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Abstract 
Addressing the insufficient optimization performance in drone 3D path planning and the 

issues of inadequate optimization precision and tendency to fall into local optima in the 

existing Whale Optimization Algorithm (WOA), this paper proposes a drone 3D path 

planning method based on an improved Whale Optimization Algorithm (CSRD-WOA). 

Firstly, to enhance the search efficiency and fitness accuracy of the Whale Algorithm, the 

Cuckoo Search and Random Differential Strategy were introduced and compared with the 

traditional Particle Swarm Optimization algorithm, Whale Algorithm, and Cuckoo Search 

Algorithm. Experimental results demonstrate that the CSRD-WOA algorithm improves 

global search capabilities and prevents premature convergence, significantly enhanc-

ing optimization precision and convergence speed. Secondly, applying the CSRD-WOA 

algorithm to drone 3D path planning issues, the simulation results show that the CSRD-

WOA algorithm can effectively manage path planning in complex terrains, showcasing its 

application potential in drone path planning.

1. Introduction
The rapid development of drone technology has brought revolutionary changes to various 
application fields, especially in precision agriculture [1], urban planning, and emergency 
rescue, where effective path planning is a key factor in ensuring efficient and safe task execu-
tion by drones [2]. Path planning directly affects task execution efficiency and drone energy 
management [3].

In recent years, numerous scholars both domestically and internationally have explored 
drone path planning methods and developed various algorithms. These algorithms are 
generally divided into two categories: traditional algorithms, such as the artificial potential 
field method [4] and the A * algorithm [4], and intelligent algorithms, such as the Particle 
Swarm Optimization algorithm [5], Grey Wolf Optimization algorithm [6], and the Whale 
Optimization Algorithm. The Whale Optimization Algorithm (WOA), proposed by Mirjalili 
and others [7], has proven superior to other algorithms in function optimization due to its 
simple principles, minimal parameter settings, and robust optimization performance, finding 
successful application in numerous fields, including engineering optimization and function 
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maximization. However, the basic WOA has limitations in parameter control adjustment and 
maintaining population diversity, which restricts its balance between global search and local 
precision search, often leading it to fall prematurely into local optima [8]. Recent improve-
ments to the Whale Algorithm include adding local search mechanisms and improving its 
convergence to adapt to more complex optimization problems [9]. These improvements 
demonstrate the feasibility and necessity of further optimizing the Whale Algorithm for 
applications such as path planning. Kun Wu and others [10] have used greedy optimization 
strategies to improve the Whale Algorithm, expanding its search range to enhance global 
optimization effects. However, this method is still limited by its convergence speed and opti-
mization precision. Mehmet Enes Avcu [11] and others have applied the Whale Algorithm to 
drone path planning to avoid collisions in cluttered areas. Although effective, the optimization 
performance is still suboptimal and requires further improvement.

This paper proposes an improved Whale Algorithm that integrates Cuckoo Search [12] and 
Random Differential [13] strategies, ensuring the global search capability of the Whale Opti-
mization Algorithm and its optimization precision. And the improved Whale Optimization 
Algorithm has been applied to drone 3D path planning for the first time.

2. Introduction to the Whale Optimization Algorithm
The Whale Optimization Algorithm (WOA) simulates the foraging behavior of whales, pri-
marily involving two strategies: bubble-net feeding and random search.

2.1. Bubble-net encircling mechanism
The foraging behavior of humpback whales involves encircling prey and moving in a spiral 
to achieve local optimization. In the Whale Optimization Algorithm (WOA), each whale 
position in the search space represents a potential solution, where the individual closest to the 
optimal value of the objective function is considered the best. Other whales will update their 
positions by moving closer to this global best position, simulating the real-life behavior of 
whales encircling their prey can be described as shown in Equation (1):

 X t X t A D+( )= ( )− ⋅∗1   (1)

In the formula: D C X t X t= ⋅ ( )− ( )∗ ; t represents the current iteration count. X∗  rep-
resents the global best position vector. X represents the current whale position vector.

