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Abstract

Cognitive Radio (CR) technology enables wireless devices to learn about their surrounding

spectrum environment through sensing capabilities, thereby facilitating efficient spectrum

utilization without interfering with the normal operation of licensed users. This study aims to

enhance spectrum sensing in multi-user cooperative cognitive radio systems by leveraging

a hybrid model that combines Convolutional Neural Networks (CNN) and Long Short-Term

Memory (LSTM) networks. A novel multi-user cooperative spectrum sensing model is devel-

oped, utilizing CNN’s local feature extraction capability and LSTM’s advantage in handling

sequential data to optimize sensing accuracy and efficiency. Furthermore, a multi-head self-

attention mechanism is incorporated to improve information flow, enhancing the model’s

adaptability and robustness in dynamic and complex environments. Simulation experiments

were conducted to quantitatively evaluate the performance of the proposed model. The

results demonstrate that the CNN-LSTM model achieves low sensing error rates across var-

ious numbers of secondary users (16, 24, 32, 40, 48), with a particularly low sensing error of

9.9658% under the 32-user configuration. Additionally, when comparing the sensing errors

of different deep learning models, the proposed model consistently outperformed others,

showing a 12% lower sensing error under low-power conditions (100 mW). This study suc-

cessfully develops a CNN-LSTM-based cooperative spectrum sensing model for multi-user

cognitive radio systems, significantly improving sensing accuracy and efficiency. By inte-

grating CNN and LSTM technologies, the model not only enhances sensing performance

but also improves the handling of long-term dependencies in time-series data, offering a

novel technical approach and theoretical support for cognitive radio research. Moreover, the

introduction of the multi-head self-attention mechanism further optimizes the model’s adapt-

ability to complex environments, demonstrating significant potential for practical

applications.

1. Introduction

In recent years, with the rapid development of wireless communication technologies, the effi-

cient utilization of spectrum resources has become a research hotspot. Early studies revealed
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that during periods or in regions with low user density, many licensed spectrum bands remain

underutilized, resulting in significant spectrum resource wastage [1]. To address this issue,

Joseph Mitola first proposed the concept of Cognitive Radio (CR) [2], which was further

extended into the development of cognitive radio networks [3]. Cognitive radio technology

enables wireless devices to learn about their surrounding spectrum environment through sens-

ing capabilities, identify available spectrum resources, and allow secondary users to access

these bands without interfering with the normal operation of primary users (PUs), thereby

facilitating spectrum sharing [4].CR technology effectively addresses the aforementioned spec-

trum inefficiency, with spectrum sensing serving as the foundation and prerequisite for its

applications. The primary task of spectrum sensing is to understand the spectrum usage of

PUs in a specific communication area, making it the most critical step in the cognitive cycle

[5]. The success of cognitive radio depends on the accuracy and efficiency of spectrum sensing.

Enhancing the reliability and efficiency of sensing, minimizing interference with PUs, and

enabling secondary users to quickly and accurately identify vacant spectrum to gain more

access opportunities are key to improving the overall performance of cognitive radio networks

[6]. This is crucial for reducing spectrum resource wastage and achieving the efficient utiliza-

tion of spectrum, making it a focal point in the field of cognitive radio research.

Spectrum sensing, as the core enabling technology of cognitive radio (CR), primarily func-

tions to dynamically evaluate the radio environment and identify underutilized spectrum

opportunities [7]. Current research efforts have largely focused on improving the efficiency of

spectrum sensing, with the majority targeting single-user spectrum sensing strategies, includ-

ing energy detection [8], matched filter detection [9], and cyclostationary feature detection

[10]. While these single-user approaches can quickly determine whether the primary user

(PU) is active, the performance of spectrum sensing by a single secondary user (SU) is often

vulnerable to adverse environmental changes [11]. To address these limitations, researchers

have proposed cooperative spectrum sensing (CSS) strategies, wherein multiple SUs within the

same cognitive radio network (CRN) collaborate to perform spectrum detection tasks [12].

CSS significantly enhances the efficiency of spectrum resource utilization in wireless networks

[13]. However, this approach also introduces challenges in balancing performance improve-

ments for both PUs and SUs. For instance, when SUs move continuously and randomly at uni-

form speeds, variations in their geographic locations, inter-SU distances, and communication

environments affect spatial correlation among SUs, thereby impacting the stability and reli-

ability of cooperative spectrum sensing [14]. Additionally, while traditional convolutional neu-

ral networks (CNNs) have shown promise in processing correlated data, their learning

capabilities remain limited. These models still require further improvements to fully enhance

spectrum sensing performance.

In light of the aforementioned challenges, this study proposes the PCBM (Parallel

CNN_BiLSTM_MHSA) collaborative cognitive radio spectrum sensing model based on a

CNN-LSTM architecture to enhance the spectrum sensing capability of multi-user collabora-

tive cognitive radio systems. The model integrates Convolutional Neural Networks (CNNs),

Bidirectional Long Short-Term Memory networks (BiLSTMs), and Multi-Head Self-Attention

mechanisms (MHSA).

By leveraging the CNN’s strength in local feature extraction and the superior performance

of LSTMs in processing sequential data, the proposed model synergizes local and global feature

extraction networks to capture multi-scale spatial characteristics and temporal sequence fea-

tures of spectrum signals. MHSA further enhances the feature representation capability.

Through a multi-user collaboration mechanism, the model optimizes spectrum sensing per-

formance, demonstrating significant improvements in accuracy and robustness under com-

plex signal environments. Compared to previous studies, this research is the first to propose a
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cognitive radio spectrum sensing model that incorporates multi-user collaboration, overcom-

ing the limitations of traditional single models in spectrum sensing and enhancing the effec-

tiveness of spectrum utilization. The introduction of the MHSA mechanism further optimizes

the flow of information within the network, improving the model’s stability and adaptability

in dynamic and complex environments. The main contributions of this study include: 1)

Developing an efficient deep learning model that provides technical support for deploying cog-

nitive radio systems; 2) Optimizing system performance through intelligent collaboration

strategies, offering a novel approach to rational spectrum resource allocation; 3) Providing the-

oretical support and a technical pathway for the formulation and updating of spectrum man-

agement policies.

2. Progress in related research

2.1. Spectrum sensing technology

Spectrum sensing, as the core of cognitive radio (CR) technology, can help CR systems

promptly identify available idle frequency bands and ensure that such utilization does not

affect the PU’s use of the spectrum. The primary goal of spectrum sensing is to identify and uti-

lize the so-called "spectrum holes" to achieve efficient spectrum utilization [15].

Specifically, the task of spectrum sensing can be summarized into two main aspects: first,

detecting whether a PU signal exists in a given frequency band and evaluating the status of the

band to determine whether secondary users (SUs), i.e., unlicensed users, can use the band.

When SUs require communication, the detected idle frequency bands can be allocated for

their use [16]. Second, CR systems aim to improve the utilization of spectrum resources under

the condition of not causing significant interference to PU communications, which requires

SUs to quickly and accurately sense the presence of PUs. When licensed bands are idle, SUs

should detect the idle channels as quickly as possible and continuously monitor during use for

the reappearance of PUs so that they can vacate the bands promptly for PU use [17].

Over the past 20 years, numerous sensing algorithms for detecting spectrum holes have

emerged, and these algorithms can be classified from multiple perspectives. Current spectrum

sensing technologies are mainly divided into narrowband spectrum sensing and wideband

spectrum sensing. Narrowband spectrum sensing typically filters out specific frequency bands

using a band-pass filter after receiving the signals, defining the spectrum sensing problem as a

binary hypothesis problem [18]. Traditional narrowband spectrum sensing methods include

energy detection (ED), matched filter detection (MFD), cyclostationary feature detection

(CFD), and autocorrelation detection, among others [19]. Wideband spectrum sensing, on the

other hand, extends the detection range based on narrowband sensing, not only determining

the presence of PU signals but also estimating the frequency bands occupied by PUs [20].

