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Abstract

The cardiopulmonary nematode Angiostrongylus vasorum can cause severe disease in
dogs, including coagulopathies manifesting with bleeding. We analysed A. vasorum excre-
tory/secretory protein (ESP)-treated dog plasma and serum by N-terminome analysis using
Terminal Amine Isotopic Labelling of Substrates (TAILS) to identify cleaved host substrates.
In plasma and serum samples 430 and 475 dog proteins were identified, respectively. A
total of eight dog proteins were significantly cleaved at higher levels upon exposure to A.
vasorum ESP: of these, three were coagulation factors (factor I, V and IX) and three were
complement proteins (complement C3, C4-A and C5). Comparison with human motif
sequence orthologues revealed known cleavage sites in coagulation factor IX and Il (pro-
thrombin). These and further identified cleavage sites suggest direct or indirect activation or
proteolysis of complement and coagulation components through A. vasorum ESP, which
contains several proteases. Further studies are needed to validate their substrate
specificity.

Introduction

Dogs infected with the cardiopulmonary nematode Angiostrongylus vasorum can suffer severe
disease. Around one third of infected dogs manifest internal or open bleeding [1, 2], which
may correlate with hypocoagulation and hyperfibrinolysis [3] and often ends in fatal outcome.
Observed coagulopathies have been hypothesised to be due to a number of coagulation abnor-
malities including disseminated intravascular coagulation (DIC), up- or downregulation of
anti- or procoagulant factor activity, thrombocytopenia, and others [1, 4, 5].
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Angiostrongylus vasorum resides in the right sides of the heart and releases a complex mix-
ture of proteins and proteases into the host’s blood circulation. The parasite is in direct contact
with host blood components and the endothelium of blood vessels. Over 1000 different excre-
tory-secretory proteins (ESP) were recently identified to be released by this parasite in vitro.
On its surface 1195 different proteins are present. Among ESP and surface proteins are many
proteins relevant for nematode metabolism, but also putative modulators of host coagulation
and more than 50 different proteases were identified [6]. Only few studies with a direct focus
on coagulation or immune response upon A. vasorum infection have been conducted [3, 7-9]
and the mechanisms and pathogenesis behind bleeding disorders induced by A. vasorum are
still inconclusive. Prior to this work, we performed proteomic profiling of sera of A. vasorum
experimentally infected dogs over time, where a decrease of proteins of the complement and
coagulation cascade was identified [9]. We here questioned whether A. vasorum ESP modulate
the host complement and coagulation cascade. We used A. vasorum ESP, containing proteases,
and addressed their cleaving capacity in host blood by Terminal Amine Isotopic Labelling of
Substrates (TAILS), a high-throughput quantitative proteomics method to distinguish prote-
ase-generated neo—N-termini from mature protein N-termini, to identify protease substrates
and cleavage sites in complex biological samples such as blood [10, 11].

Material and methods
Collection of A. vasorum excretory/secretory proteins (ESP)

Live A. vasorum females were collected from the hearts and pulmonary arteries of 15 foxes
hunted in the canton of Zurich, Switzerland. The hearts and pulmonary arteries were opened
with sterile surgical scissors and adult specimens collected in sterile Petri dishes with fox blood
and revitalised at 37°C. Adults were washed 3 x with warm sterile phosphate-buffered saline
(PBS) and their viability checked. Live females were incubated for 1 h at 37°C and 5% CO, in
500 ml RPMI 1640 medium (Gibco, Thermo Fisher Scientific), supplemented with antibiotic-
antimycotic solution (500 units penicillin, 0.5 mg streptomycin and 1.25 pg amphotericin B
per ml, Thermo Fisher Scientific) and 50 ug/ml gentamicin solution (Sigma-Aldrich). They
were then transferred to 500 ml fresh supplemented RPMI medium and incubated for 24 h at
37°C and 5% CO,. Ninety adult females were kept in 30ml supplemented RPMI medium for
48 h under the same conditions. Medium containing A. vasorum ESP was then collected, cen-
trifuged (1000 g, 10 min, 4°C) and supernatant filter-sterilized (0.22 um). ESP were concen-
trated using a 10 kDa Amicon Ultra 15 ml centrifugal filter (Merck Millipore, US) and
medium exchanged to PBS in the same device. Protein quantity was measured by Qubit pro-
tein assay (Thermo Fisher Scientific). ESP were stored at -80°C for 5 months until use.

