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Abstract

Objectives

Parkinson’s disease (PD) is a complex neurodegenerative disease with unclear pathogene-

sis. Some recent studies have shown that there is a close relationship between PD and fer-

roptosis. We aimed to identify the ferroptosis-related genes (FRGs) and construct

competing endogenous RNA (ceRNA) networks to further assess the pathogenesis of PD.

Methods

Expression of 97 substantia nigra (SN) samples were obtained and intersected with FRGs.

Bioinformatics analysis, including the gene set enrichment analysis (GSEA), consensus

cluster analysis, weight gene co-expression network analysis (WGCNA), and machine

learning algorithms, were employed to assess the feasible differentially expressed genes

(DEGs). Characteristic signature genes were used to create novel diagnostic models and

construct competing endogenous RNA (ceRNA) regulatory network for PD, which were fur-

ther verified by in vitro experiments and single-cell RNA sequencing (scRNA-seq).

Results

A total of 453 DEGs were identified and 11 FRGs were selected. We sorted the entire PD

cohort into two subtypes based on the FRGs and obtained 67 hub genes. According to the

five machine algorithms, 4 features (S100A2, GNGT1, NEUROD4, FCN2) were screened

and used to create a PD diagnostic model. Corresponding miRNAs and lncRNAs were pre-

dicted to construct a ceRNA network. The scRNA-seq and experimental results showed that

the signature model had a certain diagnostic effect and lncRNA NEAT1 might regulate the

progression of ferroptosis in PD via the NEAT1/miR-26b-5p/S100A2 axis.
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Conclusion

The diagnostic signatures based on the four FRGs had certain diagnostic and individual

effects. NEAT1/miR-26b-5p/S100A2 axis is associated with ferroptosis in the pathogenesis

of PD. Our findings provide new solutions for treating PD.

1.Introduction

PD is the second most common progressive neurodegenerative movement disorder, character-

ized by bradykinesia, postural instability, muscle rigidity, resting tremors, sleep, and thinking

problems [1]. Its main neuropathological changes include the loss of dopaminergic neurons in

the SN pars compacta and misfolded a-synuclein in Lewy bodies. Current drug therapy for PD

is symptomatic and primarily relies on the restoration of dopaminergic function in the stria-

tum. However, long-term use of dopamine drugs has been associated with disabling complica-

tions, including dyskinesias and fluctuating motor responses. Also, considering that some

other neurological conditions have similar clinical features, there is still uncertainty regarding

the diagnosis, particularly in the early stages [1]. Thus, reliable diagnostic or prognostic bio-

markers are urgently needed for disease management.

Studies have revealed that metal elements, such as manganese, copper, and iron, have a sig-

nificant role in PD [2]. These metals can intricately impair several aspects of neurological func-

tions, such as oxidative stress, mitochondrial or lysosomal dysfunction, and synaptic

inflammation [3], and are also involved in multiple mechanisms of cell death patterns such as

autophagy, pyroptosis, ferroptosis, and cuproptosis [4,5]. Ferroptosis is a newly-regulated cell

death mode caused by the abnormal increase in iron-dependent lipid reactive oxygen species

and the imbalance of redox homeostasis [6]. Ferroptosis is regulated by a number of cellular

variables, including iron metabolism, lipid incorporation, biosynthesis of glutathione (GSH),

glutathione peroxidase 4 (GPX4), NADPH, and CoQH2 [7]. Ferroptosis is highly negatively

correlated with cancer development but positively correlated with some neurodegenerative

diseases, including PD. The traits of ferroptosis induction, such as brain iron overload,

PUFA-PLs producing reactive oxygen species (ROS), and the exhaustion of the xCT system,

are remarkably compatible with the PD models [8]. Moreover, previous studies discovered

that PD-deleterious genes (e.g., Parkin, LRRK2, DJ-1, PLA2G6) are associated with ferroptosis

[9–11]. The α-synuclein, also as an iron-binding protein, could modulate the levels of iron

transport or lipid metabolism [12]. Some preliminary data have shown that ferroptosis inhibi-

tors could prevent ferroptosis and limit neurodegeneration in PD, but also amyotrophic lateral

sclerosis (ALS), Alzheimer’s, and other diseases with brain iron dysregulation. Thus, genetic

testing could be a powerful tool to uncover biological pathways that cause PD.

In this study, we investigated the pathogenesis of PD by searching for ferroptosis-related

genes (FRGs), which were then used to construct ceRNA network using bioinformatics analy-

sis combined with experimental validation. Gene Expression Omnibus (GEO) [13] database

intersected with the ferroptosis dataset (FerrDb) was used to confirm the expression of FRGs.

Then, we investigated the consensus clustering analysis and constructed the co-expression net-

work. We also performed GSEA, WGCNA, biological function analysis of Gene Ontology

(GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) to explore the crucial signa-

ture genes linked with PD in hub modules. Furthermore, the diagnostic classifiers of PD

related to ferroptosis based on five machine-learning algorithms were constructed. Hub fea-

tures were selected, and their diagnostic value as the biomarkers or predictive model of PD
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was assessed. Finally, targeted miRNA and lncRNA were predicted by the ceRNA network.

The scRNA-seq and experimental validation confirmed the role of the features. In light of our

study, lncRNA NEAT1 was regarded as a responsible biological regulator of ferroptosis in the

onset and progression of PD.

2. Materials and methods

2.1. Data collection and processing

RNA sequencing data from PD patients, including microarray and next-generation sequenc-

ing (NGS), were obtained from the GEO database. Four microarray profile data, i.e., GSE7621,

GSE49036, GSE26927, and GSE20292, containing 97 post-mortem SN samples originating

from PD donors were downloaded. The “Affymetrix” datasets were background corrected or

normalized by using the R package “affy” within “Robust Multiarray Analysis” algorithm. The

“Illumina” datasets were background corrected or normalized by using the R package “limma”

within “read.ilmn” or “neqc”algorithm. The matching of probes and genes was achieved by

using the R package “AnnotationDbi” and “org.Hs.eg.db”, especially the R package “hugen-

e10sttranscriptcluster.db” were used to filter out the probes without corresponding genes. The

log2 transformation and normalization were conducted by using the R package “geoquery”

within “gds2eset” algorithm. By optimizing R package “sva”, We constructed the model using

batch information as a covariate and generated the expression matrix, including 54 PD sam-

ples and 43 normal control (NC) samples. NGS data of GSE114517, including 46 PD samples

and 29 normal samples, were extracted for confirmatory studies. The quality control were per-

formed by using the R package “arrayQualityMetrics” (S1 Fig). Also, 564 FRGs related to fer-

roptosis signal pathways were obtained from the FerrDB database. These datasets were

employed for further analysis and mining.

