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Abstract 
With the rapid expansion of non-customized data assets, developing reliable and objec-

tive methods for their valuation has become essential. However, current evaluation tech-

niques often face challenges such as incomplete indicator systems and an over- reliance 

on subjective judgment. To address these issues, this study presents a structured 

framework comprising 17 key indicators for assessing data asset value. A neural network 

is employed to calculate indicator weights, which reduces subjectivity and enhances 

the accuracy of the assessment. Additionally, knowledge graph techniques are used to 

organize and visualize relationships among the indicators, providing a comprehensive 

evaluation view. The proposed model combines information entropy and the TOPSIS 

method to refine asset valuation by integrating indicator weights and performance 

metrics. To validate the model, it is applied to two datasets: Bitcoin market data from the 

past seven years and BYD stock data. The Bitcoin dataset demonstrates the model’s 

capability to capture market trends and assess purchasing potential, while the BYD stock 

dataset highlights its adaptability across diverse financial assets. The successful appli-

cation of these cases confirms the model’s effectiveness in supporting data-driven asset 

management and pricing. This framework provides a systematic methodology for data 

asset valuation, offering significant theoretical and practical implications for asset pricing 

and management.

1. Introduction

1.1 Background
With the rapid development of the digital economy, data has become one of the most core 
assets of modern businesses and organizations [1]. More and more organizations and enter-
prises realize the value of data and want to use data to optimize business operations, provide 
personalized products and services, and even strategic planning [2]. Among them, Non- 
customized Data Assets (NCDAs), as a type of data assets, occupy an important position in 
enterprise data management due to their versatility and wide applicability. Non-customized 
data usually refers to general-purpose data that is not tailored to the needs of a specific user, 
and is widely used in a variety of fields, such as market forecasting, data analytics and business 
intelligence [3].
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In the existing studies, the valuation of data assets has achieved great progress, such as 
exploring the evolution of the concept of data assets [4,5], clarifying the importance of data 
assets [6], and valuing data assets [1]. Traditional data asset management and evaluation 
focuses more on structured data and has a higher degree of standardization. However, for 
non-customized data assets, the existing management and evaluation system is not applica-
ble because of its large scale, unclear value and uneven quality. How to collect and process 
these massive non-customized data, explore its commercial value, and find a suitable eval-
uation method has become an urgent problem to be solved. With the rise of data-driven 
decision-making, enterprises are increasingly demanding the use of non-customized data to 
improve management and innovative products and services. However, the management and 
application of these data face many challenges. How to build an automated non-customized 
data asset evaluation and management system to continuously track the value of data and sup-
port enterprises to make correct decisions is one of the key objectives of current research. The 
main problem is assessing the value of data assets while taking into account the uncertainty of 
non-customized data assets.

Based on a comprehensive analysis of the unique characteristics of non-customized data 
assets, the practical needs of enterprises, and the limitations identified in existing research, 
this study proposes a novel evaluation framework aimed at addressing these gaps. The frame-
work includes a systematic process of collecting large-scale non-customized data, improving 
its quality, and constructing a robust assessment indicator system. This allows for a more 
accurate, quantitative, and dynamic evaluation of the value of such data assets. By employing 
advanced methods, including a neural network-based approach for indicator weighting and 
an information entropy-TOPSIS model, this study provides a practical solution for enterprises 
seeking to optimize their use of non-customized data assets. The findings are expected to offer 
valuable insights for industries aiming to leverage these assets more effectively, ultimately 
enhancing data-driven innovation, promoting sustainable development, and fostering broader 
economic growth and social advancements.

1.2 Literature review
1.2.1 Factors affecting the valuation of data assets. With the continuous advancement 

of informatization and digital transformation, enterprises possess and control an explosive 
growth of diverse data assets in both type and quantity, accumulating at a geometric rate. 
Various data assets are influenced and constrained by many factors, such as technological 
innovations, market demands, regulatory policies, etc. Dong and Zhang studied the impact 
of data assets on data assets, and the quality of data assets has become a concern and worthy 
of research [7]. Aremu et al. studied the impact of the life cycle of assets on data assets. He 
believed that the life cycle of monitoring systems can provide current diagnosis, prediction, 
and information that can guide maintenance decisions [8]. Data standardization is essential 
for preserving and exchanging scientific knowledge, and it requires appropriate data formats 
and sources [9]. Braga and Andrade proposed a data-driven asset degradation maintenance 
decision support system and explored the relationship between data governance and data 
assets [10]. In addition to the assets themselves, there are several external factors that affect 
data assets. The social context has a strong impact on data assets, and Taera et al. studied the 
volatility and persistence of external shocks in financial and alternative asset markets during 
the crisis triggered by COVID-19 and the war in Ukraine [11]. In addition, social policies will 
also have a great impact on data assets. Liu et al. explored the impact of China’s aging family 
population and pension insurance on household financial asset allocation [12]. Analyzing and 
evaluating quality risk is critical to leveraging the value of data assets, and You et al. proposed 
a proactive assessment framework for data asset quality risk based on improved FMEA [13].
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Furthermore, in addition to the impact of internal and external factors, the management 
of upstream and downstream assets also affects the valuation of data assets. Noshahri et al. 
predictive maintenance planning and assessment of asset condition by examining data-driven 
management of sewer assets [14]. It is very important to establish an accurate and compre-
hensive data asset evaluation framework for enterprises to evaluate the value of data assets and 
account processing [15]. A scientific and systematic evaluation framework can help enterprises 
accurately judge the intrinsic value of different types of data assets, provide a basis for data 
asset management decisions, achieve standardized monitoring and accounting of data assets, 
and better reflect the contribution of data assets in corporate performance. Qu et al. examined 
the asymmetric spillover effects of Bitcoin to green and traditional assets by using a complete 
allocation framework established by the recently developed quantile-to-quantile approach [16].

1.2.2 Evaluation method. Systematic evaluation and valuation of enterprise data assets is 
a key part to maximize the value of data assets. Wang and Zhao combed the research results 
of domestic and foreign scholars on the valuation of data assets and classified the valuation 
methods of data assets into four categories [17]. The establishment of a scientific evaluation 
system can objectively calculate the flow value and potential value of data assets, and provide 
a basis for enterprises’ data asset investment, operation and management decisions [18]. 
Through the continuously optimized data asset evaluation mechanism, enterprises can 
continuously realize the value transformation of data assets, and make data truly become 
the production factor and core capital of enterprises. Matevž Skočir et al. explored the 
significance of multi-factor asset pricing models in business valuation, centred around the 
eight-factor model [19]. TOPSIS based model is also applied to the evaluation of data assets, 
Dong ang Zhang designed Fermatean Fuzzy TOPSIS model based on TOPSIS model to solve 
the problem of Commercial Bank Data Asset Quality Evaluation [7]. Yang et al. used the 
maximum correlation portfolio (MC) method to test the asset pricing model [20]. Manresa et 
al. estimated the identified set of SDFS and the price of risk that are compatible with the asset 
pricing constraints of a given model [21]. Wu and Zhang solved the pricing problem of data 
assets based on Based on the Real Option Method [22]. For asset valuations, Koo and Muslu 
compared the flow of funds and asset valuations of bond mutual funds and found that bond 
mutual fund managers overstate the value of their assets if they also manage a portfolio based 
on performance fees [23]. Lin et al. has developed a framework for evaluating the net present 
value (NPV) of geological hydrogen storage that integrates the latest technical and economic 
analysis and market operation, using capital asset pricing model (CAPM) and relevant 
financial theory scheduling knowledge [24]. Lu and Yang proposed a new European option 
pricing formula based on the underlying stock, where the price is determined by demand and 
supply in a given transaction [25]. For the existing models, we summarized and pointed out 
the shortcomings of the existing models, as shown in Table 1.