Dog serum and plasma collection and incubation with A. vasorum ESP

Serum and plasma were collected from 5 healthy male beagle dogs with haematology (com-
plete blood count, including platelets) and coagulation (prothrombin time, partial thrombo-
plastin time, and Clauss fibrinogen) values within reference ranges. Blood was drawn from the
jugular vein into serum tubes (VACUETTE®™, Greiner Bio-One) and 3.2% sodium citrate (1:9)
coagulation tubes (VACUETTE®™, Greiner Bio-One). The study was approved by the cantonal
veterinary office, Zurich, Switzerland; animal trial permit no. 299776, 242/17. Thirty minutes
after blood draw both serum and plasma tubes were centrifuged at 1800 g for 10 min (RT).
Two hundred pl freshly collected serum and plasma from each dog (n = 5) was incubated for 6
h at 37°C with 30 ug female A. vasorum ESP (containing parasite-derived proteases). Serum
and plasma control samples of each dog containing the same volume of PBS were incubated in
parallel.
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Serum and plasma sample preparation

Immediately following incubation with ESP, samples containing ESP and control samples (5
replicates per group) were subjected to protein enrichment by ProteoMiner small capacity kit
(Bio-Rad) according to the manufacturer’s instructions, and further processed as previously
described [10, 11]. Protein content was measured by Pierce™ BCA Protein Assay Kit (Thermo
Fisher Scientific) before acetone/methanol precipitation. Briefly, 8 sample volumes of ice-cold
acetone and 1 sample volume of ice-cold methanol were added to each sample and incubated
for 2 h at -80°C. Samples were centrifuged (16,900 g, 15 min, 4° C), washed twice with ice-cold
methanol and air-dried. Samples were then dissolved in 6 M guanidine hydrochloride
(GuHCI) and adjusted to 2 M GuHCl and 200 mM HEPES (pH = 8). One hundred pg protein
per sample were further processed. Samples were reduced with tris(2-carboxyethyl)phosphine
(TCEP) at 10 mM and incubated for 30 min in a thermomixer at 37°C, 600 rpm, before alkyl-
ation with iodoacetamide (IAA) (25 mM final concentration), for 30 min in a thermomixer at
25°C, 500 rpm, in darkness. TMT labels (TMTlOplexTM Label Reagent Set, Thermo Fisher Sci-
entific) were used for N-terminal labelling. They were dissolved with one sample volume
dimethyl sulfoxide (DMSO) and added in randomized order to the samples (0.8 mg label per
100 pg sample). Samples were incubated for 1 h at 25°C in darkness at 500 rpm. Twenty-five pl
1M ethanolamine was added to each sample to quench TMT labels, and samples incubated for
30 min in a thermomixer at 37°C, 500 rpm. After that, labelled samples containing ESP treated
and control samples (5 each) were combined into a single tube. Samples were precipitated by
acetone/methanol precipitation as described above, dissolved in 6 M GuHCl and diluted ten-
fold in 100 mM HEPES (pH = 8). Samples were then digested overnight in a thermomixer
(37°C, 600 rpm) using 20 pg sequencing grade modified trypsin (Promega, V5113) (1:5 ratio).
After digestion, 20 ug peptide sample was removed for separate analysis (pre-polymer sam-
ples). The samples were then treated overnight (37°C, 400 rpm) with HPG ALD polymer and
20 mM NaBH;CN to remove internal tryptic peptides with N-terminal alpha-amines for nega-
tive selection of labelled peptides. Samples were adjusted to 100 mM Tris-HCl and incubated
at 37°C for 30 min (600 rpm) before ultrafiltration at 10,000 g using 30 kDa Amicon Ultra 0.5
centrifugal filters (Merck Millipore) for polymer separation. The previously removed pre-poly-
mer samples and the post-polymer samples were acidified with 5% trifluoroacetic acid (TFA)
and purified using C18 OMIX pipette tips (Agilent). Briefly, tips were washed and equilibrated
with 100% methanol, 60% acetonitrile (ACN)/0.1% TFA, and 3% ACN/0.1% TFA before sam-
ple binding. Aspirated peptides were then washed with 3% ACN/0.1% TFA and eluted with
60% ACN/0.1% TFA. Samples were dried to completeness using a speed-vac and resuspended
in 3% ACN/0.1% formic acid (FA).

