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Abstract

Objectives

Parkinson’s disease (PD) is a complex neurodegenerative disease with unclear pathogene-
sis. Some recent studies have shown that there is a close relationship between PD and fer-
roptosis. We aimed to identify the ferroptosis-related genes (FRGs) and construct
competing endogenous RNA (ceRNA) networks to further assess the pathogenesis of PD.

Methods

Expression of 97 substantia nigra (SN) samples were obtained and intersected with FRGs.
Bioinformatics analysis, including the gene set enrichment analysis (GSEA), consensus
cluster analysis, weight gene co-expression network analysis (WGCNA), and machine
learning algorithms, were employed to assess the feasible differentially expressed genes
(DEGs). Characteristic signature genes were used to create novel diagnostic models and
construct competing endogenous RNA (ceRNA) regulatory network for PD, which were fur-
ther verified by in vitro experiments and single-cell RNA sequencing (scRNA-seq).

Results

A total of 453 DEGs were identified and 11 FRGs were selected. We sorted the entire PD
cohort into two subtypes based on the FRGs and obtained 67 hub genes. According to the
five machine algorithms, 4 features (S100A2, GNGT1, NEUROD4, FCNZ2) were screened
and used to create a PD diagnostic model. Corresponding miRNAs and IncRNAs were pre-
dicted to construct a ceRNA network. The scRNA-seq and experimental results showed that
the signature model had a certain diagnostic effect and IncRNA NEAT1 might regulate the
progression of ferroptosis in PD via the NEAT1/miR-26b-5p/S100A2 axis.

PLOS ONE | https://doi.org/10.1371/journal.pone.0316179 December 31, 2024

1/23


https://orcid.org/0000-0002-3658-3928
https://doi.org/10.1371/journal.pone.0316179
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0316179&domain=pdf&date_stamp=2024-12-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0316179&domain=pdf&date_stamp=2024-12-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0316179&domain=pdf&date_stamp=2024-12-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0316179&domain=pdf&date_stamp=2024-12-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0316179&domain=pdf&date_stamp=2024-12-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0316179&domain=pdf&date_stamp=2024-12-31
https://doi.org/10.1371/journal.pone.0316179
https://doi.org/10.1371/journal.pone.0316179
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo

PLOS ONE

Identifying the NEAT1/miR-26b-5p/S100A2 axis as a regulator in Parkinson’s disease

GSE114517 and GSE178265. The ferroptosis
genes can be downloaded in the FerrDb database
(web URL http://www.zhounan.org/ferrdb/).
Further inquiries can be directed to
198102101@csu.edu.cn.

Funding: This research was funded by the National
Natural Science Foundation of China (Grant No.
81873785) and the Technology Major Project of
Hunan Provincial Science and Technology
Department (Grant No. 20215K1010). The funders
had no role in study design, data collection and
analysis, decision to publish, or preparation of the
manuscript.

Competing interests: The authors declare that
there are no competing interests associated with
the manuscript.

Conclusion

The diagnostic signatures based on the four FRGs had certain diagnostic and individual
effects. NEAT 1/miR-26b-5p/S100A2 axis is associated with ferroptosis in the pathogenesis
of PD. Our findings provide new solutions for treating PD.

1.Introduction

PD is the second most common progressive neurodegenerative movement disorder, character-
ized by bradykinesia, postural instability, muscle rigidity, resting tremors, sleep, and thinking
problems [1]. Its main neuropathological changes include the loss of dopaminergic neurons in
the SN pars compacta and misfolded a-synuclein in Lewy bodies. Current drug therapy for PD
is symptomatic and primarily relies on the restoration of dopaminergic function in the stria-
tum. However, long-term use of dopamine drugs has been associated with disabling complica-
tions, including dyskinesias and fluctuating motor responses. Also, considering that some
other neurological conditions have similar clinical features, there is still uncertainty regarding
the diagnosis, particularly in the early stages [1]. Thus, reliable diagnostic or prognostic bio-
markers are urgently needed for disease management.

