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Abstract 
Comparative urban research in the USA has an unacknowledged data and methodolog-

ical problem at the metropolitan scale, rooted in geographic and definitional boundary 

changes of urban areas across time. In this article, we introduce a new spatial dataset, 

decision criteria, and methodological protocol for longitudinal and comparative research 

with US metropolitan statistical areas (MSAs)—known as ‘metros’—in a way that centers 

a ‘city-centric’ approach to comparison while significantly reducing spatial error and bias. 

First, we review gaps and limitations of existing approaches and identify three major but 

previously unacknowledged sources of error, including a new source of bias we call ‘span-

ning error.’ Next, we explain our methodological protocol and decision criteria, which are 

guided by the twin aims of reducing spatial bias and ensuring metropolitan consistency 

over time. We then introduce our improved dataset, which covers the 50 largest MSAs 

from 1980-2020. We argue that by centering the urban area as the fundamental unit of 

analysis—a city-centric approach—our methodology and dataset provides robust and 

dynamic metropolitan definitions that advance comparative urban studies while improving 

precision and accuracy in urban data analysis across different time scales. We discuss 

broader applications of our methodology and identify advantages and limitations over 

existing techniques, including potential applications of this work in policy, planning, and 

future research.

Introduction
Comparative urban research in the USA has a data problem at the metropolitan scale. The 
problem is rooted in the simple fact that geographic and definitional boundaries of urban 
areas change over time. In this article, we introduce a new spatial dataset, decision criteria, 
and methodological protocol for longitudinal and comparative research with US metropolitan 
statistical areas (MSAs)—known as ‘metros’—in a way that centers a ‘city-centric’ approach to 
comparison while significantly reducing spatial error and bias.
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Population growth makes it difficult to develop consistent metropolitan definitions of 
Metropolitan Statistical Areas (MSAs). In Atlanta, for example, the population has more than 
tripled over the past 40 years, from just over 2 million residents in 1980 to 6.3 million in 2023 
[1,2]. The official metropolitan footprint of Atlanta has grown to accommodate its urbaniza-
tion, from 16 counties in 1980 to 29 counties in 2023 (Fig 1); yet any ‘static’ metro definitions 
do not keep pace with these normal urban transformations. This problem is easily overlooked 
or buried, and becomes problematic to draw comparisons across time and between cities. The 
Atlanta example powerfully illustrates how methods that do not account for urbanization—a 
core focus of urban studies—introduces spatial bias, error, and related problems that pose 
obstacles to high-quality research (Fig 1). The aim of this paper is to bring potential sources 
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Fig 1.  The urbanization of Atlanta, GA creates challenges for methods that use ‘static’ metro definitions. Source data: [3,4].

https://doi.org/10.1371/journal.pone.0316750.g001
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of spatial error to light, and to advance a new and improved dataset and methodology for 
comparative US metro research.

This article offers a new methodology and spatial dataset [5] that advances a ‘city-centric’ 
approach to longitudinal and comparative urban research in the USA. The article introduces a 
new methodological protocol, design principles, and spatial dataset that circumvents unac-
knowledged forms of spatial error, promotes a ‘dynamic’ (in contrast to ‘static’) method of 
urbanization, and better supports urban theory-building across time and space. We innovate 
a city-centric approach that (1) privileges the urban area (i.e., the MSA) over time, and that 
(2) accommodates the normal arc of growth, expansion, and change (i.e., urbanization) in the 
50 largest US metro regions from 1980 to 2020. This methodology, we argue, offers distinct 
advantages in reducing error—including a new source of bias we call spanning error—and 
more accurately reflects the intellectual goals of many urban researchers, who seek to explain 
changing dynamics and trends over time in ways that preserve the larger social and economic 
functionality of the urban area (in this case, the MSA) as the principal unit of analysis.

To develop the methodology, our analysis uses census microdata: defined as data about 
households and individuals. Census microdata are one of the most powerful tools in the social 
science analytical toolbox. Unlike predefined census tables, microdata allow researchers to con-
duct customized analyses of a wide array of socioeconomic, health, and demographic phenom-
ena affecting individuals, population groups, and communities [4,6]. Microdata are also useful 
for avoiding ecological inference issues, an all-too-common source of error that is introduced 
when researchers use aggregate data to make individual and household-level inferences [7]. 
In the United States, the building blocks of census microdata are public use microdata areas 
(PUMAs). Containing roughly 100,000 individuals, PUMAs are the smallest geography avail-
able for reporting census microdata, designed to ensure respondent data remain private.

Using census microdata, we published the first systematic and comprehensive analy-
sis of household water access in US cities, highlighting the racial, class-based, and housing 
disparities of water insecurity [8]. We also released a companion dataset containing custom 
geographic definitions for the 50 largest US metros and accompanying code [9]. This article 
is an improvement on our 2020 scholarship as it (1) clearly identifies and quantifies exam-
ples of spatial bias in existing approaches; (2) updates the database—still available for public 
download and use—from 1980 to 2020; and (3) explicates a methodological protocol and 
set of decision criteria. In the next section, we review the methodological design of exist-
ing approaches and identify three significant but unacknowledged sources of spatial error, 
illustrated by examples. We then explain and justify the decision criteria used to develop our 
methodology, which is guided by the twin aims of reducing spatial bias (including spanning 
error) and ensuring metropolitan consistency over time—a city-centric approach. We then 
introduce our recoded open access dataset, which covers the 50 largest MSAs (1980-2020), 
and discuss key issues in recoding and database development. Finally, we discuss advantages 
and limitations of our approach in relation to existing techniques, and conclude with potential 
applications of this work in policy, planning, and research.

Limitations of existing approaches
Definitional and boundary changes of metropolitan areas, combined with technical issues, 
are major impediments to precision and accuracy in longitudinal analysis. In this section, we 
review existing approaches and identify three major problems and sources of spatial error. 
Such issues, we explain, help underscore the importance of developing a methodology that 
puts the urban region at the heart of analysis, while ensuring MSA consistency over time.