1.2.3 Knowledge graph. In recent years, knowledge graphs have been widely used in 
many fields. By building a network of relationships between entities, knowledge graphs 
can empower smarter applications. Knowledge graph has been widely used in art field 
[26], transportation field [27], civil engineering [28], mechanical engineering [29], power 
engineering [30].

For the impact of different factors on data assets, most scholars have only explored the 
impact of one factor on data assets or established an incomplete indicator system. In addition, 
most of the existing research is on customized data assets, and there is limited research on 
non-customized data assets. Most of the assessment methods that currently exist use human 
scoring, which is more subjective [31]. Therefore, we construct an evaluation index system 
and model for non-customized data assets to fill this research gap. We establish a complete 
indicator system with seventeen indicators, including internal factors, external factors, 
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upstream and downstream data assets, and the interaction between different factors. In addi-
tion, we combine the constructed index system with knowledge graph that meets the assess-
ment of non-customized assets. On this basis, we use the neural network method to determine 
the weights of indicators, and combine the information entropy and the TOPSIS model to 
establish the evaluation model of non-customized data assets.

1.3 The main contribution of this study
This study aims to address subjectivity and incompleteness in evaluating non-customized data 
assets. To achieve this, a comprehensive index system is constructed, a neural network is used to 
calculate objective index weights, and a knowledge map is built to capture intrinsic relationships 
among indices. Based on these components, an integrated evaluation model combining infor-
mation entropy and TOPSIS is developed to quantify non-customized data asset values. The 
proposed framework covers key dimensions of non-customized data assets, reduces subjective 
bias, and enhances evaluation objectivity and accuracy. This framework provides an innova-
tive approach to evaluating complex, unstructured data assets by integrating multiple objective 
methodologies. Quantifying and visualizing the evaluation process is expected to facilitate data-
driven decisions and provide new insights for managing non-customized data assets.

• A new comprehensive index system is built to evaluate non-customized data assets. This 
study constructs an index system with 17 carefully selected indicators, covering key dimen-
sions of asset properties, market value, and corporate performance. A knowledge graph 
captures the intrinsic relationships among indicators, further enhancing the system’s com-
pleteness. Compared to existing methods, this index system provides a more comprehen-
sive, objective assessment of the multidimensional value of non-customized data assets. This 
systematic, knowledge-based index framework fills gaps in current evaluation practices and 
improves quantification in this complex domain.

• A neural network calculates objective index weights, overcoming subjectivity in traditional 
methods. This study leverages neural networks for adaptive learning, nonlinear modeling, 
high-dimensional data processing, and flexibility. This neural network-based approach 
objectively determines weights for each index, minimizing subjective biases. Replacing man-
ual weighting with neural network calculations enhances objectivity and accuracy in overall 
evaluation. This innovative technique addresses the longstanding issue of subjectivity in 
data asset assessment, representing a major improvement over conventional method.

Table 1. Aggregation of existing models.

Reference Model Methodology applied Shortcomings
Li et al., 2024 DE0A-BCC Model Construction of the indicator 

system
Insufficient consideration of influencing factors

Skočir and Lončarski, 
2024

multi-factor asset pricing model around an eight-factor model Calculation of coefficients based on regression is too simple 
and not comprehensive enough

Yang et al., 2023 the method of Maximum-Correlated (MC) 
Portfolios

Q-statistics and Sharpe ratios Only non-traded factors were considered

Manresa et al., 2023 econometric methodology Based on economics Only comparisons with several common types of models are 
presented, and the advantages over other models are uncertain

Dong et al, 2023 Fermatean Fuzzy TOPSIS Improvement based on 
TOPSIS

Calculation of evaluation indicators is too subjective and links 
between factors are not clearly established

Feng et al., 2024 Valuation after construction of evaluation 
index system by AHP method

Calculated based on AHP 
method

Calculation of indicator weights is too subjective

Jia-qi et al., 2023 Real Option Method of intangible assets Based on the Real Option 
Method

Incomplete consideration of influencing factors

https://doi.org/10.1371/journal.pone.0316241.t001

https://doi.org/10.1371/journal.pone.0316241.t001
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• An integrated evaluation model combining information entropy, TOPSIS, and neural 
networks is developed. Using neural network-derived index weights, this study proposes a 
hybrid model integrating information entropy and TOPSIS methods. This unified approach 
leverages the strengths of entropy weighting and TOPSIS multi-criteria decision-making. 
Neural networks’ nonlinear modeling capabilities further enhance the model’s adaptability 
to complex, real-world problems. Compared to conventional linear models, this integrated 
approach captures nonlinear relationships, enabling more accurate and reliable data asset 
evaluation.

• The framework and model were validated using Bitcoin data and BYD stock data to 
demonstrate its accuracy and practicality. The findings further demonstrate the validity 
of the methodology and provide new theoretical and practical support for the valuation of 
non-customized data assets. The study is structured as follows

The structure of this study is as follows. Section 2 presents the evaluation index system for 
non-customized assets and describes the research framework. Section 3 introduces the mod-
els, including the neural network model, knowledge graph, and information entropy-TOPSIS 
model. Section 4 uses Bitcoin data and BYD stock data for demonstration, while Section 5 
summarizes the study’s findings.

2. Study framework

2.1 Indicators’ introduction
Non-customized data assets are general-purpose data that are not specifically tailored. 
Their main characteristics include broad sourcing, general content, ease of access and use, 
wide coverage, low usage costs, and minimal development and maintenance expenses. 
Given the complexity of non-customized data, this study examines impact indicators from 
four primary categories, each containing specific secondary indicators. The details are as 
follows:

1) Intrinsic factors affecting the value of non-customized data assets. Data source: This 
indicator takes into account the impact of the type of data channel, channel quality, and real-
time performance.

Data scale: This indicator considers the size of the data volume and the impact of the com-
prehensive scheduling of the spatiotemporal dimension.

Data format: This metric takes into account how easy it is to convert structured versus 
unstructured data.

Data quality: This metric takes into account the impact of data accuracy, completeness, 
consistency, and reliability.

Value mining: This metric takes into account the impact of data’s potential for insight gen-
eration and application.

Data governance: This indicator takes into account the impact of data management mecha-
nisms and data security measures.

Attribution of assets: This indicator takes into account the impact of clear intellectual 
property rights on the data.

2) External environmental factors. Technological development: This indicator takes into 
account the impact of relevant technological advances that have enhanced the value of data 
and how it is used.

User demand: This metric takes into account the dependence of different users on relevant 
data and the impact of application innovation.

Data Ecology: This indicator takes into account the impact of an open and shared environ-
ment that facilitates the mining and release of data value.
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Regulatory environment: This indicator takes into account the impact of data security and 
privacy requirements in relevant industries.

Market development: This indicator takes into account the impact of the overall level of 
data production and application in the industry.

Social cognition: This indicator takes into account the impact of trust and acceptance of 
new technologies and data applications.

