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Abstract

Enhancing the performance of 5ph-IPMSM control plays a crucial role in advancing various

innovative applications such as electric vehicles. This paper proposes a new reinforcement

learning (RL) control algorithm based twin-delayed deep deterministic policy gradient (TD3)

algorithm to tune two cascaded PI controllers in a five-phase interior permanent magnet

synchronous motor (5ph-IPMSM) drive system based model predictive control (MPC). The

main purpose of the control methodology is to optimize the 5ph-IPMSM speed response

either in constant torque region or constant power region. The speed responses obtained

using RL control algorithm are compared with those obtained using four of the most recent

metaheuristic optimization techniques (MHOT) which are Transit Search (TS), Honey Bad-

ger Algorithm (HBA), Dwarf Mongoose (DM), and Dandelion-Optimizer (DO) optimization

techniques. The speed response are compared in terms of the settling time, rise time, maxi-

mum time and maximum overshoot percentage. It is found that the suggested RL based

TD3 give minimum settling time and relatively low values for the rise time, max time and

overshoot percentage which makes the RL provide superior speed responses compared

with those obtained from the four MHOT. The drive system speed responses are obtained in

the constant torque region and constant power region using MATLAB SIMULINK package.

1. Introduction

IPMSMs are highly suitable for high-performance drive systems due to their various advan-

tages. These include exceptional performance, high efficiency, compact size, low noise, and

reliability [1–3]. IPMSMs are widely used in various applications, with robots and electric

vehicles being among the most common [2, 3]. Due to their inveterate advantages, multiphase
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motor drives are gaining prominence as a viable alternative to conventional three-phase motor

drives. These advantages encompass minimized torque pulsations, heightened power density,

and enhanced capability for fault-tolerant [4, 5]. MPC is an increasingly prominent control

method for drive systems, demonstrating superior performance and optimization [6]. Enhanc-

ing the performance of 5ph-IPMSM control plays a crucial role in advancing various innova-

tive applications. In the drive systems, the tunning of PI controllers affects the speed response

of the motor. The tuning is usually achieved by metahuristic techniques. Recently, RL are used

instead to tune the PI controller [7] in DC drive system because it is an excellent multi-objec-

tive optimization technique due to its strong search capabilities and rapid convergence rate.

To the best knowledge of the authors, no existing literature has investigated the optimization

of the speed response of five-phase IPMSM based MPC using RL based TD3 algorithm across

a wide speed range. Several authors presented several methods of control. These publications

are explored as follows:

In [8], a harmonic elimination method utilizing vector control was introduced for the five-

phase IPMSM. This method, known as harmonic elimination SVM, operates on the principles

of space vector theory. In [9], a study was conducted on a 5ph-PMSM VC. A SVM algorithm

was proposed to achieve high-performance VC in the drive system. Similarly, [10] introduced

a VC strategy for a five-phase VSI utilizing SVM that powers a 5ph-PMSM. This approach

optimized the performance of the 5ph-PMSM drive system. Furthermore, in [11], a mathemat-

ical model for the five-phase PMSM and corresponding control algorithms were presented.

The modeling was achieved using coordinate transformation, and both the two-VC algorithm

and four-VC algorithm SVPWMs were investigated. Additionally, a modified four-VC algo-

rithm was introduced to modify the 3rd harmonic current, thereby improving the motor’s tor-

que performance. In [12], a speed sensorless DTC method was proposed for five-phase

IPMSM. This method relies on measuring the per-phase currents and the voltage of the DC

bus. Additionally, [13] introduced a model reference adaptive control, incorporating a neural

network, for a five-phase IPMSM. Combined with a hysteresis current controller, this control-

ler enables motor speed control across a wide range of speeds. Furthermore, [14] presented a

sensorless control methodology based on 3rd harmonic space for a five-phase PMSM, elimi-

nating the need for motor parameters throughout the entire speed range. In [15], a super-

twisting SMC was proposed to control a five-phase PMSM. This control technique exhibits

superior response and performance compared to vector control in various conditions.

DTMPC of a 5ph-PMSM drive system was presented in [16]. This control strategy effectively

reduces the ripples of torque associated with conventional DTC, leading to reduced harmonics

with high-orders and losses of the system. A PCC strategy based on a model of finite control

set was introduced for a 5-ph PMSM in [17]. This approach reduces the THD to 9.47% and

eliminates third harmonic currents. In [18], a MPDTC method was proposed based on the

QEM method and a HVE method. The THD was reduced to 11.54% by employing this tech-

nique while disregarding third harmonic currents. [19] introduced a DTMPC technique for a

five-phase PMSM. This approach aims to optimize torque development, improve speed regula-

tion, reduce the ripples in torque, reduce current harmonics having higher orders, decrease

losses in the drive system, and increase the power train’s efficiency. In [20], a MPTC technique

based on double virtual voltage vectors utilizing geometric principles was presented for con-

trolling a five-phase PMSM. This method achieves reduced processing time without the need

for weighting factors. Additionally, [21] proposed an MPTC technique with additional weight-

ing factors, reducing current harmonics and torque ripple. The THD was decreased to 7.11%

using this method while disregarding third harmonic currents. Reference number [22] intro-

duced a model-free PCC methodology. This methodology was based on a model called an

ultra-local and the outputs of the motor for five-phase PMSM drives. This strategy mitigates
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the impact of motor parameter variations on current predictions. Moreover, [23] presented a

MPCC methodology for a five-phase PMPSM, utilizing pre-selection for the voltage vector.