2.2. Multi-user spectrum sensing methods

Collaborative spectrum sensing (CSS) is a process where multiple SUs exchange information

and share data within a network environment to mitigate potential adverse effects that individ-

ual SUs might encounter during the sensing process [21]. Currently, based on the method of

information exchange among SUs and the criteria for information fusion, CSS systems can be

broadly divided into two categories.

Centralized collaborative sensing systems consist of primary users, multiple secondary

users, and a data fusion center. The central module in this system acts as the fusion center

(FC), responsible for controlling the entire collaborative sensing process [22]. In this mode,

the FC first selects specific frequency bands for sensing, assigns individual SUs to perform

sensing tasks independently, and collects the decision statistics or sensing data from various
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SUs. The FC then makes its binary decision, which is sent back to the FC. Based on a prede-

fined fusion rule, the FC consolidates this information to determine the presence of a PU and

communicates the decision back to all SUs. This approach is widely adopted due to its clear

system design, fast operation, and strong real-time responsiveness. However, its main draw-

back is the reliance on the fusion center for data integration. A failure at the FC can disrupt the

ability of all SUs to use the frequency band [23].

In a distributed collaborative sensing mode, all SUs independently perform sensing and

then share their results with other CR users. Each SU combines its sensing results with those of

other SUs, according to predefined fusion rules, to decide whether a PU is present [24]. This

mode’s advantage lies in its independence from the FC for decision-making, as information

sharing and processing occur solely among SUs, saving signal transmission time. Additionally,

distributed sensing reduces reliance on central infrastructure, leading to lower costs. However,

this approach requires each SU to share and analyze sensing information in real-time to make

decisions, which increases system complexity, reduces efficiency, and imposes higher hard-

ware requirements [25]. Distributed collaborative algorithms are still under development and

may not match the sensing performance of centralized collaborative sensing.

In CSS systems, based on the type of transmitted data, FC decision fusion can be divided

into soft decision and hard decision approaches [26]. Hard decision fusion involves each SU

using sensing techniques to detect the PU spectrum status and determining the presence of

PU signals. Under hard decision rules, each SU performs a local decision and sends only a

binary result (1 for PU present, 0 for PU absent) to the FC. The FC then fuses these local deci-

sions based on predefined criteria and broadcasts the final decision to all SUs [27]. In soft deci-

sion fusion, each SU collects information about the licensed spectrum using various spectrum

sensing algorithms. The collected information is transmitted to the FC, where the FC analyzes

the data from all SUs and independently evaluates the PU signal’s presence. Based on this eval-

uation, the FC forms a final decision and broadcasts the result to all SUs [28].

In recent years, significant progress has been made in the field of collaborative spectrum

sensing through the introduction of machine learning techniques. For example. Shi et al.

(2020) utilized the energy vectors of received signals as features to develop several machine

learning-based spectrum sensing algorithms, including support vector machines (SVM),

weighted K-nearest neighbors (WKNN), K-means clustering, and Gaussian mixture models.

Experimental validation demonstrated that machine learning-based algorithms adapt more

effectively to environmental changes and exhibit superior sensing performance [29]. Lu et al.

(2016) proposed a novel collaborative spectrum sensing algorithm that combines K-means

clustering and SVM by using low-dimensional probability vectors as inputs [30]. Additionally,

Ghazizadeh and his team considered that the front-end sensing devices of unlicensed users

often employ multi-antenna technology. By extracting eigenvalues from the sample covariance

matrix, they applied an improved SVM algorithm for collaborative spectrum sensing, achiev-

ing better results than traditional linear kernel SVM algorithms [31]. Although machine learn-

ing techniques have shown promising applications in collaborative spectrum sensing, research

on deep learning in this field remains in its early stages. Lee et al. (2019) developed a CNN-

based collaborative spectrum sensing algorithm specifically designed for scenarios with multi-

ple channels and randomly moving SUs. By exploring spatial correlations among SUs, the

algorithm performed collaborative spectrum sensing [32]. Nesraoui et al. (2024) proposed a

robust method called DET-AMC (Detection and Automatic Modulation Classification),

which utilizes a convolutional neural network (CNN) trained via transfer learning. The CNN

features obtained through transfer learning demonstrate robustness, particularly under low

SNR conditions and various challenging scenarios, enabling accurate modulation classification

[33]. Khichar et al. (2024) introduced a Fast Super-Resolution Convolutional Neural Network

PLOS ONE Multi-user cognitive radio spectrum sensing with CNN-LSTM: A deep learning approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0316291 January 15, 2025 4 / 27

https://doi.org/10.1371/journal.pone.0316291


(FSRCNN) model for channel estimation, aiming to reduce computational complexity while

maintaining high estimation accuracy [34].Under varying noise levels and different numbers

of SUs, the sensing performance of this algorithm surpassed that of traditional and machine

learning-based collaborative spectrum sensing algorithms, providing strong evidence for the

application of deep learning techniques in this domain.

3. Collaborative cognitive radio spectrum awareness modeling

3.1. System modeling

Addressing the problem of centralized collaborative spectrum sensing, this paper explores

cognitive radio (CR) systems covering multiple sub-users (SUs) and multiple channels. It is

envisioned that a single primary user (PU) and NSU SUs are randomly distributed in a

square area of 200-meter side length, and all users move at a certain speed v with a uniform

speed in random directions. The location of the fusion center (FC) within the region is

fixed. Due to the mobility of the users, the geographic locations of the SUs and their relative

distances are constantly changing, so the indexing of the SUs is assigned based on the tem-

poral order of their participation in the collaborative spectrum sensing. It is assumed that

the authorized spectral bandwidth of the system is W, the number of channels is Ntan d, the

transmission power of the PU is set to P, and the energy leakage factor is set to 7. Under

normal circumstances, the PU communicates mainly on one channel, but the transmission

energy may leak to adjacent channels, resulting in the PU potentially affecting two or more

neighboring channels at the same time. In practical radio communication scenarios,

affected by noise and other factors, the PU may switch to other channels using frequency

hopping techniques. In order to prevent interference with the PU’s communication, once

the PU signal is detected, all channels within the authorized spectrum should be considered

unavailable for the SU. Therefore, this collaborative spectrum perception problem can be

constructed as a binary hypothesis testing problem, which can further be modeled by deep

learning methods for binary classification.

The additive Gaussian white noise with the power spectral density of N0 is also taken into

account in this study, and o
j
iðmÞ is set to represent the noise of the ith SU in the jth channel at

the moment m. The exponent and constant of the path loss are denoted as α and β. Set dim to

represent the distance between the PU and the ith SU at moment m. The path loss can be

expressed as β(di(m))α. Set gj
iðmÞ to represent the multipath fading of the ith SU in the jth

channel at moment m. In this paper, gj
iðmÞ is modeled as an independent circularly symmetric

complex Gaussian random variable with zero mean.

Meanwhile, considering the case of shadow fading, set him to denote the shadow fading of

PU between moment m and the ith SU, obeying the normal distribution with zero mean and

zero variance σ2 in dB. Set kim to denote the normalized shadow fading of the ith SU at

moment m, possessing the zero mean and unit variance, which can be computed by Eq (1).

kiðmÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

bðdiðmÞÞ
a
10

hiðmÞ
10

s

ð1Þ

Assuming that the distance between SUA and SUB is d-, the correlation of normalized

shadow fading between the two can be expressed as ρcor(dA−B), and the computational proce-

dure can be represented:

rcorðdA� BÞ ¼ E kAðmÞkBðmÞ½ � ¼ e
�

dA� B
dref

� �

ð2Þ
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Where dA−B denotes a reference distance that depends on the environment in which it is

located. Two SUs at a similar distance experience more similar shadow decay.

