1xK1 þ wK2xK2 þ . . .þ wKKxKK ð20Þ

Where PCK denotes the intended principal component, wKj corresponds to the coefficient

assigned to the primary variables, and x1 represents the primary variable.

In the standardization step of PCA, the input variables are normalized to have an average

value of zero and a standard deviation of one. This process ensures that the variables are on a

comparable scale. The resulting matrix z, is derived from (21) [28]. This standardization allows

for fair comparison and interpretation of the variables in the subsequent PCA analysis.

zij ¼
xij � �xj

sj
; for i ¼ f1; 2; .. ; ng and j ¼ f1; 2; .. ; qg ð21Þ

In this context, �xj corresponds to the data average, with xj and sj indicating the standard

deviation values. Additionally, calculating the correlation matrix for the initial values offers

insights into the level of correlation between each primary variable. Each element, aij, in this

matrix illustrates the correlation between variables i and j, which is obtained from (22) [28].

R ¼
1

n
z0z ð22Þ

In the computation of eigenvalues (λ) and eigenvectors related to the correlation matrix,

(23) and (24) are derived. By finding solution of (23) and (24), the eigenvalues and eigenvec-

tors are calculated to be equal [28]. Additionally, the resultant special vectors derived from

these calculations serve as coefficients for the primary variables in forming the corresponding

component. Solving (23), where I is a singular matrix, enables the calculation of the eigenval-

ues (λn). These eigenvalues represent important characteristics of the correlation matrix and

play a key role in subsequent analyses.

detðR � lIÞ ¼ 0 ð23Þ

detðR � lIÞ ¼ Vh ð24Þ

In the initial stage of PCA, the variance for each principal component is calculated using

(24). This step provides valuable insights into how each component explains the overall vari-

ance within the dataset. Following the extraction of the principal components, the parameters

with high variance in these components are identified as sensitive parameters, which are
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deemed to have a significant impact on the underlying patterns and relationships within the

data. To ensure a focused analysis, we reduced the dimensionality to the two parameters that

accounted for the highest variance percentages. This approach effectively captures the most

critical relationships within the data, making these parameters essential inputs for subsequent

modeling and analysis. Fig 3 illustrates the distribution of variance percentages for the driving

characteristic parameters of different vehicles across various sample routes. The first two

parameters of each with the highest variance percentage were considered as sensitive

parameters.

Driving cycle development

In the subsequent step, the mean of sensitive parameters for each micro-trip is utilized in clus-

tering methods to classify the micro-trips into four distinct clusters. Clustering is a statistical

method that involves grouping individual samples based on measures of distance, similarity,

or variation, while considering important characteristics from the sampled data. Samples with

similar values in the representative characteristics are grouped together, and a representative

sample is chosen to minimize the collective distance from other group members. In this study,

clustering analysis is used to categorize micro-trips with similar conditions, enabling the gen-

eration of a chronological order of vehicle speeds that accurately captures the identified driv-

ing patterns in the analyzed area. The K-means algorithm is employed as the clustering

technique, which is widely used in similar domains due to its efficiency, simplicity, and suit-

ability particularly when dealing with large datasets [30]. The choice of K-means is justified

based on several characteristics of the data and the specific objectives of the clustering

Fig 3. The variance percentage of driving characteristic parameters.

https://doi.org/10.1371/journal.pone.0317098.g003
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approach. The simplicity and interpretability of K-means provide a clear framework for cate-

gorizing micro-trips based on distinct driving conditions. Additionally, K-means demon-

strates strong scalability, allowing for efficient processing of significant volumes of driving

records without compromising performance. The algorithm’s distance-based clustering

approach, which minimizes intra-cluster variance, is particularly effective for grouping micro-

trips that exhibit similar driving behaviors, such as speed patterns. Overall, these factors con-

tribute to K-means being the most appropriate clustering technique for this study. The squared

Euclidean distance, as depicted in (25), is the commonly employed measure for evaluating

similarity in this approach [31].

dij ¼
Xp

k¼1
ðxik � xjkÞ

2
ð25Þ

Each micro-trip consists of p parameters, denoted as xik, where xi represents the k-th

parameter of micro-trip i, and dij represents the distance between each pair of micro-trips.