Studies have revealed that metal elements, such as manganese, copper, and iron, have a sig-
nificant role in PD [2]. These metals can intricately impair several aspects of neurological func-
tions, such as oxidative stress, mitochondrial or lysosomal dysfunction, and synaptic
inflammation [3], and are also involved in multiple mechanisms of cell death patterns such as
autophagy, pyroptosis, ferroptosis, and cuproptosis [4,5]. Ferroptosis is a newly-regulated cell
death mode caused by the abnormal increase in iron-dependent lipid reactive oxygen species
and the imbalance of redox homeostasis [6]. Ferroptosis is regulated by a number of cellular
variables, including iron metabolism, lipid incorporation, biosynthesis of glutathione (GSH),
glutathione peroxidase 4 (GPX4), NADPH, and CoQH2 [7]. Ferroptosis is highly negatively
correlated with cancer development but positively correlated with some neurodegenerative
diseases, including PD. The traits of ferroptosis induction, such as brain iron overload,
PUFA-PLs producing reactive oxygen species (ROS), and the exhaustion of the xCT system,
are remarkably compatible with the PD models [8]. Moreover, previous studies discovered
that PD-deleterious genes (e.g., Parkin, LRRK2, DJ-1, PLA2G6) are associated with ferroptosis
[9-11]. The a-synuclein, also as an iron-binding protein, could modulate the levels of iron
transport or lipid metabolism [12]. Some preliminary data have shown that ferroptosis inhibi-
tors could prevent ferroptosis and limit neurodegeneration in PD, but also amyotrophic lateral
sclerosis (ALS), Alzheimer’s, and other diseases with brain iron dysregulation. Thus, genetic
testing could be a powerful tool to uncover biological pathways that cause PD.

In this study, we investigated the pathogenesis of PD by searching for ferroptosis-related
genes (FRGs), which were then used to construct ceRNA network using bioinformatics analy-
sis combined with experimental validation. Gene Expression Omnibus (GEQO) [13] database
intersected with the ferroptosis dataset (FerrDb) was used to confirm the expression of FRGs.
Then, we investigated the consensus clustering analysis and constructed the co-expression net-
work. We also performed GSEA, WGCNA, biological function analysis of Gene Ontology
(GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) to explore the crucial signa-
ture genes linked with PD in hub modules. Furthermore, the diagnostic classifiers of PD
related to ferroptosis based on five machine-learning algorithms were constructed. Hub fea-
tures were selected, and their diagnostic value as the biomarkers or predictive model of PD
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was assessed. Finally, targeted miRNA and IncRNA were predicted by the ceRNA network.
The scRNA-seq and experimental validation confirmed the role of the features. In light of our
study, IncRNA NEATI was regarded as a responsible biological regulator of ferroptosis in the
onset and progression of PD.

2. Materials and methods
2.1. Data collection and processing

RNA sequencing data from PD patients, including microarray and next-generation sequenc-
ing (NGS), were obtained from the GEO database. Four microarray profile data, i.e., GSE7621,
GSE49036, GSE26927, and GSE20292, containing 97 post-mortem SN samples originating
from PD donors were downloaded. The “Affymetrix” datasets were background corrected or
normalized by using the R package “affy” within “Robust Multiarray Analysis” algorithm. The
“Illumina” datasets were background corrected or normalized by using the R package “limma”
within “read.ilmn” or “neqc”algorithm. The matching of probes and genes was achieved by
using the R package “AnnotationDbi” and “org.Hs.eg.db”, especially the R package “hugen-
elOsttranscriptcluster.db” were used to filter out the probes without corresponding genes. The
log2 transformation and normalization were conducted by using the R package “geoquery”
within “gds2eset” algorithm. By optimizing R package “sva”, We constructed the model using
batch information as a covariate and generated the expression matrix, including 54 PD sam-
ples and 43 normal control (NC) samples. NGS data of GSE114517, including 46 PD samples
and 29 normal samples, were extracted for confirmatory studies. The quality control were per-
formed by using the R package “arrayQualityMetrics” (S1 Fig). Also, 564 FRGs related to fer-
roptosis signal pathways were obtained from the FerrDB database. These datasets were
employed for further analysis and mining.