During each sensing cycle Tp, each SU performs energy detection on all Nband channels and

collects NED samples for local sensing. This approach allows each SU to independently evaluate

the state of the channels, enhancing the accuracy of channel state detection. To ensure the effi-

cient utilization of spectrum resources without interfering with PUs, this study adopts a two-

layer energy detection mechanism to distinguish between PU and SU signals. In the first layer,

the system sets an energy detection threshold Eth to identify PU signals. When the detected

channel energy E�Eth, the system determines that the channel is occupied by a PU, thereby

preventing SUs from communicating on that frequency band. If the channel energy is below

the threshold, the system further analyzes the frequency characteristics of the channel signal.

By extracting spectrum information, it verifies whether the signal conforms to the transmis-

sion pattern of a PU. Considering the synchronization requirements of SUs, to ensure that all

SUs complete spectrum sensing operations within the same time window, SUs are allowed to

coordinate their overall sensing time using a clock synchronization protocol during the spec-

trum sensing cycle. This enables the sharing of detection information, reducing the risk of mis-

judgments caused by data inconsistencies among different SUs. It also ensures that spectrum

detection and the transmission of detection results are completed within their respective time

slots, achieving efficient collaborative sensing.

In this study, the utilization state of the licensed spectrum is divided into two hypotheses.

Hypothesis H0 indicates that the licensed spectrum is in an idle state, meaning the PU is not

utilizing the spectrum. Hypothesis H1, on the other hand, indicates that the licensed spectrum

is being utilized by the PU. These two hypotheses form the foundation of spectrum sensing

and determine how the SU acts based on the sensed information. The received signal data

yj
iðmÞ of the i-th SU at time m on the j-th channel is expressed as:

yj
iðmÞ ¼

kiðmÞg
j
iðmÞxðmÞ þ o

j
iðmÞ;H1; j 2 BP

ffiffiffi
Z
p kiðmÞg

j
iðmÞxðmÞ þ o

j
iðmÞ;H1; j 2 BA

o
j
iðmÞ;H0

ð3Þ

8
>><

>>:

In the formula, x(m) represents the signal data transmitted by the PU at time m, Bp denotes

the set of channels utilized by the PU, and BA represents the set of channels affected by leaked

energy from PU communications.

The local sensing of all SUs is based on energy detection, where the signal energy intensity

in the channel is obtained through cumulative calculation. On this basis, let Ti
j represent the

cumulative signal energy of the i-th SU on the j-th channel. The calculation formula is as fol-

lows:

Tj
i ¼

1

NED

XNED

m¼1

jyj
iðmÞj

2
ð4Þ

3.2. Model structure

3.2.1. Localized feature extraction network structure. With the significant enhancement

of computational resources, convolutional neural networks have demonstrated exceptional

capabilities especially in areas such as image processing and computer vision, and are particu-

larly good at extracting local features. When dealing with image data, two-dimensional convo-

lutional neural networks (2DCNN) are usually employed to deal with this type of data in
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matrix form. For the classification task of sequence data, a one-dimensional convolutional

neural network (1DCNN) is preferred, which is effective in extracting dense local features

from fixed-length segments of sequence data and analyzing the spectral relationships between

individual sequence channels. The 1D convolution shows advantages over the 2D convolution

in terms of smaller number of parameters and faster training speed. The network design con-

sists of three convolutional modules and an Average Pooling (AvePooling) layer. Each convo-

lutional module is the underlying local feature extraction unit, which contains a convolutional

layer (Conv1D), a Batch Normalization (BN) layer, a LeakyReLU activation function, and a

Dropout layer, which work together to capture local features from the input data. In each

Conv1D layer, there are multiple convolutional feature signals, and each convolutional feature

signal C(m = 1,2. . ., M) are connected to the multivariate sequential input signal 7th univariate

sequential data S,(1 = 1,2. . .) by a fixed weight matrix W of the form LxF., L). Where L denotes

the number of variables also known as the number of SUs Nu in this chapter and F denotes the

size of the one-dimensional convolution kernel. The size of the convolution kernel determines

the number of elements of the input signal to which a single element of each convolutional fea-

ture signal is connected, i.e., the size of the sensory field. The corresponding mapping opera-

tion is the so-called convolution operation. Assume that each convolutional feature signal has

k elements per convolutional feature signal C. Each element is calculated by Eq (5).

cm;k ¼ sð
XL

l¼1

XF

f¼1

sl;fþk� 1wl;m;f Þ ð5Þ

In the above equation, σ is the nonlinear activation function; cm,k is the kth element of the

mth convolutional feature signal Cm; Sl.k is the kth element of the lth univariate sequence data

of the multivariate sequence input signal Sl; wl,m,f is the fth element of the weight matrix Wl.m,

and the weight matrix Wl.m connects the lth univariate sequence data of the multivariate

sequence input signal, mapping to the mth convolutional feature signal of the convolutional

feature signal, which can be simplified on the basis of this further:

Cm ¼ sð
XL

l¼1

Sl∗Wl:mÞ ð6Þ

In the field of deep learning, commonly used nonlinear activation functions include the

hyperbolic tangent function (Tanh), the S-shaped function (Sigmoid), and the linear rectifica-

tion unit (ReLU). ReLU, in particular, helps to enhance the sparsity of the model and reduce

the risk of overfitting to some extent because it sets the output of neurons with negative out-

puts to zero. However, this activation function also has its limitations, such as causing the dis-

appearance of the negative gradient, which may lead to the permanent inactivation of some

neurons, i.e., the so-called "neuron death" phenomenon. In addition, ReLU may be overly

enforced in the implementation of sparsification, which may sometimes lead to the loss of key

feature information, thus reducing the effective capacity of the model. To solve this problem,

we adopt the LeakyReLU activation function as the activation function σ of the convolutional

layer, which is designed to allow a small gradient to pass through even when the output is neg-

ative, ensuring that the neuron maintains the gradient transfer in all situations. Its expression

is given as:

f ðxÞ ¼
ax; x < 0

x; x � 0
ð7Þ

(
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In the design of LeakyReLU activation function, for the case that the input signal x is less

than 0, the function does not set the output to 0 completely, but adopts a small coefficient α to

correct the negative value, so as to retain the negative gradient, which can help to alleviate the

loss of feature information caused by ReLU. In this way, LeakyReLU can improve the "necro-

sis" phenomenon of nerve cells and the gradient disappearance problem, and thus speed up

the training speed of the model and improve the perceptual performance of the model.

In addition, in this paper, a Batch Normalization (BN) layer and a Dropout layer are added

after each one-dimensional convolutional (Conv1D) layer. The BN layer helps to eliminate the

internal covariate bias by adjusting the distribution of the input layers during the training pro-

cess, making the neural network training more stable, and effectively mitigating the problem

of gradient explosion, thus accelerating the The Dropout layer avoids overdependence of the

model on specific neurons by randomly dropping a portion of the neurons in the network,

which enhances the robustness of the model, helps to prevent overfitting, and improves the

generalization ability of the model.

An average pooling layer is employed after the three convolutional modules of the model,

which reduces the dimensionality of the feature signals and increases the invariance of the fea-

tures through an average pooling operation in order to reduce the impact of fluctuations in the

input data on the model. Specifically, the kth element of the mth pooled feature signal

Pm(m = 1,2,. . .,M) of the average pooling layer can be expressed as:

pm;k ¼ r
XN

n¼1

ðcm;ðk� 1Þ�qþnÞ ð8Þ

where N is the pooling size, q is the sliding step size, and r is the scaling factor.

3.2.2. Global feature extraction network structure. When dealing with multivariate

serial data classification problems, the interactions and correlations among different variables

need to be considered. The mechanism of multiple self-attention (MHSA) is particularly suit-

able for detecting the complex interrelationships among variables in such data. MHSA is able

to sensitively capture the direct or indirect correlations among variables in multivariate

sequence data and reveal the correlations among features by correlating different positions in

the sequences, which is useful for identifying the interactions among hidden features. In addi-

tion, MHSA helps to compensate for the loss of information that may be overlooked during

the feature extraction process. Compared with the traditional single-head self-attention mech-

anism, MHSA is able to improve the ability to perceive complex correlations among multivari-

ables and mine richer feature relationships more effectively by processing multiple attention

heads in parallel. The self-attention mechanism (SA) is implemented by calculating the simi-

larity between the input Query and Key to assign different weight coefficients, and then

weighting and summing the Value according to these weights. This mechanism allows the

model to dynamically extract the most relevant information for the task at hand from the

entire sequence when processing sequential data, where Queries, Keys and Values are usually

derived from the same input data. This mechanism is designed to make MHSA particularly

suitable for processing multivariate sequence data that have complex interactions between var-

iables, thereby improving the overall performance and prediction accuracy of the model.