3) Upstream and downstream assets. Upstream source data: This metric takes into 
account that an increase in the value of source data assets benefits derived data value.

Downstream applications: This metric takes into account how data plays a role in a wider 
range of downstream applications.

4) Interactions between different asset classes. Other non-custom assets: Considering 
the interconnected non-custom assets, changes in their value will affect each other.

Custom Assets: Consider that custom asset applications rely on non-custom data for data 
sources and analytics insights.

The initial knowledge graph is shown in Fig 1.

Fig 1. The initial knowledge graph.

https://doi.org/10.1371/journal.pone.0316241.g001

https://doi.org/10.1371/journal.pone.0316241.g001
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2.2 Evaluation framework
Non-customized assets are unique and irreplaceable, characterized by their non-substitutability. 
Based on extensive literature review and the unique characteristics of non-customized data assets, 
this study identified four primary indicators and 17 secondary indicators to establish an evaluation 
system for non-customized data assets. This system comprehensively accounts for internal factors, 
external influences, upstream and downstream assets, and interactions among different asset 
types. Using this established indicator system, the study applies a neural network method to assign 
weights to each indicator. Subsequently, the study integrates the information entropy model with 
TOPSIS to develop a comprehensive evaluation model. The model then calculates a total evalua-
tion score at a specified assessment stage, determining the value of the non- customized data asset 
based on this structured approach. The framework structure is illustrated in Fig 2.

3. Modeling
This section consists of three parts: Neural network modeling, Constructing knowledge graph 
and Neural network-based information Entropy-TOTSIS model. Table 2 shows some simple 
concepts of the method we used [32–36].

3.1 Neural network modeling
This study utilizes a multiplayer perceptron (MLP) neural network to determine indica-
tor weights, overcoming limitations of traditional weighting approaches. Unlike manual 

Fig 2. The Evaluation framework.

https://doi.org/10.1371/journal.pone.0316241.g002

https://doi.org/10.1371/journal.pone.0316241.g002
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assignment of weights in conventional models, the MLP enables automated learning and 
optimization of weights based on the input data [37]. This allows more accurate capturing 
of relationships between indicators and improved decision-making accuracy. Additionally, 
the nonlinear modeling capacity of neural networks can handle the complex interactions 
and patterns among indicators of different types and characteristics. By contrast, traditional 
linear models cannot fully account for these multidimensional relationships. Moreover, neural 
networks can process high-dimensional data and extract salient information, adapting well 
to real-world complexity. Their flexibility and scalability also allows easy adjustment for new 
decision scenarios and indicators. In summary, the data-driven MLP neural network approach 
provides adaptive, nonlinear and robust weight calculation. By replacing subjective expert 
weighting with automated neural network learning, this method delivers more reasonable and 
reliable indicator weights for evaluating multifaceted non-customized data assets.

3.1.1 Modeling steps. 

Step 1: Initialize Weights

Initialize the weight matrices that connect the input layer to the hidden layer and the hidden 
layer to the output layer based on the network structure. The network structure is as follows:

Input Layer 17 neurons, representing the 17 indicators' scores for each year.

Table 2. Relevant terms .

Term/Concept Explanation
Neural Network A computational model used in this study to predict the weights of indicators. The network learns from historical data and 

calculates the relative importance of each indicator based on training data.
Hidden Layer Activation Function 
(Tansig)

The Tansig (hyperbolic tangent sigmoid) activation function is used in the hidden layer, mapping values to a range between -1 
and 1. This allows the model to capture complex data patterns with greater sensitivity, which is critical for accurate indicator 
weight prediction.

Output Layer Activation Function 
(Purelin)

The Purelin (linear) activation function is applied in the output layer to produce continuous, unbounded outputs. This function 
is suitable for regression tasks, allowing the model to generate interpretable output values for data asset evaluation.

Loss Function (Mean Squared Error, 
MSE)

The Mean Squared Error (MSE) loss function is used to measure the difference between predicted and actual values, penalizing 
larger errors more heavily. This choice improves the model’s accuracy in predicting weights by prioritizing minimization of 
large deviations.

Knowledge Graph A tool used in this study to visually represent the relationships between different indicators. It organizes the indicators into a 
structured format, helping to reveal how each indicator influences others.

Nodes Represent the individual indicators in the knowledge graph. Each node corresponds to a specific feature or characteristic used 
in the evaluation model (e.g., price volatility, trading volume).

Edges The connections between nodes in the knowledge graph, representing the relationships or dependencies between indicators. 
These edges illustrate how different indicators influence one another.

Information Entropy A statistical measure used to quantify the uncertainty or diversity in a set of indicators. In this study, entropy is used to assess 
the distribution of values across indicators to determine their relative importance.

Information Entropy Weight The method used to assign weights to each indicator based on its entropy. Indicators with lower entropy (less variation) are 
assigned higher weights, as they contribute more decisively to the evaluation. Conversely, indicators with higher entropy (more 
variation) are given lower weights. This ensures that more stable indicators have greater influence in the model.

TOPSIS (Technique for Order Prefer-
ence by Similarity to Ideal Solution)

A decision-making method applied in this study to rank different time periods based on their proximity to the ideal solution. 
TOPSIS ranks alternatives based on the distance from the ideal (best) and negative ideal (worst) solutions.

Ideal Solution Represents the best possible values for all indicators, where each indicator is at its maximum level. It serves as a reference point 
to compare the evaluated periods or alternatives.

Negative Ideal Solution Represents the worst possible values for all indicators, where each indicator is at its minimum level. It is used to measure how 
far each evaluated period deviates from the worst-case scenario.

Distance Measure (Euclidean or 
Similarity)

In TOPSIS, this measure calculates the distance between each alternative and the ideal and negative ideal solutions. The alterna-
tive with the smallest distance to the ideal solution is considered the best.

https://doi.org/10.1371/journal.pone.0316241.t002

https://doi.org/10.1371/journal.pone.0316241.t002
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Hidden Layer A single hidden layer with 10 neurons.
Output Layer 17 neurons, representing the predicted weight for each indicator.

Step 2: Forward Propagation

Pass input samples (the indicator scores for each year) through the network, computing 
each layer’s output in turn.

Data flows from the input layer through the hidden layer to the output layer:
If we denote the input data as X (of size 6 × 17), then the input is multiplied by the weight 

matrix W1  from the input to the hidden layer, and then passed through an activation function 
to get the hidden layer output. The hidden layer output is then multiplied by W2 , the weights 
between the hidden layer and output layer.

Step 3: Activation Function

Apply an activation function to introduce non-linearity.
Hidden Layer Activation Function (Tansig): Uses the Tansig (hyperbolic tangent sigmoid) 

activation function, as shown in Eq. (1).

 
f x

e x( )=
+

−
−

2
1

12  (1)

where x is the input to the activation function. This maps the values to a range between -1 
and 1, allowing for greater sensitivity in capturing data patterns.

Output Layer Activation Function (Purelin): Uses the linear activation function (Purelin) 
to maintain continuity in the output, suitable for regression tasks. The output layer uses a 
linear activation function (Purelin), expressed as Eq. (2).

 f x x( )=  (2)

Step 4: Loss Function

The loss function measures the difference between the predicted outputs and the actual 
target values. Here, the code uses Mean Squared Error (MSE) as the default loss function, as 
shown in Eq. (3).