Fig 4 illustrates the result of the K-means clustering based on the PCA algorithm applied to all

vehicles in the suggested sample routes, which were then used to construct driving cycles.

Fig 4. K-means clustering method based on PCA algorithm.

https://doi.org/10.1371/journal.pone.0317098.g004
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Following the application of the PCA algorithm and K-means clustering on micro-trips, it

is time to construct driving cycles. The proportion of each cluster in the driving cycle is deter-

mined by calculating the time percentage allocated to each cluster. Once the duration of

micro-trips in each cluster is determined, micro-trips are selected from each cluster to fill the

designated duration of that cluster within the overall driving cycle [32]. This process involves

iteratively selecting the closest micro-trips to the center of the cluster until the desired propor-

tion of the cluster is accounted for. As a result, multiple micro-trips from each cluster are cho-

sen to collectively represent the driving cycle. Fig 5 illustrates the driving cycle of vehicles in

related sample routes.

Vehicle simulation

In this section, vehicles are simulated by using MATLAB/Simulink with the Powertrain Block-

set, which is a powerful tool for data-driven modeling and analyzing the performance of vehi-

cles [33]. The dynamic modeling of five vehicles and its components is simulated in

accordance with the characteristics of each vehicle in this Blockset. In the following, the

obtained drive cycles are considered as simulation input and are fed to the model. The Power-

train Blockset provides a comprehensive set of blocks and components that allow to simulation

and design of powertrains, including engines, transmissions, drivelines, and other vehicle sub-

systems. The realistic model of all five vehicles was simulated separately in this environment,

each of which consists of six main blocks. The names and connection order of these blocks are

shown in Fig 6.

The scenario block is the starting point of modeling, where the behavior of the driver and

their maneuvers are modeled in the form of drive cycles. The output of this block serves as

input ports for other subsequent blocks. Within the Scenarios block, there are two constant

inputs for driver command and driver reference, as well as one feedback input for triggering

subsystems. These inputs are defined as 1-D arrays. The concepts of vehicle dynamics are

Fig 5. Developed driving cycles of each vehicle in a distinct sample route.

https://doi.org/10.1371/journal.pone.0317098.g005
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calculated based on coordinate systems, which are defined in the Z-down and Z-up orienta-

tions with the sub-blocks of SAE J670 and ISO 8855, respectively. The parameters of this block

are independent of the technical specifications of the vehicle, meaning that the initial values of

lateral position and vertical position can be set uniformly for all five vehicles. In this case, the

initial values were set to 5.7 and 0.0, respectively.

The driver’s behavior and vehicle control are affected by the surrounding environment and

road conditions. In order to include these factors, a block named Environment is designed at

the beginning of the system and runs parallel to the Scenarios block. The Environment block

has a common input port with the scenarios block and its output is connected to other blocks.

The parameters of this block include ambient temperature, ambient atmospheric pressure and

wind velocity. The wind velocity values in the global inertial frame are represented by three

separate ports in X, Y, and Z coordinates, which are connected to each other through an

embedded subsystem. In accordance with the detailed analysis of the model, road friction is

designed as a subsystem comprising three levels: constant friction, varying friction and three-

axle constant friction. These levels are based on wheel parameters, body aerodynamics, sus-

pension system and chassis. The initial values for ambient temperature, ambient atmospheric

pressure, and wind velocity for all vehicles are set to 298.15 K (25˚C), 101325 pascal, and 0 m/

s, respectively. This provides a consistent set of conditions for a fair comparison of fuel con-

sumption and emissions across all vehicles in this study.

The Driver Commands block can simulate the vehicle’s behavior in one of four modes: lon-

gitudinal driver, predictive driver, predictive Stanley driver and no driver. In each of these

modes, the vehicle reference, vehicle feedback, steering command, gear command, brake com-

mand, acceleration command, and environment ports serve as inputs. The primary function

of this block is to produce acceleration, braking, gear, and steering signals in various ways. For

example, in the longitudinal driver mode, the block generates normalized acceleration and

braking commands (between 0 and 1) to track the longitudinal drive cycle by applying a

speed-tracking controller. More details of simulating the Driver Command block in Simulink

are shown in Fig 7.