A and C are parameter matrices, A a r a= ⋅ −2 1 , C r= ⋅2 2 , r1  and r2  are random numbers 
between 0 and 1. a t tmax= −2 2 / , tmax  represents the maximum number of iterations. During 
the spiral update of positions, the distance between the current position and the best whale 
individual is first calculated, and then movement towards the best individual is performed in a 
spiral motion. The mathematical model for this phase can be expressed as shown in Equation 
(2):

 X t X t D e lp
bl( ) cos .+ = ( )+ ′ ⋅ ⋅ ( )∗1 2π  (2)

In the equation: ′ = ( )− ( )∗D X t X tp , l is a random number between -1 and 1, b is a con-
stant which determines the shape of the helix.

When whales are within their enclosure, they approach their prey by feeding with bubble 
nets. In this case, when the amplitude of the spiral update is less than 1, the whale will perform 
a local optimal search while surrounding prey and performing spiral updates with a 50% 
probability. The mathematical model for this process is shown in Equation (3):
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2.2. Search and prey mechanism
In addition to the bubble-net method, whales also employ a random search strategy to locate 
prey. When the coefficient A exceeds the range of −[ ]1 1, , the position of the whale is ran-
domly updated based on the distance data D. This deviation from the original target enhances 
the algorithm’s global search capability, aiding in the search for solutions across a broader 
search space. As shown in Equations (4) and (5):

   randD C X X j= ⋅ − ( )  (4)

 X j X A D+( )= − ⋅1 rand   (5)

Xrand  Represents the position of a randomly selected individual whale from the current 
population.

3. Introduction to improvement strategy

3.1. Introduction to the random differential algorithm
The differential algorithm is an evolutionary optimization technique that mimics biological 
evolutionary mechanisms, specifically designed for optimizing continuous variables [14]. It 
continuously generates new candidate solutions through mutation and crossover operations, 
and evaluates the fitness values of these new solutions, retaining the optimal solution until the 
best result is achieved. In the random differential strategy, random elements are incorporated 
into the original differential algorithm. The specific formula is shown as Equation (6).

 Y t m Y t Y t m Y t Y tbest+( )= ( )− ( )( )− ( )− ( )( )∗1 1 2   (6)

In the formula, m1  and m2  are random number between 0 and 1, Y t∗ ( )  represents a ran-
domly selected individual.

By applying the random differential strategy to update positions again after an individual 
has updated its location, and retaining the best-performing position, this method can signifi-
cantly prevent the population from being confined to local optima. Thus, the global search 
capability and optimization performance of the algorithm are enhanced.

3.2. Introduction to the Cuckoo Search
The Cuckoo Search strategy is inspired by the breeding behavior of cuckoos, utilizing strat-
egies generated through Levy flights and random walks [15]. The execution of Levy flights is 
modeled by the following formula(7):

 X t X t+( )= ( )+ ⊕ ( )1 α ηLevy  .  (7)

In the formula, X t( )  is the t-th generation of the solution, X t+( )1 is the t th+( )1  gen-
eration of the new solution. α is the step size coefficient, Levy η( )  is a random number drawn 
from the Levy distribution. The formula for Levy η( )  is shown in Equation (8).
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In the formula, μ and ν are random numbers uniformly distributed according to 
the normal distribution. η is the distribution parameter for Levy flights, typically set at 
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Since the algorithm generates new solutions around the existing best solution, Formula (9) 
can be rewritten as:
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X t Xbest+( )= ( )+ ×
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× ( )−( )1 0 1α
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η| |
 (9)

α0 is a scaling factor set to 0.01 in Formula (10), and Xbest is the current optimal solution. 
Random walk is shown in Equation (10):

  X t
X t r X m X n r P

X t otherwise
a+( )= ( )+ ( )− ( )( ) >

( )





1  (10)

r is the probability of performing a Levy flight, and Pa  is a constant between 0 and 1. m and n 
correspond to different individuals.