The purpose of this methodology is to reduce computation time compared to conventional

MPC by selecting the optimal voltage vector based on deviations in stator current and changes

in the position of the stator current vector.

In [24], an ANN-based MPC strategy was suggested to control the speed of a 3-phase

IPMSM. This approach utilized a predictive algorithm of back propagation (BP) network and

MPC. The optimal selection of the gains of a PI controller in a VC three-phase PMSM drive

system was addressed in [25]. Optimization algorithms called RGA and BBO were employed

for this purpose. It was observed that using the BBO algorithm exhibited superior transient as

well as steady-state performance in the PMSM drive system. In [26], a three-phase surface-

mounted PMSM was controlled using an adaptive ANN internal model utilizing the PSO algo-

rithm. Various optimization techniques were compared in [27] to obtain the optimal selection

of PI controller gains for a three-phase PMSM drive system. A neural network-based MPC

technique to reguate the speed of a 3-phase IPMSM was presented in [28]. Similarly, in [29], a

control technique utilizing a BP ANN algorithm was given for a 3-phase IPMSM. Sensorless

control of surface-mounted PMSM was achieved in [30] using an adaptive speed observer and

a PID controller. In [31], a control technique for a three-phase IPMSM utilizing a MPC based

on ANN was introduced. [32, 33] presented ANN-based MPC techniques for a three-phase

IPMSM to overcome the effects of parameter mismatches. A dual-vector-based Particle Swarm

Optimization MPC technique for a three-phase IPMSM was introduced in [34].

In [35] the reinforcement Q–learning algorithm was presented to tune fuzzy PD and PI

controllers for SISO and TITO systems. The deep RL (DRL) was used to improve the tuning

process for classical PID controller was presented in [36]. The algorithm that was used in RL is

the DDPG. The concept of RL based FOC of a three-phase induction motor was presented in

[37]. In [38] the design of adaptive RL PID controller under the structure of Actor-Critic

which was based on RBF network for nonlinear systems was presented. Online training for a

RL used to control real motor drive system was presented in [39]. The adopted drive system

was composed of three-phase PMSM fed by VSI. In [40] DRL method for speed control of a

three-phase PMSM servo drive system was presented. The presented DRL control improved

the system performance especially in case of load variations. An adaptive PID controller using

the algorithm of asynchronous advantage actor–critic was proposed in [41]. In [42] speed con-

trol of a PMSM is achieved by applying the PI based PSO and DDPG algorithms. In [43] a

combined approach that leverages DRL and MPC was introduced to enhance the efficiency of

electric vehicles. In [44] an open source toolbox called GEM was developed for training of RL-

agents for the controlling of electric motors. The improved control performance for a three-

phase PMSM was proposed in [45]. This improvement was achieved using four optimization

techniques and RL. The used optimization techniques were PSO, SA, GA, and GWO. An RL

control algorithm to control a three-phase PMSM based on the TD3 was suggested in [46]. In

[47], an adaptive PID controller was designed for controlling the speed of a DC motor using

RL based TD3 algorithm. In [48], a comparison was made between the conventional PID

methodology and a TD3 RL algorithm to control three-phase PMSM based on the strategy of

vector control (VC). In [7], researchers employed the TD3 method to learn PI controller for

optimal dynamics in the simulation environment of controlling the speed of a DC motor.

Energy management strategies for hybrid electric vehicles (HEVs) was dealt with in [49]. A

hierarchical architecture that combines RL algorithms was proposed. The DDPG algorithm

demonstrates superior performance in the energy management of HEVs. In [50], an intelligent

system for energy management for a conventional autonomous vehicle using RL was pro-

posed. A novel exploration strategy called self-adaptive Q-learning was introduced.
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In this study, we suggest a novel RL control algorithm utilizing the TD3 approach. The

algorithm is designed to fine-tune two cascaded PI controllers in a 5-phase voltage source

inverter (VSI) / 5ph-IPMSM based MPC drive system. The primary goal of this control meth-

odology is the optimization of the speed response of the 5ph-IPMSM under various operating

conditions. We compare the speed responses obtained using the RL control algorithm with

those achieved using four recent MHOT: TS, HBA, DM, and DO. The speed response are

compared in terms of the settling time, rise time, maximum time and maximum overshoot

percentage.

The following points summarize the main contributions of this paper:

• A new RL control algorithm utilizing the TD3 algorithm for tuninig the two cascaded PI

controllers in the drive system under consideration is proposed.

• The tuning is achieved using the most recent optimization techniques: TS, HBA, DM, and

DO.

• A comparative study is achieved among the suggested RL control methodology and the

MHOT adopted in this research for the drive system under consideration.

• A MATLAB SIMULINK is accomplished for the drive system under consideration to obtain

the results of simulation and verify the validity of the proposed control methodology.

The subsequent sections of this study are arranged as follows. In Section 2 the modeling of

the drive system is introduced. Explanation of the MPC is given in Section 3. MHOT are

explained briefly in Section 4. In Section 5, the suggested RL utilizing TD3 algorothm is

explained. In Section 6, the proposed control methodology of the drive system is explored. In

Section 7 simulation results are given. In Section 8, key conclusions drawn from our study are

summarized.