2.2. DEGs analysis

The DEGs between PD patients and NC samples were identified using the R-package “limma”.

The confounding factors were addressed within “lmfit” function and “Bayesian” testing.

Considering that subtle genetic differences in neurodegenerative diseases such as PD may

lead to the significant changes in molecular biological mechanisms. The following criteria

were applied: thresholds at the P value<0.05 (p-value < 0.05) and the absolute log2 fold

change (log2FC) > 0.1 (log2|FC| > 0.1). A total of 564 FRGs were intersected after merging

four microarray datasets to identify the FRGs. Expressions of DEGs were presented as heat-

maps or volcano plots by using R package “ggplot2” and “pheatmap”.

2.3. Consensus clustering

Consensus clustering is a useful algorithm for identifying distinct ferroptosis-related patterns,

which rely on k-means analysis. In this study, we selected FRGs of DEGs in PD patients for

further analysis. Based on the expression of FRGs packed above, the R package “Consensu-

sClusterPlus” was employed for consensus unsupervised clustering to divide PD patients into

distinct molecular subtypes according to FRGs expression. Cumulative distribution function

(CDF) was applied to choose the optimal cluster number.

2.4. GSEA

“GSEA” software was used to investigate involved GO-KEGG pathways of the reference DEGs

between PD vs controls or two clusters. NOM p-value < 0.05 was defined as the significant

enrichment.

PLOS ONE Identifying the NEAT1/miR-26b-5p/S100A2 axis as a regulator in Parkinson’s disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0316179 December 31, 2024 3 / 23

https://doi.org/10.1371/journal.pone.0316179


2.5. WGCNA

WGCNA was used to assess the relationships between hub gene modules and clinical traits of

PD. To ensure the accuracy of identified the hub modules significantly related to clinical fea-

tures of PD, the age-matched PD and NC samples were singled out from GSE20292, including

11 PD patients and 11 NC samples. The dataset has well-documented clinical information

with appropriate number and high quality of samples. The co-expressed module containing

parallel expression patterns was constructed. Based on the R function of “PickSoftThreshold”

algorithm, an appropriate soft threshold power was selected. Then, the dynamic tree cut func-

tion or hierarchical clustering was performed to divide the different modules from all genes,

and similar models were incorporated using MEDissThres = 0.4. Subsequently, Module Mem-

bership (MM) combined with Gene significance (GS) was defined as indicatrix for the chosen

genes that originate from the module eigengenes.

2.6. Functional and pathways enrichment analysis

To explore the possible molecular functions of hub genes associated with PD, GO, and KEGG

enrichment analysis was applied to the PD-related modules by the WGCNA analysis. The R

package “Enrichplot” and “ClusterProfiler” was employed, and the enrichment of significance

was adjusted to P-value < 0.05.

2.7. Machine learning algorithms

Hub genes were slected to constitute the features by using five machine learning algorithms,

including LASSO regression, Random Forest (RF), eXtreme Gradient Boosting (XGBoost),

Gradient Boosting Machines (GBM) and Support Vector Machines (SVM). A total of 97 sam-

ples from four datasets were randomly separated into train and test sets at a 7:3 ratio by func-

tional createfolds with R package “caret”. GSE114517 was set as an external validation dataset.

The R package “glmnet” was used to perform the LASSO algorithm with parameters set as set.

seed (1) and family = “binomial”. Adding a penalty term and the L1 penalty was selected based

on the cross-validation results to reduce model overfitting. The R package “randomForest”

was utilized to conduct the RF algorithm. The criterion for feature importance was MeanDe-

creaseGini index> 1.5. The R packages “xgboost” and “gbm” were respectively used for

XGBoost and GBM algorithm. The model performance was optimized by constructing deci-

sion trees incrementally and the core features were selected according to the rank of their

importance scores. The R package “e1071” was employed to SVM and provide utilities for

model training and classification operations. The number of feature genes were sellected and

determined with the highest accuracy and lowest error rate. The 10-fold or 5-fold cross-valida-

tion was utilized to optimize the hyperparameters of machine learning model. After investigat-

ing the intersection point of five machine algorithms learning, the PD diagnostic model was

formulated with the remaining features.

2.8. Construction and validation of classifier model

The intersecting genes of five machine learning algorithms were used to construct an PD diag-

nostic model through multivariable logistic regression analysis based on the “rms” R package.

The PD diagnostic scores were performed according to the following formula:

Diagnostic Model ¼
XExpi

i¼1� 4
Expi∗coefi

where Exp stands for standardized gene expression, i is the number of diagnostic genes, and

coef represents regression coefficients.
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The diagnostic score was calculated for each patient and the receiver operating characteris-

tic curve (ROC) was drawn to evaluate the predictive accuracy of the signature via the “pROC”

R package. The area under the ROC curve (AUC) was used to assess the degree of sensitivity

and specificity of the diagnostic model. The AUC> 0.7 was considered indicative of high diag-

nostic performance.

2.9. Prediction of miRNA–lncRNA and construction of ceRNA network

The targeted pivotal miRNAs of hub signature genes were predicted using the “NetworkAna-

lyst”, which is based on the “miRTarBase” “miRWalk” and “miRDB” databases. In addition,

the miRNAs-related lncRNAs were selected by using the StarBase v2.0 with a high stringency

confidence level (degree> 5). The ceRNA network of cross-linked lncRNA–miRNA–mRNA

was constructed and visualized by Cytoscape v3.9.1.