The first and most common approach uses static metro definitions that are anchored to 
a fixed point in time, such as the use of a 2000 metro definition for a 2000-2020 longitudinal 
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analysis (e.g., [10–12]). The second approach, which is more robust, creates dynamic metro 
definitions by accounting for changes to county and/or PUMA assignments (e.g., [13–15]). 
Below we outline the limitations of existing approaches and illustrate the accompanying gaps 
and limitations.

Problem 1: Changing definitions of metro areas
In reviewing existing approaches, the first major problem is the changing definition of MSAs. 
With counties serving as the building blocks of MSAs, the US Office of Management and Bud-
get (OMB) redefines MSAs after each decennial census, adding or removing counties based on 
population change and commuting patterns [16]. The OMB groups counties into core-based 
statistical areas (CBSAs) according to metro-centered definitions of urbanized areas: 50,000 or 
more people residing in a densely populated urban core. This means that the physical expan-
sion of metropolitan areas, a normal process that occurs in nearly all major US urban areas, 
results in changing county composition every ten years. The US Census Bureau provides his-
torical delineation files detailing the historical evolution of metro definitions since 1950 [17].

Researchers can account for these OMB changes by adopting a static or a dynamic defi-
nition of the metropolitan region. A static definition holds the geographic boundaries of the 
MSA constant across all time periods, usually by incorporating non-metropolitan counties 
that were added in subsequent years into earlier datasets. For example, the Bureau of Eco-
nomic Analysis’ Local Area Personal Income and Employment data series going back to 
1969 have all been re-coded based on the current metropolitan county composition [10]. In 
contrast, a dynamic metropolitan definition—such as our approach—follows urban theory to 
center the urbanized area as the fundamental unit of analysis, expanding the definition over 
time to account for the physical expansion.

A dynamic definition tends to overstate quantitative metrics such as employment and pop-
ulation growth of a metropolitan area, since the increase from one year to another may reflect 
the reclassification of previously rural residents or workers as urban. In contrast, a static 
definition would tend to overstate the relative influence of agricultural functions in the met-
ropolitan area, and potentially mask rural-to-urban migration by counting non-metropolitan 
areas as metropolitan at times when they did not exhibit the economic characteristics of urban 
areas. Choosing a dynamic or static definition may depend on whether the researcher intends 
to compare nominal growth rates between places, or capture more compositional characteris-
tics such as industrial or occupational composition.

A second and equally important implication of changing definition of MSAs is that the 
OMB has adopted different categorization schemes of metropolitan categories over the 
decades. In the 1990 Census, many MSAs that had previously been considered a single met-
ropolitan area were disaggregated into a consolidated MSA (CMSA) and constituent pri-
mary MSAs (PMSA). For example, in the Chicago metropolitan region, three new suburban 
primary MSAs encompassing five counties were created for the 1990 Census (Aurora, Joliet, 
and Lake counties), only to be re-aggregated into the Chicago primary MSA for Census 2000. 
In the 2000s, the OMB introduced a new scheme entirely, called core-based statistical areas, 
which include metropolitan statistical areas as well metropolitan divisions, consolidated statis-
tical areas, and micropolitan statistical areas.

Problem 2: Changes in PUMA boundaries
The task of developing consistent MSA definitions would be considerably easier if the build-
ing blocks of the dataset were consistent over time. The PUMA, not the county, is the smallest 
geography for analyzing and reporting microdata, and therefore serves as the building block 
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for metro-specific microdata analyses. PUMA boundaries are redrawn by state-level officials 
after each decennial census to account for population shifts and urban growth. Therefore, it 
is important for researchers using microdata to account for changes in PUMA boundaries, 
which is the second major obstacle to conducting longitudinal analysis of metropolitan areas.

Researchers at IPUMS (formerly Integrated Public Use Microdata Series), part of the Insti-
tute for Social Research and Data Innovation at the University of Minnesota, have attempted 
to resolve this problem by developing two variables that create a harmonized set of PUMAs 
over time. The first, CONSPUMA, provides consistent PUMA geographies for the 1980-2000 
decennial censuses, while the second, CPUMA0010 (Consistent PUMA, 2000-2010), follows 
a slightly different method for creating consistent PUMA geographies for the 2000 and 2010 
Censuses [18]. A map of current PUMA boundaries for the USA are available from IPUMS 
USA [19].

The problem here is two-fold: 1) the aim of the IPUMS approach is to achieve PUMA con-
sistency, not MSA consistency, and 2) consistency is achieved by including as many as a dozen 
or more PUMAs into a single CONSPUMA (Consistent PUMA), resulting in a significant loss 
of spatial granularity in the analysis. We take inspiration from the IPUMS approach and apply 
it to a different geography—the MSA—to provide comparability over time.

Problem 3: Spanning error
In the metro core, PUMAs generally nest within counties due to higher population densi-
ties. At the urban periphery, however, things are trickier. To achieve the minimum popula-
tion threshold of around 100,000 individuals, PUMAs often include suburban and exurban 
counties within metro areas, along with adjacent non-metropolitan (rural) counties. In 
short, we identify a new form of bias called ‘spanning error’—a problem that emerges 
when PUMAs span across metropolitan and non-metropolitan counties, typically along the 
suburban fringe—as a third major obstacle for longitudinal research. Below we outline two 
interrelated issues, one geographic and the other related to data confidentiality, that emerge 
from PUMA spanning, making it impossible to develop consistent geographic definitions of 
metropolitan areas.

A major problem of spanning error is that each US metropolitan area presents a unique 
challenge and inconsistent level of bias. To illustrate the geographic dimensions of PUMA 
spanning and its difficulties, we present an example from the 2020 Census. Three cases of 
PUMA spanning are visualized and explained: 1) perfectly nested and best case scenarios (e.g., 
Buffalo); 2) moderately difficult cases (e.g., Baltimore); and, 3) messy cases (e.g., San Antonio).

The first example illustrates how PUMAs may nest perfectly within metro county bound-
aries, as in Buffalo, NY (Fig 2). The absence of PUMA spanning in Buffalo is a ‘best case’ 
scenario because the researcher does not have to subjectively assign PUMAs to metro geogra-
phies given that all PUMAs are wholly contained within the official metro boundary. In other 
words, the researcher can compare the Buffalo MSA across time without importing spatial 
bias.