 MSE
N

y y
N

i

true pred= ∑ −( )
=1 1 2

 (3)

where ytrue  is the actual value, ypred  is the predicted value, and N is the number of samples. 
MSE penalizes larger errors more significantly, which helps improve the accuracy of the model.

Step 5: Backpropagation

Backpropagation calculates the gradient of the loss function with respect to each weight by 
propagating the error backward through the network.

Gradients guide adjustments to each layer’s weights, reducing the overall error in future 
predictions.

Step 6: Weight update

Update the weight matrices using an optimization algorithm. In MATLAB, the train 
function typically uses the Levenberg-Marquardt algorithm, a powerful method for improving 
convergence speed, especially for non-linear problems.
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Weight update formula for gradient descent, as shown in Eq. (4).

 W W W= − ⋅∇ϑ  (4)

where W is the weight matrix, ϑ is the learning rate, and ∇W  represents the gradient of the 
loss function with respect to W.

Step 7: Repeat Steps 2-6

Repeat Steps 2-6 until the model reaches a stopping criterion, such as a maximum number 
of iterations or convergence of the loss function to a predefined threshold.

3.1.2 Rules for determining the number of neurons in the hidden layer. The number of 
neurons in the hidden layer is determined by the following rule.

Hidden layer neurons should be greater than half the sum of the input and output neu-
rons, as shown in Eq. (5).

 Hidden Neurons
Input Neurons Output Neurons   

>
+
2

 (5)

Here, both the input and output layers contain 17 neurons, resulting in a hidden layer with 10 
neurons, which meets this criterion.

3.2 Constructing knowledge graph
In this study, four first-level indicators and 17 second-level indicators were selected to con-
struct the influencing factors of non-customized data assets. A knowledge graph was devel-
oped utilizing relevant insights from complex networks. The decision to employ knowledge 
graphs is particularly justified by their unique ability to reveal hidden relationships within 
complex datasets, which is critical for the accurate assessment of non-customized data assets 
in this research context. Knowledge graphs provide a structured representation of data, 
allowing for the identification of interdependencies and correlations among various indica-
tors. This capability is essential for uncovering insights that traditional evaluation methods 
may overlook, thus ensuring a more comprehensive understanding of the factors influencing 
non-customized data assets. Furthermore, the knowledge graph facilitates the analysis of 
indicator interconnectivity, enabling the identification of pertinent weight distributions across 
the 17 indicators. This interconnectivity analysis is pivotal in assessing how various factors 
interact and influence non-customized data assets. Specific applications of knowledge graphs 
within the domains of data governance and management have been cited to illustrate their 
efficacy in uncovering underlying data relationships, thereby enhancing the objectivity and 
robustness of the evaluation process.

In the context of this study, the knowledge graph serves as a foundational tool for analyzing 
the selected indicators. Node degree and node number were utilized to ascertain their graph 
distribution, and Pajek software was employed for the construction of the knowledge graph. 
Node degree, a fundamental parameter characterizing the properties of nodes within complex 
networks, is calculated as shown in Eq. (6).

 deg i a
j n

ij( )= ∑
∈

 (6)

where deg i( )  is the node degree of node i and aij  is the side where node i and j are connected. 
The node betweenness is calculated as shown in Eq. (7). The node betweenness is the ratio of 
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the number of shortest paths passing through a node k to the number of all shortest paths in 
the network.

 Bet i
i

j k n j k

ji

ji
( )= ∑

( )
∈ ≠, ,

ς
ς  (7)

where Bet i( )  is the number of nodes i and ς ji  is the sum of all shortest paths in the network.

3.3 Neural network-based information Entropy-TOPSIS model
This study combines the information entropy and TOPSIS model constructed for calculating 
non-customized data assets. The information entropy-TOPSIS model is a multi-indicator 
decision analysis method that integrally considers the information entropy of indicators and 
the similarity between indicator values. The advantages of this model are presented in the 
following four aspects.

1) Considering the relationship between the information entropy of the indicators and the 
indicator values comprehensively, improves the sensitivity of the evaluation model to the 
comprehensive performance of the indicators.

2) Ensuring that the importance of the different indicators is reasonably taken into account 
by determining the weights of the indicators and performing the normalization process, 
as well as eliminating the differences in the magnitude of the indicators and the bias of the 
weights between the indicators.

3) Having results with strong interpretability, enables the decision-makers to better under-
stand the evaluation results and make decisions.

4) flexible adjustment and expansion, which can adjust the weights and introduce other eval-
uation indicators or methods according to actual needs.

This study is based on calculating the weights of the indicators with neural networks and 
then utilizing the constructed information-entropy-topics model. Compared with the tradi-
tional model, the model has the ability of adaptive weight calculation, which can accurately 
capture the importance and comprehensive performance of indicators. At the same time, the 
model is able to handle nonlinear relationships and high-dimensional data with flexibility and 
scalability. Its advantage lies in providing reliable decision support, providing comprehensive 
and accurate information to decision-makers, and helping to optimize the decision results. 
This model has important application prospects in the decision-making process of complex 
problems and provides a reliable tool for decision-makers.

3.3.1 Fundamental assumption. 

1. Assumption of correlation between indicators.

The model assumes that there is some correlation between different indicators, i.e., that they 
provide relevant information on the object of evaluation. This correlation can be quantified 
by calculating the similarity or correlation coefficient between indicators. Correlation helps 
to identify redundant information and ensure the validity of different indicators in a compre-
hensive evaluation [38].

2. Assumption of the indicator values can be expressed through weights.

The model assumes that the importance of different indicators for the evaluation object is 
different and can be expressed by assigning weights. These weights reflect the decision maker’s 
preference and the importance of each indicator. The use of weights to express the importance 
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of indicators is a common practice in MCDM. Objective weights determined by methods such 
as entropy can reflect the importance of information among indicators, and this method is 
widely used for decision analysis in economics and management [39].

3. Assumption of the indicator values can be normalized.

Normalization is a necessary step to ensure that indicators from different units can be 
evaluated on the same scale [40]. In order to eliminate the differences in scale between indi-
cators, the model assumes that the indicator values can be normalized and transformed into 
relative scale. This ensures that different indicators are comparable in the comprehensive 
evaluation.

4. Assumption of the best solution is the one with the smallest distance between the ideal 
solution and the negative ideal solution.

The model assumes that the best solution is the one with the smallest distance between 
it and the ideal solution (with the maximum value) and the largest distance between it and 
the negative ideal solution (with the minimum value). This allows the best solution to be 
determined by calculating the distance between the solution and the ideal and negative ideal 
solutions. This assumption is at the heart of the TOPSIS methodology and ensures that the 
distance measures of ideal and negative ideal solutions are effective in helping decision makers 
to identify the best solution [41].

3.3.2 Information-Entropy-TOPSIS evaluation model based on MLP. There are m 
evaluated objects and each evaluated object n evaluation indicators.  aij  is the evaluation 
indicator of the j indicator and the i object. The initial judgment matrix is constructed.

Step 1: Calculate the information entropy value of the j indicator in the non-customized data 
evaluation indicator system.

The formula for calculating the entropy value of the indicator is shown in Eq. (8).