2.10. Cell cultures and drug treatment

Human neuroblastoma SH-SY5Y cells (#CL-0208, Procell, Wuhan, China) were cultured in a

specific medium (#CM-0208, Procell, Wuhan, China) in a humidified atmosphere containing

5%CO2/95% air at 37˚C. Cells were seeded in 1.5ml medium at a density of 105 per well in a

12-well plate for 1 day. Then, cells were respectively treated with indicated drugs. Ctrl group,

cells were treated with 0.1% dimethyl sulfoxide (#D8418, Sigma Aldrich, Louis, MO, USA).

Erastin group, cells were treated with 10μM Erastin (#S7242, Selleck, Houston, USA).

6-OHDA group, cells were treated with 50μM 6- hydroxydopamine (6-OHDA) (#S5324, Sell-

eck, Houston, USA) (dissolved in 0.1% dimethyl sulfoxide). 6-OHDA+Lip-1 group, cells were

treated with 50μM 6-OHDA and 5 μM liproxstatin-1 (Lip-1) (#S7699, Selleck, Houston, USA).

For the transfection, cells were mixed with si-RNA (si-NC, si-NEAT1) or miRNA inhibitor

(NC-inhibitor, 26b-5p inhibitor) (Genepharma, Suzhou, China) and lipofectamine 3000

(#L3000001, Invitrogen, Carlsbad, USA) dissolved in 100 μL Opti-MEM (#11058021, GIBCO,

Grand Island, USA) for 15 minutes. After the transfection, the SH-SY5Y cells were cultured

with standard growth medium for 8-12h and then treated with 50μM 6-OHDA. After 36h

treatment, the cells were collected and subjected to experiments.

2.11. Western blot

SH-SY5Y cells were mixed with RIPA lysis buffer (#YSD0100, Yoche, Shanghai, China). Equal

protein was separated using 4%-12% sodium dodecyl sulfate-polyacrylamide gels and trans-

ferred to polyvinylidene fluoride membranes by electroblotting. After being sealed with 5%

milk for 1h, the membranes were incubated with primary antibodies tyrosine hydroxylase

(TH) (#sc25269, Santa Cruz Biotechnology, Dallas, USA), acyl-CoA synthetase long-chain

family member 4(ACSL4) (#P07940, Promab, Changsha, China), GPX4 (#ab125066, Abcam,

Cambridge, USA), transferrin receptor(TFR) (#ab84036, Abcam, Cambridge, USA), ferritin

heavy chain 1 (FTH1) (#4393, Cell Signaling Technology, Danvers, USA), ACTIN (#81115-

1-RR, Proteintech, Chicago, USA) overnight at 4˚C. The HRP-conjugated secondary antibod-

ies were incubated at room temperature for 1h. Finally, membranes were visualized using the

ECL reagents and quantified using Image J software.

2.12. Measurement of iron, lipid peroxidation, and GSH

SH-SY5Y cells were collected with centrifugation at 800 rpm at 4˚C for 5 min. The quantifica-

tions of iron (#ab83366, Abcam, Cambridge, USA), lipid peroxidation (MDA) (#A003-1, Jian-

cheng Bioengineering Insitute, Nanjing, China), and GSH (#A006-1-1, Jiancheng
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Bioengineering Insitute, Nanjing, China) were then performed, following the manufacturer’s

instructions.

2.13. RNA extraction and quantitative real Time-PCR (qRT-PCR) analysis

Total RNA was extracted from SH-SY5Y cells using the TRIzol and chloroform reagent (Invi-

trogen, Carlsbad, USA) in frozen environment. The cells were homogenised in 500 μL Trizol

and 100 μL chloroform incubated at room temperature for 5 min, then centrifuged at 13000×g

for 15 min at 4˚C. The aqueous phase containing RNA was extracted and added equal volumes

of isopropanol (Sigma-Aldrich, Louis, MO, USA). The samples were centrifuged at 13000×g

for 15 min at 4˚C and washed with ethanol. The RNA was air dried and dissolved in nuclease-

free water, then the purity and quality were detected by using spectrophotometer. The geno-

mic DNA was removed and cDNA was obtained using a reverse transcription PCR kit (#R223/

MR201, Vazyme, Nanjing, China) according to the manufacturer’s instructions. 1 μg of RNA

was used to synthesize cDNA in 20 μl reverse transcription reaction, followed by 50˚C for 15

min and 85˚C for 5 s. The qRT-PCR was achieved by using the ChamQ Universal SYBR qPCR

Master Mix (#Q711, Vazyme, Nanjing, China) and miRNA Universal SYBR qPCR Master Mix

(#MQ101, Vazyme, Nanjing, China) as per the manufacturer’s protocol. Primer sequences are

listed in S1 Table. The length of the amplification product is between 80 and 200bp with a Tm

of 60˚C. The amplification efficiency� 90% (1.8–2.2) tested by the standard curve, and a sin-

gle melt curve, as a standard for qualification. The qRT-PCR were performed in 20 μl reaction

on ABI 7300 Real Time PCR system, followed by 95˚C for 30s, 40 cycles of 95˚C for 10 s and

60˚C for 30 s, 95˚C for 15 s, 60˚C for 60 s and 95˚C for 15 s. All measurements were performed

in triplicate. The relative change of mRNA, miRNA, and lncRNA levels were measured by 2-

44Ct method and the Ct values were normalized to GAPDH or U6.

2.14. Measurement of ROS

The level of ROS in SH-SY5Y cells was assessed using a ROS assay kit (#S0033S, Beyotime,

Shanghai, China). Briefly, cells were stained with 10 μM of DCFH-DA working solution

(1:1000) and then incubated for 20–30 min at 37˚C in the dark. Next, cells were washed three

times with PBS buffer to clear the excess probe. Finally, the fluorescences of DCFH-DA were

visualized under the inverted fluorescence microscope with an excitation wavelength of 488

nm and an emission wavelength of 525 nm.