Unfortunately, the ‘best case’ scenario is uncommon. Researchers are more likely to 
encounter geographically discordant boundaries that require careful analysis and subjective 
researcher decisions. In moderately difficult cases such as Baltimore (Fig 3), Queen Anne’s 
County (part of the Baltimore MSA), located on Maryland’s Eastern Shore, is part of a PUMA 
that also includes four non-metro counties (Kent, Talbot, Caroline, and Dorchester). This geo-
graphic mismatch raises an important practical consideration: whether to include or exclude 
this PUMA in the Baltimore MSA. Fewer than three in ten individuals (29%) of the Eastern 
Shore PUMA lived in the Baltimore MSA in 2020, so excluding this PUMA makes sense given 
that most individuals reside in areas outside the Baltimore metro boundary.
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The third and final example, featuring San Antonio, TX, presents an extreme case of 
PUMA spanning (Fig 4). In San Antonio, there are three unique PUMA spans, producing a 
‘messy’ situation that forces the researcher to make difficult decisions on PUMA assignments. 
The first span covers the western and southern part of the metro. Here, the metro counties of 

Fig 2.  Example of Buffalo, NY, a perfectly nested and ‘best case’ scenario. Source data: [4].

https://doi.org/10.1371/journal.pone.0316750.g002

https://doi.org/10.1371/journal.pone.0316750.g002
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Atascosa, Medina, and Bandera are part of a PUMA that also includes one non-metro county 
(Frio). Most individuals (87%) in this PUMA reside within the San Antonio metro boundary. 
The second span, located in northwest San Antonio, includes Kendall County. The PUMA 
containing Kendall County also includes three non-metro counties (Kerr, Gillespie, and 

Fig 3.  Example of Baltimore, MD, a ‘moderate case’ scenario. Source data: [4].

https://doi.org/10.1371/journal.pone.0316750.g003

https://doi.org/10.1371/journal.pone.0316750.g003
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Blanco), with roughly one in three individuals (33%) residing in the San Antonio metro. The 
third span is located in southeastern San Antonio. This PUMA includes Wilson County and 
six non-metro counties (Karnes, Gonzales, Goliad, DeWitt, Lavaca, and Jackson), meaning 
that one in three (34%) individuals in this PUMA reside within the San Antonio metro.

Our analysis here underscores the importance of minimizing PUMA spanning, whenever 
possible. Currently, the Census State Data Center (SDC) coordinator from each US state 
redraws PUMA boundaries after each decennial census to account for population change [20]. 
By closely collaborating with metropolitan planning organizations and other stakeholders, 
this locally-driven process ensures that PUMAs are drawn in a way that supports regional 
transportation, economic, housing, and other planning efforts. The downside, however, is that 
PUMA boundaries often vary by state and over time, and span across metro and non-metro 
county boundaries, representing a significant obstacle for comparative urban research across 
the 50 metros.

A second major implication of PUMA spanning is that the Census Bureau codes all indi-
vidual cases of ‘spanned’ PUMAs as “indeterminable” even though some individuals reside 
within a given metro area. Researchers analyzing housing affordability in Baltimore, for exam-
ple, need to first select Baltimore metro residents from the census microdata. The problem is 

Fig 4.  Example of San Antonio, TX, a ‘messy’ scenario. Source data: [4].

https://doi.org/10.1371/journal.pone.0316750.g004

https://doi.org/10.1371/journal.pone.0316750.g004
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that residents from Queen Anne’s County—part of the Baltimore MSA—are excluded because 
they reside in a spanned PUMA coded as indeterminable. Recoding individual cases as 
“indeterminable” is designed to prevent researchers from determining the location of individ-
ual cases within a PUMA, thereby preserving respondent confidentiality, a federal mandate 
outlined in Section 9 of the Census Act, U.S. Code Title 13. Excluding these census records 
introduces a type of bias in urban research, which we refer to as spanning error (Table 1).

We calculated the 2020 population spanning error for the 50 largest US metros in Table 1. 
A first important takeaway is that spanning error is not trivial: in fact, spanning error is sig-
nificant for many metropolitan areas. In Louisville, KY, almost 1 in 6 (15.3%) metro residents 
are not designated as living in the Louisville metro due to spanning error (Table 1). Roughly 1 
in 3 metros have a 2020 population spanning error of at least 5%, and the error exceeds 10% 
in eight metros (Table 1). The magnitude of spanning error, combined with the geographic 
dimensions of the error (i.e., concentrated in the suburban and exurban peripheries of metro 
areas), has significant implications for descriptive and inferential analyses.

A second and equally important takeaway is that spanning error will vary depending on 
the variable analyzed. For example, while the total population spanning error in Dallas is 
0.9% (Table 1), the spanning error is more than three times as high—roughly 3%— for the 
non-Hispanic, White population. Digging further into this issue to provide greater context, 
the spanning error in Dallas originates in one PUMA in the northwest part of the metro that 
spans outside of the official metro boundary. Given that individuals residing in this PUMA 
are classified as indeterminable, the microdata population estimate of non-Hispanic, White 
households is 3,699,000, which is 113,000 fewer than the official published census estimate 
(3,812,000). The difference, roughly 3% of the total metro area, represents spanning error. 
This case, which illustrates only one spanned PUMA, underestimates the potential severity of 
the statistical bias. If there are three or four spanned PUMAs, the statistical bias can some-
times approximate 10% or more of the official census estimate.

Methods and analytical approach

Reducing spanning error and ensuring consistency
We argue that centering the urban area as the fundamental unit of analysis—a ‘city-centric’ 
approach—is critical to advance empirical insights and theory-building in comparative urban 
research. To do so, we needed a methodology and dataset that provides robust and dynamic 
metropolitan definitions, which are essential for improving precision and accuracy. Our pro-
tocol established two goals. First, we aimed to reduce bias in metropolitan areas with ‘inde-
terminable’ data resulting from PUMA spanning across metro and non-metro areas. Second, 
we focused on enhancing the overall consistency across the time periods by creating dynamic 
and flexible metropolitan definitions that accommodated the urbanization process. Together, 
these goals allow us to develop a consistent set of metropolitan definitions that reflect urban 
expansion and definitional changes in boundaries over time.