2.2. DEGs analysis

The DEGs between PD patients and NC samples were identified using the R-package “limma”.
The confounding factors were addressed within “Imfit” function and “Bayesian” testing.

Considering that subtle genetic differences in neurodegenerative diseases such as PD may
lead to the significant changes in molecular biological mechanisms. The following criteria
were applied: thresholds at the P value<0.05 (p-value < 0.05) and the absolute log2 fold
change (10g2FC) > 0.1 (log2|FC| > 0.1). A total of 564 FRGs were intersected after merging
four microarray datasets to identify the FRGs. Expressions of DEGs were presented as heat-
maps or volcano plots by using R package “ggplot2” and “pheatmap”.

2.3. Consensus clustering

Consensus clustering is a useful algorithm for identifying distinct ferroptosis-related patterns,
which rely on k-means analysis. In this study, we selected FRGs of DEGs in PD patients for
further analysis. Based on the expression of FRGs packed above, the R package “Consensu-
sClusterPlus” was employed for consensus unsupervised clustering to divide PD patients into
distinct molecular subtypes according to FRGs expression. Cumulative distribution function
(CDF) was applied to choose the optimal cluster number.

2.4. GSEA

“GSEA” software was used to investigate involved GO-KEGG pathways of the reference DEGs
between PD vs controls or two clusters. NOM p-value < 0.05 was defined as the significant
enrichment.
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2.5. WGCNA

WGCNA was used to assess the relationships between hub gene modules and clinical traits of
PD. To ensure the accuracy of identified the hub modules significantly related to clinical fea-
tures of PD, the age-matched PD and NC samples were singled out from GSE20292, including
11 PD patients and 11 NC samples. The dataset has well-documented clinical information
with appropriate number and high quality of samples. The co-expressed module containing
parallel expression patterns was constructed. Based on the R function of “PickSoftThreshold”
algorithm, an appropriate soft threshold power was selected. Then, the dynamic tree cut func-
tion or hierarchical clustering was performed to divide the different modules from all genes,
and similar models were incorporated using MEDissThres = 0.4. Subsequently, Module Mem-
bership (MM) combined with Gene significance (GS) was defined as indicatrix for the chosen
genes that originate from the module eigengenes.

2.6. Functional and pathways enrichment analysis

To explore the possible molecular functions of hub genes associated with PD, GO, and KEGG
enrichment analysis was applied to the PD-related modules by the WGCNA analysis. The R
package “Enrichplot” and “ClusterProfiler” was employed, and the enrichment of significance
was adjusted to P-value < 0.05.

2.7. Machine learning algorithms

Hub genes were slected to constitute the features by using five machine learning algorithms,
including LASSO regression, Random Forest (RF), eXtreme Gradient Boosting (XGBoost),
Gradient Boosting Machines (GBM) and Support Vector Machines (SVM). A total of 97 sam-
ples from four datasets were randomly separated into train and test sets at a 7:3 ratio by func-
tional createfolds with R package “caret”. GSE114517 was set as an external validation dataset.
The R package “glmnet” was used to perform the LASSO algorithm with parameters set as set.
seed (1) and family = “binomial”. Adding a penalty term and the L1 penalty was selected based
on the cross-validation results to reduce model overfitting. The R package “randomForest”
was utilized to conduct the RF algorithm. The criterion for feature importance was MeanDe-
creaseGini index > 1.5. The R packages “xgboost” and “gbm” were respectively used for
XGBoost and GBM algorithm. The model performance was optimized by constructing deci-
sion trees incrementally and the core features were selected according to the rank of their
importance scores. The R package “e1071” was employed to SVM and provide utilities for
model training and classification operations. The number of feature genes were sellected and
determined with the highest accuracy and lowest error rate. The 10-fold or 5-fold cross-valida-
tion was utilized to optimize the hyperparameters of machine learning model. After investigat-
ing the intersection point of five machine algorithms learning, the PD diagnostic model was
formulated with the remaining features.