3.3. Integration of Cuckoo Search and random differential strategy
Although the Cuckoo Search algorithm effectively enhances global search and prevents premature 
convergence into local optima through Levy flights, it is less efficient in adjusting local solutions 
[16]. In contrast, the Random Differential Algorithm maintains population diversity and effec-
tively finds local optima through differential, crossover, and selection operations [17]. Therefore, 
combining these two algorithms can enhance global search capabilities, increase search random-
ness, and improve the quality of solutions and the convergence speed of the algorithm. This paper 
modifies Formula (10) to Formula (11) and names the improved Whale Algorithm as: Cuckoo 
Search-Random Differential Strategy [18] based Whale Optimization Algorithm (CSRD-WOA).
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3.4. Whale Optimization Algorithm with multi strategy fusion
In the CSRD-WOA, parameter selection significantly impacts algorithm performance. Key 
parameters have been designed as shown in Table 1, optimized based on extensive testing and 
sensitivity analysis to improve search efficiency and solution quality.

Table 1. Parameter settings.

Parameter NP dim tmax b η α Pa
Size 500 30 30 1 1.5 0.01 0.8

https://doi.org/10.1371/journal.pone.0316836.t001

https://doi.org/10.1371/journal.pone.0316836.t001
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4. Algorithm performance testing and analysis

4.1. Test function setup
To fully validate the performance of CSRD-WOA, three types of test functions were selected: 
unimodal functions, multimodal functions, and fixed multimodal functions. Detailed descrip-
tions are provided in Tables 2–4.

4.2. Comparative experiment
The CSRD-WOA algorithm is applied to the benchmark test functions described in Section 
4.1, resulting in the statistical outcomes presented in Table 5.

Table 2. Unimodal test functions.

Number Expression Function optimal solution

F1 f x x zi
n

i i1 1
2( ) ( )=∑ −=

0

F2 f x max x ii2 1 30( )= ≤ ≤{ }, 0

F3 f x ix randomi i3 1
30 4 0 1( ) [ , )=∑ +=

0

https://doi.org/10.1371/journal.pone.0316836.t002

Table 3. Multimodal test functions.

Number Expression Function optimal solution
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https://doi.org/10.1371/journal.pone.0316836.t003

Table 4. Fixed multimodal test functions.

Number Expression Function optimal solution

F1
f x

j x aj
i i ij
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30 2

( ) [ ( )]

[

= + + +( ) − + − + + ×

+ −−( ) − + + − +3 18 32 12 48 36 272
2

1 1
2

2 1 2 2
2x x x x x x x( )]

2.9999999999992

https://doi.org/10.1371/journal.pone.0316836.t004

https://doi.org/10.1371/journal.pone.0316836.t002
https://doi.org/10.1371/journal.pone.0316836.t003
https://doi.org/10.1371/journal.pone.0316836.t004
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Additionally, Figs 1–9 are displays images of several benchmark test functions. Among 
them, F1 and F2 are unimodal test functions, F4 and F5 are multimodal test functions, and 
F7 and F8 are fixed multimodal test functions. These three categories of test functions are 
used to evaluate function convergence, optimization capability, and the ability to handle 
complex problems, respectively. Based on the content of Figs 1–9 and Table 5, it is evident 
that the improved algorithm surpasses the original WOA in terms of convergence, optimiza-
tion capability, and handling complex problems, indicating that the improvement strategies 
employed in this study are effective. Although the improved algorithm slightly underperforms 
the original WOA and PSO algorithms in some test results, the effectiveness of the adopted 
improvement strategies remains evident.

4.3. Ablation experiment
To demonstrate that the improvement strategies have enhanced the original WOA, this 
section employs ablation experiments [19] to verify the effectiveness of these strategies. The 
larger the obtained value, the higher the degree of improvement. The calculation formulas for 
the ablation experiment are shown in Equation (12).

Table 5. Benchmark test function result.

Function Evaluation criteria PSO CS WOA CSRDWOA
F1 Best 372.3384 21.7327 0 0

Mean 1906.5221 1221.8361 821.3629 212.7033
Std 2490.9898 1786.2417 3501.8532 1549.3213

F2 Best 6.1713 12.4933 0.0693 0
Mean 14.2241 22.76 12.9049 0.0009
Std 6.456 9.6169 21.0429 0.0093

F3 Best 0.3997 0.0602 0.0033 0.0006
Mean 2.8156 0.1771 0.5106 0.0045
Std 9.9699 0.2356 2.5482 0.0284

F4 Best 221.4351 195.8508 119.215 3.4013
Mean 28.9113 36.5113 57.1616 22.8166
Std 14.5254 34.0211 61.1915 92.8571