As shown in Fig 1, from the viewpoint of network structure, MHSA is splicing the outputs

of multiple SAs and then doing parametric transformations, so that Headi denotes the output

of the SA with the i-th head, then the output of MHSA with the number of heads h can be

expressed:

MultiHead ¼ ConcatðHead1;Head2; . . .;HeadhÞWo ð9Þ
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where MuiHead is the output of MHSA, Concat is the Concatenated splicing layer in deep

learning, and Wo denotes the weight matrix for parameter transformation of the splicing

results output from each SA.

3.2.3. Training methods. In the dual-network architecture, the local feature extraction

network (1D-CNN) and the global feature extraction network (BiLSTM) perform their respec-

tive functions before merging their output signals through a concatenation layer. The local fea-

ture extraction network employs multiple convolutional layers to capture the local multi-scale

features of spectrum signals, while the global feature extraction network further captures the

global temporal dependencies of the sequences from the local features. The merged signal is

then passed to the classification network to produce the final classification decision. At the end

of the classification network, a fully connected layer with two neurons and a Softmax activa-

tion function outputs the classification probabilities. During training, the model updates its

parameters using a joint optimization strategy. The training data first pass through the local

feature extraction network, generating multi-dimensional feature maps. These feature maps

are then forwarded to the global feature extraction network to learn the global characteristics

of the time series. Subsequently, the local and global features are concatenated into a unified

feature vector, which is passed to the classification network. The final prediction error is com-

puted using a cross-entropy loss function, and the parameters of both the local and global net-

works are simultaneously updated via backpropagation using the Adam optimizer.

Fig 1. Structure of the multi-leader self-attention mechanism.

https://doi.org/10.1371/journal.pone.0316291.g001
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The loss function of the model is chosen as cross-entropy, which evaluates the error Lsuper

between the predicted results and the actual labels. The calculation formula is as follows:

Lsuper ¼ �
1

U

XU

u¼1

Ŷ ulogðpuÞ
� �

ð10Þ

In the formula,
_Yu and pu(u = 1,2,. . .,U represent the true label and the corresponding

predicted result of the u-th training sample, respectively, and U denotes the total number of

training samples.

This strategy leverages the advantages of a dual-network model to extract deeper features

with fewer parameters, thereby optimizing the classification performance of a single-network

algorithm. At the same time, to ensure training efficiency and superior model performance,

the model adopts the following hyperparameter strategies:(1) Batch Size: Considering the

memory capacity limitations of the hardware, the batch size is set to 2000, balancing memory

constraints and improving training stability.(2) Dynamic Learning Rate Adjustment: Addi-

tionally, the model employs an appropriate initial learning rate combined with a dynamic

decay strategy to avoid issues where a learning rate that is too high prevents convergence, or a

rate that is too low significantly slows down training. The initial learning rate is set to 0.003,

combined with an exponential decay strategy, to mitigate the convergence issues caused by an

excessively high learning rate and the efficiency decline due to an overly low learning rate.(3)

Overfitting Prevention: To further prevent overfitting, the model incorporates L2 regulariza-

tion, Dropout with a dropout rate of 0.3, and an early stopping strategy with a patience param-

eter of 5, thereby optimizing the model’s generalization capability. Additionally, for the update

of model weights and biases, the Adaptive Moment Estimation (Adam) optimizer is employed,

with Adam’s parameters set as follows: β1 = 0.9, β2 = 0.999, ε = 10−8, to ensure the training pro-

cess is efficient and the final model performance is superior. This comprehensive parameter

tuning and algorithm application provide a solid foundation for the optimization and perfor-

mance improvement of the model.

4. Findings and analysis

4.1. Parameterization

To evaluate the performance of the proposed model, this study employs simulation experi-

ments to optimize neural network parameters, ensuring optimal sensing performance. In the

cognitive radio system used for the experiments, user density is reflected by variations in the

number of secondary users (SUs). The number of SUs is set at five levels: 16, 24, 32, 40, and 48.

Environmental noise levels are indirectly simulated through the transmitter power range

(100–1000 mW). Based on the relationship between transmitter power and noise levels, it is

observed that lower transmission power results in a lower signal-to-noise ratio (SNR), repre-

senting more complex noise environments. Conversely, higher transmission power increases

the SNR, approximating ideal channel conditions [35]. This approach simplifies the complex-

ity of directly simulating noise while providing an effective method for assessing the model’s

adaptability to complex spectrum environments. The primary user’s (PU) transmission power

is increased from 100 mW to 1000 mW in 100 mW increments. For each power condition,

200,000 data samples are generated, totaling 2,000,000 samples. These data are divided into

training, validation, and test sets in a 7:1:2 ratio. In the design of the local feature extraction

network, the 1D convolutional neural network (1DCNN) consists of three Conv1D layers,

each with 128 convolutional kernels. The three-layer convolutional structure enables the net-

work to progressively extract multi-level features of the spectrum signals, capturing high-
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frequency features while extracting low-frequency features at deeper levels, thereby improving

sensing accuracy [36]. Meanwhile, the use of 128 convolutional kernels strikes a good balance

between high- and low-frequency feature extraction for the spectral data. Studies have shown

that an appropriate number of convolutional kernels can enhance feature extraction capability

without significantly increasing computational complexity [37]. In this study, Sensing Error is

adopted as the core metric to evaluate model performance. Sensing error measures the dis-

crepancy between the predicted and actual categories in the spectrum sensing task, defined as

follows:

Sensing Error ¼
1

N

XN

i¼1

jŷi � yij ð11Þ

Where N represents the total number of test samples, ŷi denotes the predicted category of

the i-th sample, and yi is the corresponding ground truth category. A smaller sensing error

indicates higher classification accuracy, making it an effective metric for evaluating model per-

formance. The choice of sensing error as the evaluation metric is based on its intuitiveness,

adaptability, and comparability. As a direct measure of classification accuracy, sensing error

clearly reflects the model’s performance under varying experimental conditions. Moreover, in

cognitive radio networks, environmental factors such as noise levels and user density signifi-

cantly affect classification accuracy. Sensing error robustly captures the model’s performance

across different environmental conditions. Defined based on absolute error, sensing error sim-

plifies comparisons between different models, facilitating the validation of the proposed mod-

el’s advantages in multi-user collaborative scenarios.

To extract rich multi-scale features from low-dimensional features, four combinations of

convolution kernel sizes—(5, 9, 5), (7, 9, 5), (7, 9, 7), and (9, 11, 9)—were selected as candi-

dates. These combinations were tested individually during the experiments, with detailed rec-

ords kept of the sensing error and runtime under different PU power levels. The results are

shown in Table 1. The stride of each Conv1D layer was set to 1, the convolution kernels were

initialized using the Kaiming distribution, biases were initialized to zero, and zero-padding

was applied. According to the data in Table 1, the convolution kernel size combination of (7, 9,

5) demonstrated lower sensing errors across various PU transmission power levels. Conse-

quently, this combination of kernel sizes—7, 9, and 5—was adopted. Through this approach,

the local feature extraction network effectively captures critical spectrum features, thereby

enhancing the sensing accuracy and overall performance of the model.

Table 1. Perception errors for different combinations of convolutional kernel sizes.