 H k p p j nj
m

i

ij ij=− ∑ ( ) =( )
=1

1 2ln , , ,�  (8)

where k m= ( )1/ ln  is the information entropy coefficient, H j  is the information entropy 
of each indicator, pij  is the weight matrix calculated by the method of 3.1. p d dij ij

m

i

ij= ∑
=

/
1

, 
pij ∈[ ]0 1,  is the weight of the j indicator of the i evaluation object. In order to avoid the 

situation of pij , when pij = 0  and pij ≈ ε  (where ε is an infinitesimal non-zero value). This 
adjustment ensures that logarithmic calculations are stable without significantly impacting the 
weight accuracy.

Step 2: Calculate the weighted entropy of each indicator, as shown in Eq. (9).
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H

H
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, , ,�  (9)

where Wj  is the weight entropy of each indicator, Wj ∈[ ]0 1, , ∑ =
=

n

j

jW
1

1 .

Step 3: Construct a decision matrix. The normalized indicator value and the weighted entropy 
of the indicator are combined into a decision matrix, as shown in Eq. (10).

 r W p i m j nij j ij= = =( )1 2 1 2, , , ; , , ,� �  (10)
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Step 4: Determine the optimal solution Q i mi
+ = =( ), , ,2�  and the worst solution 

Q i mi
− = =( )1 2, , ,�  of the evaluation object, and the specific calculation methods are 

shown in Eq.s (11) and (12).

 Q max r r ri i i in
+ { }= 1 1, , ,�  (11)

 Q min r r ri i i in
− { }= 1 1, , ,�  (12)

Step 5: Calculate the Euclidean distance between the evaluation object and the optimal solu-
tion and the worst solution, as shown in Eq. (13) and Eq. (14).

 D Q r i mi
n

j

i ij
+

=
+∑ −( ) =( )=

1 2
1 2, , , ,�  (13)

 D Q r i mi
n

j

i ij
−
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1 2
1 2, , , ,�  (14)

Step 6: Calculate the total comprehensive evaluation result and the specific calculation for-
mula is shown in Eq. (15).

 C
D

D D
i mi

i

i i

=
+( )

=( )
−

+ −
, , , ,1 2�  (15)

4. Numerical example
Two case studies are selected in this section, the first one is the case of the Bitcoin dataset and 
the second one is the case of the BYD stock dataset. The selection of relevant parameters is 
referred to Section 3.

4.1 Analysis based on the Bitcoin dataset
4.1.1 Collection and analysis of initial data sets. This study uses Bitcoin as a 

representative example to demonstrate the application of the proposed model on non-
customized data assets. Data from 2015 to 2021 was collected to validate the model using 
Bitcoin as an example. The study examines daily closing prices and gains from December 1 
to the end of February each year from 2015 to 2021, as illustrated in Figs 3 and 4. Extensive 
data analysis was conducted. Fig 3(a) displays daily closing prices from December 1, 2014, 
to February 28, 2015, and Fig 3(b) from December 1, 2015, to February 29, 2016. Figs 3(c) to 
3(f) illustrate daily closing prices from December 1 of each year through February 28 or 29 
of the following years: (c) 2016–2017, (d) 2017–2018, (e) 2018–2019, (f) 2019–2020, and (g) 
2020–2021. Fig 3(g) displays daily closing prices from December 1, 2020, to February 28, 2021. 
Examining the December-to-February data reveals a clear trend in Bitcoin’s closing prices 
during these months across different years. Fig 4 presents the daily changes corresponding to 
the closing prices shown in Fig 3.

Observing Figs 3 and 4 reveals a clear downward trend from late 2014 to early 2015 and 
from late 2017 to early 2018, indicating that these periods were not ideal for purchasing 
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Bitcoin. Late 2015 to early 2016 and late 2016 to early 2017 show an upward trend, suggesting 
these were more favorable times for purchasing Bitcoin. Data from late 2018 to early 2019 
shows significant volatility, indicating that this period was less favorable for Bitcoin purchases. 
The periods from late 2019 to early 2020 and from late 2020 to early 2021 show a downward 
trend, suggesting uncertainty regarding the suitability for Bitcoin investment. Table 3 shows 
the calculation results of this study.

4.1.2 Determination of indicator weights. 
After all layers are trained and the accuracy of network training is reached, the final weight 
matrix obtained is shown in Tables 4–6. The proportion of each indicator in each year is 
shown in Fig 5.

Figs 5(a) through 5(g) display the annual shares of each of the 17 indicators from 2015 to 
2021. According to Fig 5(a), the top five factors influencing Bitcoin prices from December 
2014 to February 2015 are Data Source, Data Quality, Value Mining, User Demand, and Reg-
ulatory Environment. Fig 6 shows that the percentage share of these five key factors during 
this period is 0.628081. From December 2015 to February 2016, Fig 5(b) indicates that 
the top five factors impacting Bitcoin prices are Data Source, Data Quality, Value Mining, 
Regulatory Environment, and Market Development, with a combined percentage share of 
0.691478. According to Fig 5(c), the top five factors from December 2016 to February 2017 
are Data Source, Data Quality, Value Mining, User Demand, and Market Development, with 
a total percentage share of 0.650928 as indicated in Fig 6. Fig 5(d) shows that from December 

Fig 3. Seven consecutive December-February closing prices.

https://doi.org/10.1371/journal.pone.0316241.g003

https://doi.org/10.1371/journal.pone.0316241.g003
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2017 to February 2018, the leading factors influencing Bitcoin are Data Source, Data Quality, 
Value Mining, User Demand, and Data Ecology, with a share percentage of 0.530580 as indi-
cated in Fig 6. Fig 5(e) shows that from December 2018 to February 2019, the main factors 
affecting Bitcoin prices are Data Source, Data Quality, Value Mining, Data Ecology, and 
Regulatory Environment, with a percentage share of 0.586340, as per Fig 6. Fig 5(f) indicates 
that from December 2019 to February 2020, the leading factors influencing Bitcoin are Data 
Quality, Value Mining, User Demand, Regulatory Environment, and Market Development, 
with a share percentage of 0.574350, as shown in Fig 6. According to Fig 5(g), from Decem-
ber 2020 to February 2021, the top factors impacting Bitcoin prices are Data Source, Data 
Quality, Value Mining, User Demand, and Market Development, with a combined percent-
age share of 0.633697, as per Fig 6. Analysis of the above weights reveals that Data Quality 
and Value Mining consistently appear in the top five factors each year. Other key factors 
impacting Bitcoin include Data Source, User Demand, Regulatory Environment, and Data 
Ecology.

4.1.3 The establishment of knowledge graph. The node degree of each indicator is 
calculated, as shown in Table 7. The node betweenness of each tier-1 indicator is calculated, as 
shown in Table 8.

As can be seen from Table 7, the node degree of the four level 1 indicators is large, with 
intrinsic factor having the largest node degree, implying that intrinsic factor can influence 
the most other factors. From Table 8, it can be seen that the node median of intrinsic factor 
is the largest, implying that intrinsic factor has more influence. According to the node degree 
and node median, we used Pajek software to draw a knowledge graph diagram, as shown 
in Fig 7. Fig 7 represents the knowledge graph constructed from the correlations between 
the four primary indicators and the seventeen secondary indicators, which are constructed 

Fig 4. The initial transaction data.

https://doi.org/10.1371/journal.pone.0316241.g004

https://doi.org/10.1371/journal.pone.0316241.g004
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based on the node degree. If there is a connection between two indicators, then there is a 
link between the two indicators, and if there is no relationship between the two indicators, 
then there is no link between the two indicators. In addition, the size of the area of the circle 
is related to the importance of the indicator, the larger the area, the more important the 
indicator is. According to Fig 7, Intrinsic Factor is the most important because there are 10 
indicators connected to it.