F5 Best 5.5849 19.9387 5.06E-14 8.88E-16
Mean 8.8591 19.9392 1.3684 0.0518
Std 2.3626 0.0014 3.1324 0.4341

F6 Best 2.4873 1.0751 0.0222 0
Mean 24.6904 8.8593 6.2936 0.3364
Std 27.332 12.0609 28.8159 6.6783

F7 Best 2.9821 0.998 0.998 0.998
Mean 3.0101 0.998 1.0718 0.998
Std 0.439 0 0.2605 0

F8 Best 0.3979 0.3979 0.3979 0.3979
Mean 0.3993 0.3979 0.3981 0.3979
Std 0.0163 0 0.0014 0

F9 Best 3 3 3 3
Mean 3.0495 3 3.002 3.0001
Std 0.6172 0 0.0212 0.0016

https://doi.org/10.1371/journal.pone.0316836.t005

https://doi.org/10.1371/journal.pone.0316836.t005
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Fig 1. F1 .

https://doi.org/10.1371/journal.pone.0316836.g001

Fig 2. F2 .

https://doi.org/10.1371/journal.pone.0316836.g002

https://doi.org/10.1371/journal.pone.0316836.g001
https://doi.org/10.1371/journal.pone.0316836.g002
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The larger the obtained value, the better the improvement of the algorithm. In Formula 
(13), fCS WOA

best
−  and fWOA

best  respectively represent the average best fitness values of the CSRD-
WOA algorithm and the WOA algorithm. fCS WOA

best
−  and fWOA

best  are the best fitness values of 
the CSRD-WOA and WOA algorithms on the test functions, respectively. Smaller values 
of γ2  indicate poorer optimization performance of the control algorithm, highlighting that 
the missing strategy is crucial for enhancing the performance of the original algorithm. The 
results of the ablation experiment are shown in Table 6.

Fig 3. F3 .

https://doi.org/10.1371/journal.pone.0316836.g003

Fig 4. F4 .

https://doi.org/10.1371/journal.pone.0316836.g004

https://doi.org/10.1371/journal.pone.0316836.g003
https://doi.org/10.1371/journal.pone.0316836.g004
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The results of the ablation experiments reveal that the improvement strategies adopted 
for CSRD-WOA enhance its performance compared to the original WOA. Although the 
improvements are not significant for some functions, the strategies can still be considered 
effective. Therefore, based on the results of the benchmark test functions and the ablation 
experiments, it can be concluded that the improvement strategies employed in this study have, 
to a certain extent, improved the performance of WOA.

Fig 5. F5 .

https://doi.org/10.1371/journal.pone.0316836.g005

Fig 6. F6 .

https://doi.org/10.1371/journal.pone.0316836.g006

https://doi.org/10.1371/journal.pone.0316836.g005
https://doi.org/10.1371/journal.pone.0316836.g006
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5. Drone 3D path planning based on the improved Whale 
Optimization Algorithm
To verify the applicability of CSRD-WOA, the algorithm is applied to three-dimensional path 
planning for drones in complex environments [20]. The drone’s path planning needs to con-
sider path cost, threat cost, flight altitude, and smoothness cost [21]. The total cost of drone 
flight is given by Equation (14).

Fig 7. F7 .

https://doi.org/10.1371/journal.pone.0316836.g007

Fig 8. F8 .

https://doi.org/10.1371/journal.pone.0316836.g008

https://doi.org/10.1371/journal.pone.0316836.g007
https://doi.org/10.1371/journal.pone.0316836.g008
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     F X b F Xi
k

n n i( )= ( )
=
∑

1

4

 (14)

Among them, Xi are the decision variables, bn are the function weight parameters, and Fn  
is the nth cost. The cost function is composed of three parts: the threat cost, the altitude cost, 
and the smoothness cost. Below, we will introduce these three cost functions.

5.1. Cost function
Threat environment cost. Drone path planning takes safety into account, simplifying 

potential threats as fixed-radius cylindrical areas to optimize the route and ensure flight safety. 
As shown in Fig 10.