LC-MS analysis

Peptide samples were diluted in 3% ACN, 0.1% FA to 1 pg/ul and retention time normalization
peptides (iRT, Biognosys) added (1:20). Pre- and post-polymer samples were analysed in tripli-
cates on an Orbitrap Fusion Lumos Tribrid mass spectrometer (Thermo Fisher Scientific)
operated in line with an Acquity UHPLC M-class system (Waters) with a nanoEase M/Z Sym-
metry C18 trap column (100 A, 5 um, 180 um x 20 mm, Waters) and a nanoEase M/Z HSS
C18 T3 analytical column (100 A, 1.8 um, 75 um x 250 mm Column, Waters) in data depen-
dent acquisition mode (DDA). Samples were separated on a linear gradient from 5% to 32%
solution B (0.1% FA in ACN) at a constant flow of 300 nl/min. A 10 um fused-silica spray tip
emitter (New Objective, PN) combined with a nano electrospray ionization (ESI) source (Digi-
tal PicoView 565, O/N: DPV-550-565, New Objective, Woburn, MA) ionized the eluted pep-
tides. MS1 scans ranged from 375-1500 m/z and were recorded in profile mode and positive
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polarity. Orbitrap resolution was set to 120,000 with an automated gain control (AGC) target
of 4e5, and maximum injection time (maxIT) of 50 ms. MS2 scans (DDA) were recorded in
centroid mode and positive polarity with 50,000 orbitrap resolution. The AGC target was le5
and the maxIT 105 ms. Isolated precursors were fragmented with higher-energy collisional
dissociation (HCD) at a collision energy of 38% in the orbitrap. DDA scans first mass was set
to 100 m/z and covered an isolation window of 0.7 m/z with quadrupole isolation. Dynamic
exclusion of ions from fragmentation was set to 15 s after first occurrence. Ion charge states of
2-5 were recorded.

Proteome Discoverer 2.4 (Thermo Fisher Scientific) was used for data analysis. The S/N
threshold was set to 5 for peak filtering. MS2 spectra were matched to the proteomes of Canis
lupus familiaris (UP000002254), Angiostrongylus costaricensis (UP000050601), and Angios-
trongylus cantonensis (UP000035642) under the following settings: spectrum matching for b
and y ions; precursor mass tolerance: 10 ppm; fragment mass tolerance: 0.02 Da; dynamic pep-
tide modifications: oxidation (M), N-terminal TMT10plex or acetylation; dynamic protein
modifications: N-terminal Met-loss; static modifications: carbamidomethyl (C), TMT10plex
(K); maximum missed cleavage sites: 2. The percolator target FDR was set to 0.01 and the inte-
gration tolerance to 20 ppm. Reporter abundance was based on S/N with a co-isolation thresh-
old of 50 and an average reporter S/N threshold of 3. Ion abundance was normalized by the
total peptide amount.

The generated mass spectrometry data have been deposited to the ProteomeXchange Con-
sortium via the PRIDE [12] partner repository (dataset identifier PXD056659).