Table 3. Parameter table of indicators of bitcoin.

Primary indicator Intrinsic Factor
Secondary indicator Data source Data scale Data format Data quality Value mining Data 

governance
14.12 ~ 15.02 7.5 0.5 0.5 6 8 1.5
15.12 ~ 16.02 6 0.5 0.5 6 8 0.5
16.12 ~ 17.02 5 0.5 1 6.5 8 0.5
17.12 ~ 18.02 4.5 0.5 0.5 6 8 3
18.12 ~ 19.02 7.5 0.5 0.5 6 8 4
19.12 ~ 20.02 2 0.5 1.5 6 5 1.5
20.12 ~ 21.02 5.5 0.5 2 6.5 8 2.5
Primary indicator External Environmental Factors
Secondary indicator Attribution of assets Technological 

development
User demand Data Ecology Regulatory 

environment
Market 
development

14.12 ~ 15.02 2 2.5 5.5 4 4.5 4
15.12 ~ 16.02 2 3 1 2 5.5 9
16.12 ~ 17.02 2 3 4.5 2 5 7.5
17.12 ~ 18.02 2.5 2 4 4 2 4
18.12 ~ 19.02 2.5 2 3 2.5 5.5 1.5
19.12 ~ 20.02 2 2.5 10 3 4 3.5
20.12 ~ 21.02 2 4 4 2 1.5 7.5
Primary indicator Upstream and downstream assets Interactions between different asset classes
Secondary indicator Social cognition Upstream source data Downstream 

applications
Other non-custom assets Custom Assets

14.12 ~ 15.02 1 1 1 0.25 0.25
15.12 ~ 16.02 4 0.5 1 0.25 0.25
16.12 ~ 17.02 2.5 0.5 1 0.25 0.25
17.12 ~ 18.02 4 1 1 1.5 1.5
18.12 ~ 19.02 2 1.5 1 1 1
19.12 ~ 20.02 2.5 1.5 1 2.5 1
20.12 ~ 21.02 2.5 1 0.5 0.25 0.25

https://doi.org/10.1371/journal.pone.0316241.t003

Table 4. Weights of indicator 1 to indicator 6 of bitcoin.

Indicator Data source Data scale Data format Data quality Value mining Data governance
14.12 ~ 15.2 0.149973 0.010380 0.010085 0.118331 0.159901 0.029840
15.12 ~ 16.2 0.120099 0.009015 0.009946 0.120718 0.160042 0.010161
16.12 ~ 17.2 0.089082 0.000001 0.035217 0.103926 0.113805 0.004492
17.12 ~ 18.2 0.090246 0.011425 0.010063 0.119963 0.160183 0.059939
18.12 ~ 19.2 0.134620 0.000001 0.000001 0.109955 0.156839 0.056975
19.12 ~ 20.2 0.040398 0.005268 0.030034 0.122126 0.100376 0.030038
20.12 ~ 21.2 0.109187 0.016833 0.039813 0.128563 0.158548 0.049867

https://doi.org/10.1371/journal.pone.0316241.t004

https://doi.org/10.1371/journal.pone.0316241.t003
https://doi.org/10.1371/journal.pone.0316241.t004
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Table 5. Weights of indicator 7 to indicator 12 of bitcoin.

Indicator Attribution of assets Technological development User demand Data Ecology Regulatory environment Market development
14.12 ~ 15.2 0.039435 0.050032 0.109703 0.079731 0.090173 0.080474
15.12 ~ 16.2 0.042095 0.060229 0.020179 0.040291 0.110179 0.180440
16.12 ~ 17.2 0.034623 0.064479 0.084588 0.016541 0.111385 0.259527
17.12 ~ 18.2 0.047543 0.040080 0.080124 0.080064 0.039977 0.079881
18.12 ~ 19.2 0.041155 0.045592 0.055020 0.083977 0.100949 0.076136
19.12 ~ 20.2 0.041024 0.050025 0.200952 0.060133 0.080284 0.070612
20.12 ~ 21.2 0.039083 0.079134 0.088287 0.039510 0.010269 0.149110

https://doi.org/10.1371/journal.pone.0316241.t005

Table 6. Weights of indicator 13 to indicator 17 of bitcoin.

Indicator Social cognition Upstream source data Downstream applications Other non-custom assets Custom Assets
14.12 ~ 15.2 0.019867 0.020701 0.021000 0.005071 0.005306
15.12 ~ 16.2 0.080101 0.009714 0.017316 0.004908 0.004567
16.12 ~ 17.2 0.043098 0.015793 0.005552 0.017892 0.000001
17.12 ~ 18.2 0.080044 0.020000 0.020338 0.030088 0.030042
18.12 ~ 19.2 0.074866 0.006789 0.022327 0.020351 0.014450
19.12 ~ 20.2 0.050132 0.029428 0.019284 0.050049 0.019837
20.12 ~ 21.2 0.049204 0.019934 0.012461 0.004901 0.005293

https://doi.org/10.1371/journal.pone.0316241.t006

Fig 5. The proportion of each indicator in each year of bitcoin.

https://doi.org/10.1371/journal.pone.0316241.g005

https://doi.org/10.1371/journal.pone.0316241.t005
https://doi.org/10.1371/journal.pone.0316241.t006
https://doi.org/10.1371/journal.pone.0316241.g005
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Fig 6. The proportion of five main factors and other factors of bitcoin.

https://doi.org/10.1371/journal.pone.0316241.g006

Table 7. Distribution of node degrees of bitcoin.

Influencing factors degree Influencing factors degree
Intrinsic Factor 10 Data governance 1
External Environmental Factors 8 Attribution of assets 1
Upstream and downstream assets 3 Technological development 1
Interactions between different asset classes 2 User demand 1
External Environmental Factors 1 Data Ecology 1
Upstream and downstream assets 2 Regulatory environment 1
Interactions between different asset classes 3 Market development 1
Data source 1 Social cognition 1
Data scale 1 Upstream source data 1
Data format 1 Downstream applications 1
Data quality 1 Other non-custom assets 1
Value mining 1 Custom Assets 1

https://doi.org/10.1371/journal.pone.0316241.t007

Table 8. Distribution of node betweenness of bitcoin.

Influencing factors node betweenness
Intrinsic Factor 0.498024
External Environmental Factors 0.399209
Upstream and downstream assets 0.270751
Interactions between different asset classes 0.326087

https://doi.org/10.1371/journal.pone.0316241.t008

https://doi.org/10.1371/journal.pone.0316241.g006
https://doi.org/10.1371/journal.pone.0316241.t007
https://doi.org/10.1371/journal.pone.0316241.t008
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4.1.4 Results of Information Entropy-TOPSIS Modeling. Combined with the weights 
of the indicators calculated in 4.2, the information entropy and information entropy 
weights of each indicator are calculated, as shown in Table 8. As can be seen from Table 
9, for Bitcoin, among the 17 metrics, Data quality has the largest information entropy 
and Data scale has the smallest information entropy. The Euclidean distance between the 
evaluation object and the optimal solution and the worst solution of each indicator, as 
shown in Table 10. The total comprehensive evaluation result under each evaluation stage 
was calculated, as shown in Table 11.