In this section, the Driver Commands block with the longitudinal driver mode is used to

model the dynamic response of the driver in all vehicles. Additionally, for each signal, three

external actions (hold, override and disable) are defined, which are applied to closed-loop

commands with a default priority. For each vehicle, three types of rear, neutral and drive shifts

(i.e., R, N, D gears) are included with a change time of 0.1 seconds and the velocity gain break-

points are set between 0 and 100. The details and other parameter values for this block are

shown in Table 3 for each vehicle.

Fig 6. Steps and structure of designing real vehicle models with MATLAB virtual vehicle composer.

https://doi.org/10.1371/journal.pone.0317098.g006
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The Controller block is a main component in the simulation, connected bilaterally with the

Vehicle block. This block is comprised of seven subsystems named Vehicle Control Unit

(VCU), Engine Control Unit (ECU), Transmission Control Unit (TCU), Brake Control Unit

(BCU), Active Differential Control (ACD), Battery Management System (BMS), and Thermal

Management (TM). VCU is a master-slave architecture designed to control the powertrain in

vehicles. It is integrated into the engine controller ECU, which is capable of estimating the

parameters of open-loop air, fuel, spark, and cam-phaser actuator from engine speed and tor-

que signals. Gear shifting is predicted in TCU, which is determined from the inputs of deceler-

ation, acceleration, engine speed, and instantaneous vehicle speed.

The Vehicle block is the most complex component in simulating the real-vehicle model, as

it determines the performance of various parts of the vehicle, including the engine, drivetrain,

body, suspension system, chassis, vehicle electronics, sensors, and pedal cluster. The engine

subsystem is responsible for modeling the engine in terms of maximum torque, fuel flow,

engine efficiency factor and engine speed. For the test vehicles in this study, the engine config-

uration was selected as Mapped Spark Ignition (SI), with the exception that vehicles #2 and #3

also feature turbochargers. The engine subsystem’s basic inputs include engine speed, environ-

ment, vehicle body, and engine command. For each vehicle, a maximum torque curve is

mapped to the model, which determines the maximum brake torque in terms of engine speed.

The average brake specific fuel consumption and fuel specific gravity values are assumed to be

equal to 350 g/kwh and 0.754, respectively. Other effective configurations in this subsystem

include the number of cylinders, gas constant air, and air standard temperature, which are

Fig 7. The simulation of the Driver Commands block in longitudinal driver mode.

https://doi.org/10.1371/journal.pone.0317098.g007

Table 3. Parameter values of Driver Commands block.

Parameters Vehicle
#1 #2 #3 #4 #5

Mass 1410 1414 1700 1315 1545

Driver Response Time 0.1 0.1 0.1 0.1 0.1

Preview Distance 4.1 4.1 4.1 4.1 4.1

Rolling Resistance Coe. 2.5 2.5 2.5 2.5 2.5

Aerodynamic Drag Coe. 0.25 0.30 0.45 0.30 0.30

Gravitational Constant 9.81 9.81 9.81 9.81 9.81

Initial Gear 0 0 0 0 0

Gear Shift Delay 0.11 0.12 0.10 0.12 0.12

https://doi.org/10.1371/journal.pone.0317098.t003
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selected according to the characteristics of each vehicle. To simplify the analysis of results, the

parameters of air mass flow, exhaust temperature, actual brake torque, and fuel mass flow in

terms of engine speed and commanded torque are considered the same for all vehicles. The

values of these parameters are shown in Fig 8.

The drivetrain subsystem consists of two parts: drivetrain layout and actuators, which

are designed to model the powertrain and transmission of vehicles. The vehicle electronics

subsystem is responsible for controlling the voltage and current of fuel cells. However, the

presence of a HEV in this study has resulted in a significant difference between vehicle #5

and the other four conventional vehicles. This distinction is made up of the battery system

and electric machines to supply the vehicle’s energy according to Fig 9. The parameters

specific to this vehicle are as follows: the number of cells in series is 96, the initial battery

capacity is 3.18 Ampere-hours (Ah) and the rated capacity at nominal temperature is 5.3

Ah.