Data analysis

Abundance ratios (log2) of > 1 and adjusted p-values of < 0.05, obtained through Proteome
Discoverer, were considered proteolytic processes caused directly or indirectly by A. vasorum
ESP. Protein and peptide sequence data was exported from Proteome Discoverer and further
analysed. Human orthologue protein accessions and motif sequences (4 amino acids up- and
downstream of the cleavage site: positions P4 to P4’) were retrieved from NCBI (blastp).
Human motif orthologue sequences were further used to retrieve position specific cleavage
information by TopFIND 4.0 [13]. Human protein orthologues from substrate candidates
were also converted to gene symbols using DAVID (v. 6.8) [14] for gene set enrichment analy-
sis by Enrichr [15] to obtain enriched pathways and gene ontology terms.

Results

We performed N-terminome analysis by TAILS [10, 11]. Dog serum and plasma samples were
treated with A. vasorum ESP to assess the capacity of A. vasorum ESP and proteases to cleave
host blood proteins. Briefly, ESP treated and untreated serum and plasma samples were sub-
jected to N-terminal labelling and further digested before removal of internal tryptic peptides
for negative selection of labelled peptides. Peptides were analysed by LC-MS and cleaved sub-
strates identified by quantitative comparison of treated to untreated samples (Fig 1A).

Plasma peptide spectrum matches (PSM) were assigned to 5339 specific peptide groups
from the dog and/or A. vasorum: 5181 peptides matched canine proteins, 119 matched A.
vasorum, and 39 were allocated to both species. Identified peptides were assigned to 430 and
69 dog and A. vasorum proteins, respectively. PSM from serum were allocated to 5892 peptide
groups, with 5711 peptides assigned to the dog, 129 to A. vasorum, and 37 to both organisms.
Specific peptides resulted in 475 and 84 dog and A. vasorum proteins, respectively. In plasma,
1477 N-terminal peptides were identified, comprising 1428 peptides of canine origin; 68 were
acetylated at the N-terminus while 1360 showed N-terminal TMT labelling (Fig 1B). Serum
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Fig 1. Experimental approach and identified proteins. A: Experimental approach by Terminal Amine Isotopic Labelling of Substrates (TAILS). This figure
was created with BioRender.com. B: Identified dog and Angiostrongylus vasorum proteins, dog peptide groups, and N-terminal labelled peptides at protein and
peptide level in dog plasma samples. C: Identified dog and Angiostrongylus vasorum proteins, dog peptide groups, and N-terminal labelled peptides at protein
and peptide level in dog serum samples. D and E: Volcano plots of serum and plasma samples with significantly (log2 abundance ratio > 1 and adjusted p-
value < 0.05) cleaved proteins/peptides in red and proteins/peptides with log2 abundance ratio <- 1 and adjusted p-value < 0.05 in green.

https://doi.org/10.1371/journal.pone.0316217.9001

processing resulted in 1841 N-terminal peptides, among which 57 acetylated (N-terminal) dog
serum peptides and 1725 N-terminal TMT labelled dog peptides were detected (Fig 1C). The
remainder (n = 59) were N-terminally labelled A. vasorum peptides.

Normalized log2 abundance ratios were calculated for each peptide group to identify A.
vasorum ESP induced cleavages. Among N-terminally labelled plasma dog peptides, 5 peptides
were identified with log2 abundance ratio > 1 and adjusted p-value < 0.05, originating from 3
different proteins, and one peptide with log2 abundance ratio < -1 and adjusted p-
value < 0.05 (Fig 1D). Among peptides obtained from dog serum samples, labelled at the N-
terminal, 9 had a log2 abundance ratio > 1 and adjusted p-value < 0.05, which were assigned
to 6 different proteins (Fig 1E). One N-terminally labelled peptide with log2 abundance ratio
<- 1 and adjusted p-value < 0.05 was identified in serum samples (Table 1).

Eight proteins were significantly increasingly cleaved through A. vasorum ESP in serum
and/or plasma, with one protein (FIPWR2; JO9PADI, complement C4-A) represented in both
serum and plasma. Three proteins were coagulation factors (coagulation factors II, V and IX)
and 3 were complement proteins (complement C3, C4-A and C5).