2. Modeling of the drive system

2.1 Modeling of the five-phase VSI

The 5-phase VSI is expressed using the per-phase voltages (va to ve), which depend on the

inverter switching functions [19]
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In Eq (1), Vdc represents the DC voltage supplied to the inverter. The switching functions,

denoted as Sa to Se, correspond to the various states of the inverter. Specifically, a switching

function equals one when the upper semiconductor switch in a leg is active, and it equals zero

when the lower switch is inactive in that leg.

In a five-phase VSI, there exist 32 possible switching states. The MPC determines the most

suitable switching state to obtain minimum cost function, and based on these states, gate

pulses are generated for the ten switches.

PLOS ONE Reinforcement learning algorithm for improving speed response of a five-phase PMSM based MPC

PLOS ONE | https://doi.org/10.1371/journal.pone.0316326 January 3, 2025 4 / 27

https://doi.org/10.1371/journal.pone.0316326


2.2 Model of the 5ph-IPMSM

The 5ph-IPMSM is described using the DQ model in the synchronous frame of reference. The

voltage ABCDE to DQ transformations are provided by references [19, 51]:
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where α = 2π/5, θ is the rotor position angle, vd1, vq1 are the fundamental stator voltages in the

DQ frame of reference, vd3, vq3 are the third-harmonic DQ components of stator voltage.

The transformation from the DQ frame of reference to the ABCDE frame of reference can

be represented as follows [19]:
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where id1, iq1 are the fundamental stator currents DQ components, id3, iq3 are the third-har-

monic DQ components of stator currents. The DQ voltage equations for the 5ph-IPMSM,

after removing the zero-sequence component, can be expressed as follows [19, 51]:
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where Rs is the stator resistance, ω is the motor speed in electrical rad/sec, λd1, λq1 are the fun-

damental DQ stator flux linkages and λd3, λq3 are the 3rd harmonic DQ stator flux linkages.

The DQ stator flux linkages take the following form:

ld1 ¼ Ld1id1 þ Lm13id3 þ l1m

lq1 ¼ Lq1iq1 þ Lm13iq3

ld3 ¼ Ld3id3 þ Lm13id1 þ l3m

lq3 ¼ Lq3iq3 þ Lm13iq1

ð5Þ
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where Ld1, Lq1 are the fundamental direct and quadrature self-inductances, Lm13 is the mutual

inductance and λ1m and λ3m are the fundamental and 3rd harmonic components of the rotor

PM flux linkages respectively.

The 5ph-IPMSM differential equation, Eq (4) can be rearranged to take the following for-

mula:
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The motor torque equation can be represented as [19, 51]:

Te ¼
5

2

p
2
½ld1iq1 � lq1id1 þ 3ld3iq3 � 3lq3id3� ð7Þ

Substitution of Eq (5) into Eq (7) gives [19]:
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where p is the poles total number. When considering motor speed variations during the tran-

sient time interval, Eq (6) becomes nonlinear. As a result, the 5ph-IPMSM currents need to be

numerically solved. To achieve this, we employ the 5ph-IPMSM mechanical equation, which

is expressed as:

Dom ¼
Te � TlðomÞ

J
ð9Þ

In the given equation, the motor speed is denoted by ωm in mechanical radians per second,

J denotes the inertia, and Tl(ωm) is defined as follows:

TlðomÞ ¼ TL þ Tfw ð10Þ

Where TL and Tfw are the load and friction and windage torques respectively.

2.3 Five-phase IPMSM maximum torque per ampere operating mode of

operation model

To maximize efficiency, the 5ph-IPMSM operates at maximum torque per ampere, particu-

larly for speeds up to the motor’s rated speed. This section derives the reference fundamental

and 3rd harmonic DQ currents components.

When Lm13 is disregarded, the torque equation for the fundamental component can be for-

mulated using Eq (8) as follows:
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The reference fundamental direct current component is derived by differentiating the fun-
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¼ 0. Consequently, the reference fundamental direct current component is

determined as shown in the following equation:
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l

2

1m

4ðLq1 � Ld1Þ
2
þ i2q1

s

ð12Þ

The reference fundamental quadrature current component can be derived from Eq (11) as

follows:

iq1 ¼
Te1

5

2

p
2
½ðLd1 � Lq1Þid1 þ l1m�

ð13Þ
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The reference 3rd harmonic direct current component can be obtained from [52]:

id3 ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i2d1 þ i2q1

q
sinf3½tan� 1ð

id1

iq1

Þ�g ð14Þ

Also, the reference 3rd harmonic quadrature current component can be obtained from [52]:

iq3 ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i2d1 þ i2q1

q
cosf3½tan� 1ð

id1

iq1

Þ�g ð15Þ

2.4 Five-phase IPMSM field weakening operating mode model

To extend the operating speed range beyond the rated speed, the 5ph-IPMSM will be operated

in field weakening mode. The equations for the reference fundamental and 3rd harmonic DQ

currents components are derived as follows.

The fundamental direct and quadrature steady-state voltages can be obtained from Eq (4)

and neglecting the stator resistance voltage drops, we have:

The fundamental direct and quadrature steady-state voltages can be derived from Eq (4).