These goals informed subsequent decision criteria that we used to determine whether to 
recode and include or exclude spanned PUMAs in the metropolitan dataset. We established 
four decision criteria to guide our methodology and database development, which we refer to 
as the ‘city-centric’ approach (Table 2).

To achieve our first goal of reducing bias from spanning error, we calculated the total 
population of PUMAs that nest perfectly within metro boundaries. If the spanning error (i.e., 
missing population due to PUMA spanning) was less than 7% of the total metro population, 
we classified the metro dataset as ‘complete’ and no additional analysis was conducted for 
the given metro. If, however, the spanning error was greater than 7%, we classified the metro 
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Table 1.  2020 Population spanning error, 50 largest US metros.

PUMA 2020 Metro 2020 Spanning
Population Population Error

Louisville, KY-IN 1,154,089 1,362,180 15.3%
Charlotte, NC-SC 2,301,953 2,660,329 13.5%
Richmond, VA 1,138,114 1,314,434 13.4%
Virginia Beach, VA-NC 1,544,391 1,780,059 13.2%
Oklahoma City, OK 1,246,225 1,425,695 12.6%
Raleigh-Durham, NC 1,769,559 2,002,893 11.6%
St. Louis, MO-IL 2,495,925 2,820,253 11.5%
Cincinnati, OH-KY-IN 2,020,642 2,249,797 10.2%
Denver-Boulder, CO 2,976,220 3,294,579 9.7%
Memphis, TN-MS-AR 1,218,018 1,345,425 9.5%
San Antonio, TX 2,343,531 2,558,143 8.4%
Austin, TX 2,140,272 2,283,371 6.3%
Washington, DC-VA-MD-WV 5,892,427 6,278,542 6.1%
Atlanta, GA 5,754,223 6,104,803 5.7%
Pittsburgh, PA 2,317,063 2,457,000 5.7%
Indianapolis, IN 1,987,059 2,089,673 4.9%
Minneapolis-St. Paul, MN-WI 3,515,256 3,690,261 4.7%
Columbus, OH 2,040,518 2,138,926 4.6%
Salt Lake City, UT 1,810,140 1,895,133 4.5%
Kansas City, MO-KS 2,105,894 2,192,035 3.9%
Nashville, TN 1,943,203 2,014,444 3.5%
San Jose, CA 1,936,259 2,000,468 3.2%
Portland, OR-WA 2,448,234 2,512,859 2.6%
Chicago, IL-IN-WI 9,249,650 9,449,351 2.1%
Jacksonville, FL 1,572,807 1,605,848 2.1%
Detroit, MI 4,303,422 4,392,041 2.0%
Boston, MA-NH 4,845,626 4,941,632 1.9%
Birmingham, AL 1,158,338 1,180,631 1.9%
Baltimore, MD 2,794,636 2,844,510 1.8%
Houston, TX 7,035,279 7,149,642 1.6%
Philadelphia, PA-NJ-DE-MD 6,180,214 6,245,051 1.0%
Hartford, CT 1,139,001 1,150,473 1.0%
Dallas-Fort Worth, TX 7,568,755 7,637,387 0.9%
Miami, FL 6,102,340 6,138,333 0.6%
New York, NY-NJ-PA 19,984,267 20,081,935 0.5%
Phoenix, AZ 4,835,022 4,845,832 0.2%
Buffalo, NY 1,166,902 1,166,902 0.0%
Cleveland, OH 2,185,825 2,185,825 0.0%
Las Vegas, NV 2,265,461 2,265,461 0.0%
Los Angeles, CA 13,200,998 13,200,998 0.0%
Milwaukee, WI 1,574,731 1,574,731 0.0%
New Orleans, LA 1,007,275 1,007,275 0.0%
Orlando, FL 2,673,376 2,673,376 0.0%
Providence, RI 1,676,579 1,676,579 0.0%
Riverside, CA 4,599,839 4,599,839 0.0%
Sacramento, CA 2,397,382 2,397,382 0.0%

(Continued)
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dataset as ‘incomplete’ and proceeded to the next criterion. Based on our analysis, 7% marked 
an inflection point in the data where the spanning error began increasing exponentially. For 
the second criterion, we prioritized PUMA recodes that restored the metro’s population. 
To avoid skewing the dataset in the opposite direction, we set a rough decision rule that the 
recoded PUMAs needed to contain at least 50% percent metropolitan observations (i.e., 
their inclusion would add more urban than rural population). To illustrate: in Baltimore, the 
Queen Anne’s County PUMA would not be prioritized as a recode under the second criterion 
because only 29% percent of the PUMA’s population resides in the Baltimore metropolitan 
area. The third criterion ensures that the cumulative population of the nested and recoded 
PUMAs represent at least 90% of the metro population (i.e., mirroring the 90% confidence 
interval used in statistical significance testing). Together, the three criteria provide cross sec-
tional or point-in-time consistency for each metro across the study period, 1980-2020.

To enhance definitional consistency, we developed a fourth criterion, consistency over 
time. Unlike the others, this criterion is largely qualitative, allowing us to make nuanced and 
place-sensitive judgments about how and whether to recode PUMAs. To make place-sensitive 
judgments, we considered additional variables, maps, and other key information about a 
metro to support dynamic and flexible metropolitan definitions that prioritized longitudi-
nal consistency. Visualizing geographic boundaries, for example, helped us first identify the 
geographic location of spanned PUMAs and second, prioritize recoding by reviewing census 
data to assess the similarity of demographics for counties of spanned PUMAs compared to the 
larger metropolitan area.

Together, these hybrid quantitative-qualitative criteria are foundational to our protocol, 
which we refer to as the ‘city-centric’ approach, and differs considerably from the IPUMS 
recoding philosophy and methodology. The city-centric approach prioritizes longitudinal 
consistency over all other criteria, which forced us to sometimes override logics established in 
the first three criteria if we determined excluding or including a PUMA would provide a more 
consistent metropolitan definition. We explain our decision making process below using three 
illustrative examples.