Further analysis with human motif sequence orthologues revealed 4 identical motifs in
dogs and humans. Three human orthologous cleavage sites were identified as known cleavage
sites. These were cleavage sites of coagulation factor IX (dog: G1K2D7 [position 369 and 370];
human: P00740 [position 371 and 372]) through thrombin (THRB) and cleavage of prothrom-
bin (dog: JONSF9 [position 324]; human: P00734 [position 325]) through kallikrein-4 (KLK4),
coagulation factor X (FA10), mannan-binding lectin serine protease 2 (MASP2), or thrombin
(Fig 2A).

Other identified cleavage positions in dog serum/plasma did not result in known human
protease cleavage sites. A detailed list of all identified dog serum and plasma peptides passing
our statistical significance cut-off, their motifs, human orthologue sequences and motifs, as
well as known cleaving proteases in humans are presented in Table 1.
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Fig 2. Identified cleavage sites in proteins of the complement and coagulation cascade. A: Cleavage sites of the 8
increasingly cleaved dog proteins through Angiostrongylus vasorum excretory/secretory proteins (including proteases) with
comparison of the sequence motifs of dog (top sequence) and human (bottom sequence). The number in the red frame
represents the amino acid sequence cleavage site. Known cleavage sites in humans are indicated with black scissors with a
yellow background. Black: nonpolar, hydrophobic amino acids; red: polar, acidic amino acids; blue: polar, basic amino acids;
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green: polar, neutral amino acids; purple: polar, neutral amino acids, amine group with dipole moment. KLK4: Kallikrein-
related peptidase 4; FA10: Coagulation factor X; MASP2: Mannan binding lectin-associated serine protease-2; THRB:
Thrombin. B: Simplified depiction of the mammalian complement and coagulation cascade and their interaction. Increasingly
cleaved dog serum and plasma proteins through Angiostrongylus vasorum excretory/secretory proteins (including proteases)
are framed in red. This figure was created with BioRender.com.

https://doi.org/10.1371/journal.pone.0316217.9002

Gene enrichment analysis revealed several significantly enriched biological processes.
Among them were regulation of complement activation (GO:0030449), regulation of humoral
immune response (GO:0002920), and regulation of acute inflammatory response
(GO:0002673). Among the top enriched Reactome pathways were ‘Activation of C3 and C5’,
‘Regulation of complement cascade’, and ‘Formation of fibrin clot (clotting cascade)’. The top
10 significantly enriched biological processes and pathways are displayed in Table 2.

Discussion

Angiostrongylus vasorum releases proteins and proteases into the host’s blood circulation. The
A. vasorum ESP have been characterized and several proteases have been identified, however,

Table 2. Biological processes pathways.

Biological process Reactome pathway
Term Overlap | Adjusted P- | Term Overlap | Adjusted P-

value value
Cellular protein 6 of 484 | 1.15E-06 Activation of C3 and C5 30f6 5.71E-08
metabolic process
(GO:0044267)
Regulation of protein 40f108 | 3.02E-06 Regulation of complement cascade 30f26 | 3.70E-06
activation cascade
(G0O:2000257)
Regulation of 40109 | 3.02E-06 Formation of fibrin clot (clotting 30f39 | 8.64E-06
complement activation cascade)
(GO:0030449)
Regulation of humoral 40f113 | 3.02E-06 Complement cascade 30f80 |5.78E-05
immune response
(GO:0002920)
Regulation of immune 40f114 | 3.02E-06 Transport of gamma-carboxylated 20f9 6.11E-05
effector process protein precursors from the
(GO:0002697) endoplasmic reticulum to the Golgi

apparatus

Regulation of acute 40f121 | 3.20E-06 Removal of aminoterminal 20f10 | 6.11E-05
inflammatory response propeptides from gamma-carboxylated
(GO:0002673) proteins
Regulation of protein 40f128 | 3.44E-06 Gamma-carboxylation of protein 20f10 |6.11E-05
processing (GO:0070613) precursors
Positive regulation of 20f7 8.04E-05 Gamma-carboxylation, transport,and | 2o0f11 | 6.53E-05
apoptotic cell clearance amino-terminal cleavage of proteins
(GO:2000427)
Regulation of apoptotic | 2 of 8 9.53E-05 Common pathway of fibrin clot 20f22 | 2.19E-04
cell clearance formation
(GO:2000425)
Post-translational protein | 4 of 357 | 1.40E-04 Intrinsic pathway of fibrin clot 20f22 |2.19E-04
modification formation
(GO:0043687)