Table 11 presents the final evaluation results and rankings for the seven time periods. The 
lower the ranking, the less suitable it is to purchase Bitcoin, based on the indicators used in 
our model. A closer look at the results reveals some key insights into Bitcoin’s market behavior 
during these periods.

2017.12.01 ~ 2018.02.28 ranks first with the highest final evaluation index of 0.4571. This 
period marks a significant upward trend in Bitcoin’s value, reaching its lowest point before the 
rise to its peak in early 2018. The model’s evaluation indicates this is the most optimal time to 
buy Bitcoin, as the indicators suggest a strong potential for value appreciation. This finding 
aligns well with the actual market data, confirming that purchasing Bitcoin during this time 
period would have been a favorable decision. For businesses or investors, this implies that the 
framework could serve as a valuable tool for identifying profitable investment windows by 
assessing the timing of upward trends based on multiple indicators.

2016.12.01 ~ 2017.02.28, on the other hand, ranks the lowest with a final evaluation score 
of 0.2611. During this time, Bitcoin had already risen significantly and was nearing its yearly 
maximum. As a result, there was a high probability of a price correction, making this the least 
favorable period to purchase Bitcoin. Again, the model’s prediction aligns with the actual mar-
ket movement, where Bitcoin’s value began to decrease after this period. For businesses, this 

Fig 7. Knowledge graph based on degrees.

https://doi.org/10.1371/journal.pone.0316241.g007

https://doi.org/10.1371/journal.pone.0316241.g007
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demonstrates the potential of the model to avoid investments during market peaks, thereby 
preventing potential losses from overvalued assets.

Overall, when comparing the model’s calculated results with actual Bitcoin market trends, 
it becomes evident that the model provides a reliable assessment of Bitcoin’s purchasing 
potential. This reinforces the model’s ability to forecast favorable investment periods and 

Table 9. Entropy of Information and their weights of bitcoin.

Indicator Entropy of Information Weights of information entropy
Data source 0.970706 0.022919
Data scale 0.794665 0.160650
Data format 0.834494 0.129488
Data quality 0.998920 0.000845
Value mining 0.992536 0.005840
Data governance 0.893134 0.083609
Attribution of assets 0.998010 0.001557
Technological development 0.987867 0.009493
User demand 0.918983 0.063386
Data Ecology 0.949222 0.039728
Regulatory environment 0.929611 0.055071
Market development 0.936111 0.049985
Social cognition 0.961371 0.030222
Upstream source data 0.956267 0.034216
Downstream applications 0.967171 0.025685
Other non-custom assets 0.836541 0.127887
Custom Assets 0.796237 0.159420

https://doi.org/10.1371/journal.pone.0316241.t011

Table 10. The Euclidean distance between the evaluation object of bitcoin.

Ideal solution Negative Ideal Solution
0.02211 0.011008
0.031223 0.011781
0.046352 0.016378
0.013591 0.011443
0.016500 0.010932
0.043455 0.016504
0.0238196 0.012176

https://doi.org/10.1371/journal.pone.0316241.t009

Table 11. The total comprehensive evaluation result of bitcoin.

Time Aggregate rating Ranking
2014.12.01 ~ 2015.02.28 0.332303 4
2015.12.01 ~ 2016.02.29 0.273954 6
2016.12.01 ~ 2017.02.28 0.261092 7
2017.12.01 ~ 2018.02.28 0.457100 1
2018.12.01 ~ 2019.02.28 0.398512 2
2019.12.01 ~ 2020.02.29 0.275255 5
2020.12.01 ~ 2021.02.28 0.338260 3

https://doi.org/10.1371/journal.pone.0316241.t010

https://doi.org/10.1371/journal.pone.0316241.t011
https://doi.org/10.1371/journal.pone.0316241.t009
https://doi.org/10.1371/journal.pone.0316241.t010
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avoid risky investments. For businesses, this framework can be a powerful tool to inform 
decision-making processes by providing data-driven insights into market timing, helping to 
minimize risks and optimize returns.

4.2 Analysis based on the stock dataset of BYD Company
The second study case is BYD stock, and the relevant parameters are selected with reference to 
4.1. Figs 8 and 9 show the changes in the closing price and volume of BYD stock from 2019 to 
2024. Tables 12–14 show the weights of each indicator for each year of BYD stock calculated 
by the neural network based weighting method of this paper.

Fig 10(a).Fig 5(f) correspond to the annual share of each of the 17 metrics for each of 
the years 2019 through 2024, respectively. From Fig 10(a), from December 2019 to Feb-
ruary 202020, the top five factors affecting the price of Bitcoin are, in order, Data source, 
Data quality, Technological development, Regulatory environment, and Market develop-
ment.According to Fig 6, the share of the five key factors in this period is 0.590705. From 
Fig 10(b), from December 2020 to February 2021, the top five factors affecting the price 
of Bitcoin are, in order, Data source, Data quality, Value mining, Regulatory environment 
and Market development. according to Fig 6, the percentage share of the five key factors is 
0.590705 for this period. The percentage of the five key factors is 0.651847. From Fig 10(c), 
from December 2021 to February 2022, the top five factors affecting the price of Bitcoin are 
Data source, Data quality, Value mining, Regulatory environment, and Market develop-
ment, in order of magnitude. According to Fig 6, the percentage of the five key factors in this 
period is 0.614474. According to Fig 10(d), from December 2022 to February 2023, the top 

Fig 8. Closing price of BYD Stock.

https://doi.org/10.1371/journal.pone.0316241.g008

https://doi.org/10.1371/journal.pone.0316241.g008
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Fig 9. Volume of BYD Stock.

https://doi.org/10.1371/journal.pone.0316241.g009

Table 12. Weights of indicator 1 to indicator 6 of BYD Stock.

Indicator Data source Data scale Data format Data quality Value mining Data governance
19.09 ~ 19.12 0.104618 0.031541 0.010086 0.116811 0.088794 0.000001
20.09 ~ 20.12 0.109128 0.031336 0.019876 0.113592 0.166003 0.003493
21.09 ~ 21.12 0.100387 0.031419 0.019614 0.124832 0.147635 0.012454
22.09 ~ 22.12 0.120763 0.025663 0.020791 0.066873 0.112818 0.034145
23.09 ~ 23.12 0.119250 0.028603 0.019601 0.104758 0.089940 0.071973
24.09 ~ 24.11 0.123829 0.022423 0.021391 0.108085 0.043163 0.022509

https://doi.org/10.1371/journal.pone.0316241.t012

Table 13. Weights of indicator 7 to indicator 12 of BYD Stock.

Indicator Attribution of assets Technological development User demand Data Ecology Regulatory environment Market development
19.09 ~ 19.12 0.057704 0.099747 0.035796 0.071954 0.131188 0.138340
20.09 ~ 20.12 0.036839 0.053428 0.055774 0.034037 0.109215 0.153910
21.09 ~ 21.12 0.034254 0.064074 0.073370 0.060068 0.095846 0.145772
22.09 ~ 22.12 0.023402 0.177624 0.054780 0.120104 0.098292 0.061809
23.09 ~ 23.12 0.072766 0.136858 0.036501 0.046008 0.083712 0.060169
24.09 ~ 24.11 0.037803 0.206901 0.043145 0.142700 0.055724 0.100208

https://doi.org/10.1371/journal.pone.0316241.t013

https://doi.org/10.1371/journal.pone.0316241.g009
https://doi.org/10.1371/journal.pone.0316241.t012
https://doi.org/10.1371/journal.pone.0316241.t013
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five factors affecting the price of Bitcoin are Data source, Value mining, Technological devel-
opment, Data Ecology, and Regulatory environment in order. Data source, Value mining, 
Technological development, Data Ecology, and Regulatory environment. According to Fig 6, 
it can be seen that the percentage of the five key factors in this period is 0.629600. From Fig 
10(e), from December 2022 to February 2023, the top five factors affecting the price of Bit-
coin are, in order, Data source, Data quality, Value mining, Technological development, Data 

Table 14. Weights of indicator 13 to indicator 17 BYD Stock.