By neglecting the stator resistance voltage drops, we obtain the following equations:

vd1 ¼ � olq1

vq1 ¼ old1

ð16Þ

By substituting λd1 and λq1 from Eq (5) into Eq (16) and ignoring Lm13, we obtain:

vd1 ¼ � oLqiq1

vq1 ¼ oLdid1

ð17Þ

The reference fundamental direct and quadrature components should satisfy the following

equation to guarantee the maximum fundamental voltage, Vm1, of the IPMSM:

The reference fundamental direct and quadrature components must satisfy the following

equation to ensure the maximum fundamental voltage, Vm1, of the 5ph-IPMSM:

Vm1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
d1 þ v2

q1

q
ð18Þ

By substituting Eq (17) into Eq (18) and solving for the fundamental direct current compo-

nent, we obtain:

id1 ¼
� l1m

Ld1

þ
1

Ld1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

1m

o2
� L2

q1
i2q1

r

ð19Þ

In this mode of operation, equations analogous to Eqs. (13), (14), and (15), expressed in

terms of the fundamental direct current component provided in Eq (19), are utilized.

3. Model predictive control technique

The MPC consists of two primary components: the modelof the plant and the optimizer. The

core concept of MPC is to choose the optimal sequence of inputs for the plant utilizing predic-

tions of its future behavior. These predictions are achieved using the modelof the plant, which

employs previous states to predict future states. At each discrete interval, the optimizer lever-

ages the predicted states and the desired trajectory to address the optimization problem over

the prediction horizon, thereby identifying the optimal set of inputs for future operations.
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To successfully implement MPC, it is crucial to discretize the motor model. Thus, Eq (6) is

converted into its discrete form using the Forward Euler approximation method. Conse-

quently, the discrete model for the 5-phase IPMSM can be represented as follows:

½Iðkþ 1Þ� ¼ ½IðkÞ� þ Tsf½LL�½V� � ½LR�:½IðkÞ� � o½Ll�:½IðkÞ� þ o½LG�:½IðkÞ�g ð20Þ

In this context, Ts denotes the sampling interval of the discretized system.

The MPC is specifically designed to minimize torque error as its primary objective. Since

the electromagnetic torque equation for a five-phase IPMSM involves contributions from both

the d-q axes currents, it is necessary to control these currents to reduce the error in torque.

Consequently, the problem can be simplified by minimizing the error in current error instead

of torque error. Therefore, the basic CF aimed at reducing current error can be formulated as

follows:

The primary objective of the MPC is to reduce torque error. Given that the electromagnetic

torque equation for a 5ph-IPMSM includes contributions from both the d-q axes currents,

controlling these currents is essential to decrease torque error. Thus, the problem can be made

simpler by focusing on reducing current error instead of torque error. Therefore, the basic

cost function (CF) aimed at reducing current error can be formulated as follows:

C:F ¼ ½id1r � id1ðkþ 1Þ�
2
þ ½iq1r � iq1ðkþ 1Þ�

2
þ ½id3r � id3ðkþ 1Þ�

2
þ ½iq3r � iq3ðkþ 1Þ�

2
ð21Þ

Where id1r, iq1r, id3r, iq3r represent the reference direct and quadrature fundamental and

third harmonic currents. These currents are determined using either Eqs. (12), (13), (14), and

(15) for motor operation in the region of constant torque, or Eqs. (19), (13), (14), and (15)

motor operatin in the region of constant power. The optimal inverter switching functions are

chosen based on the minimum cost function.

4. Metahuristic optimization techniques

4.1 PI controller

The PI (proportional-integral) controller is commonly utilized in various industrial applica-

tions because of its simplicity, ease of implementation, and robust performance. Achieving

optimal performance with a PI controller involves fine-tuning two key parameters: the propor-

tional gain (kp) and the integral gain (ki). To optimize the performance of PI controllers,

researchers have employed various optimization algorithms. In this study, four of the most

recent optimization techniques are used for obtaining the optimum PI gains. These techniques

are Transit Search (TS) [53], Honey Badger Algorithm (HBA) [54], Dwarf Mongoose (DM)

[55], and Dandelion-Optimizer (DO) [56]. These techniques are compared with the RL utiliz-

ing TD3 algorithm. The goal is to minimize the error associated with the control of speed of a

5-phase IPMSM, to ensure the best possible performance.

The optimization process involves reduccing the error e(t), which is generated by compar-

ing the reference speed with the actual speed, as well as the reference torque and actual torque,

using four standard performance indicators: IAE, ISE, ITAE, and ITSE. This optimization is

achieved through the utilization of the following equation, Eq (22), that accurately represents
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the superior results obtained with the proposed control technique.

IAE ¼
Z tss

0

jeðtÞj � dt

ISE ¼
Z tss

0

e2ðtÞ � dt

ITAE ¼
Z tss

0

t:jeðtÞj � dt

ITSE ¼
Z tss

0

t:e2ðtÞ � dt

ð22Þ

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

The optimization objective involves minimizing the steady-state time response (tss) and the

error function e(t).

4.2 Objective

The optimization problem involves the simultaneous pursuit of two distinct objectives, allow-

ing for a comprehensive optimization strategy tailored to address the specific aims of each tar-

get. The optimization focuses on minimizing the speed and torque errors of the individual

controllers by fine-tuning their respective gain parameters.

There are two PI controllers—one for the regulation of speed and another for controlling

the torque. Each controller has two adjustable gains, the proportional and integerals gains (kp
and ki). Optimization must determine the optimal values for these four gain parameters,

which are constrained within the range of [0, 300] for each gain. By optimizing these controller

gains, the goal is to achieve high precision in both speed and torque regulation, thereby

enhancing the overall system performance. The optimization strategy must navigate this

multi-objective landscape to identify the set of gain values that best satisfies the conflicting tar-

gets of minimizing both speed and torque errors simultaneously.