Top 10 biological processes and Reactome pathways obtained from increasingly cleaved dog serum and plasma

proteins through Angiostrongylus vasorum excretory/secretory proteins (including proteases).

https://doi.org/10.1371/journal.pone.0316217.t1002
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their activity and impact remain largely unexplored [6]. Proteolysis is a tightly regulated pro-
cess, essential to various biological processes. In mammalian hosts, proteases usually circulate
as inactive precursors, which are activated by cleavage processes that also include conforma-
tional change. Serine type proteases are of specific significance due to their diverse range of
functions in e.g., coagulation and complement activation. In the coagulation cascade, serine
proteases exhibit a preference for specific amino acid motifs upstream of the cleavage sites in
their target proteins [16]. Parasitic helminths are known to express a variety of serine type pro-
teases, which are needed for parasite development and feeding, and mediate interaction with
the host [17]. For example, Ancylostoma caninum, a parasitic dog nematode, is known to
release a proteolytic anticoagulant protease essential for its feeding [18]. Blood dwelling hel-
minths are in constant contact with host blood and its coagulation components. Therefore,
under homeostatic conditions, stable protease activity and balanced activation and suppres-
sion of coagulation favour parasite survival [19], whereas dysregulations may lead to complica-
tions, as observed in A. vasorum infected dogs with bleeding manifestations.

In the present study, we identified host proteins affected by A. vasorum ESP either directly
or indirectly. Coagulation and complement proteins represented the most often targeted pro-
teins by cleavage indicating an impact of A. vasorum on both the coagulation and complement
cascade. Accordingly, decreased serum protein levels involved in the coagulation and comple-
ment pathways was previously observed in experimentally infected dogs upon A. vasorum
infection [9].

Most of the identified cleavage sites were unknown and not in proximity to known protein
processing sites. Coagulation factor V was cleaved in the light chain, which mediates binding
and endocytosis of factor V by megakaryocytes [20]. Complement C3 was cleaved in its C3b
alpha chain, more precisely in the C3d fragment, which is formed after the breakdown of C3b
[21]. Finally, prothrombin was cleaved once in its heavy chain. These identified cleavage sites
may suggest proteolysis of the mentioned proteins either directly or indirectly through A.
vasorum ESP, leading to their inactivation or degradation. This is supported by the finding of
reduced levels of coagulation factor V [9] and decreased factor V activity after experimental
infection in dogs [5, 7]. In humans, coagulation factor V deficiency (congenital or acquired)
can have a variable phenotypic expression. Moderate to severe bleeding disorders may be
observed, with clinical signs of easy bruising and haematoma formation after trauma or medi-
cal treatment [22, 23]. There are phenotypes with low level factor V that do not show clinical
signs of bleeding [24]. Acquired coagulation factor V deficiency leads to inhibition of factor V
and is most seen after administration of chemical agents or drugs, and after surgical proce-
dures. Other conditions that can lead to coagulation factor V deficiency in humans are cancer,
infections, autoimmune disorders, blood transfusions, and organ transplantation [25]. Still in
humans, inactivation or deficiency of complement C3 can lead to recurring bacterial infections
and renal disease [26].