2.8. Construction and validation of classifier model

The intersecting genes of five machine learning algorithms were used to construct an PD diag-
nostic model through multivariable logistic regression analysis based on the “rms” R package.
The PD diagnostic scores were performed according to the following formula:

Diagnostic Model = Zzil Expixcoefi

where Exp stands for standardized gene expression, i is the number of diagnostic genes, and
coef represents regression coefficients.
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The diagnostic score was calculated for each patient and the receiver operating characteris-
tic curve (ROC) was drawn to evaluate the predictive accuracy of the signature via the “pROC”
R package. The area under the ROC curve (AUC) was used to assess the degree of sensitivity
and specificity of the diagnostic model. The AUC > 0.7 was considered indicative of high diag-
nostic performance.

2.9. Prediction of miRNA-IncRNA and construction of ceRNA network

The targeted pivotal miRNAs of hub signature genes were predicted using the “NetworkAna-
lyst”, which is based on the “miRTarBase” “miRWalk” and “miRDB” databases. In addition,
the miRNAs-related IncRNAs were selected by using the StarBase v2.0 with a high stringency
confidence level (degree > 5). The ceRNA network of cross-linked IncRNA-miRNA-mRNA
was constructed and visualized by Cytoscape v3.9.1.

2.10. Cell cultures and drug treatment

Human neuroblastoma SH-SY5Y cells (#CL-0208, Procell, Wuhan, China) were cultured in a
specific medium (#CM-0208, Procell, Wuhan, China) in a humidified atmosphere containing
5%C02/95% air at 37°C. Cells were seeded in 1.5ml medium at a density of 10° per well in a
12-well plate for 1 day. Then, cells were respectively treated with indicated drugs. Ctrl group,
cells were treated with 0.1% dimethyl sulfoxide (#D8418, Sigma Aldrich, Louis, MO, USA).
Erastin group, cells were treated with 10uM Erastin (#S7242, Selleck, Houston, USA).
6-OHDA group, cells were treated with 50uM 6- hydroxydopamine (6-OHDA) (#S5324, Sell-
eck, Houston, USA) (dissolved in 0.1% dimethyl sulfoxide). 6-OHDA+Lip-1 group, cells were
treated with 50uM 6-OHDA and 5 uM liproxstatin-1 (Lip-1) (#S7699, Selleck, Houston, USA).
For the transfection, cells were mixed with si-RNA (si-NC, si-NEAT1) or miRNA inhibitor
(NC-inhibitor, 26b-5p inhibitor) (Genepharma, Suzhou, China) and lipofectamine 3000
(#L3000001, Invitrogen, Carlsbad, USA) dissolved in 100 puL Opti-MEM (#11058021, GIBCO,
Grand Island, USA) for 15 minutes. After the transfection, the SH-SY5Y cells were cultured
with standard growth medium for 8-12h and then treated with 50uM 6-OHDA. After 36h
treatment, the cells were collected and subjected to experiments.