Let M be the set of cylindrical collections representing all potential threat obstacles, with 
the center of the base circle denoted by C and radius R.  The diameter of the drone is D, 
and the vertical distance between adjacent path nodes is dim . S represents the range of the 

Fig 9. F9 .

https://doi.org/10.1371/journal.pone.0316836.g009

Table 6. Ablation experiment results.

Test function γ2

F1 0
F2 7.9445e-196
F3 0.1666
F4 0
F5 0.0175
F6 0
F7 1
F8 1
F9 1

https://doi.org/10.1371/journal.pone.0316836.t006

https://doi.org/10.1371/journal.pone.0316836.g009
https://doi.org/10.1371/journal.pone.0316836.t006
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obstacle risk area. In order to quantify the safety of the drone’s path, the threat cost is calcu-
lated to evaluate the path risk, using Equation (15) to compute the threat cost:
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When the drone is far from the danger zone, the threat level is zero; however, as it approaches 
the danger zone and the vertical distance (dm value) decreases, the threat correspondingly 
increases.

Flight altitude cost. When a drone performs measurement and search tasks, its flight 
altitude is restricted by a minimum height hmin  and a maximum height hmax . A reasonable 
flight altitude ensures the safety of the drone’s flight and the precision of the collected images, 
optimizing task execution. The altitude cost is as shown in Equations (16) and (17).

 H

h
h h

h h h

otherwise
ij

ij
max min

min ij max
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≤ ≤
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 2
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  (16)

Fig 10. Threat area diagram.

https://doi.org/10.1371/journal.pone.0316836.g010

https://doi.org/10.1371/journal.pone.0316836.g010
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 F X Hi
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∑  (17)

The altitude cost aims to ensure that the drone remains within the set flight altitude, penaliz-
ing heights that exceed this range in order to reduce risks and improve efficiency.

Smoothness cost. The drone’s heading is controlled by horizontal turning angles and 
vertical pitch angles, which need to be set appropriately to comply with flight restrictions and 
ensure path safety and efficiency in response to sudden and environmental challenges. The 
horizontal turning angle is the angle between continuous path segments on the horizontal 
plane. This angle is calculated using Equation (18):

 φij
ij i j i j i j

ij

P P P P
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The vertical pitch angle refers to the angle difference between two consecutive path seg-
ments in the vertical direction, as shown in Equation (19):

  ψij
i j ij

ij i j

z z

P P
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The calculation of the smoothness cost is as shown in Equation (20):

   F X a ai
j
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ij
j

n

ij i j3 1
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2

2
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1

1( )= + −
=

−

=

−

−∑ ∑φ ψ ψ ,  (20)

In the equation, a1  and a2  are the penalty coefficients for the horizontal turning angle and 
the vertical pitch angle, respectively.

Flight distance cost. The calculation of the flight distance cost involves measuring the 
displacement between adjacent data points along the drone’s flight path. By calculating 
the magnitude of the coordinate differences between these points, the length of each 
segment can be obtained. Summing these lengths yields the total flight distance cost. 
Assuming the three-dimensional coordinate data of the drone’s flight trajectory is 
x y z x y z x y zN N N1 1 1 2 2 2, , , , , , , , ,( ) ( ) … ( ){ } , where  N  is the number of data points. The 

calculation formula for the flight path cost is shown in Equation (21).

 F diff
N

i

i4
1

1

= ∑
−

=

� �  .  (21)

Based on the aforementioned four types of flight costs, the total cost of the drone flight can 
be determined by Equation (22).

 F F F F Ftotal = × + × + × + ×ω ω ω ω1 1 2 2 3 3 4 4  (22)

In the equation, ω ω ω ω1 2 3 4, , ,  respectively represent the weights for the threat environment 
cost, altitude cost, smoothness cost, and flight distance cost, with values set at: 10, 100, 10, 50. 
The flight cost parameters are as shown in Table 7. This weight coefficient value setting helps 
to provide a more intuitive observation of drone flight costs.
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5.2. Simulation testing and analysis
The simulation environment is configured on a Windows 10 system, using MATLAB 2019b 
to create two types of terrain: mountainous terrain with multiple structures and relatively flat 
mountainous terrain. Various threats are added to both types of terrain to simulate environ-
ments of different complexities for drone path planning experiments.