Emission power (mW) Convolutional kernel size combinations

(5,9,5) (7,9,5) (7,9,7) (9,11,9)

100 21.4197 20.3750 20.8789 20.6085

200 12.0170 11.2098 11.4527 11.5497

300 8.6348 7.9609 8.1137 8.5283

400 6.9266 6.5585 6.8083 6.3294

500 5.0401 4.9997 4.7079 5.0307

600 3.2703 3.0504 3.0702 3.3165

700 2.8385 2.6350 2.6513 2.7337

800 1.9356 1.7938 1.8728 1.8995

900 1.8308 1.6900 1.7595 1.7968

1000 1.4386 1.2857 1.3784 1.3681

https://doi.org/10.1371/journal.pone.0316291.t001
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In the design of the global feature extraction network, the focus was placed on optimizing

the BiLSTM (Bidirectional Long Short-Term Memory) component, while temporarily omit-

ting the MHSA (Multi-Head Self-Attention) module. The global feature extraction network

operates in tandem with the local feature extraction network to enhance the model’s ability to

perceive complex signal environments. The candidate neuron counts for the BiLSTM layers

were set to 64, 128, and 256 to identify the optimal network configuration. The selection of

these values was based on the following considerations: (1) Neuron counts of 64, 128, and 256

are commonly used in deep learning models as they strike a balance between model complex-

ity and computational resource consumption, particularly suitable for LSTM configurations in

tasks such as signal processing and spectrum analysis. (2) Gradually increasing the number of

neurons (from 64 to 256) facilitates the evaluation of network performance at different scales,

enabling the model to achieve an optimal balance between feature representation capability

and computational cost [38]. Simulation results (Table 2) indicate that under varying PU

transmission power levels, setting the BiLSTM neuron count to 128 resulted in the lowest sens-

ing error and exhibited the best sensing performance. Consequently, the BiLSTM layer’s neu-

ron count was fixed at 128.

To enhance the model’s adaptability to complex signal environments, the Multi-Head Self-

Attention (MHSA) mechanism was introduced. Cognitive radio spectrum sensing tasks

require the model to dynamically capture variations in signal characteristics. By leveraging a

multi-head design, MHSA enables the model to capture intricate relationships between fea-

tures in parallel across different positions, thereby improving the comprehensiveness of feature

extraction. Compared to traditional attention mechanisms, MHSA significantly enhances the

model’s ability to perceive diverse signals without substantially increasing computational

costs, making it well-suited for dynamic spectrum environments [39]. Simulation experiments

evaluated the impact of different numbers of heads (1, 4, 8, 16) on model performance, as

shown in Table 3. The results demonstrate that increasing the number of heads allows the

model to better uncover complex inter-feature relationships, thereby improving sensing accu-

racy. Notably, when the number of heads was set to 8, the model achieved the lowest average

sensing error (approximately 5.61) across most transmission power levels. It also exhibited

superior performance in detection accuracy, response time, and behavioral consistency. How-

ever, increasing the number of heads also significantly raised the computational complexity.

When the number of heads was increased to 16, although the model captured more feature

relationships, the sensing error slightly rose to approximately 5.75, likely due to information

redundancy leading to feature oversaturation. Additionally, as depicted in Fig 2, resource

Table 2. Perceived errors for different BiLSTM neuron numbers.

Emission power (mW) Number of BiLSTM neurons

64 128 256

100 21.3751 20.1219 20.2352

200 11.0492 10.7128 10.8458

300 7.6352 7.4202 7.4279

400 6.0255 5.7009 5.6220

500 4.0796 4.0109 4.0358

600 3.2333 3.1423 3.1982

700 2.7517 2.7063 2.7406

800 1.8453 1.8600 1.8771

900 1.7433 1.8239 1.8196

1000 1.3737 1.3707 1.3827

https://doi.org/10.1371/journal.pone.0316291.t002
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consumption escalated substantially, with average inference time rising to 155.83 ms and

memory usage reaching 1054.93 MB. To balance performance improvements and computa-

tional complexity, the number of MHSA heads was ultimately set to 8. This configuration

ensures low sensing error while keeping computational costs within a reasonable range, meet-

ing the real-time processing requirements of cognitive radio systems.

In terms of network architecture and training hyperparameters, the local feature extraction

network utilizes a three-layer Conv1D structure. These three convolutional layers progres-

sively extract spectral features from low to high levels, facilitating the model’s ability to learn

complex signal feature structures without significantly increasing computational overhead.

During model training, input data first passes through the local feature extraction network

(1D CNN) to extract multidimensional local features. These features are then forwarded to the

global feature extraction network (BiLSTM) to capture temporal dependencies. The local and

global features are concatenated in the concatenation layer to form a joint feature vector,

Table 3. Perceived errors for different MHSA parameters.

Emission power (mW) Different MHSA parameters

1 4 8 16

100 19.7176 19.4250 19.2680 19.5778

200 11.1447 10.9409 10.0616 10.2674

300 7.5732 7.7804 7.3400 7.5369

400 5.3358 6.3271 5.6905 5.8148

500 3.8785 4.6812 4.2487 4.3537

600 2.8771 2.9128 2.7808 2.8407

700 2.5751 2.3367 2.5389 2.6170

800 1.8359 1.7333 1.6326 1.6253

900 1.5444 1.6213 1.4993 1.5110

1000 1.3680 1.2643 1.1261 1.2636

https://doi.org/10.1371/journal.pone.0316291.t003

Fig 2. Impact of MHSA heads on inference time and memory usage with distinct colors and markers.

https://doi.org/10.1371/journal.pone.0316291.g002
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which is subsequently fed into the classification network for categorization. The loss function

calculates the error based on cross-entropy, and parameters of both the local and global net-

works are optimized simultaneously via backpropagation. This joint optimization strategy

ensures that the two networks complement each other in feature learning, thereby improving

overall performance. Each convolutional layer employs 128 kernels, with sizes of 7, 9, and 5,

respectively. This configuration balances the extraction of spectral features at different scales:

smaller kernels (e.g., size 5) are effective for capturing fine-grained features, while larger ker-

nels (e.g., size 9) are better suited for extracting broad-spectrum features. This combination

enhances the model’s ability to perceive multi-scale spectral features [40]. The stride is set to 1,

weights are initialized using the Kaiming method, and biases are initialized to zero. Zero-pad-

ding is applied to the kernels. The activation function is LeakyReLU with a coefficient of 0.1,

which helps alleviate the “dead ReLU” problem and stabilizes training by maintaining a non-

zero gradient in the negative region. Each layer is followed by batch normalization (BN) and

Dropout (with a rate of 0.3) to accelerate convergence and prevent overfitting [41]. The global

feature extraction network’s BiLSTM component contains 128 neurons, further enhancing the

model’s capacity to learn temporal features. The classification network is a single-layer fully

connected network with 2 neurons, employing the Softmax activation function for classifica-

tion. The loss function is cross-entropy, and the optimizer is Adam, chosen for its adaptive

learning rate, which is particularly suitable for non-stationary data in spectral perception tasks.