2.11. Western blot

SH-SY5Y cells were mixed with RIPA lysis buffer (#YSD0100, Yoche, Shanghai, China). Equal
protein was separated using 4%-12% sodium dodecyl sulfate-polyacrylamide gels and trans-
ferred to polyvinylidene fluoride membranes by electroblotting. After being sealed with 5%
milk for 1h, the membranes were incubated with primary antibodies tyrosine hydroxylase
(TH) (#sc25269, Santa Cruz Biotechnology, Dallas, USA), acyl-CoA synthetase long-chain
family member 4(ACSL4) (#P07940, Promab, Changsha, China), GPX4 (#ab125066, Abcam,
Cambridge, USA), transferrin receptor(TFR) (#ab84036, Abcam, Cambridge, USA), ferritin
heavy chain 1 (FTH1) (#4393, Cell Signaling Technology, Danvers, USA), ACTIN (#81115-
1-RR, Proteintech, Chicago, USA) overnight at 4°C. The HRP-conjugated secondary antibod-
ies were incubated at room temperature for 1h. Finally, membranes were visualized using the
ECL reagents and quantified using Image J software.

2.12. Measurement of iron, lipid peroxidation, and GSH

SH-SY5Y cells were collected with centrifugation at 800 rpm at 4°C for 5 min. The quantifica-
tions of iron (#ab83366, Abcam, Cambridge, USA), lipid peroxidation (MDA) (#A003-1, Jian-
cheng Bioengineering Insitute, Nanjing, China), and GSH (#A006-1-1, Jiancheng
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Bioengineering Insitute, Nanjing, China) were then performed, following the manufacturer’s
instructions.

2.13. RNA extraction and quantitative real Time-PCR (qQRT-PCR) analysis

Total RNA was extracted from SH-SY5Y cells using the TRIzol and chloroform reagent (Invi-
trogen, Carlsbad, USA) in frozen environment. The cells were homogenised in 500 pL Trizol
and 100 pL chloroform incubated at room temperature for 5 min, then centrifuged at 13000xg
for 15 min at 4°C. The aqueous phase containing RNA was extracted and added equal volumes
of isopropanol (Sigma-Aldrich, Louis, MO, USA). The samples were centrifuged at 13000xg
for 15 min at 4°C and washed with ethanol. The RNA was air dried and dissolved in nuclease-
free water, then the purity and quality were detected by using spectrophotometer. The geno-
mic DNA was removed and cDNA was obtained using a reverse transcription PCR kit (#R223/
MR201, Vazyme, Nanjing, China) according to the manufacturer’s instructions. 1 pug of RNA
was used to synthesize cDNA in 20 pl reverse transcription reaction, followed by 50°C for 15
min and 85°C for 5 s. The qRT-PCR was achieved by using the ChamQ Universal SYBR qPCR
Master Mix (#Q711, Vazyme, Nanjing, China) and miRNA Universal SYBR qPCR Master Mix
(#MQ101, Vazyme, Nanjing, China) as per the manufacturer’s protocol. Primer sequences are
listed in S1 Table. The length of the amplification product is between 80 and 200bp with a Tm
of 60°C. The amplification efficiency > 90% (1.8-2.2) tested by the standard curve, and a sin-
gle melt curve, as a standard for qualification. The qRT-PCR were performed in 20 pl reaction
on ABI 7300 Real Time PCR system, followed by 95°C for 30s, 40 cycles of 95°C for 10 s and
60°C for 30's,95°C for 15 s, 60°C for 60 s and 95°C for 15 s. All measurements were performed
in triplicate. The relative change of mRNA, miRNA, and IncRNA levels were measured by 2-
AACt method and the Ct values were normalized to GAPDH or Us6.

2.14. Measurement of ROS

The level of ROS in SH-SY5Y cells was assessed using a ROS assay kit (#50033S, Beyotime,
Shanghai, China). Briefly, cells were stained with 10 uM of DCFH-DA working solution
(1:1000) and then incubated for 20-30 min at 37°C in the dark. Next, cells were washed three
times with PBS buffer to clear the excess probe. Finally, the fluorescences of DCFH-DA were
visualized under the inverted fluorescence microscope with an excitation wavelength of 488
nm and an emission wavelength of 525 nm.