Target ¼ min ðerrorÞ

error ¼
Z

Tact � Tref

� �2

dt þ
Z

wact � wref

� �2

dt ð23Þ

5. Reinforcement learning based TD3 approach

The TD3 approach is an advancement over the DDPG algorithm. TD3 addresses the function

approximation error that can occur in DDPG. The TD3 algorithm significantly enhances both

the learning speed and performance of DDPG across various challenging continuous control

tasks. The algorithm of TD3 outperforms many state-of-the-art methods. Due to the simplicity

of TD3 modifications, they can be easily integrated into any other actor-critic algorithm [57,

58]. In addition to this, the TD3 algorithm learns two Q-value functions and uses the mini-

mum estimate during policy updates.

It does this by using twin critic networks (CN), delayed target network updates, and added

exploration noise, which together help to stabilize the process of training and improve the effi-

ciency of the learned policy. The goal of RL is to obtain the optimum policy π that makes the

predectid rewared to have maximum value which is achieved by tuning the parameter. This is

typically achieved by renewing the parameter by employing the gradientrφJ(φ) RL employs
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an actor-critic structure, where the policy (actor) is renewed according to the DPG algorithm.

In case of large value of state space, the Q-value function Q(s, a) is nearly determined using a

function approximator Qθ0(s, a) with the aiding of a tuning parameter θ. To maintain a stable

learning objective, a frozen target network Qθ’(s, a) is used to maintain a stable learning goal y

across many updates [57].

y ¼ r þ gQy0 s
0; a0ð Þ; a0  pφ0 s

0ð Þ ð24Þ

Actions are selected by the algorithm from a desired actor-network (AN) πφ’(s) that is sepa-

rated from the main AN. The weights of the target network are periodically renewed to accu-

rately approximate the weights of the current network using a soft update rule [57]. This helps

maintain a stable learning objective during the training process.

In actor-critic (A-C) methods, the current and desired networks may be very similar, lead-

ing to inaccurate value prediction. I order to address this, the algorithm uses a set of two actors

pφ1
; pφ2

� �
and critics Qy1

;Qy2

� �
[57]. The actors are optimized according to their respective

critics, but this can cause overestimation. To mitigate this, a trimmed double Q-learning

approach is used, that selects the minimum of the two critic estimates as the target update [58].

The AN and CN are then updated according to this formulation.

y ¼ r þmin
i¼1;2

Qy0 s0; pφ1
s0ð Þ

� �
ð25Þ

The algorithm uses a reward value r and a discount factor γ which determines the influence

of previous reward values on next decisions. The value of discount factor γ ranges from 0 to 1

[57, 59]. To address the issue of deterministic policies overfitting sharp peaks in the value

approximation, the algorithm adds a tiny amount of random noise to the desired policy, which

is then trimmed to keep the objective within a limited range [57].

y ¼ r þmin
i¼1;2

Qy0i
s0; pφ1

s0ð Þþ 2
� �

2� clip ðNð0; sÞ; � c; cÞ ð26Þ

The TD3 approach is presented as flowchart in Fig 1, as proposed by [57, 60]. Table 1 lists

some of the key parameters used in the TD3 algorithm.

Fig 1. TD3 algorithm.

https://doi.org/10.1371/journal.pone.0316326.g001
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The block diagram depicted in Fig 2 illustrates the RL agent utilizing the TD3 algorithm for

process control. In this context, the goal of obtaining the optimum policy for the RL-TD3

agent may be interpreted as determining the appropriate command signals for the 5ph-PMSM

in order to ehance a given effectiveness metric.

The simulation environment of Matlab Simulink is utilized to implement the TD3 algo-

rithm. The objective is to train an optimum two-stage PI controller for regulating the speed

and torque of a 5ph-IPMSM in the control system setup. The process of learning generates the

optimum tuning parameters for the two PI controllers, which can effectively address the regu-

lation challenges simulated in the system environment.

This setup can be viewed as analogous to the control of an industrial process, where the

observed inputs are the speed error and its integral, as well as the torque, as shown in Fig 3

while the outputs represent the reference signals, and the enhancement objective is framed as a

reward function.

The reward function is defined by the subsequent expression:

rðtÞ ¼ � ðwc1

Z t

0

e1ðtÞ
2dt þ wc2

Z t

0

e2ðtÞ
2dt þ wc3uðtÞ

2
Þ ð27Þ

Fig 2. RL block diagram.

https://doi.org/10.1371/journal.pone.0316326.g002

Table 1. Parameters for TD3 approach [60].

Parameters Explanations

Qy1
;Qy2

two CNs, where θ1 and θ2 represent the respective weights of the CNs.

Qy0
1
;Qy0

2
two target CNs, where y

0

1
and y

0

2
represent the respective weights of the target CNs.

πφ,πφ0 AN, πφ, and a target AN, πφ0, where φ represents the weights of the AN and φ0 represents the

weights of the target AN.

tuple (s,a,r,s0) The system transition tuples, where s represents the current state, a is the action taken, r is the

reward received, and s’ is the next state.

γ A CN discount factor

y
0

1
; y
0

2
The weight parameters are updated according to the next value calculation.

φ0 represent the next value for the AN.