Finally, the output of the Vehicle block is fed back into the Scenarios and Environment

blocks to ensure the stability of the system. After completing the model design, different drive

cycles are applied in the Scenarios block, and then the model is run. The outputs of each port

can be visualized using scopes in the Visualization block. It should be noted that the calcula-

tion of fuel consumption and emissions in this section is obtained through calibration maps in

the Mapped SI Engine block. These maps model engine behavior and control parameters,

which are defined as separate lookup table for each type of pollution (i.e., CO, HC, NOx, and

CO2). To be more precise, engine-out emissions and engine fuel flow obtained for each vehicle

are a function of engine torque and speed, illustrating the engine’s response to control inputs

in different situations.

Fig 8. Displaying the parameters of (a) air mass flow map, (b) exhaust temperature map, (c) actual brake torque map,

and (d) fuel mass flow map according to engine speed and commanded torque.

https://doi.org/10.1371/journal.pone.0317098.g008
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Results and discussion

In this part, the driving cycles developed through K-means clustering and PCA algorithm are

utilized to estimate the driving characteristic parameters, fuel consumption, and emissions of

vehicles. Initially, the 12 driving characteristic parameters used in the PCA algorithm are cal-

culated for the final driving cycles. Subsequently, by simulating the vehicles and inputting the

driving cycles, fuel consumption and emissions are calculated. Finally, each vehicle is com-

pared with other vehicles in terms of powertrain, engine downsizing, and body style based on

their characteristics. To eliminate the influence of real-world driving conditions, the same pro-

cedure is repeated for the Federal Test Procedure 75 (FTP-75) and the Urban Dynamometer

Driving Schedule (UDDS) cycles, using the same vehicle category [34, 35].

Effect of driving characteristic parameters on fuel consumption and

emissions

Driving behavior, traffic conditions, vehicle technology, and sample routes significantly influ-

ence a vehicle’s driving characteristics, fuel consumption, and emissions. Each vehicle has its

unique driving cycle, leading to different parameter values. Table 4 presents driving character-

istic parameters, while Table 5 shows fuel consumption and emissions, measured in l/100km,

g/km, and g/mi, respectively. The sample routes are identified by R1, R2, R3, and R4, which

correspond to routes 1, 2, 3, and 4, respectively.

Fuel consumption and emissions are affected by multitude factors, with key contributors

being traffic congestion, which leads to prolonged idling and reduced efficiency, and aggres-

sive driving behaviors like excessive speed and acceleration. The vehicle’s technology, includ-

ing the engine management system and emission controls, also play a crucial role in

determining fuel consumption and emissions. To illustrate the effects of these parameters on

Fig 9. Simulation of the vehicle electronics subsystem for vehicle #5.

https://doi.org/10.1371/journal.pone.0317098.g009
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Table 4. Values of driving characteristic parameters.

Drive
cycle

Drive
time
(%)

Idle
time
(%)

Cruise
time
(%)

Accelerate
time (%)

Decelerate
time (%)

Average
driving

speed (km/
h)

Average
trip speed
(km/h)

Max
speed
(km/h)

Mean positive
acceleration

(m/s2)

Mean negative
acceleration

(m/s2)