The initial learning rate for Adam is set to 0.003, with exponential decay factors β1 and β2 set

to 0.9 and 0.999, respectively, and the smoothing parameter ε set to 10−8. L2 regularization is

also applied. The batch size is set to 200. To prevent overfitting, early stopping is used, with a

patience value of 5. The specific algorithm flow is as follows:

# Local Feature Extraction Network
def local_feature_extractor(input_shape):
inputs = Input(shape = input_shape)
x = Conv1D(128, 7, padding = ’same’, kernel_initializer = he_normal(),
bias_initializer = ’zeros’)(inputs)
x = LeakyReLU(alpha = 0.1)(x)
x = BatchNormalization()(x)
x = Dropout(0.3)(x)
x = Conv1D(128, 9, padding = ’same’, kernel_initializer = he_normal(),
bias_initializer = ’zeros’)(x)
x = LeakyReLU(alpha = 0.1)(x)
x = BatchNormalization()(x)
x = Dropout(0.3)(x)
x = Conv1D(128, 5, padding = ’same’, kernel_initializer = he_normal(),
bias_initializer = ’zeros’)(x)
x = LeakyReLU(alpha = 0.1)(x)
x = BatchNormalization()(x)
x = Dropout(0.3)(x)
return Model(inputs, x)
# Combined Model
def create_model(input_shape):
inputs = Input(shape = input_shape)
x = local_feature_extractor(input_shape)(inputs)
x = Bidirectional(LSTM(128))(x)
outputs = Dense(2, activation = ’softmax’)(x)
return Model(inputs, outputs)
# Parameters
input_shape = (None, 128)
model = create_model(input_shape)
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optimizer = Adam(learning_rate = 0.003, beta_1 = 0.9, beta_2 = 0.999,
epsilon = 1e-8)
model.compile(optimizer = optimizer, loss = ’categorical_crossen-
tropy’, metrics = [’accuracy’])
# Training
early_stopping = EarlyStopping(patience = 5,
restore_best_weights = True)
model.fit(train_data, train_labels, validation_data = (val_data,
val_labels), epochs = 100, batch_size = 200, callbacks = [early_stop-
ping], verbose = 1)

The design, optimization, and testing of the entire model were conducted on a workstation

equipped with an Intel1 Xeon1 Gold 6138 CPU, 128 GB of RAM, and an NVIDIA GeForce

RTX Quadro 6000 GPU. The system operates on a 64-bit Windows 10 platform and was

implemented in Python using the TensorFlow 2.0.0 and Keras 2.3.1 frameworks. The training

accuracy and loss variations of the proposed PCBM model during the training process are

shown in Figs 3 and 4.

As shown in Figs 3 and 4, the accuracy on both the training and validation sets gradually

increases as the training progresses, eventually reaching a stable state. Similarly, the training

loss and validation loss exhibit a continuous downward trend, stabilizing at relatively low lev-

els. These trends indicate that the model converges effectively, and the optimization algorithm

demonstrates good adaptability. Moreover, a comparison between the training and validation

curves does not reveal significant overfitting. This suggests that the regularization measures

and early stopping strategy effectively prevent overfitting, ensuring an improvement in the

model’s generalization capability.

4.2. Simulation results analysis

In order to verify the effectiveness of the techniques in the local feature extraction network

and global feature extraction network designed in this chapter for algorithm enhancement,

Fig 3. Accuracy variation curve during model training.

https://doi.org/10.1371/journal.pone.0316291.g003
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ablative simulation experiments will be carried out on the same dataset with a number of dif-

ferent models, and the detailed information is shown in Table 4.

In this study, the number of secondary users (SUs) in the cognitive radio system was set to

32, and the primary user’s (PU) transmission power was varied from 100 mW to 1000 mW in

increments of 100 mW. Under each transmission power condition, 200,000 data samples were

simulated and subsequently divided into training, validation, and test sets in a 7:1:2 ratio.

As shown in Fig 5, different colors represent varying levels of spectrum utilization, with the

gradient transitioning from deep purple to yellow, indicating lower to higher utilization levels,

respectively. As the number of secondary users (SUs) increases from 16 to 48, the color in the

heatmap gradually shifts toward yellow, signifying a significant improvement in spectrum

Fig 4. Loss variation curve during model training.

https://doi.org/10.1371/journal.pone.0316291.g004

Table 4. Information on different model configurations under the harmonized dataset.

Model name Network type activation function special assembly Number of

neurons

output layer architecture

1DCNN-ReLU Local Feature Extraction

Network

ReLU not have - Single-layer fully connected

network with 2 neurons

1DCNN-LeakyReLU Local Feature Extraction

Network

LeakyReLU not have - Single-layer fully connected

network with 2 neurons

2DCNN two-dimensional

convolutional network

- Spatial correlation mining - -

CNN+LSTM Global Feature Extraction

Network

- Single-layer LSTM 128 -

CNN+BiLSTM Global Feature Extraction

Network

- Single-layer LSTM 128 -

CNN+BiLSTMSA Global Feature Extraction

Network

- Bidirectional LSTM + single-headed

self-attention mechanism

128 -

Our Model PCBM Dual Network

Model

Multiple activation

functions

Combination of local and global

feature extraction networks

manifold manifold

https://doi.org/10.1371/journal.pone.0316291.t004
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utilization. This trend suggests that a larger number of SUs can utilize available spectrum

resources more effectively, thereby reducing spectrum idleness and waste, and enhancing

overall spectrum efficiency. Additionally, the heatmap illustrates spectrum utilization across

different time slots and frequencies, providing an intuitive view of utilization patterns. Certain

time slots exhibit higher spectrum utilization, likely due to temporal variations in SU activity.

For example, periods of frequent SU activity correspond to increased utilization during those

intervals. Furthermore, the frequency distribution of spectrum utilization demonstrates selec-

tivity, which could be attributed to the physical properties of specific frequency bands or the

limitations of SU devices.

As shown in Fig 6, spectrum utilization exhibits a significant upward trend as transmission

power increases from 100 mW to 1000 mW. This indicates that higher transmission power

effectively enhances the signal coverage and spectrum sensing capabilities of secondary users

(SUs), thereby improving the efficiency of spectrum resource utilization. The heatmap’s color

scheme transitions from deep purple (low utilization) to yellow (high utilization), clearly illus-

trating the increase in spectrum utilization with rising transmission power. Moreover, Fig 6

displays the distribution of spectrum utilization across different time slots and frequencies.

Certain time slots exhibit higher utilization, reflecting the temporal regularity of SU activity,

where frequent SU operations during these periods lead to greater spectrum resource usage.

Additionally, at higher transmission power levels, spectrum utilization becomes more uniform

across frequencies. This suggests that as transmission power increases, SUs achieve broader

spectrum coverage, reducing resource waste caused by limited sensing capability.

4.3. Validity test analysis

With the experimental results of the perceptual errors of the three different models demon-

strated in Table 5, we validate the effectiveness of the local feature extraction networks. The

comparison results show that the perception errors of the two one-dimensional convolutional

neural network (1DCNN) models are generally lower than those of the two-dimensional con-

volutional neural network (2DCNN) under all transmit power conditions. This finding sug-

gests that mining spectral correlation is more effective than spatial correlation in the analysis

of collaborative spectrum sensing data. This is because, when utilizing spatial correlation for

collaborative spectrum sensing, the geographic locations of SUs and the relative distances

between SUs must be accurately known, and the indexes of geographically neighboring SUs

Fig 5. Spectrum utilization under different SU counts.

https://doi.org/10.1371/journal.pone.0316291.g005
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need to be neighboring in data indexing so that spatial correlation can work. In addition, the

experiments show that the perception error of the 1DCNN model with the LeakyReLU activa-

tion function is slightly higher than that of the 1DCNN model with the ReLU activation func-

tion only at a transmit power of 500 mW. In all other test conditions, the LeakyReLU model

demonstrated superior perceptual performance. This phenomenon is attributed to the fact

that the LeakyReLU activation function is able to reduce the information loss and alleviate the

gradient vanishing problem to a certain extent, as well as reduce the inactivity of the neurons,

which effectively improves the overall performance of the model.

The experimental results presented in Table 6 and Fig 7, showcasing the sensing errors of

four different models, validate the effectiveness of the global feature extraction network. Across

all transmission power conditions, the PCBM model consistently demonstrates the lowest

Fig 6. Spectrum utilization under different transmission power levels.

https://doi.org/10.1371/journal.pone.0316291.g006

Table 5. Local feature extraction network ablative experimental perceptual error results.