τ represent the weights used for Polyak averaging.

https://doi.org/10.1371/journal.pone.0316326.t001
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The weight coefficients wc1,wc2, and wc3 are used to balance the reduction of the reference

error and the control signal value. The error signals e1(t),e2(t) represent the observed states

from the environment of the control system, and the control signal u(t) corresponds to the

action of the actor.

Fig 4. Matlab Simulink block diagram of the reward equation.

https://doi.org/10.1371/journal.pone.0316326.g004

Fig 3. Matlabsimulink block diagram for the TD3 approach.

https://doi.org/10.1371/journal.pone.0316326.g003
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The optimal control reward equation can be represented by:

RðzÞ ¼ � Wc1
Ts

z � 1
e1ðzÞ

2
� Wc2

Ts

z � 1
e2ðzÞ

2
� Wc3uðtÞ

2
ð28Þ

Fig 4 shows the Matlab Simulink block diagram of reward equation, Eq (28). In this figure

the weights, Wc1,Wc2 and Wc3 are taken to be 0.9, 0.9 and 0.1 respectively [7].

The AN and CN, with their corresponding reference networks, were set up in the

MATLAB environment to achieve RL agents using the TD3 approach. The CN utilize the

Fig 6. Proposed 5ph-IPMSM control system.

https://doi.org/10.1371/journal.pone.0316326.g006

Fig 5. The architecture of CNs utilized in the drive system under consideration.

https://doi.org/10.1371/journal.pone.0316326.g005
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action (a) and observed state (s) as inputs, and function as an approximation to approxi-

mate the quality value Q(s, a). The arrangement of CNs utilized in the drive system under

consideration is given in Fig 5.

The CNs consist of three layers:

i. fully connected (fc) input layers for the action and state inputs,

ii. a fc common path layer,

iii. a fc output layer with one neuron representing Q(s, a).

The input and common path layers use ReLU activation. The actor networks take the

observed state (s) as input and output is the action (a). The TD3 algorithm trains the AN and

CN to enhance the reward, which is the optimum control goal [61].

Table 2. Five-phase IPMSM parameters.

Parameter Value

poles (p) 4 poles

Rated power 12 kW

Rated Speed 1800 rpm

Maximum speed 5400 rpm

Rated Torque 63.662 Nm

Rs 0.389 O

Ld1 2.7 mH

Lq1 9.6 mH

Ld3 1.1 mH

Lq3 2 mH

Lm13 0 mH

λ1m 0.11 WbT

λ3m 0.0012 WbT

Moment of inertia 0.0036 kg.m2

Connection Star

https://doi.org/10.1371/journal.pone.0316326.t002

Fig 7. The motor speed responces when IAE error criteria is used.

https://doi.org/10.1371/journal.pone.0316326.g007
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The gains of the PI controllers ki1, kP1, ki2 and kp2 can be found using the Matlab functions:

actor = getActor (agent) and parameters = getLearnableParameters (actor).

6. Proposed control methodology

Fig 6 illustrates the proposed control system, which comprises several blocks. The rotor posi-

tion is measured at a specific load torque and reference speed of the 5ph-IPMSM to determine

the actual motor speed, as shown in Fig 6. The speed error is processed by a primary PI con-

troller to generate the reference torque. The motor currents of the 5-ph IPMSM are measured

and transformed into the DQ frame of reference using the “abcde to d1q1d3q3 Transforma-

tion” block in Fig 6. This block represents Eq (2). The resulting fundamental and 3rd direct

and quadrature currents are used to calculate the electromagnetic torque via the “Torque Cal-

culation” block, which corresponds to Eq (8).

Fig 8. The motor speed responces when ISE error criteria is used.

https://doi.org/10.1371/journal.pone.0316326.g008

Fig 9. The motor speed responces when ITAE error criteria is used.

https://doi.org/10.1371/journal.pone.0316326.g009
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The gains of the primary and secondary PI controllers (ki1, kP1, ki2, and kp2) are determined

using one of four metaheuristic optimization techniques (TS, HBA, DM, and DO) or the pre-

sented RL-based TD3 algorithm. The torque error is processed by the secondary PI controller,

“PI Controller-02,” to obtain the corrected reference torque, Tref. The motor speed, ωm, and

Tref are used to derive the reference DQ currents from the “MTPA & FW” block in Fig 6. This

block represents Eqs (12), (13), (14), and (15) for MTPA operation when the motor speed is

not greater than the rated speed, and Eqs (19), (13), (14), and (15) for FW operation when the

motor speed exceeds the rated speed.

The reference fundamental and 3rd harmonic DQ currents, along with the rotor position

angle and DC voltage, are used in the MPC, Eq (20), to generate the inverter gating signals that

Fig 10. The motor speed responces when ITSE error criteria is used.

https://doi.org/10.1371/journal.pone.0316326.g010

Table 3. Summary of the comparison between the RL based TD3 and the metahuristic optimization techniques at speed 1600 rpm.