Standard
deviation
speed

Standard
deviation

acceleration

#1-R1 90.92 9.07 9.24 38.42 43.25 36.97 33.62 77.29 0.69 -0.62 10.77 0.91

#1-R2 98.96 1.03 11.42 43.90 43.62 46.19 45.72 81.90 0.57 -0.57 13.97 0.78

#1-R3 82.23 17.76 7.33 35.69 39.19 25.81 21.20 75.67 0.73 -0.68 8.39 0.89

#1-R4 99.16 0.83 11.00 43.78 44.37 43.06 42.70 89.39 0.59 -0.58 13.20 0.74

#2-R1 90.49 9.50 10.34 37.86 42.28 33.55 30.38 70.31 0.73 -0.65 9.65 0.95

#2-R2 95.16 4.83 8.50 41.28 45.37 33.59 31.97 87.30 0.73 -0.68 10.91 0.89

#2-R3 91.49 8.50 9.34 40.28 41.87 40.10 36.68 85.90 0.75 -0.73 12.18 0.99

#2-R4 98.99 1.00 8.42 44.03 46.54 49.97 49.50 97.81 0.81 -0.77 15.37 1.03

#3-R1 87.23 12.76 11.09 37.03 39.11 35.03 30.56 76.90 0.53 -0.53 10.59 0.81

#3-R2 97.91 2.08 9.67 44.53 43.70 45.94 45.00 94.39 0.63 -0.64 14.41 0.84

#3-R3 88.49 11.50 10.59 38.11 39.78 35.60 31.50 77.98 0.67 -0.65 10.64 0.97

#3-R4 94.16 5.83 12.09 39.17 42.89 48.53 45.68 94.90 0.64 -0.61 14.61 0.86

#4-R1 84.40 15.59 8.84 38.86 36.69 43.92 37.08 98.57 0.56 -0.58 12.99 0.77

#4-R2 93.07 6.92 10.25 44.70 38.11 36.50 33.98 82.37 0.57 -0.67 11.31 0.90

#4-R3 87.57 12.42 8.75 37.78 41.03 21.71 19.01 60.59 0.69 -0.66 6.61 0.96

#4-R4 99.12 0.87 20.19 39.94 38.98 43.52 43.16 81.79 0.47 -0.51 14.04 0.79

#5-R1 90.40 9.59 17.43 37.19 35.77 39.82 36.00 99.90 0.74 -0.77 12.59 0.88

#5-R2 97.49 2.50 12.34 46.87 38.28 52.49 51.16 103.68 0.48 -0.59 16.01 0.89

#5-R3 88.74 11.25 12.17 39.61 36.94 35.78 31.75 72.68 0.54 -0.60 10.56 0.86

FTP-
75

87.14 12.86 20.06 36.45 30.63 39.21 34.20 91.08 0.42 -0.46 23.51 0.63

UDDS 86.19 13.81 18.04 36.96 31.19 36.60 31.60 91.15 0.43 -0.46 21.46 0.64

https://doi.org/10.1371/journal.pone.0317098.t004

Table 5. The measure of fuel consumption and emissions.

Drive cycle Fuel consumption (l/100km) CO2 (g/km) HC (g/mi) CO (g/mi) NOX (g/mi)
#1-R1 10.04 230.00 0.069 0.171 0.109

#1-R2 12.89 294.30 0.093 0.234 0.139

#1-R3 15.68 356.40 0.112 0.370 0.174

#1-R4 9.52 217.50 0.066 0.195 0.104

#2-R1 11.33 227.83 0.703 26.557 0.002

#2-R2 11.83 232.32 0.844 31.819 0.002

#2-R3 11.13 215.69 0.880 32.934 0.002

#2-R4 10.55 201.34 0.894 33.285 0.002

#3-R1 12.20 242.04 0.838 33.053 0.001

#3-R2 13.00 243.32 1.195 46.321 0.001

#3-R3 13.20 267.64 1.226 47.750 0.001

#3-R4 12.76 234.36 1.285 49.608 0.001

#4-R1 7.83 179.20 0.048 0.087 0.082

#4-R2 9.66 221.70 0.063 0.106 0.099

#4-R3 12.17 278.50 0.078 0.135 0.121

#4-R4 7.91 182.00 0.050 0.081 0.079

#5-R1 7.85 157.50 0.215 11.434 0.001

#5-R2 7.35 148.20 0.165 8.940 0.001

#5-R3 7.30 160.20 0.146 8.133 0.001

https://doi.org/10.1371/journal.pone.0317098.t005
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fuel consumption and emissions, the driving behavior of five vehicles on four sample routes

were examined.

The results indicate that vehicles with lower traffic congestion (e.g., shorter idling times)

exhibit lower fuel consumption and emissions. For instance, vehicle #1 on sample route 4 had

only 0.83% idling time, resulting in lower fuel use and emissions. Extended idling can consume

more fuel than restarting; however, restarting increases CO, HC, and NOx emissions [36].

Interestingly, vehicle #4 on route 1 had the highest idling percentage (15.59%) but lower emis-

sions, likely due to low acceleration and an average speed of 43.92 km/h.