First, we added PUMAs to a metropolitan area that were mostly or entirely non-metropolitan 
if recoding created a more consistent county-based metropolitan definition over the study 

PUMA 2020 Metro 2020 Spanning
Population Population Error

San Diego, CA 3,298,634 3,298,634 0.0%
San Francisco, CA 4,749,008 4,749,008 0.0%
Seattle, WA 4,018,762 4,018,762 0.0%
Tampa, FL 3,175,275 3,175,275 0.0%

Source data: [4]. Note: the PUMA 2020 Population refers to the cumulative population of PUMAs that nest wholly within the metro boundary.

https://doi.org/10.1371/journal.pone.0316750.t001

Table 1.  (Continued)

Table 2.  Metropolitan recoding criteria for PUMAs, City-Centric and IPUMS research approaches.

Research Approaches
Criterion City-Centric IPUMS

1 Completeness X
2 Majority urban X X
3 90% cumulative population X
4 Consistency over time X

https://doi.org/10.1371/journal.pone.0316750.t002

https://doi.org/10.1371/journal.pone.0316750.t001
https://doi.org/10.1371/journal.pone.0316750.t002
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period. Second, we expanded three metro boundaries—Raleigh, Salt Lake, and Denver—to 
include their neighboring metropolitan areas, Durham, Ogden, and Boulder, respectively. These 
combined metros are more representative of broader economic connections, commuting pat-
terns, and sociocultural ties that bind these regions, providing greater longitudinal consistency.

Finally, we also considered aggregation of PUMAs for migration variables as a third sub-
jective criterion from 1990-2010. Since 1990, the Census Bureau has aggregated PUMAs for 
the migration or place of residence variable, which reports where an individual resided one 
or five years earlier (MIGPUMA variable). The rationale for creating MIGPUMAs, which 
typically comprise two or three ‘regular’ PUMAs, is because migration (as a highly selective 
process) requires more data protection to ensure the confidentiality of census respondents. 
This means that MIGPUMA spanning is more common than PUMA spanning across metro 
and non-metro counties, resulting in greater bias introduced by ‘incomplete’ cases. There-
fore, we included non-metro spanned PUMAs in the metropolitan definition whenever they 
were combined with metropolitan PUMAs as part of the MIGPUMA variable. For example, 
in 2000, the Pittsburgh metro included PUMA 2001, which spanned metropolitan Beaver 
County and non-metropolitan Lawrence County. Because the Census Bureau aggregated 
PUMA 2001 and metropolitan PUMA 2002 (southern Beaver County) into Pennsylvania 
MIGPUMA 20, it is necessary to include Lawrence County into the Pittsburgh metropolitan 
definition to maintain metro consistency (see S1 Fig).

The recoding process
Creating a new spatial dataset required processing two different types of recodes. The first 
were metropolitan area recodes, which involved reclassifying components of larger metropol-
itan areas that were later classified by OMB as part of a single metropolitan area. Fort Worth, 
TX is a great example. Originally classified as its own metropolitan area from 1990 to 2000, 
Fort Worth has since been reclassified as a “metropolitan division” within a unified Dallas-
Fort Worth MSA. Therefore, we recoded Fort Worth as part of Dallas-Fort Worth metro for 
these two periods to ensure metropolitan consistency over time.

A second set of recodes were processed to reduce bias introduced by incomplete metropol-
itan areas resulting from PUMA spanning, following the decision criteria outlined in Table 2. 
We manually processed 176 separate metropolitan recodes (38 for 1980, 43 for 1990, 26 for 
2000, 41 in 2010, and 28 in 2020). Recoding was straightforward in some cases, including our 
decision to recode the New Jersey PUMA equivalent encompassing Ocean, Hunterdon, Sussex 
and Warren Counties—all non-metropolitan in 1980—to the New York-Northern New Jersey 
metro for that year based on their subsequent incorporation into the metropolitan region for 
1990. Others were more complex, requiring us to closely adhere to the recoding criteria.

To illustrate the challenging and often cumbersome nature of recoding process, we return 
to the example from San Antonio. In Fig 5, we present the official OMB county definition 
for the San Antonio metro (outlined in black), along with the corresponding City-Centric 
and IPUMS definitions for each decade during the 2000-2020 period. Between 1980 and 
1990, Bexar (central core), Comal, and Guadalupe Counties comprised the San Antonio 
metro region; five counties (Atascosa, Bandera, Kendall, Medina, and Wilson) were added 
following the 2000 Census. Following our recoding criteria, we first determined that three 
unique PUMA spans in San Antonio resulted in a corresponding spanning error of 8.4% in 
2020 (Table 1), rendering the metro incomplete (Criterion 1). However, given that the nested 
PUMAs in the three counties comprise at least 90% of the metro population (91.6%) (Cri-
terion 3), we decided not to include additional spanned PUMAs in order to preserve lon-
gitudinal consistency (Criterion 4). Comparing our approach with IPUMS underscores the 
importance of this logic. By relying on one criterion—majority urban—to assign PUMAs to 

pone.0316750.s11
pone.0316750.s11
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a given metro, the IPUMS protocol produces two different metropolitan definitions for San 
Antonio (i.e., the 2000 metro definition differs from the 2010-2020 definition) (Fig 5).

The decision logic and application of the four criteria across the 50 largest MSAs for the 
most recent census period, 2020, is presented in Table 3. Following our ‘city-centric’ approach, 
we processed PUMA recodes for 28 metropolitan areas in 2020. The accompanying rationale 
for including or excluding PUMAs is reported in Notes and Observations in Table 3. In best 
case scenarios like Buffalo where nested PUMAs account for at least 93% of the metro popu-
lation, we considered the metro ‘complete’ and conducted limited additional analysis. There 
are some exceptions, however. For example, although Orlando is considered ‘complete,’ we 
added PUMA 11900 (Sumter County) to the Orlando MSA definition to ensure longitudinal 
consistency (Criterion 4). For ‘incomplete’ metros, we processed majority-urban (Criterion 2) 

Fig 5.  County-defined metro boundaries for San Antonio, TX, 2000-2020. Source data: Calculated by authors, [4].

https://doi.org/10.1371/journal.pone.0316750.g005

https://doi.org/10.1371/journal.pone.0316750.g005
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Table 3.  Application of the City-Centric recoding criteria across the 50 largest US metros, 2020.