Technique Error criteria kp1 ki1 kp2 ki2 Settling Time (s) Rise Time(s) Max. time (s) Overshoot Percentage

Transit Search IAE 0.323 76.0253 149.504 108.5812 0.0723 0.0222 0.048 11.7962

ISE 0.7304 18.9004 11.908 0.362 0.3476 0.0688 0.5302 0.0888

ITSE 0.6456 19.8709 31.5824 9.1463 0.1459 0.067 0.5245 0.0121

ITAE 0.4315 52.7312 23.4413 22.9367 0.0729 0.0266 0.0552 3.7238

Honey Badger Algorithm IAE 0.309237 44.0829 41.9761 181.3634 0.1022 0.0364 0.0775 4.4114

ISE 0.441908 34.8417 51.007 0 0.073 0.0443 0.1284 0.0631

ITSE 0.335703 74.6599 170.868 60.38459 0.0706 0.0217 0.0468 11.4977

ITAE 0.505046 27.6241 10.3486 25.0843 0.0954 0.0527 0.5336 0.0205

Dwarf Mongoose IAE 0.40047 61.941 125.741 291.6633 0.0657 0.0226 0.0512 3.476

ISE 0.641088 26.9701 33.325 57.3394 0.1222 0.0229 0.0273 0.5449

ITSE 0.441913 41.2805 141.442 193.1191 0.0626 0.0385 0.096 0.2092

ITAE 0.449873 47.7301 98.6211 8.21241 0.0439 0.029 1.7479 0.0631

Dandelion-Optimizer ISE 0.549676 21.9602 14.511 37.1645 0.1405 0.0708 0.596 0.0164

IAE 0.413013 37.3398 127.584 5.874622 0.065 0.0412 0.0941 0.476

ITSE 0.392725 34.0375 103.825 146.0474 0.0787 0.0507 0.1245 0.1395

ITAE 0.345308 42.0511 143.562 143.2322 0.0901 0.04 0.0813 2.2936

Reinforcement Learning 0.429039 44.9862 622.213 84.75749 0.0201 0.0274 0.028 0.0272

https://doi.org/10.1371/journal.pone.0316326.t003
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satisfy the cost function given in Eq (21) to minimize torque ripples and thus minimizing rip-

ples in the motor speed.

7. Results

Several sets of results are obtained to prove the correctness of the suggested control methodol-

ogy for the 5ph-IPMSM. The 5ph-IPMSM parameters are given in Table 2 [35].

The following set of results are obtained when the motor is driving a constant load torque

whose value equals to the motor rated torque, 63.662 Nm, and the reference speed is 1600

rpm. In this operating condition the motor is operated at maximum torque per amper. Figs 7–

10 show the speed responses of the 5ph-IPMSM when the PI controllers gaines are obtained

using the metahuristic optimization techniques (TS, HBA, DM, and DO) and the presented

RL based TD3 algorithm when the four types of error critera (IAE, ISE, ITAE and ITSE) are

used in the optimization techniques respectively. From these figures it can be noticed that the

Fig 11. The motor speed responces when IAE error criteria is used.

https://doi.org/10.1371/journal.pone.0316326.g011

Fig 12. The motor speed responces when ISE error criteria is used.

https://doi.org/10.1371/journal.pone.0316326.g012

PLOS ONE Reinforcement learning algorithm for improving speed response of a five-phase PMSM based MPC

PLOS ONE | https://doi.org/10.1371/journal.pone.0316326 January 3, 2025 18 / 27

https://doi.org/10.1371/journal.pone.0316326.g011
https://doi.org/10.1371/journal.pone.0316326.g012
https://doi.org/10.1371/journal.pone.0316326


speed response of the 5ph-IPMSM when the presented RL based TD3 algorithm is used, to

obtain PI controllers gain, has the fastes time responce and relatively low overshoot.

Table 3 summarizes the values of the PI controllers gains, settling time, rise time, maxi-

mium time and overshoot percentage for the different speed responces shown in Figs 7–10

obtained using the presented RL based TD3 algorithm and the different optimization tech-

niques with the different error criteria. From this table, it can be noniced that the suggested RL

based TD3 results in the minimum settling time and relatively low values for the rise time,

max time and overshoot percentage. This proves the correctness of the suggested control

methodology in improving the motor 5p-IPMSM speed response in the constant torque

region.

To show the correctness of the presented control methodology in case of sudden change in

the reference speed, the above results are obtained when the desired speed is suddenly varied

from 1600 rpm to 1200 rpm. Figs 11–14 show the speed responses for the sudden change in

Fig 13. The motor speed responces when ITAE error criteria is used.

https://doi.org/10.1371/journal.pone.0316326.g013

Fig 14. The motor speed responces when ITSE error criteria is used.

https://doi.org/10.1371/journal.pone.0316326.g014
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the motor reference speed using the metahuristic optimization techniques and the presented

RL based TD3 algorithm for the four types of error critera. From these figures it can be noticed

that the speed response of the 5ph-IPMSM when the presented RL based TD3 algorithm is

used, also, has the fastes time responce and relatively low overshoot.

Another set of results are obtained when the motor is driving a constant load torque whose

value equals to 35.8 Nm, and the reference speed is 3200 rpm. In this operating condition the

motor is operated in field weakening mode of operation, i.e constant power region. Figs 15–18

show the speed responses of the 5ph-IPMSM when the PI controllers gaines are given using

the metahuristic optimization techniques and the presented RL based TD3 approach when the

four types of error critera are used in the optimization techniques. From these figures it can be

noticed that the speed response of the 5ph-IPMSM when the presented RL based TD3

Fig 15. The motor speed responces when IAE error criteria is used.

https://doi.org/10.1371/journal.pone.0316326.g015

Fig 16. The motor speed responces when ISE error criteria is used.

https://doi.org/10.1371/journal.pone.0316326.g016
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algorithm is used, to obtain PI controllers gain, has the fastes time responce and relatively low

overshoot.