Emission power (mW) Model Type

1DCNN-ReLU 1DCNN-LeakyReLU 2DCNNl%

100 22.3823 20.5729 23.9741

200 12.6101 11.3186 14.7376

300 10.0212 8.0383 10.6604

400 7.4437 6.6222 9.1906

500 4.4597 5.0483 5.8308

600 3.4914 3.0801 4.4268

700 2.7620 2.6606 3.7830

800 2.4147 1.8113 3.5076

900 2.1995 1.7064 2.5302

1000 1.5635 1.2982 2.1679

https://doi.org/10.1371/journal.pone.0316291.t005

PLOS ONE Multi-user cognitive radio spectrum sensing with CNN-LSTM: A deep learning approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0316291 January 15, 2025 18 / 27

https://doi.org/10.1371/journal.pone.0316291.g006
https://doi.org/10.1371/journal.pone.0316291.t005
https://doi.org/10.1371/journal.pone.0316291


sensing error, particularly excelling when the PU transmission power is below 700 mW. For

instance, at 100 mW, the error gap between PCBM and other models reaches up to 12%. This

indicates that the PCBM model maintains superior sensing performance even under challeng-

ing wireless communication environments. Furthermore, the PCBM model outperforms exist-

ing deep learning-based CSS algorithms, such as CNN66 and LeNet-5, across all PU

transmission power levels, demonstrating significant performance improvements. Specifically,

compared to CNNI, which leverages spatial correlation, the PCBM model achieves lower sens-

ing errors, highlighting its superior capability in extracting spectral data correlations. Com-

pared with other deep learning models designed for multivariate sequential data, the PCBM

model consistently achieves the lowest sensing error, showcasing its robust performance and

learning capability.

4.4. Comparative performance analysis

To further evaluate the perceptual performance of the proposed algorithm, this section con-

ducts a comprehensive performance comparison with 10 related algorithms. Given the limited

research on collaborative spectrum sensing based on deep learning, two representative meth-

ods in this area were selected. Additionally, eight deep learning models with strong perfor-

mance in handling univariate or multivariate sequence data tasks were chosen as comparative

algorithms. In the multi-model performance comparison, the same dataset partitioning, trans-

mission power range (100 mW to 1000 mW), and secondary user (SU) counts (16, 24, 32, 40,

48) were used as benchmark testing conditions. To ensure fairness and scientific rigor in the

comparison, unified baseline conditions were established, and four key performance metrics

were introduced: perception error, training time, testing time, and spectrum utilization. Per-

ception error evaluates model accuracy, training and testing times measure computational effi-

ciency, and spectrum utilization reflects the model’s resource allocation capability in

collaborative spectrum sensing. Furthermore, a comparative analysis of models such as CNN

and LSTM was conducted to examine their characteristics in handling multivariate sequence

data and to clarify the applicability of each model. The experiments were performed under

identical computational resources and dataset partitions. Details of the 10 models are pre-

sented in Table 7.

In this study, specific parameters were set for the cognitive radio system, where the trans-

mission power of the primary user (PU) was adjusted from 100 mW to 1000 mW in incre-

ments of 100 mW. A series of simulation experiments was conducted under these conditions.

At these varying power levels, a total of 2 million data samples were generated, forming the

Table 6. Global feature extraction network ablativity experiment perception error results.

Emission power (mW) Model Type

CNN+LSTM CNN+BiLSTM CNN+BiLSTM-SA Our Model

100 20.6782 20.3172 19.5298 19.0845

200 11.2741 10.8168 11.0386 9.9658

300 8.3828 7.4923 7.5011 7.2701

400 6.5905 5.7563 5.2850 5.6363

500 4.9234 4.0499 3.8416 4.2083

600 3.4241 3.1728 2.8497 2.7543

700 3.0420 2.7326 2.5506 2.5147

800 1.9795 1.8780 1.8184 1.6171

900 1.7654 1.8416 1.5297 1.4850

1000 1.4269 1.3840 1.3550 1.1154

https://doi.org/10.1371/journal.pone.0316291.t006
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corresponding dataset. The dataset was then split into training, validation, and test sets in a

ratio of 7:1:2, respectively.

In this study, the time consumption of various deep learning models during the training

and detection phases is illustrated in Fig 8, where training time is measured in seconds and

detection time in milliseconds. The results indicate that convolutional neural network (CNN)-

based models exhibit lower time consumption during both training and detection, with an

average training time of 135.98 seconds and a detection time of 0.1056 milliseconds. This effi-

ciency is attributed to the local connectivity and parameter-sharing characteristics of CNNs.

However, the time efficiency of CNN models comes at the cost of reduced capability in han-

dling complex data. Their performance may be limited when dealing with multidimensional

Fig 7. Comparison of perception errors in ablation study of the global feature extraction network.

https://doi.org/10.1371/journal.pone.0316291.g007

Table 7. Detailed information of various deep learning models.

Model name Data-processing

capacity

feature extraction

network

Optimization

Features

Applicable Scenarios Data Processing Methods

CNN multivariate CNN Spatial correlation

mining

Collaborative Spectrum

Awareness

Spatial features are extracted using convolutional

layers.

LeNet-5 multivariate LeNet-5 - Multi-user multi-channel

CR system

A hierarchical convolutional structure is employed to

capture multivariate features.

MLP - MLP - Benchmark model for time

series classification

Fully connected layers are utilized to process

multivariate sequences.

FCN Single/multiple

variables

FCN - Sequence data classification One-dimensional convolutional layers are applied to

extract local features from multivariate sequence data.

EncoderFCN Single/multiple

variables

FCN+SA serial attention Sequence data classification A sequence attention mechanism is incorporated to

enhance the capture of time-dependent features.

ResNet Single/multiple

variables

ResNet residual link Sequence data classification Deep convolutional layers with residual connections

are used to handle complex multivariate data.

CTN univariate CTN - Classification of time series

data

Univariate Processing

InceptionTime multivariate Inception Multi-size

convolutional kernel

Serial classification Multi-scale convolution is employed to extract features

at different temporal scales.

LSTMFCN Single/multiple

variables

FCN+LSTM dual network

architecture

Sequence data classification Temporal and local feature extraction are combined.

PCBM - dual network

model

- Designed for research Joint processing of spatial and temporal features is

performed.

https://doi.org/10.1371/journal.pone.0316291.t007

PLOS ONE Multi-user cognitive radio spectrum sensing with CNN-LSTM: A deep learning approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0316291 January 15, 2025 20 / 27

https://doi.org/10.1371/journal.pone.0316291.g007
https://doi.org/10.1371/journal.pone.0316291.t007
https://doi.org/10.1371/journal.pone.0316291


feature sequences or long-term dependencies. In contrast, models incorporating long short-

term memory networks (LSTMs), such as LSTMFCN and the proposed model, require longer

training and detection times due to the sequence-dependent nature of LSTM, which prevents

parallel processing. Although the proposed model exhibits a higher detection time of 2.3262

milliseconds, this time is still in the millisecond range, which is typically acceptable in practical

applications, especially in scenarios with lower real-time requirements or higher task accuracy

demands.

To investigate the impact of user density on model performance, the study compared the

sensing error of the proposed model with baseline models under different numbers of second-

ary users (SUs). In the experiments, the PU’s transmission power was set to 200 mW, and the

number of SUs was configured at five levels: 16, 24, 32, 40, and 48. For each SU count, 200,000

data samples were simulated, resulting in a total dataset of 1,000,000 samples. The dataset was

divided into training, validation, and test sets in a ratio of 70%, 10%, and 20%, respectively,

and the models were evaluated under this configuration. The variation in SU numbers reflects

not only the number of concurrent users in the system but also indirectly indicates the load of

the cognitive radio system. Hence, studying scenarios with different SU counts helps assess the

accuracy and adaptability of the models under increasing user density. The sensing errors

under different SU counts are shown in Table 8 and Fig 9.