Criterion 1: 
Completeness

Criterion 2: Major-
ity Urban

Criterion 3: 
90% Cumulative 
Population

Criterion 4: 
Consistency

Notes and Observations

Atlanta, GA X
Austin, TX X Yes Consistency: added PUMA 05100 (Capital Area COG 

[East]-Bastrop, Caldwell, Fayette & Lee Counties)
Baltimore, MD X
Birmingham, AL X Yes Consistency: added PUMA 01301 (Jefferson [Northwest] & 

Walker Counties)
Boston, MA-NH X Yes Consistency: added PUMAs 00501 - 00507 [Worcester County], 

01001 - 01004 [Bristol and Plymouth Counties], and excluded 
00801 (Seacoast Region, Rockingham County [Southern] [NH])

Buffalo, NY X
Charlotte, NC-SC ^ 97% Yes Completeness: added PUMAS 02700 (Lincoln and Cleveland 

[East] Counties), 00501 (Union and York [West] Counties [SC]), 
and 00700 (Chester, Fairfield, and Lancaster Counties [SC]); Con-
sistency: added PUMAs 01900 (Davie, Yadkin, and Iredell [North] 
Counties and 03300 (Stanly and Cabarrus [East] Counties)

Chicago, IL-IN-WI X
Cincinnati, OH-KY-IN ^ 99% Completeness: added PUMA 03200 (Dearborn, Franklin, Ripley, 

Switzerland, and Ohio Counties [IN])
Cleveland, OH X Yes Consistency: added PUMA 00900 (Ashtabula & Geauga 

Counties)
Columbus, OH X
Dallas-Fort Worth, TX X
Denver-Boulder, CO ^ 99% Yes Completeness: added PUMAs 00401 (Foothills) and 00601 

(Broomfield); Consistency: added PUMAs 01800 (Northeast 
Colorado), 01001 (Weld Rural), 01002 (Greeley), 001003 (South 
Weld), 00501 (East Boulder), 00502 (Boulder)

Detroit, MI X
Hartford, CT ^ 93% Completeness: added PUMA 20500 (Lower Connecticut River 

Valley)
Houston, TX X
Indianapolis, IN X
Jacksonville, FL X Yes Consistency: added PUMA 10799 (Putnam & St. Johns [South] 

Counties)
Kansas City, MO-KS ^ 100%+ Completeness; added PUMA 00800 (Johnson, Lafayette, Ray, 

Clinton & Caldwell Counties)
Las Vegas, NV X
Los Angeles, CA X
Louisville, KY-IN ^ 100%+ Completeness; added PUMA 01800 (KIPDA Area Development 

District [Northeast])
Memphis, TN-MS-AR ^ 91% Yes Nested PUMAs capture 91% of MSA population, but did not add 

additional PUMAs for consistency
Miami, FL X Yes Consistency: added PUMA 08625 (Miami-Dade [South/Outside 

Urban Development Boundary] & Monroe Counties)
Milwaukee, WI X
Minneapolis-St. Paul, 
MN-WI

^ 98% Completeness: added PUMA 01500 (St. Croix & Dunn Counties 
[WI])

Nashville, TN ^ 96% Yes Completeness: added PUMA 02300 (Dickson, Cheatham & 
Hickman Counties); Consistency: excluded PUMA 00600 
(Macon, Dekalb & Cannon Counties)

New Orleans, LA X

(Continued)
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Criterion 1: 
Completeness

Criterion 2: Major-
ity Urban

Criterion 3: 
90% Cumulative 
Population

Criterion 4: 
Consistency

Notes and Observations

New York, NY-NJ-PA X Yes Consistency: added PUMAs 02803 (Dutchess County [North 
and East]), 02804 (Dutchess County [Southwest]), 02805 
(Putnam County & Southern Dutchess County), 02901 (Orange 
County [Northeast]), 02902 (Orange County [Northwest], 02903 
(Orange County [Southeast]), and excluded 00500 (Pike & 
Wayne Counties [NJ])

Oklahoma City, OK ^ 94% Yes Completeness: added PUMA 21800 (South Central Oklahoma 
Counties); Consistency: added PUMA 21200 (East Central 
Oklahoma Counties)

Orlando, FL X Yes Consistency: added PUMA 11900 (Sumter County)
Philadelphia, 
PA-NJ-DE-MD

X Yes Consistency: added PUMA 02501 (Salem & Cumberland 
[North] Counties [NJ])

Phoenix, AZ X Yes Consistency: added PUMA 00400 (Gila, Graham, Greenlee 
Counties)

Pittsburgh, PA ^ 96% Completeness: added PUMA 04012 (Washington (South) & 
Greene Counties)

Portland, OR-WA X Yes Consistency: excluded PUMA 07100 (Yamhill County)
Providence, RI & Yes Consistency: excluded PUMAs 01001 (Bristol County-Attleboro, 

North Attleborough & Swansea [MA]), 01002 (Bristol County-
Taunton, Easton & Mansfield [MA]), 01003 (Bristol County 
[Central]-Fall River, Somerset & Acushnet [MA}), and 01004 (Bris-
tol County [South]-New Bedford, Dartmouth & Westport [MA])

Raleigh-Durham, NC ^ 97% Completeness: added PUMAs 01500 (Chatham & Lee Coun-
ties), 00400 (Granville, Person & Caswell Counties), and 00500 
(Franklin & Vance Counties)

Richmond, VA ^ 98% Completeness: added PUMA 14900 (Crater Planning District 
Commission)

Riverside, CA X
Sacramento, CA X
Salt Lake City, UT X Yes Consistency: added 03000 (Tooele & Box Elder Counties), 

11002 (Davis County [South]), 11003 (Davis County [North-
west]), 11004 (Davis County [Northeast], 57001 (Weber County 
[West]), and 57002 (Weber County [East])

San Antonio, TX 92% Yes Consistency: excluded PUMA 06100 (Alamo Area COG 
[Southwest])