Case study one. Terrain environment parameters: The terrain environment for Case 
Study One is shown in Fig 11. The deep blue cylinders represent the hazardous areas in the 
terrain. The test environment is set to an area of 400m by 400m, with a maximum flight 
altitude of 350m.

In the terrain scenario, the drone starts from the coordinates (10, 10, 200) m and flies to the 
endpoint at (400, 400, 150) m.

Table 7. Parameter settings.

Parameter S D a1 a2 ω1 ω2 ω3 ω4

Size 20 10 1 1 10 100 10 50

https://doi.org/10.1371/journal.pone.0316836.t007

Fig 11. Terrain map for case study one.

https://doi.org/10.1371/journal.pone.0316836.g011

https://doi.org/10.1371/journal.pone.0316836.t007
https://doi.org/10.1371/journal.pone.0316836.g011
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The coordinates of the hazardous areas in the terrain of Case Study One are shown in Table 8.
Simulation experiment: Comparative experiments are conducted using the CSRD-WOA 

algorithm proposed in this paper with the PSO algorithm, WOA algorithm, and CS algorithm. 
The resulting optimal fitness iteration curve for the flight is shown in Fig 12.

From the fitness curve diagram in Fig 12, it can be seen that the CSRD-WOA algorithm 
found the optimal solution. Additionally, the various costs associated with the droneflight are 
presented in Table 9.

As seen from Table 9, the CSRD-WOA algorithm achieved the optimal fitness value, and 
all associated costs are lower than those of the other algorithms. This indicates that the drone 
path planning optimized by CSRD-WOA can completely avoid threat areas while reducing 
flight costs. Figs 13–15 are shows the side view, top view, and 3D view of the flight path, 
respectively. These views illustrate the drone flight paths optimized by each algorithm, reveal-
ing that the path optimized by CSRD-WOA is safer and smoother.

Table 8. Coordinates and radius of hazardous areas in case study one.

Serial number Coordinates (unit: m) Threat radius (unit: m)
1 (300, 300, 100) m 50 m
2 (200, 100, 100) m 40 m
3 (100, 200, 100) m 50 m
4 (300, 100, 100) m 40 m
5 (200, 50, 100) m 40 m
6 (150, 350, 100) m 50 m

https://doi.org/10.1371/journal.pone.0316836.t008

Fig 12. Flight optimization iterations.

https://doi.org/10.1371/journal.pone.0316836.g012

https://doi.org/10.1371/journal.pone.0316836.t008
https://doi.org/10.1371/journal.pone.0316836.g012
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Case study two. To verify the accuracy and reliability of the experimental results, this 
study designed a series of new simulation experiments based on different ground conditions.

Terrain environment parameters: The terrain environment for Case Study Two is shown 
in Fig 16. The deep blue cylinders represent the hazardous areas in the terrain. The test envi-
ronment is set to an area of 400m by 400m, with a maximum flight altitude of 350m. In the 
terrain scenario, the drone starts from the coordinates (10, 10,200) m and flies to the endpoint 
at (400, 400, 150) m.

The coordinates of the hazardous areas in the terrain of Case Study Two are shown in Table 10.
Simulation experiment: During the flight, the maximum turning angle of the drone is 

restricted to 45°. The simulation population size is 500, with a maximum of 100 iterations. 
The final optimal fitness for the flight, flight distance cost, threat cost, altitude cost, and 
smoothness cost are shown in Table 11, and the optimal fitness iteration curve for the flight is 
shown in Fig 17. Comparative experiments are conducted between the CSRD-WOA algo-
rithm and the PSO algorithm, WOA algorithm, and CS algorithm.

Table 9. Flight cost.