Two cleavage areas were identified within complement C4: one within its beta chain and
several cleavage sites close to the propeptide cleavage area, which marks the N-terminal end of
C4a anaphylatoxin (alpha chain) [27]. The identified cleavage site in complement C5 corre-
sponds to a sequence within the C5 alpha chain, only four amino acids away from the cleavage
site of the C5a anaphylatoxin C-terminus in humans. Human orthologous sequences were
used to identify cleavage sites, as humans are the most closely related and well-annotated spe-
cies compared to dogs. Dogs and humans however are rather far removed from each other,
hence the precision of known cleavage sites needs to be questioned. The observed discrepancy
of only few amino acids may be the result of sequential cleavages or trimming through endo-
peptidases [28]. The identified site within C5 may represent, for instance, the cleavage site that
releases C5a anaphylatoxin from the C5 alpha chain in dogs. In contrast, the identified
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cleavage site in C4 may provide evidence of sequential maturation, such as the removal of the
propeptide. Only a few identified cleavage sites were identical between dogs and humans,
impeding a direct comparison of identified cleavage areas. For instance, we observed one
known cleavage site within coagulation factor IX for a human protease. Within this particular
protein however, two cleavage sites were identified in close proximity. This is likely a result of
truncation or trimming of one or several amino acids through exo- or endopeptidases [28].
We did not only observe this in coagulation factor IX, but also in complement C4, where 3 dif-
ferent cleavage sites around the propeptide cleavage area were identified.

Overall, only 3 cleavage sites in 2 proteins matched with known human orthologue
sequence cleavage sites. The identified cleavage site in prothrombin matched with known
cleavage in humans through thrombin and mannan-binding lectin serine protease 2 (Fig 2).
The cleavage site is in proximity to the N-terminus of the light chain, which represents the acti-
vation site of prothrombin through coagulation factor X [29], suggesting possible activation of
prothrombin to its active form thrombin, which in turn could lead to increased fibrin forma-
tion. Thrombin has however also been reported to induce proteolytic inactivity in coagulation
factor IX [30], which we identified in the coagulation factor IX heavy chain in serum samples.
This suggests that A. vasorum ESP have either directly or indirectly activated thrombin, which
in turn likely led to the degradation of coagulation factor IX. In dogs and humans, deficiency
of coagulation factor IX is known as haemophilia B. It manifests with spontaneous and joint
bleeding in both dogs and people [31, 32]. Coagulation factor IX, once activated, serves in the
activation of coagulation factor X together with coagulation factor VIII, via the intrinsic path-
way of coagulation. We therefore hypothesise, although partially unknown and without
known human protein processing sites, that also the other identified cleavage sites in dog pro-
teins of proteins involved in the complement and coagulation cascade may contribute to the
clinical picture of bleeding in A. vasorum infected dogs.

Apolipoprotein A-I is a high-density lipoprotein that plays a key role in cholesterol haemos-
tasis. It contributes to the reverse transport of cholesterol from tissue to the liver and the excre-
tion of cholesterol by efflux from tissue. It also has antioxidant, anti-inflammatory and
antithrombotic properties [33]. Its increased cleavage may be a contributing factor to disease
development in infected dogs. Lastly, lipocalin/cytosolic fatty acid binding domain-containing
protein belongs to a group of fatty acid binding proteins that bind hydrophobic ligands and
transport them through the cell. They can bind fatty acids, eicosanoids, and other cellular sub-
strates [34].

Even though there are limited resources on dog proteome cleavage sites and A. vasorum
protease specificity, the identified cleavage sites in the different coagulation and complement
proteins suggest either activation or degradation of complement and coagulation components.
This is also reflected in biological processes and pathways obtained by cleaved proteins: The
biological processes, i.e., regulation of protein activation cascade (GO:2000257) and regulation
of protein processing (GO:0070613), indicate that cleaved proteins are involved in protein pro-
cessing and cascades. The pathways ‘Complement cascade’, ‘Regulation of complement cas-
cade’, ‘Activation of C3 and C5’, ‘Formation of fibrin clot (clotting cascade)’, ‘Common
pathway of fibrin clot formation’, and ‘Intrinsic pathway of fibrin clot formation’ clearly depict
that the cleaved proteins are involved in the complement cascade and blood clotting.