San Diego, CA X
San Francisco, CA X
San Jose, CA X
Seattle, WA X
St. Louis, MO-IL ^ 98% Completeness: added PUMAs 01700 (Franklin & Carter Coun-

ties), 11700 (Macoupin, Morgan, Jersey, Cass, Greene, Scott & 
Calhoun Counties [IL]), and 00400 (Lincoln, Warren, Audrain, 
Pike & Montgomery Counties)

Tampa, FL X
Virginia Beach, VA-NC X
Washington, 
DC-VA-MD-WV

^ 98% Completeness: added PUMAs 06100 (Rappahannock-Rapidan 
Regional Commission [VA]), 17700 (George Washington 
Regional Commission [South] [VA]), and 01501 (Calvert & 
Southeast St. Mary’s Counties [MD])

Notes: 1) &-Nested PUMAs capture roughly 91% of the MSA population, but our definition includes 65% of the MSA population because PUMAs 01001-01003 are 
included in the Boston, MA MSA for consistency. 2) A map of current PUMA boundaries for the USA are available from IPUMS USA [19].

https://doi.org/10.1371/journal.pone.0316750.t003

Table 3.  (Continued)

https://doi.org/10.1371/journal.pone.0316750.t003
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PUMA recodes that restored at least 90% of the metro’s cumulative population (Criterion 3). 
To explain this process more thoroughly, we provide two illustrative examples. First, in Hart-
ford, CT, we recoded PUMA 20500 (Lower Connecticut River Valley) to restore the cumula-
tive population to 93% (Table 3). Second, returning to the San Antonio example, we decided 
to exclude the three spanned PUMAs (05500, 06000, and 06100) to preserve longitudinal 
consistency. Given that PUMAs 05000 and 06000 are majority-rural (34% and 33% urban, 
respectively) and do not meet Criterion 2, we only report the exclusion of the majority-urban 
PUMA (06100, 87% urban) in Table 3.

Evaluating the city-centric and IPUMS approaches
We evaluated the accuracy of the city-centric and IPUMS approaches in supporting our 
twin goals—reducing spatial bias and simultaneously ensuring definitional consistency over 
time—by calculating the longitudinal error (Table 4). Here, longitudinal error measures the 
consistency of PUMA-defined metropolitan boundaries using the 2020 Census population. 
We calculated the longitudinal error by first estimating the standard deviation of the 2020 
metro population statistics for each decade across the 2000-2020 period (i.e., P1,  , P2 , P3 ). 
Next, we express the longitudinal error as a percentage by dividing the standard deviation by 
the mean 2020 metro population statistic. The longitudinal error (LE) equation is expressed 
mathematically as (Fig 6):

In Oklahoma City, for example, the metro boundaries are consistent between 2000 and 
2010 under the city-centric and IPUMS approaches; there is a difference, however, in the 2020 
definitions (i.e., the city-centric definition includes the PUMA containing Lincoln and Pot-
tawatomie Counties) (Fig 7). As a result, the city-centric definitions returned 2020 metro pop-
ulation statistics of 1,498,149, 1,498,149, and 1,474,250 while the IPUMS definitions yielded in 
1,498,149, 1,498,149, and 1,368,338 in 2000, 2010, 2020, respectively. Comparing these statis-
tics to the official 2020 population of 1,425,695 (S1 Table), the standard deviation of the metro 
population error across these three periods under the city-centric approach (13,798), divided 
by the mean statistic (1,490,183), returns a longitudinal error of 0.9%. The IPUMS approach 
returned a longitudinal error of 5.2% for Oklahoma City (Table 4).

The results from Table 4 confirm that the city-centric approach provides more robust and 
dynamic metropolitan definitions that improve precision and accuracy in urban data anal-
ysis across time. The city-centric approach produced greater longitudinal consistency and 
less error in 18 metros, including Oklahoma City. The IPUMS approach, on the other hand, 
yielded more longitudinally consistent geographies and less error in 9 metros, likely due to 
the prioritization of MIGPUMAs in the city-centric approach. Also, the relative magnitude of 
the longitudinal error was lower under the city-centric approach (i.e., the mean longitudinal 
city-centric error was 2.1 times higher [3.5%/1.7%] compared to 2.3 times higher for IPUMS 
[2.7%/1.2%]). There was no difference in longitudinal error between the two approaches for 
roughly half of metropolitan areas (23 of 50).

Discussion and conclusion
Comparative urban research is essential for understanding social and spatial change in a 
rapidly urbanizing world. Key to advancing this scholarship is a commitment to developing 
techniques and approaches in the methodological toolbox that support multi-sited compar-
isons, are sensitive to place and spatial difference, and support theory-building. Within the 
USA, as we have demonstrated, the failure to address geographic and definitional boundary 
changes reproduces spatial error and bias—including spanning error—that severely affects 
results. This problem is an issue of data justice given that spatial error and bias produces 
greater relative error for smaller-scale conditions (e.g., plumbing incompleteness, migration) 

pone.0316750.s11
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Table 4.  Longitudinal Error, City-Centric and IPUMS approaches.