Turbocharged vehicle #2 on sample route 4, with only 1% idling time and a high accelera-

tion rate (44.03%), showed increased CO and HC emissions, despite relatively low fuel con-

sumption and CO2 emissions, possibly due to turbocharging at high speeds. For this

turbocharged vehicle, an average driving speed tend to exhibit higher emissions of CO and

HC, whereas those with lower average driving speeds tend to exhibit lower emissions [21].

Vehicle #3, a turbocharged SUV, displayed this trend as well. On sample route 1, it faced heavy

traffic, resulting in lower average speed (35.03 km/h) and higher fuel consumption and CO2

emissions [37].

Other driving characteristic parameters, such as the standard deviation of speed and accel-

eration, and idling time, correlate significantly with fuel consumption and emissions.

Increased idling time and higher standard deviations of acceleration and speed are associated

with increased fuel consumption and emissions in conventional vehicles. Conversely, a higher

standard deviation of speed corresponds to lower CO and HC emissions in conventional vehi-

cles, while the trend is reversed for turbocharged vehicles.

Vehicle #5 uniquely reduces fuel consumption during idling [38]. On sample route 3, it had

longer idle times and lower average speeds, leading to decreased fuel consumption, CO, and

HC emissions, though CO2 emissions were higher.

As NOx pollution is relatively low and comparable across vehicles, it has not been individu-

ally assessed for each vehicle. The results indicate that aggressive driving behaviors contribute

to increased NOx emissions [39]. Furthermore, frequent instances of stopping the engine

while idling have been observed to result in higher NOx emissions.

Effect of powertrain on fuel consumption and emissions

To assess the impact of powertrain type on fuel consumption and emissions, a comparative

study was conducted on three vehicles: a gasoline vehicle (vehicle #1), a hybrid vehicle (vehicle

#5), and a dual fuel vehicle (vehicle #4). Results are illustrated in the Box & Whisker diagram

in Fig 10 and summarized in Table 6.

The hybrid vehicle shows significant advantages, with approximately 39% lower fuel con-

sumption than gasoline and 26% lower than dual fuel vehicles due to efficient energy capture

during deceleration [40]. It also exhibits 34% less CO2 emissions than vehicle #1 and 10% less

than vehicle #4, according to engine shutdown during idling and the use of electric energy

sources [40]. Unique subsystems like brushless motors and planetary gearboxes enhance

energy efficiency.

Vehicle #4, the dual fuel option, demonstrates an 18% improvement in fuel efficiency com-

pared to gasoline vehicles. Compressed Natural Gas (CNG) has a lower carbon content, result-

ing in about 28% lower CO2 emissions compared to vehicle #1 [41, 42].

In terms of emissions, the hybrid vehicle emits more CO than gasoline and dual fuel vehi-

cles due to increased power demands on the internal combustion engine. Primarily due to the

increased power demands placed on internal combustion engines in hybrid electric vehicles,

which are necessitated by the simultaneous powering of both wheels and batteries. This may
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Fig 10. Comparison of powertrain effect on fuel consumption and emission over sample routes.

https://doi.org/10.1371/journal.pone.0317098.g010

Table 6. Measures of fuel consumption and pollutant emissions for standard driving cycles of powertrain comparison.

Drive cycle Fuel consumption (l/100km) CO2 (g/km) HC (g/mi) CO (g/mi) NOX (g/mi)
#1-FTP-75 7.96 183.6 0.054 0.090 0.071

#1-UDDS 8.16 200.5 0.069 0.094 0.058

#4- FTP-75 7.38 127.4 0.029 0.089 0.001

#4- UDDS 7.87 97.5 0.001 0.090 0.001

#5- FTP-75 5.64 169.4 0.049 0.085 0.067

#5- UDDS 4.52 181.0 0.058 0.056 0.054

https://doi.org/10.1371/journal.pone.0317098.t006
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also be attributed to the shorter running time and longer intervals between engine cycles,

which may result in inadequate engine warm-up, thereby contributing to increased CO emis-

sions [18]. In contrast, HC emissions are lower in hybrids under standard cycles but can

increase under real conditions. Gasoline vehicles emit 45% more CO and 39% more HC than

dual fuel vehicles, owing to the more complete combustion with CNG.