Indicators Social cognition Upstream source data Downstream applications Other non-custom assets Custom Assets
19.09 ~ 19.12 0.063889 0.014878 0.016024 0.002729 0.015899
20.09 ~ 20.12 0.064897 0.016078 0.018454 0.007921 0.006020
21.09 ~ 21.12 0.037877 0.009400 0.025320 0.013222 0.004454
22.09 ~ 22.12 0.044312 0.010789 0.007602 0.000001 0.020235
23.09 ~ 23.12 0.039241 0.034201 0.029792 0.016968 0.009659
24.09 ~ 24.11 0.014425 0.011433 0.019514 0.013212 0.013536

https://doi.org/10.1371/journal.pone.0316241.t014

Fig 10. The proportion of each indicator in each year of BYD Stock.

https://doi.org/10.1371/journal.pone.0316241.g010
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https://doi.org/10.1371/journal.pone.0316241.g010
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governance and Technological development.According to Fig 6, the percentage of the five 
key factors in this period is 0.522779. From Fig 10(f), from December 2022 to February 2023, 
the top five factors affecting the price of Bitcoin are Data source, Data quality, Technological 
development, Data Ecology, and Market development, in order of magnitude. percentage 
of the five key factors in this period is 0.681724 The percentage of the five key factors in this 
period is 0.681724 (Fig 11).

Entropy of Information and their weights BYD Stock are shown in Table 15. The Euclidean 
distance between the evaluation object and the optimal solution and the worst solution of each 

Fig 11. The proportion of five main factors and other factors of BYD Stock.

https://doi.org/10.1371/journal.pone.0316241.g011

Table 15. Entropy of Information and their weights BYD Stock.

Indicator Entropy of Information Weights of information entropy
Data source 0.998312 0.001720
Data scale 0.995809 0.004268
Data format 0.986161 0.014094
Data quality 0.990569 0.009606
Value mining 0.958120 0.042653
Data governance 0.713752 0.291530
Attribution of assets 0.96210 0.038604
Technological development 0.939843 0.061267
User demand 0.981251 0.019094
Data Ecology 0.932882 0.068357
Regulatory environment 0.983021 0.017293
Market development 0.963673 0.036997
Social cognition 0.952623 0.048251
Upstream source data 0.935974 0.065207
Downstream applications 0.960675 0.040060
Other non-custom assets 0.828733 0.174428
Custom Assets 0.9346245 0.066582

https://doi.org/10.1371/journal.pone.0316241.t015

https://doi.org/10.1371/journal.pone.0316241.g011
https://doi.org/10.1371/journal.pone.0316241.t015
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indicator is calculated, as shown in Table 16. The total comprehensive evaluation result under 
each evaluation stage was calculated, as shown in Table 17.

Table 17 displays the total comprehensive evaluation results and rankings for BYD stock 
over several time periods. The lower the ranking, the less suitable it is to purchase BYD stock, 
as per the model’s evaluation. The results provide meaningful insights into the stock’s perfor-
mance, which can be compared to its actual market trends.

2019.09 ~ 2019.12 ranks first with an aggregate rating of 0.372291, indicating this is the 
most suitable time to buy BYD stock. During this period, BYD stock shows a clear upward 
trend in its closing price and trading volume, which is consistent with the model's evaluation. 
The calculated ranking reflects the favorable market conditions for purchasing at this time, 
confirming that this period would have been an optimal investment opportunity. This high-
lights the usefulness of the framework in identifying profitable windows for investment by 
analyzing key performance indicators.

2023.09 ~ 2023.12 ranks the lowest with an aggregate rating of 0.236941. This time period 
corresponds with a phase of downward movement in both the closing price and trading vol-
ume of BYD stock. The model’s ranking aligns with the actual market trend, as this was a less 
favorable time to invest in the stock due to its declining performance. The results suggest that 
investors should avoid purchasing during this period, which would have been a riskier invest-
ment choice. This emphasizes the model’s capacity to steer investors away from unfavorable 
market conditions.

The analysis of the BYD stock results demonstrates that the model effectively aligns with 
the actual stock trends over the periods considered. By comparing the rankings and evalua-
tion scores with real market data, it is evident that the model provides accurate predictions 
of the optimal and least favorable times to invest. This reinforces the value of the methodol-
ogy, as it helps investors and businesses avoid potential losses and identify profitable oppor-
tunities. The results highlight how this framework can be used to make more data-driven 
and informed investment decisions, optimizing returns while minimizing risks in dynamic 
markets.

Table 16. The Euclidean distance between the evaluation object BYD Stock.

Ideal solution Negative Ideal Solution
0.018939 0.011232
0.022762 0.010630
0.018933 0.011096
0.036711 0.018045
0.076071 0.023621
0.043851 0.01790

https://doi.org/10.1371/journal.pone.0316241.t016

Table 17. The total comprehensive evaluation result BYD Stock.

Time Aggregate rating Ranking
19.09 ~ 19.12 0.372291 1
20.09 ~ 20.12 0.318335 4
21.09 ~ 21.12 0.369519 2
22.09 ~ 22.12 0.329550 3
23.09 ~ 23.12 0.236941 6
24.09 ~ 24.11 0.289847 5

https://doi.org/10.1371/journal.pone.0316241.t017

https://doi.org/10.1371/journal.pone.0316241.t016
https://doi.org/10.1371/journal.pone.0316241.t017
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5. Conclusion
This paper developed a comprehensive evaluation framework using the Information Entropy- 
TOPSIS model to assess non-customized data assets, demonstrated through the analysis of 
Bitcoin and BYD stock. The results show that the model accurately reflects market trends, 
successfully identifying the optimal investment periods. Specifically, the highest ranking for 
Bitcoin occurred in the 2017.12–2018.02 period, which was marked by a significant upward 
trend in price, while the lowest ranking occurred during 2016.12–2017.02, when prices were 
near their peak and most likely to fall. Similarly, for BYD stock, the most favorable period was 
19.09–19.12, aligning with an upward market trend, while the least favorable was 23.09–23.12, 
corresponding with a market downturn.

The practical implications of these findings are significant for businesses and investors. The 
model offers a robust framework for determining optimal investment timing, minimizing risk, 
and enhancing returns by aligning investment decisions with market trends. This methodol-
ogy can be particularly useful for businesses seeking to make data-driven, strategic decisions 
in volatile markets. By quantifying asset value based on real-time data, companies can avoid 
potential losses and identify lucrative opportunities.

Looking ahead, future research could enhance this model by incorporating additional 
variables, such as market sentiment or macroeconomic indicators, to provide more com-
prehensive evaluations. Further exploration into machine learning integration could allow 
for dynamic adjustments to the model’s parameters based on real-time market conditions, 
offering even more precise decision-making support for businesses and investors in the future.
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