Longitudinal Error
City-Centric IPUMS Difference

Greater Consistency Using City-Centric
Oklahoma City, OK 0.9% 5.2% 4.3%
Kansas City, MO-KS 1.2% 5.4% 4.2%
New Orleans, LA 9.8% 13.7% 3.9%
Cleveland, OH 0.0% 2.7% 2.7%
Providence, RI 0.2% 2.3% 2.1%
Portland, OR-WA 0.0% 2.0% 2.0%
Denver-Boulder, CO 0.2% 2.2% 2.0%
St. Louis, MO-IL 1.0% 2.7% 1.7%
Atlanta, GA 0.1% 1.4% 1.3%
Boston, MA-NH 0.5% 1.7% 1.2%
New York, NY-NJ-PA 1.0% 1.7% 0.7%
San Antonio, TX 0.0% 0.5% 0.5%
Nashville, TN 3.6% 3.9% 0.3%
Phoenix, AZ 0.5% 0.8% 0.3%
Tampa, FL 0.5% 0.8% 0.3%
San Diego, CA 0.4% 0.6% 0.2%
Virginia Beach, VA-NC 0.0% 0.1% 0.1%
Miami, FL 1.0% 1.1% 0.1%
Mean (Median) 1.2% (0.5%) 2.7% (1.9%)
Greater Consistency Using IPUMS
Charlotte, NC-SC 8.3% 3.9% 4.4%
Jacksonville, FL 3.6% 0.2% 3.4%
Birmingham, AL 5.0% 2.5% 2.5%
Raleigh-Durham, NC 5.2% 2.9% 2.3%
Orlando, FL 2.8% 1.1% 1.7%
Philadelphia, PA-NJ-DE-MD 1.3% 0.3% 1.0%
Washington, DC-VA-MD-WV 1.2% 0.4% 0.8%
Chicago, IL-IN-WI 1.5% 1.1% 0.4%
Pittsburgh, PA 2.8% 2.5% 0.3%
Mean (Median) 3.5% (2.8%) 1.7% (1.1%)
No Difference
Austin, TX 0.6% 0.6% 0.0%
Baltimore, MD 0.4% 0.4% 0.0%
Buffalo, NY 0.2% 0.2% 0.0%
Cincinnati, OH-KY-IN 3.1% 3.1% 0.0%
Columbus, OH 0.0% 0.0% 0.0%
Dallas-Fort Worth, TX 0.3% 0.3% 0.0%
Detroit, MI 1.6% 1.6% 0.0%
Hartford, CT 3.6% 3.6% 0.0%
Houston, TX 0.4% 0.4% 0.0%
Indianapolis, IN 1.4% 1.4% 0.0%
Las Vegas, NV 0.0% 0.0% 0.0%
Los Angeles, CA 0.1% 0.1% 0.0%
Louisville, KY-IN 0.2% 0.2% 0.0%
Memphis, TN-MS-AR 1.2% 1.2% 0.0%

(Continued)
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and subpopulations (e.g., racial/ethnic populations, same-sex households), making it more 
difficult for researchers to draw inferences for populations facing discrimination and margin-
alization [21,22].

Until this point, researchers at IPUMS are the only scholars who have attempted to wrestle 
with these issues, developing several potential workarounds. Taking inspiration from the 
IPUMS approach, we developed a methodological protocol and decision criteria that offers 
two key advantages for scholars conducting comparative research in the largest metropolitan 
areas across the USA. First, the ‘city-centric’ methodology yields greater analytical accuracy, as 
illustrated in Table 4, by mitigating spatial bias and spanning error. Second, by centering the 
urban area as the fundamental unit of analysis—not the PUMA—the city-centric framework 
is a better pathway for providing consistent, yet dynamic metropolitan definitions over time 
that prioritizes longitudinal consistency.

Moving forward, our analysis demonstrates the importance of minimizing PUMA span-
ning in US Census policy and practice. The most obvious solution to reducing spanning error 
and simultaneously improving greater longitudinal consistency is to draw PUMAs in a way 
that prioritizes nesting PUMAs within 1) county boundaries, and 2) MSA boundaries. The 
good news is that both of these criteria were outlined by the US Census Bureau in a 2020 
PUMA delineation document [23]. However, there are four issues that make it difficult for 
drawing longitudinally consistent PUMAs: 1) PUMAs may include noncontiguous areas, 
2) some places, like New England, use town, not county boundaries for drawing PUMAs, 
3) insufficient coordination with tribal, local, and state governments, community advocacy 
groups, policymakers and researchers, as well as regional planning agencies, resulting in 
PUMA boundaries that fail to account for various use cases, and 4) the need for the US Cen-
sus Bureau to broaden and diversify PUMA delineation outreach. This can take two forms. 
First, PUMA delineation documents should, for example, contain simple and more direct 
language, illustrative examples for each PUMA criterion, and outline criteria that supports 
drawing “good” PUMA boundaries. Second, more careful attention needs to be paid to the 
repercussions of PUMA boundaries for applied and scholarly research. Addressing these 

Longitudinal Error
City-Centric IPUMS Difference

Milwaukee, WI 0.0% 0.0% 0.0%
Minneapolis-St. Paul, MN-WI 3.5% 3.5% 0.0%
Richmond, VA 2.3% 2.3% 0.0%
Riverside, CA 0.0% 0.0% 0.0%
Sacramento, CA 0.1% 0.1% 0.0%
Salt Lake City, UT 4.0% 4.0% 0.0%
San Francisco, CA 0.2% 0.2% 0.0%
San Jose, CA 0.0% 0.0% 0.0%
Seattle, WA 0.9% 0.9% 0.0%

Source data: Calculated by authors, [4].

https://doi.org/10.1371/journal.pone.0316750.t004

Fig 6.  Longitudinal error (LE) equation.

https://doi.org/10.1371/journal.pone.0316750.g006

Table 4.  (Continued)
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Fig 7.  City-Centric and IPUMS metro boundaries for Oklahoma City, OK, 2000-2020. Source data: Calculated by authors, [4].

https://doi.org/10.1371/journal.pone.0316750.g007

https://doi.org/10.1371/journal.pone.0316750.g007
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issues are essential for realizing better-drawn PUMA boundaries, resulting in less error and 
making for more robust, data-driven policy.

Urbanization is a core feature of contemporary life in the USA and worldwide. Toward 
that end, this article innovates a new methodological approach and dataset that privileges the 
spatial patterns and processes of urbanization in ways that rigorously account for error, reflect 
the goals of many urban researchers, and support analytical approaches that pay attention 
to populations facing institutionalized discrimination and marginalization—a key goal of 
inclusive urbanization in SDG 11 (Sustainable Cities and Communities). While our approach 
is tailored to the data and context of the USA, future research might explore similar boundary 
issues and methodological problems in other countries experiencing rapid urbanization.

Future research should explore boundary issues and methodological problems in other 
countries experiencing urbanization. Approaches in comparative urban geography and sociol-
ogy, for example, have generated important scientific insights to support problem-solving in 
matters of public health, housing, sustainability policy, migration, and education [11,24–28]. 
With almost 60% of the world’s population living in cities in 2022 [29], our work helps 
advance techniques and methodological tools that support theory-building about our chang-
ing urban environments.
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