We worked with both serum and plasma samples. Some coagulation factors, e.g., coagula-
tion factor IX can be found in both plasma and serum [35]. Most other coagulation factors
however are only present in plasma and may only be detected in trace amounts in serum, as
they are usually bound in the blood clot formed for serum production. Increased cleavage of
coagulation factor V, IX, and prothrombin was only observed in serum samples. Cleavage in
plasma samples may have been inhibited due to the unavailability of calcium, which is bound
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in blood samples collected with sodium citrate tubes used for plasma production. Therefore,
calcium-dependent proteases would not have been able to function. This is likely the reason
why we identified fewer cleavage sites in plasma samples, because most coagulation factors are
calcium-dependent [36].

The applied TAILS technique has been used in the past to study proteases of parasites, bac-
teria, and viruses [37-40] and toxins [41]. Different medical conditions such as inflammatory
disorders, cancer, and heart disease or treatment thereof have been investigated by TAILS [42-
44]. Snake venom has been investigated using a N-terminomics approach since proteolysis is a
major role in snake venom induced pathologies, which also includes bleeding disorders [41].
To the authors’ knowledge this is the first study addressing a parasitic dog disease inducing
coagulation by TAILS. TAILS is a powerful method that requires careful interpretation of the
results due to potential biases related to labelling, substrate complexity, and data analysis. We
acknowledge that our findings will need future validation in order to fully ascertain cleavage
site identities.

Summarising, the current data demonstrate an interaction between A. vasorum ESP with
the coagulation and complement cascade of the host and show that parasite-derived proteins
can modulate host coagulation and complement proteins, with potential functional conse-
quences on the host immune response and blood clotting. These findings further show that
proteases present in A. vasorum ESP likely contribute to the pathogenesis of bleeding disor-
ders-via direct catalytic activity or indirectly, facilitating cleavage by host proteins -, which are
observed in A. vasorum infected dogs. Whether the A. vasorum ESP proteolytic activity on the
eight candidate proteins was direct or indirect remains unresolved. To validate the specific
activity of A. vasorum proteins and proteases on host coagulation and complement proteins
and for the implementation of better patient management further studies are needed. Within
A. vasorum ESP 57 proteases or proteasome subunits have been previously identified [6], the
identification of their cleavage ability and specificity is desirable. To further study specific par-
asite proteases or proteins, single proteins/proteases could be isolated using antibody based
pull-down methods, or recombinant parasite proteins or proteases could be produced, with
the aim to obtain specific insights on cleavage capacity and specificity of A. vasorum ESP. To
understand protease function, one may probe hexamers containing the predicted or expected
cleavage site to quantify the protease catalytic efficiency, taking the site‘s context into account
[45]. This can be assisted by bioinformatic approaches, which enable to link proteases and sub-
strates based on structure [46]. Particularly cysteine proteases may be of interest, since several
pathogen derived-cysteine proteases are known to activate complement C3, C4, and C5 or to
degrade or cleave C3 and C5 [47]. Complement proteins have many functions, from wound
healing to immune defences, and altered levels could have multiple physiological conse-
quences. The overall health implications of such interactions with the complement system,
however, remain unclear. It can only be speculated that a deficiency in the complement path-
way may have additional consequences on susceptibility to certain pathogens and autoimmune
conditions (PMID: 38406130). The specific combinations of missing (depleted) complement
components—and their quantitative levels—are critical determinants, which would need to be
thoroughly characterized. Typically, cleavage of C3, C4, and C5 is critical for phagocyte
recruitment to the site of infection [48].

Several A. vasorum proteases represent specific candidates of interests that could be further
studied, such as e.g., cathepsin B-like cysteine proteinases and serine carboxypeptidases, since
most proteases in the coagulation cascade are serine proteases. Further candidates are T1 fam-
ily proteases as well as proteasome proteins, which are associated with proteasome activity.
Since proteasomes are relevant for proteolysis and protein degradation, they may also contrib-
ute to degradation of coagulation and complement proteins. Future studies will focus on
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isolation or recombinant production of specific A. vasorum proteases and computational
methods to shed light on specific mechanisms and pathways of A. vasorum induced coagulo-
pathies in dogs and to develop potential management strategies for infected animals.
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