The experimental results demonstrate that as the number of secondary users (SUs)

increases, the sensing error of all models decreases significantly, confirming the positive

impact of higher user density on spectrum sensing performance. This trend can be primarily

attributed to the increased information availability in collaborative sensing, enabling models

to make decisions based on more diverse input features. Additionally, the negative influence of

individual user noise is mitigated in high-density scenarios. For example, when SU = 48, the

proposed PCBM model achieved the lowest sensing error of 6.2300, outperforming other com-

plex models such as ResNet (8.2601) and InceptionTime (6.9311), and showing a more

Fig 8. Time consumption of different models.

https://doi.org/10.1371/journal.pone.0316291.g008
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pronounced advantage over traditional models like CNN (9.3625). The superiority of the

PCBM model lies in its integration of the local feature extraction capabilities of convolutional

neural networks (CNNs) and the global feature capturing ability of bidirectional long short-

term memory networks (BiLSTMs). Furthermore, the incorporation of the multi-head self-

attention mechanism (MHSA) effectively enhances the model’s capacity to learn the complex

relationships among variables in sequential data. Although the training time of the PCBM

model exhibits nonlinear growth with the increasing number of SUs (e.g., 406.5 seconds for

SU = 16 and 1219.5 seconds for SU = 48), its detection time consistently remains within the

millisecond range (e.g., 3.489 milliseconds for SU = 48). This demonstrates the model’s high

computational efficiency and real-time applicability, making it suitable for complex scenarios

with high user density. In conclusion, the proposed model not only exhibits outstanding sens-

ing accuracy under varying user density conditions but also effectively balances computational

resource consumption. This highlights its high adaptability and robustness in cognitive radio

spectrum sensing tasks.

Table 8. Comparative experimental results with different numbers of Sus.

mould SU

16 24 32 40 48

CNN 27.0639 18.5088 14.7376 11.7406 9.3625

LeNet-5 28.0991 20.0407 15.0342 11.9215 8.7510

MLP 34.2809 24.8952 20.2451 15.8007 11.9953

FCN 28.3806 19.5295 12.5164 10.6687 7.9429

EncoderFCN 31.9472 21.3429 13.6161 11.1045 8.4001

ResNet 29.7637 19.9533 12.8564 10.8128 8.2601

CTN 30.6027 20.4270 13.9573 10.7721 9.0962

InceptionTime 27.2277 18.1932 11.5455 9.4806 6.9311

LSTMFCN 28.1610 19.4775 12.4816 10.4935 7.7724

Our Model 25.1659 16.1767 9.9658 8.4188 6.2300

https://doi.org/10.1371/journal.pone.0316291.t008

Fig 9. Comparison of results of different methods under various SU counts.

https://doi.org/10.1371/journal.pone.0316291.g009
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5. Discussion

This study developed a multi-user collaborative cognitive radio spectrum sensing model that

integrates convolutional neural networks (CNNs) and long short-term memory networks

(LSTMs), significantly improving the accuracy and efficiency of spectrum sensing. Leveraging

deep learning techniques, the proposed model enables precise spectrum resource management

in dynamic environments. The dual-network architecture combines the spatial sensing capa-

bilities of the local feature extraction network (1D CNN) with the temporal dependency learn-

ing ability of the global feature extraction network (BiLSTM), demonstrating clear

performance advantages in spectrum sensing tasks. Compared to traditional single-network

models (e.g., models utilizing only CNNs or LSTMs), the dual-network design captures multi-

scale features and long- and short-term temporal relationships in spectrum signals more com-

prehensively. This enhances the model’s representational power and adaptability in complex

signal environments. The local feature extraction network is responsible for capturing fine-

grained spectral features, while the global feature extraction network further learns long-term

dependencies within the time series. This design effectively improves classification accuracy.

Additionally, the multi-user collaboration mechanism employed in this study significantly

enhances the model’s robustness and detection reliability. By integrating sensing results from

multiple users, the collaboration mechanism mitigates the impact of misjudgments by individ-

ual users on overall performance, ensuring stable operation across varying noise levels and

user densities. This collaborative approach aligns well with the practical requirements of cogni-

tive radio networks, particularly in environments with high user density and elevated noise

levels, where it demonstrates exceptional performance.

Compared to existing technologies, such as the CNN-based deep collaborative sensing

framework developed by Lee et al. (2019), which primarily focuses on automatically learning

and integrating sensing data from secondary users (SUs) within training samples, the method

proposed in this study incorporates LSTMs to capture temporal dependencies, enhancing the

model’s adaptability to signal fluctuations. Additionally, the proposed model is designed to

monitor the spectrum effectively across diverse radio environments without requiring exten-

sive adjustments for specific scenarios. While the approach by Gao et al. (2021) improved sens-

ing accuracy by leveraging multi-agent reinforcement learning to optimize spectrum sensing

strategies, it incurred higher synchronization and communication costs. In contrast, our

CNN-LSTM structure reduces the reliance on centralized processing, lowers communication

overhead, and decreases energy consumption while maintaining task efficiency. Similarly, the

unsupervised deep transfer learning approach employed by Li et al. (2021) improved model

generalization and robustness. This finding inspires us to consider integrating transfer learn-

ing strategies into the CNN-LSTM model to adapt to dynamic radio environments [42].

Despite the model’s exceptional performance across various scenarios, practical deploy-

ment poses challenges. For instance, under extremely low signal-to-noise ratios (SNRs) or

non-ideal channel conditions, the model’s stability and accuracy may be affected. Moreover, in

resource-constrained environments—such as embedded devices or mid-range hardware plat-

forms—computational efficiency and inference performance could become critical limitations.

Future research will focus on optimizing the model’s architecture, such as reducing the num-

ber of attention heads in the MHSA module or adjusting the number of neurons in the

BiLSTM layers to manage computational complexity and memory requirements, thereby

enhancing the model’s adaptability in low-resource environments. Deployment strategies on

energy-efficient platforms will also be explored to ensure effective operation under diverse

hardware conditions. In larger-scale cognitive radio networks, with significantly increased SU

counts or heightened spectrum environment complexity, the model’s scalability is another
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crucial direction for future research. Although current results indicate that the PCBM model

maintains robust sensing performance as user density increases, extending it to scenarios with

even higher SU densities may require further optimization of its computational efficiency and

sensing capabilities. To address these challenges, future work will investigate advanced deep

learning methods, such as reinforcement learning and generative adversarial networks

(GANs), to enhance the model’s generalization and adaptability to complex environments.

Additionally, given the diverse and dynamic nature of radio spectrum environments, the

application of transfer learning techniques will be explored to improve the model’s adaptability

and generalization across different geographic regions and spectrum conditions. These

advancements will not only increase the practical deployment value of the model but also pro-

vide comprehensive technical support for future cognitive radio networks. The ultimate goal

of this research is to further optimize the model and conduct application-oriented studies,

enabling the model to play a broader role in future wireless communication systems, particu-

larly in achieving efficient spectrum sharing and dynamic management, thereby driving the

continuous development of spectrum sensing technologies.

6. Conclusion

In this paper, a cognitive radio spectrum sensing model combining convolutional neural net-

work (CNN) and long short-term memory network (LSTM) is constructed for multi-user col-

laborative scenarios. The model integrates the feature extraction function of CNN and the

temporal data processing advantage of LSTM, which significantly improves the accuracy and

efficiency of spectrum sensing. Through experimental validation, compared with traditional

methods, the model shows greater advantages in dynamic spectrum environments, especially

under the conditions of dealing with multi-user interference and frequent signal changes, and

is able to more accurately determine the spectrum state.

Despite good results in theoretical research and experimental validation, the model’s per-

formance in very low signal-to-noise ratio environments still faces challenges. Future research

will focus on how to integrate more advanced deep learning techniques, such as augmented

learning and adversarial networks, to further enhance the model’s generalization ability and

flexibility in adapting to the environment. Given the complexity of the radio spectrum envi-

ronment, future work will also explore the performance of the model in a wider range of cog-

nitive radio network applications, as well as the validation of its effectiveness in different

geographical environments. This study not only opens up new research avenues for spectrum

sensing techniques in the field of cognitive radio, but also provides strong technical support

for spectrum management and dynamic allocation of resources in future communication sys-

tems. Looking ahead, it is expected that the model will play a more critical role in promoting

the advancement of wireless communication technology, especially in enhancing spectrum

utilization efficiency and network performance.
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