2.15. scRNA-seq

Raw data for GSE178265 were obtained from the GEO database [14]. The R package “Seurat”

was used to filter data. We filtered low-quality cells with the following criteria: genes were fil-

tered that are only expressed in three cells or less, the cells were filtered by gene counts more

than 5000 or less than 400, remove the cells with over 10% mitochondrial content. The “Dou-

bletFinder” was used to remove the doublet cells. After the filtering, the functions “Seurat” was

used for dimension-reduction and clustering. The logarithmic normalization method of the

“Normalization” function was used to normalize and merge the expression of genes. Then,

scaling analysis and PCA were performed. Using the top 10 principle components and Lou-

vain algorithm, the cells were clustered into multiple clusters (The first 20 principle compo-

nents were selected from the data of multi-sample integration). The t-distribution random

neighborhood embedding (t-SNE) algorithm was applied to visualize cells in a two-dimen-

sional space. Based on the Wilcox algorithm, the marker genes were identify. The cell type

were annotated of each cluster according to the expression of canonical markers from
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literatures. Finally, the “Seurat FeaturePlot” and “Vlnplot” function were used to display the

location and expression pattern of feature gene in different cell types.

2.16. Statistical analysis

Data were shown as mean ± standard deviation (SEM). The Shapiro-Wilk test were used to

assess the normality and the Brown-Forsythe test were used to assess the variance homogene-

ity. Paired sample t test and one-way ANOVA test were used to calculate the statistical signifi-

cance (p-value) by the GraphPad Prism 8.0 and the p< 0.05 were considered to be statistically

significant.

3. Results

3.1. Identification and clustering of ferroptosis-related genes

The study flowchart is shown in (Fig 1). Based on the four datasets, 97 RNAs related to sub-

stantia nigra were obtained from 54 PD patients and 43 controls. DEG analysis was conducted

to identify the genes involved in the process of ferroptosis. We downloaded 564 ferroptosis

genes from the FerrDb database and intersected with 453 DEGs identified between PD and

control samples. After the multi-annotated genes were screened, 11 FRGs were identified,

among which 8 genes were upregulated and 3 were downregulated (Fig 2A and 2B). A related

heatmap of the collection of 11 genes is shown in Fig 2C. These labeled genes were verified by

the boxplot. Six FRGs (PML, SIAH2, KEAP1, SOX2, RELA, and SLC3A2) were significantly

upregulated and two FRGs (SCP2, GRIA3) were downregulated (Fig 2D–2K).

Fig 1. Flowchart of this research.

https://doi.org/10.1371/journal.pone.0316179.g001
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To further explore the unique expression characteristics of FRGs between individual PD

patients, we used a consensus clustering algorithm based on the expression profiles of hub

FRGs. k = 2 appeared to have the best stability and reliability for sorting the entire cohort into

Fig 2. Expression profile of DEGs and consensus clustering of FRGs. (A) Volcano plot of FRGs between PD vs

Control. (B) Venn diagram of FRGs between DEGs and FerrDB. (C) Heatmap of FRGs in PD. (D-K) Validation the

expression of FRGs. (L) Consensus clustering at the index k = 2. (M) CDF of clustering (k = 2–5). (N) Delta area under

the CDF curve. (O) Heatmap of FRGs in Clusters.

https://doi.org/10.1371/journal.pone.0316179.g002
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two subtypes, including cluster 1 and cluster 2 (cluster 1 = 26, cluster 2 = 28) (Fig 2L–2N). The

heatmap shows the expression profile of FRGs among the two clusters (Fig 2O).

3.2. Identification of DEGs based on FRGs

To explore the FRG function of each pattern, 453 DEGs were identified in 54 PD patients

matched with 43 control samples using the R package “limma”. As shown in Fig 3A, there

were 226 upregulated genes and 227 downregulated DEGs. Moreover, based on the FRGs,

1663 DEGs were identified between cluster 1 and cluster 2 of PD samples, including 666 upre-

gulated genes and 997 downregulated genes (Fig 3B). The hub DEGs with the intersection of

the two clusters were identified, and the top 100 are depicted in the heatmap (Fig 3C).

3.3. Gene set enrichment analysis

GSEA was used to identify the two groups’ biological functions and pathways. KEGG analysis

showed that the MAPK signaling pathway, lysosome pathway, pathways in cancer, chemokine

signaling pathway, endocytosis, and regulation of actin cytoskeleton were significantly

enriched in the PD samples (Fig 3D–3I). Subsequently, the results indicated that DEGs

between the two clusters were mainly enriched in the calcium signaling pathway, regulation of

actin cytoskeleton, dilated cardiomyopathy, neuroactive ligand-receptor interaction, ubiqui-

tin-mediated proteolysis, and purine metabolism (Fig 3J–3O). Further pathways such as mela-

noma, focal adhesion, prostate cancer, and some biological processes involved in neuron

degeneration were also enriched.

3.4. Determination of hub modules in WGCNA

The application of WGCNA network analysis was established based on the GSE20292, con-

taining the age-matched 11 PD and 11 normal samples selected to accurately identify DEGs.

The independence degree was� 0.85, and the soft threshold power of 8 was selected to carry

out scale-free networks (Fig 4A and 4B). The expression values of 5665 genes were utilized for

cluster analysis and to detect the hub modules. We screened 8 key modules based on MEDiss

Thres = 0.4 according to similar expression clinical traits (Fig 4C). Among the harvested mod-

ules, the green and the dark green modules were significantly associated with the characteris-

tics of PD; thus, they were selected as the hub modules (Fig 4D). With the cutoff criteria |GS|

� 0.7 and |MM|� 0.8, we obtained the 432 key genes shared with the green module

(Cor = 0.93, p = 5e-10) (Fig 4E) and the 415 hub genes by the dark green module (Cor = -0.89,

p = 3e-08) (Fig 4F). Accordingly, we focused on 847 hub genes associated with PD identified

through the hub modules of WGCNA.