The findings also demonstrate that the hybrid vehicle exhibits a notable reduction in NOx

emissions compared to conventional vehicles. This reduction is attributed to the use of the

electric motor in the hybrid engine, which leads to lower power output and subsequently

reduced in cylinder combustion temperature. Elevated temperature is a critical factor in NOx

generation, and reducing the temperature leads to a decrease in NOx production.

Effect of engine downsizing on fuel consumption and emissions

The compression ratio and turbocharging significantly influence the operation and emissions

of internal combustion engines [43]. Engine downsizing, which replaces larger naturally aspi-

rated engines with smaller turbocharged ones, improves fuel efficiency and reduces emissions.

Turbocharging enhances volumetric efficiency by using exhaust waste heat for air compression

[44]. Fig 11 compares naturally aspirated and turbocharged engines, while Table 7 presents

similar results for standard driving cycles. Turbocharger activation depends on driving condi-

tions, resulting in comparable fuel consumption and CO2 emissions between vehicles.

This study shows that engine downsizing in vehicle #2 leads to better fuel efficiency, except

for higher consumption in sample routes 1 and 4. This aligns with previous research indicating

that downsizing can cut fuel use and emissions [45], although it depends on traffic and speed.

The results also confirm that reducing the capacity of turbocharged engines lowers CO2 emis-

sions [44, 46]. In all driving cycles, CO2 emissions were higher in naturally aspirated engines,

Fig 11. The comparison of engine downsizing effect on fuel consumption and emission over sample routes.

https://doi.org/10.1371/journal.pone.0317098.g011
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while NOx emissions were over 90% greater in naturally aspirated engines compared to turbo-

charged vehicles [46]. The benefits of turbocharging in reducing NOx emissions are well-

established, while simultaneously enhancing power density [47]. This is due to the fact that

turbocharging allows for more efficient combustion, thereby reducing the formation of NOx

emissions.

For CO and HC emissions, turbocharged engines typically emit more CO and HC than nat-

urally aspirated ones [48]. This is due to their design for high-speed performance. In urban

and rural settings, naturally aspirated vehicles produce lower CO emissions because of their

operation at lower speeds and loads. Conversely, turbocharged engines generate more CO dur-

ing motorway driving due to higher loads and speeds. These findings emphasize the need to

consider specific driving conditions and engine characteristics when assessing the effects of

engine downsizing on fuel consumption and emissions.

Effect of body style on fuel consumption and emissions

To compare the effects of body style on fuel consumption and emissions, we selected vehicle

#3, an SUV, and vehicle #2, a sedan, both equipped with turbocharged engines. Notably, vehi-

cle #3 features an automatic transmission, while vehicle #2 is equipped with a manual trans-

mission. The comparative analysis of these vehicles under real driving cycles is illustrated in

Fig 12, and the summary of their fuel consumption and emissions under standardized driving

cycles is presented in Table 8.

It is evident that the sedan vehicle exhibited lower fuel consumption, HC, CO, and CO2

emissions compared to the SUV, with a reduction of 13% for fuel consumption, 14% for HC,

20% for CO, and 15% for CO2. The disparity in fuel consumption and emissions between the

two vehicles can be attributed to several factors [49]. One of the primary factors contributing

to this disparity is the weight difference. SUVs typically have a greater weight than sedans,

which results in an increased load on the engine. This increased load is compensated by stron-

ger engine power, leading to higher fuel consumption. Furthermore, SUVs tend to have larger

engine volumes and higher volumes of exhaust gases, which also contribute to increased fuel

consumption and emissions.

Additionally, the design characteristics of SUVs, including a taller cabin and larger wheel

radius, hinder aerodynamic optimization. The increased wind resistance and higher drag coef-

ficient associated with SUVs exacerbate fuel consumption and emissions.