Algorithm name Optimal fitness value Flight distance cost Threat cost Altitude cost Smoothness cost
PSO 6648.9351 671.7923 5.3762e + 43 203.2753 278.7714
WOA 9422.5884 709.0645 6.9252 168.5617 0
CS 8853.7605 721.4416 5.3762e + 43 454.9298 329.5859
CSRD-WOA 6133.2575 600.1567 0 14.551 0

https://doi.org/10.1371/journal.pone.0316836.t009

Fig 13. Side view.

https://doi.org/10.1371/journal.pone.0316836.g013

https://doi.org/10.1371/journal.pone.0316836.t009
https://doi.org/10.1371/journal.pone.0316836.g013
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Fig 14. Top view.

https://doi.org/10.1371/journal.pone.0316836.g014

Fig 15. 3D view.

https://doi.org/10.1371/journal.pone.0316836.g015

https://doi.org/10.1371/journal.pone.0316836.g014
https://doi.org/10.1371/journal.pone.0316836.g015
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Fig 16. Terrain map for case study two.

https://doi.org/10.1371/journal.pone.0316836.g016

Table 10. Coordinates and radius of the hazardous area in case two.

Number, Coordinates (unit: m) Threat radius (unit: m)
1 (85, 290, 80) 30 m
2 (120, 100, 70) 20 m
3 (220, 210, 90) 30 m
4 (230, 360, 80) 20 m
5 (300, 100, 70) 20 m
6 (350, 300, 70) 30 m

https://doi.org/10.1371/journal.pone.0316836.t010

https://doi.org/10.1371/journal.pone.0316836.g016
https://doi.org/10.1371/journal.pone.0316836.t010
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From the fitness curve diagram in Fig 17, it can be seen that the CSRD-WOA algorithm 
found the optimal solution, while the CS algorithm, WOA algorithm, and PSO algorithm all 
fell into local optima. This indicates that the precision of the CS, WOA, and PSO algorithms 
in finding the optimal solution is far inferior to that of CSRD-WOA. As seen from Table 11, 
the CSRD-WOA algorithm outperforms the other three algorithms in total cost, flight distance 
cost, threat cost, altitude cost, and smoothness cost. This suggests that the CSRD-WOA algo-
rithm is more suitable for finding the optimal path for drones. Furthermore, the flight path of 
CS passes through the threat area, which is very disadvantageous for the safety of drone flight. 
Figs 18–20 are shows the side view, top view, and 3D view of the flight path, respectively.

From the 3D visual diagram, top view, and side view of the flight paths shown in Figs 
18–20, it can be observed that the drone’s trajectory based on the CSRD-WOA algorithm is 
straighter, shorter, smoother, and successfully avoids all hazardous areas.

Fig 17. Flight optimization iterations.

https://doi.org/10.1371/journal.pone.0316836.g017

Table 11. The cost of the flight in case two.

Algorithm name Optimal fitness value Flight distance cost Threat cost Altitude cost Smoothness cost
PSO 7452.86 707.21 71.37 239.85 214.24
WOA 6669.11 604.91 0 62.00 0
CS 10775.75 681.65 2.69E + 43 217.30 514.07
CSRD-WOA 5773.15 577.31 0 0.0035 0

https://doi.org/10.1371/journal.pone.0316836.t011

https://doi.org/10.1371/journal.pone.0316836.g017
https://doi.org/10.1371/journal.pone.0316836.t011
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Fig 18. 3D view.

https://doi.org/10.1371/journal.pone.0316836.g018

Fig 19. Top view.

https://doi.org/10.1371/journal.pone.0316836.g019

https://doi.org/10.1371/journal.pone.0316836.g018
https://doi.org/10.1371/journal.pone.0316836.g019
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In summary, in both scenarios, CSRD-WOA demonstrates higher efficiency in avoiding 
various threat terrains, and it achieves the lowest total cost, flight distance cost, threat cost, 
altitude cost, and smoothness cost in path planning.

6. Conclusion
This paper proposes a three-dimensional path planning method for drones based on the 
CSRD-WOA algorithm. Firstly, after the completion of iterations in the whale algorithm, 
the diversity and randomness of the population are increased using the strategy of cuckoo- 
random differential, which compensates for the drawback of the population being prone to 
local optima in the early stage. This strategy allows the population to escape local optima 
and improves global search capability. Secondly, a model of drone terrain, threat sources, 
and drone constraints is constructed, and corresponding cost functions are defined. Finally, 
simulation results show that the CSRD-WOA algorithm performs excellently in drone path 
planning, enabling the drone to quickly traverse dangerous areas and avoid obstacles within 
the shortest distance, demonstrating significant practical value.
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Fig 20. Side view.
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