3.5. Functional and pathways enrichment analysis

To elucidate the latent biological functions and pathways associated with the risk of PD, we

performed GO and KEGG enrichment analysis in the hub modules. GO terms of molecular

function suggested that those genes are significantly involved in positive regulation of cytosolic

calcium ion concentration, muscle contraction mononuclear cell proliferation, lymphocyte or

leukocyte proliferation, and some immune-related biological processes (Fig 4G). Analysis of

KEGG pathways indicated that the hub genes associated with PD are involved in neuroactive

ligand-receptor or cytokine receptor interaction, hematopoietic cell lineage, complement, and

coagulation cascades, as well as JAK-STAT signaling pathway (Fig 4H). These pathways sug-

gest that neuroinflammation and cell signal transduction may participate in ferroptosis in PD

patients.
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Fig 3. Identification of DEGs and GSEA in two groups. (A) Volcano plot of DEGs between PD vs Control. (B)

Volcano plot of DEGs between cluster1 vs cluster2. (C) Heatmap of top 100 DEGs in two groups. (D-I) Biological

functions and pathways of genes between PD vs Control. (J-O) Biological functions and pathways of genes between

cluster1 vs cluster2.

https://doi.org/10.1371/journal.pone.0316179.g003
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3.6. Multiple algorithms identify the hub genes-related PD classifier

A total of 67 hub genes were obtained from the DEGs of the three groups (PD vs. NC, cluster1

vs. cluster2, WGCNA) intersection (Fig 5A). The PPI network shows these hub genes’ interac-

tions (Fig 5B). To explore the signature genes associated with ferroptosis in the occurrence of

PD, we found the diagnostic classifiers with five unique algorithms, including LASSO, random

forest, XGBoost, GBM, and SVM. The feature choice strategy aimed to cut down the number

of related genes (S2 Table). The LASSO regression was used to ascertain 12 key genes from the

PD-related genes (Fig 5C and 5D). We selected the 27 hub genes from the top 30 candidate

genes with the result of random forest analysis (Fig 5E). The SVM algorithm to filtrate

Fig 4. WGCNA and enrichment analysis. (A,B) Estimation of the independence degree and soft threshold power. (C)

Cluster dendrogram of DEGs. (D) Correlation between modules and phenotypes of PD. (E,F) Scatterplot of GS vs MM

in the green and darkgreen. (G) GO enrichment analysis of hub genes. (H) KEGG enrichment analysis of hub genes.

https://doi.org/10.1371/journal.pone.0316179.g004
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irrelevant genes and 28 indicators were gained (Fig 5F). XGBoost model algorithm was then

applied, revealing the top 17 ranked genes (Importance score > 2) as the main features (Fig

5G). Similarly, the GBM model chose the essential signatures, and the top 20 ranked genes

(Importance score> 5) were selected (Fig 5H). Accordingly, 4 features (i.e., S100A2, GNGT1,

NEUROD4, and FCN2) were obtained based on the intersection of five algorithms, as shown

in the Venn diagram (Fig 5I).

3.7. Construction of PD diagnostic model

The predictive model was learned from the merged datasets, including 54 PD samples and 43

controls. To evaluate the overall prediction accuracy of the model, the training data was

Fig 5. Machine learning and construction of PD diagnostic model. (A) Venn diagram of hub genes. (B) PPI network

construction base on the hub genes. (C,D) LASSO coefficient profiles and cross validation for turning parameter(λ) of

hub genes. (E) Hub genes selected from RF algorithm. (F) Screening conditions of SVM model. (G,H) Hub genes

calculated by XGBoost and GBM algorithm and automatically rank. (I) Venn diagram of 4 features in five machine

learning algorithms. (J-L) ROC curves shown the diagnostic value of 4 signature genes in training set, test set and

external validation set.

https://doi.org/10.1371/journal.pone.0316179.g005
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randomly generated by selecting 70% of the dataset, and the remaining 30% was used as the

test dataset. We also used NGS data GSE114517 as the validation dataset. The multivariable

logistic regression analysis was used to assess hub features. The risk score of PD was calculated

by the formula of ExpGNGT1 × (-0.7124) + ExpFCN2 × (-0.3334) + ExpS100A2 × 0.6665

+ ExpNEUROD4 × (-0.4717). The ROC curve was drawn to assess the predictive accuracy of

the PD diagnostic model by the AUC. The AUC of the training and test sets were 0.707 and

0.755, respectively (Fig 5J and 5K). Moreover, the AUC of the external validation set was

0.711 (Fig 5L). The ROC analysis results showed that the model had a higher diagnostic and

predictive value in distinguishing PD patients from normal.

3.8. Validation of diagnostic signatures in PD ferroptosis model

The expression patterns of 4 features were verified in PD samples. It indicated that the

GNGT1, FCN2, and NEUROD4 were expressed at low levels, while S100A2 was expressed at

high levels in PD patients (Fig 6A–6D). Then, we constructed PD and ferroptosis models

using SH-SY5Y cells, which were treated with erastin and 6-OHDA with or without Lip-1. The

degeneration of dopamine was presented in the treatment of 6-OHDA. Compared with the

control or erastin group, expression of TH was decreased in the 6-OHDA group. Nevertheless,

Lip-1 inhibitor alleviated the 6-OHDA-induced loss of dopamine. To further affirm that fer-

roptosis exists in 6-OHDA treated SH-SY5Y cells, TFR, FTH1, ACSL4, and GPX4 expressions

and iron, GSH, and MDA levels were detected. Compared with the control, 6-OHDA

increased the expression of iron, TFR, ACSL4, and accumulation of MDA. The quantity of

GSH-related pathways containing GPX4 and FTH1, was significantly decreased. Those bio-

markers were all consistent with the erastin group and alleviated by the Lip-1 (Fig 6E–6M).

Finally, the filtered 4 signature genes were verified using qRT-PCR. In the 6-OHDA groups,

the expression levels of S100A2 were visibly upregulated, and the GNGT1, FCN2, and NEU-
ROD4 were downregulated compared to control cells. Yet, Lip-1 reversed this process (Fig

6N–6Q), which suggested that the PD features model consisting of GNGT1, FCN2, S100A2,

and NEUROD4 is a useful auxiliary method for diagnosing PD, especially with neuron

ferroptosis.