Interestingly, under standardized driving cycles, vehicle #2 exhibited elevated levels of HC

and CO emissions as compared to vehicle #3. This can largely be attributed to the cold start

phase of the driving cycles. During the FTP-75 and UDDS cycles, high speeds are encountered

shortly after starting, which can affect driver behavior and lead to gear shift delays. Further-

more, the engine’s operation during cold starts often necessitates the use of an enriched fuel

mixture to prevent incomplete combustion, subsequently resulting in increased HC and CO

emissions during this phase.

Table 7. Measures of fuel consumption and pollutant emissions for standard driving cycles of engine downsizing comparison.

Drive cycle Fuel consumption (l/100km) CO2 (g/km) HC (g/mi) CO (g/mi) NOX (g/mi)
#1-FTP-75 7.96 183.60 0.054 0.090 0.071

#1-UDDS 8.16 200.50 0.069 0.094 0.058

#2- FTP-75 7.73 159.28 0.389 14.365 0.001

#2- UDDS 7.98 166.58 0.392 14.423 0.001

https://doi.org/10.1371/journal.pone.0317098.t007
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Conclusions and future works

This study aimed to investigate the driving characteristic parameters, fuel consumption, and

emissions performance of vehicles equipped with various technologies, including powertrain,

engine, and body style, under both real and standard driving cycles. A total of 19 drive cycles

were created using the K-means and PCA algorithms, based on the selection of four sample

routes. The vehicles were modeled in MATLAB/Simulink based on their specifications, and

real and standard driving cycles were simulated to measure their fuel consumption and emis-

sions. The major findings from comparing the driving characteristic parameters, fuel con-

sumption, and emissions of four conventional vehicles and one hybrid vehicle are as follows:

• It was found that driving characteristic parameters exhibit distinct relationships with fuel

consumption and emissions under various conditions and vehicle technologies.

• Gasoline and dual fuel vehicles exhibit similar behaviors under traffic conditions, with the

exception of slightly higher fuel consumption (approximately 18%) and increased emissions

in the gasoline vehicle. In contrast, hybrid vehicle demonstrated an advantage in fuel con-

sumption during idle time, with reductions of around 39% and 26% compared to gasoline

and dual fuel vehicles, respectively.

Fig 12. Comparison of body style effect on fuel consumption and emission over sample routes.

https://doi.org/10.1371/journal.pone.0317098.g012

Table 8. Measures of fuel consumption and pollutant emissions for standard drive cycles of body style comparison.

Drive cycle Fuel consumption (l/100km) CO2 (g/km) HC (g/mi) CO (g/mi) NOX (g/mi)
#2-FTP-75 7.73 159.28 0.389 14.365 0.001

#2-UDDS 7.98 166.58 0.392 14.423 0.001

#3- FTP-75 8.84 199.68 0.114 4.471 0.002

#3- UDDS 8.13 188.93 0.001 1.575 0.001

https://doi.org/10.1371/journal.pone.0317098.t008
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• The turbocharged vehicles yield a notable benefit in terms of fuel consumption and CO2

emissions, particularly at high speeds where the turbocharger is activated. In this scenario,

the turbocharged vehicle consumes approximately 6% less fuel and 19% less CO2 than its

naturally aspirated vehicle.

• Regarding specific vehicle technologies, it was observed that hybrid powertrain and the pres-

ence of turbocharger had the highest emissions in terms of CO and HC, while exhibiting

lower NOx emissions.

• The results indicate that SUV with turbocharging technology exhibit lower fuel consumption

at high cruising speeds, although the magnitude of this advantage is relatively higher, about

13% compared to sedans. The turbocharged vehicles exhibit elevated levels of CO and HC

emissions in real-world driving cycles compared to standard driving cycles, which are char-

acterized by more aggressive driving patterns.

Future research recommendations include capturing real-world driving behavior by incor-

porating driving data from multiple individuals, potentially through the use of a chasing

method, especially in high traffic areas such as metropolitan. Additionally, exploring emerging

technologies such as fully electric powertrains, evaluating different types of transmissions, and

assessing the impact of Exhaust Gas Recirculation (EGR). Ultimately, these findings not only

underscore the need for refined policies and regulations based on real-world data but also

highlight the potential for innovative vehicle technologies and infrastructure improvements to

facilitate the transition to greener alternatives in urban transportation.
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