Table 4 summarizes the values of the PI controllers gains, settling time, rise time, maxi-

mium time and overshoot percentage for the different speed responces shown in Figs 15–18

obtained using the presented RL based TD3 algorithm and the different optimization tech-

niques with the different error criteria when the motor is operated in constant power region. It

can be noniced from Table 4 that the proposed RL based TD3 gives the minimum values for

the settling time and maximum time and relatively low values for the rise time and overshoot

percentage. This again proves the correctness of the suggested control methodology in improv-

ing the motor 5p-IPMSM speed response in the constant power region.

The above results are obtained when the desired speed is suddenly varied from 3200 rpm at

35 Nm load torque to 4000 rpm at 28.6 Nm load torque, constant power region. Figs 19–22

show the speed responses for the sudden change in the motor reference speed with the

Fig 17. The motor speed responces when ITAE error criteria is used.

https://doi.org/10.1371/journal.pone.0316326.g017

Fig 18. The motor speed responces when ITSE error criteria is used.

https://doi.org/10.1371/journal.pone.0316326.g018
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corresponding load torque utilizing the metahuristic optimization techniques and the pre-

sented RL based TD3 algorithm for the four types of error critera. From these figures it can be

noticed that the speed response of the 5ph-IPMSM when the presented RL based TD3 algo-

rithm is used, also, has the superior speed responce.

8. Conclusion

In this study, a newl RL control algorithm based TD3 algorithm is suggested to obtain gains of

two cascaded PI controllers in a 5ph-IPMSM drive system. The purpose of this algorithm is to

optimize the 5ph-IPMSM speed response either in constant torque region or constant power

region. The PI controllers gains are also obtained using four recent metahuristic optimization

Table 4. Summary of the comparison between the RL based TD3 and the metahuristic optimization techniques at speed 3200 rpm.

Technique Error criteria kp1 ki1 kp2 ki2 Settling Time (s) Rise Time(s) Max. time (s) Overshoot Percentage

Transit

Search

IAE 0.5163 20.3512 74.0624 21.8978 0.0694 0.0171 0.0392 6.1898

ISE 0.3243 15.5619 28.2828 10.0919 0.094 0.0406 0.5532 0.0165

ITSE 0.2319 29.2639 200 15.4351 0.1177 0.0332 0.0737 6.7256

ITAE 0.2225 23.2968 11.1122 51.3965 0.1232 0.0412 0.089 3.7255

Honey

Badger Algorithm

IAE 0.24717 26.27137 152.6986 40.78611 0.1084 0.0336 0.0761 3.8731

ISE 0.28545 31.4349 49.3307 49.5886 0.094 0.0247 0.0582 6.0532

ITSE 0.24746 27.6937 40.4038 47.3758 0.1093 0.0322 0.073 4.816

ITAE 0.23101 20.807 40.3527 24.0813 0.0665 0.0446 0.1022 1.7359

Dwarf Mongoose IAE 0.23817 30.74569 233.662 159.5167 0.1128 0.0319 0.072 5.829

ISE 0.31232 17.13106 105.5177 128.8104 0.0983 0.0403 0.5237 0.0082

ITSE 0.16397 54.8639 39.9551 24.7158 0.1621 0.0279 0.0633 22.6599

ITAE 0.32712 24.3881 61.3568 1.64838 0.0895 0.0274 0.0687 2.6998

Dandelion-Optimizer IAE 0.55772 9.49771 107.7051 0.03886 0.1657 0.0276 0.5936 0

ISE 0.3086 17.4093 42.1558 13.2945 0.0732 0.038 0.5829 0.0097

ITSE 0.26063 16.2196 9.54845 59.3708 0.104 0.0494 0.4713 0.0091

ITAE 0.26049 16.0258 17.9417 10.0006 0.0941 0.0524 0.2483 0.0445

Reinforcement Learning 0.20445 14.5061 88.9718 20.7561 0.0272 0.0205 0.0281 0.329

https://doi.org/10.1371/journal.pone.0316326.t004

Fig 19. The motor speed responces when IAE error criteria is used.

https://doi.org/10.1371/journal.pone.0316326.g019
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techniques to be compared with the proposed algorithm. The most recent metaheuristic opti-

mization techniques used are Transit Search, Honey Badger Algorithm, Dwarf Mongoose, and

Dandelion-Optimizer optimization techniques. MATLAB Simulink package is utilized to

obtain simulation results to validate the propsed algorithm. It can be concluded from the

results that the suggested control RL algorithm based TD3 algorithm results in improved

motor speed response compared with the metahuristic optimization techniques with the fastest

response and with relatively lower overshoot either when the 5ph-IPMSM is operated either in

the constant torque region or the constant power region. However, the MHOTs are more eas-

ily to be implemented and have more simple computations compared with the RL. As a future

work, the experimental implementation of the proposed methodology to be achieved. In addi-

tion to this, the proposed control methodology of the drive system can be investigated with the

utilization in the electric veihicles, robotics and renewable energy systems.

Fig 20. The motor speed responces when ISE error criteria is used.

https://doi.org/10.1371/journal.pone.0316326.g020

Fig 21. The motor speed responces when ITAE error criteria is used.

https://doi.org/10.1371/journal.pone.0316326.g021
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