3.9. Construction of ceRNA network and validation of NEAT1 in PD

ferroptosis model

Based on the 4 diagnostic signature genes, corresponding miRNAs and lncRNAs were pre-

dicted using the “NetworkAnalyst”. Four miRNAs (has-miR-335-5p, hsa-miR-7b-5p, has-miR-
16b-5p, and has-miR-26b-5p) with higher significance scores, cross-linking with at least 2

genes, were selected. Then, these 4 miRNAs acted as seed nodes. Next, 150 lncRNAs were

obtained to construct the ceRNA network (Fig 7A). We extracted the lncRNAs with higher

degrees and found that NEAT1 interacted with both 4 miRNAs. The ceRNA network was then

constructed, and the NEAT1 was presumed to have important regulatory functions in the fer-

roptosis-related pathogenesis of PD (Fig 7B). In SH-SY5Y cells, 6-OHDA treatment increased

the transcription of NEAT1 and S100A2, the expression levels of S100A2 could be well attenu-

ated by using the si-NEAT1 (Fig 7C and 7D). Further, qRT-PCR results showed that the

expression level of miR-26b-5p, targeting S100A2, was partially activated by si-NEAT1. How-

ever, there was no significant difference in miR-7b-5p levels with si-NEAT1 and si-NC (Fig 7E

and 7F). Additionally, in the presence of 6-OHDA with si-NEAT1, miR-7b-5p inhibitor par-

tially elevated the S100A2 levels, indicating that NEAT1might competitively bind and regulate

S100A2 by suppressing miR-26b-5p (Fig 7G). We concluded that the NEAT1 deficiency blocks

the ferroptosis capacities of cells. Also, the knockdown of NEAT1 rescued the down-regulated
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TH levels induced by the 6-OHDA. The fluorescence of DCFH-DA probe results showed that

6-OHDA exposure significantly raised the production of ROS and reduced cell viability (Fig

7H and 7J). In agreement with the above-mentioned, NEAT1 knockdown made an inhibition

effect on the ferroptosis damaging of 6-OHDA (Fig 7I and 7K–7O), which suggests that the

Fig 6. Validation of the PD diagnostic model in vitro. (A-D) The expression level of 4 features in PD. (E-J) Western

blot analysis the expression of TH, TFR, FTH, ACSL4 and GPX4 in SH-SY5Y cells treated by the 6-OHDA. (K-M) The

levels of iron, MDA and GSH in SH-SY5Y cells treated by the 6-OHDA. (N-Q) The mRNA relative expression levels of

GNGT1, FCN2, S100A2 and NEUROD4 in SH-SY5Y cells. (N = 3, *p< 0.05 vs Ctrl group, **p< 0.01 vs Ctrl group,

***p< 0.001 vs Ctrl group. #p< 0.05 vs 6-OHDA group, ##p< 0.01 vs 6-OHDA group, ###p< 0.001 vs 6-OHDA

group).

https://doi.org/10.1371/journal.pone.0316179.g006
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Fig 7. Construction of ceRNA network and validation of NEAT1/miR-26b-5p/S100A2 axis in vitro. (A) Prediction of miRNAs

and lncRNAs based on the signature genes and construction of ceRNA network. (B) construction of primary ceRNA network based

on the NEAT1. (C-F) The relative expression levels of NEAT1, S100A2, miR-26b-5p and miR-7b-5p in SH-SY5Y cells after NEAT1

knockdown. (G) The relative expression levels of S100A2 in SH-SY5Y cells after miR-26b-5p inhibition. (H, J) The levels of ROS

were quantified by measuring the fluorescence of DCFH-DA in SH-SY5Y cells after NEAT1 knockdown, scale bar = 100μm. (I,
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potential correlation between NEAT1 and ferroptosis in PD and NEAT1/miR-7b-5p/S100A2

axis might participate in PD pathogenesis.

3.10. scRNA-seq analysis for the location and expression pattern of NEAT1

To further explore the cell diversity of NEAT1 in PD, the GSE178265, including seven PD

samples and eight normal samples, was used to perform scRNA-seq analysis. After the prelimi-

nary quality control and standardization of gene expression, 37906 cells were derived from PD

and normal samples (Fig 8A). The cells were clustered into 22 clusters (Fig 8B). Using the

marker genes (S2 Fig), we classified 22 cell clusters into nine cell populations (Fig 8C). It

showed that the nine main isolated cell groups comprising the microglial cells, astrocytes,

OPCs, oligodendrocytes, DA neurons, NonDA neurons, endothelial cells, pericytes and fibro-

blasts (Fig 8D). Subsequently, the expression and localization in SN tissue between PD and

normal samples were determined (Fig 8E). It was found that the NEAT1 were obviously

expressed in all nine kinds of cells, and the expression level were both elevated (Fig 8F).

Although the PD patients have significant loss in cell numbers and ratios of DA neurons, the

expression level of NEAT1 in PD samples were still higher than control groups (Fig 8G). It

was consistent with our result and verified that NEAT1 play an important role in the prognosis

of PD.

4. Discussion

Evidence suggests that iron metabolism is closely related to the pathogenesis of PD and that

multiple iron-regulatory proteins have potential diagnostic value in PD [15,16]. Neuroimaging

and post-mortem examination showed that iron deposition in SN can promote α-synuclein,

causing lipid peroxidation or producing ROS [17]. Moreover, few studies have shown that fer-

roptosis inhibitors could prevent ferroptosis and limit neurodegeneration in PD [18]. In this

study, we developed a statistical diagnosis model of PD that accounts for the ferroptosis

effects.

We comprehensively analyzed the expression profiles of pivotal FRGs associated with the

pathogenesis of PD samples. Based on the five GEO datasets and the online FerrDB database,

we screened out 11 differentially expressed FRGs containing 8 overexpression genes (PARP12,

PML, SLC3A2, YY1AP1, SOX2, SIAH2, RELA, and KEAP1) and 3 downregulated genes (SCP2,

GCH1, and GRIA3). Subsequently, 8 genes (i.e., PML, SLC3A2, SOX2, SIAH2, RELA, KEAP1,

SCP2, and GRIA3) were verified by utilizing the NGS datasets. PML is a tumor suppressor that

regulates mitochondrial ferroptosis in cancer, most probably through a stress-mediated

PML-PGC-1α-dependent mechanism, enhancing ferroptosis sensitivity [19]. SLC3A2 is the

second most important part containing the xCT after SLC7A11, inhibiting GSH synthesis. In

addition to the induction of ferroptosis, SLC3A2 is also involved in the mechanism of levodopa

absorption [20]. SOX2 is well known for its roles in the differentiation and development of

induced pluripotent stem cells; it can also block myelination in the Schwann cells with

increased inflammation [21]. SIAH2, as an E3 ubiquitin-ligases, has a key role in monoubiqui-

tylates α-synuclein or immunoreactivity in Lewy bodies [22]. RELA (p65) and KEAP1 are the

hub transcription factors of the NF-KB/NRF2 signaling pathway that regulate antioxidant ele-

ments in PD [23]. The gene GRIA3 encodes the GluA3 subunit of the AMPA receptor, which

K-O) Western blot analysis the expression of TH, TFR, FTH, ACSL4 and GPX4 in SH-SY5Y cells after NEAT1 knockdown. (N = 3,

*p< 0.05 vs Ctrl group, **p < 0.01 vs Ctrl group, ***p< 0.001 vs Ctrl group. #p< 0.05 vs 6-OHDA +si-NC group, ##p< 0.01 vs

6-OHDA+si-NC group, ###p< 0.001 vs 6-OHDA+si-NC group).

https://doi.org/10.1371/journal.pone.0316179.g007
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is widely associated with neurodevelopmental disorders and is a synaptic marker of neurode-

generative diseases [24]. All these FRGs are associated with PD-related ferroptosis.

We utilized the hub FRGs to cluster consensus and divided the PD samples into two groups.

DEGs related to ferroptosis in PD are mainly involved in the MAPK signaling pathway, ubi-

quitin-mediated lysosome pathway, regulation of actin cytoskeleton, and neuroactive ligand-

receptor interaction. According to WGCNA analysis, two hub modules were identified as sig-

nificantly enriched in the calcium signaling pathway, leukocyte proliferation, migration,

Fig 8. scRNA-seq analysis of NEAT1. (A) The cellular landscape of PD and normal samples. (B) TSNE map of 22 clusters. (C,D) TSNE map of nine cell

populations classified by genetic marker in PD and normal samples. (E) Expression of NEAT1 at the cellular level of the control and PD group. (F) The

expression level of NEAT1 in nine cell populations. (G) Dot plot of NEAT1 levels in cell populations between PD and control.

https://doi.org/10.1371/journal.pone.0316179.g008
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immunity, and neurotransmitter transmission or metabolism. Most of those biological pro-

cesses indicate that the ferroptosis in PD patients may be associated with neuroinflammation.

Previous studies have reported the interaction between α-synuclein and microtubule protein,

demonstrating the function of membrane structure in PD pathogenesis [25]. Moreover, the

pathways mentioned above also participate in autophagy, another special programmed cell

death that may overlap with ferroptosis in PD [26]. Our results reflect the basic molecular

function of biological processes and the continuity of potential co-expression information.

In this study, 67 hub genes were selected from the intersection with three groups (PD vs.

NC, cluster 1 vs. cluster 2, WGCNA). Subsequently, five machine learning algorithms were uti-

lized to filtrate 4 potentially pivotal FRGs features (S100A2, GNGT1, NEUROD4, and FCN2)

related to iron metabolism and ferroptosis in neurodegeneration. Then, a novel diagnostic

4-features model was constructed. This model may screen PD patients and be convenient for

clinical work as it only contains 4 features.

S100A2 is a gene coding for an important member of S100 protein that is implicated in var-

ied functions and complex networks. As the regulatory of calcium-binding proteins, a muta-

tion in S100A2 affects cellular physiological functions, such as the downregulation of enzyme

activities, calcium dyshomeostasis, and protein phosphorylation [27]. It has been reported that

S100A2 is involved in the pathogenesis of many cancers. However, the role of S100A2 in

tumors seems to be dual [28]. S100A2 is also a hallmark of aging that mediates signal transduc-

tion in series of neurodegeneration. Up regulated the levels of S100A2 altered the metal-buffer-

ing activity, such as cadmium, zinc, or iron, may reveal the underlying mechanism [29].

Previous studies proved that the S100A2 could activate the PI3K/AKT signaling pathway,

upregulate the GLUT1 expression, and promote glycolytic reprogramming. S100A2 is also

associated with the immune microenvironment and neuroinflammation by enhancing the IL-

17 and TNF signaling pathways [30].

G protein subunit gamma transducin 1 is encoded by the GNGT1, which is highly expressed

in the eye and is strongly associated with retinal defects. However, GNGT1 transcript is also

expressed in the lung, heart, alimentary canal, and skeletal muscle, where the signaling mecha-

nism remains unclear [31]. GNGT1 regulates cell proliferation, migration, adhesion, and dif-

ferentiation in those tissues and induces apoptosis [32]. It remains unknown whether GNGT1
is involved in the ferroptosis of neurodegenerative disease. Some studies found that GNGT1
may be used as a biomarker of medulloblastoma, and its mutation may be related to neuroau-

toimmune diseases, such as multiple sclerosis [33,34], providing a new angle to evaluate the

inherited causes of neurodegeneration.

NEUROD4 is widely expressed in the nervous system. It encodes the xenopus protein, also

known as Xath3 (Math3/NeuroM). The NEUROD4 has an intermediate regulatory role at neu-

ral plate stages in the primary embryo and limits the ability to drive developing neurogenesis.

Mechanistically, NEUROD4, as the Basic Helix Loop Helix (BHLH) proneural transcription

factor, drives the transition between proliferation and differentiation with the regulation of

autophosphorylation. The phospho-mutant NEUROD4 can stabilize the proneural protein

involved in the cell cycle [35]. Importantly, NEUROD4may promote neuroinflammation and

the progression of oxidative stress in the central nervous system [36]. For another, the gene is

essential to the progression of ASCL1-mediated astrocytes efficiently transform into neurons

[37]. It may offer novel views into comprehending the molecular mechanisms underlying the

differentiation of stem cells and nerve regeneration.

FCN2 encodes the human ficolins that bind to specific pathogen-associated molecular pat-

terns and show great potential in innate immunity to infectious diseases. In normal human

plasma, FCN2 acts as a lectin-complement pathway activator to recognize pathogens [38]. The

role of FCN2 gene polymorphisms and the level of FCN2 in serum appear to be associated with
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various bacterial or virus diseases, including mycobacterium tuberculosis, hepatitis virus, and

dengue fever [39]. Moreover, FCN2 also contributes to rheumatic and premature delivery as

well as different kinds of cancers [40,41]. Overexpression of FCN2 inhibits hepatocellular car-

cinoma through the TGF-β signaling pathway [42]. Few studies have reported the function of

FCN2 in neurons. Our data suggest that FCN2 is a valuable marker for PD-related ferroptosis.

Herein, we developed a diagnostic model to distinguish PD based on the four ferroptosis-

related features. In the previous study, several biomarkers have been explored to participate in

the PD diagnosis, such as the α-synuclein in blood and CSF [43]. Moreover, combined with

advanced medical imaging methods, they may be of particular interest in prodromal PD diag-

nosis and be able to predict the occurrence in PD patients [44]. However, most of the research

is still focused on the clinic area, incremental evidence has highlighted the significance of

genetic and biological factors in PD diagnosis recently. Part of PD immune infiltration pat-

terns has been constructed to identify immune-related diagnostic biomarkers [45]. Based on

the relationship between iron and PD, we selected the model genes related to ferroptosis, aim-

ing to fill the gap in genetic biomarkers in PD. Our results indicated that the new model had

certain diagnostic and prominent individual predictive effects.

To further confirm our diagnostic model, we conducted an in vitro PD cell model using

6-OHDA, a neurotoxin extensively used to induce the death of dopaminergic neurons in PD.

The 6-OHDA induced ferroptosis in the human dopaminergic SH-SY5Y cells model, which is

consistent with erastin groups and other studies [46]. Data showed that the biomarkers of fer-

roptosis, TFR, ACSL4, iron, and MDA levels were significantly upregulated in the 6-OHDA

group, whereas FTH1, GPX4, and GSH were downregulated compared to control. The

6-OHDA also stimulates the loss of TH and dopamine, it also reduces NEUROD4, GNGT1,

and FCN2mRNA while increasing S100A2mRNA. Yet, after treating cells with Lip-1, a partic-

ular ferroptosis inhibitor, cell damage was alieved and the change of hub genes caused by

6-OHDA was suppressed. Lip-1 can trap radicals and slow the accumulation of lipid hydroper-

oxides in PD samples [47]. Taken together, we proposed that the 4 signature genes (NEU-
ROD4, GNGT1, FCN2, and S100A2) may be the essential contributors to the progression of

PD-related ferroptosis, thus suggesting that targeting the diagnostic model may be an exploita-

tion strategy for PD treatment.

Then, the original ceRNA network was constructed, elucidating the hypothesis that NEAT1
targeting miRNAs might negatively correlate with diagnostic signature genes. NEAT1 is con-

sidered an important lncRNA associated with the proliferation or migration of tumor cells.

For example, a recent study suggested that high expression of NEAT1may induce ferroptosis

by regulating miR-362-3p in the therapeutic strategy for hepatocellular carcinoma [48] and it is

also considered to be a novel diagnostic biomarkers for Alzheimer’s disease [49]. Our studies

have shown that NEAT1may directly or indirectly target the 4 signature genes, especially

S100A2. The expression trend of NEAT1 and S100A2 is consistent with the 6-OHDA induc-

tion. Knockdown the NEAT1 also inhibited the S100A2. However, the expression of mRNA

and lncRNA were negatively correlated with themiR-26b-5p, which acts as the connection

point between S100A2 andNEAT1. These data indicate that themiR-26b-5pmay have essential

regulatory roles in this axis. The miR-26b-5p has been reported to be involved in mitochon-

drial dynamics and predicted to be a specific biomarker of Alzheimer’s disease [50,51], but the

effect on NEAT1 or S100A2 has not yet been studied. We concluded thatmiR-26b-5p is a direct

target of NEAT1, and the S100A2 is its specific downstream signaling protein. Functionally,

transfection of miR-26b-5p inhibitor partially reversed the downregulation of S100A2, which

was caused by the si-NEAT1. Like the effect of Lip-1, si-NEAT1 could counteract the change

of iron-related transporters, abrogate the ROS, and elevate the expression of TH, consequently

delaying the occurrence of ferroptosis. According to the scRNA-seq results, We also found
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that the NEAT1 were highly expressed in PD, while being more pronounced in astrocytes, oli-

godendrocytes and fibroblasts. It revealed that NEAT1 upregulation might promote to MPP

+-induced neuron inflammation via NEAT1-miR-1277-5p-ARHGAP26 pathway [52]. Nota-

bly, even though dopaminergic neurons are severely depleted in PD group, we still observed

that the expression of NEAT1 remained significantly higher than the control group. This is

consistent with many previous findings regarding the role of NEAT1 in inducing autophagy,

apoptosis, cytotoxicity, oxidative stress in PD mouse or cell models [53]. Even though the

latent biologic mechanism is still undefined, we have reason to believe that NEAT1 affecting

the development of ferroptosis and the NEAT1/miR-26b-5p/S100A2 axis may be associated

with this independent model of death in PD patients.

This study has several limitations. On one hand, the datasets used in our research are based

on the public databases with a limited sample size. Different databases or threshold criteria

may lead to different results. On the other hand, we only validated our findings through in

vitro experiments. Exploring deeper molecular biological mechanisms through in vivo or stem

cell experiments is necessary in the future. Furthermore, the feature genes were derived from

post-mortem brain samples. More research should validate them in easily accessible samples

such as blood, urine, and cerebrospinal fluid to facilitate clinical application. In conclusion,

this study profound significance for exploring the mechanism of ferroptosis regulated by

NEAT1/miR-26b-5p/S100A2 axis in PD. Further experiments are needed to confirm our find-

ings, and more comprehensive genomic and normative clinical information should be per-

formed. In conclusion, our findings might provide new insights into improving the

understanding of the mechanism for ferroptosis in the prevention of PD and the potential

therapeutic targets for timely symptomatic treatment.
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