2.15. scRNA-seq

Raw data for GSE178265 were obtained from the GEO database [14]. The R package “Seurat”
was used to filter data. We filtered low-quality cells with the following criteria: genes were fil-
tered that are only expressed in three cells or less, the cells were filtered by gene counts more
than 5000 or less than 400, remove the cells with over 10% mitochondrial content. The “Dou-
bletFinder” was used to remove the doublet cells. After the filtering, the functions “Seurat” was
used for dimension-reduction and clustering. The logarithmic normalization method of the
“Normalization” function was used to normalize and merge the expression of genes. Then,
scaling analysis and PCA were performed. Using the top 10 principle components and Lou-
vain algorithm, the cells were clustered into multiple clusters (The first 20 principle compo-
nents were selected from the data of multi-sample integration). The t-distribution random
neighborhood embedding (t-SNE) algorithm was applied to visualize cells in a two-dimen-
sional space. Based on the Wilcox algorithm, the marker genes were identify. The cell type
were annotated of each cluster according to the expression of canonical markers from
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GSE7621
(N=9 PD=16)

literatures. Finally, the “Seurat FeaturePlot” and “VInplot” function were used to display the
location and expression pattern of feature gene in different cell types.

2.16. Statistical analysis

Data were shown as mean + standard deviation (SEM). The Shapiro-Wilk test were used to
assess the normality and the Brown-Forsythe test were used to assess the variance homogene-
ity. Paired sample t test and one-way ANOVA test were used to calculate the statistical signifi-
cance (p-value) by the GraphPad Prism 8.0 and the p < 0.05 were considered to be statistically
significant.

3. Results
3.1. Identification and clustering of ferroptosis-related genes

The study flowchart is shown in (Fig 1). Based on the four datasets, 97 RNAs related to sub-
stantia nigra were obtained from 54 PD patients and 43 controls. DEG analysis was conducted
to identify the genes involved in the process of ferroptosis. We downloaded 564 ferroptosis
genes from the FerrDb database and intersected with 453 DEGs identified between PD and
control samples. After the multi-annotated genes were screened, 11 FRGs were identified,
among which 8 genes were upregulated and 3 were downregulated (Fig 2A and 2B). A related
heatmap of the collection of 11 genes is shown in Fig 2C. These labeled genes were verified by
the boxplot. Six FRGs (PML, SIAH2, KEAPI, SOX2, RELA, and SLC3A2) were significantly
upregulated and two FRGs (SCP2, GRIA3) were downregulated (Fig 2D-2K).

GSE49036
(N=8 PD=15)

GSE26927
(N=8 PD=12)

GSE20292
(N=18 PD=11)

Clinical Validation

GSE114517
(N=29 PD=46)

GSE178265
\ | ~N=8PD=7)

\,
.

Consensus Cluster | 1 FerrDB (n=564) |
lei:erentlal = Candidate Genes i PPI Network |
Expression Analysis
—| GSEAAnalysis |
WGCNA | GO-KEGG Analysis |
{ ! ! v
LASSO Random XGboost GBM SVM
Forest
l I l I
TrainSet  — } — Signature Genes — | —] ART-PCR 3
]
Test Set Targeted MiRNAs — Waestern Blot
Experimental
| Y BN Validation
Validation Set LG 1 Assay Kits
]
| | ceRNANetwork | | ROS
scRNA-seq — | Constructin v | Fluorescence /
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Fig 1. Flowchart of this research.

https://doi.org/10.1371/journal.pone.0316179.9001
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Fig 2. Expression profile of DEGs and consensus clustering of FRGs. (A) Volcano plot of FRGs between PD vs
Control. (B) Venn diagram of FRGs between DEGs and FerrDB. (C) Heatmap of FRGs in PD. (D-K) Validation the
expression of FRGs. (L) Consensus clustering at the index k = 2. (M) CDF of clustering (k = 2-5). (N) Delta area under
the CDF curve. (O) Heatmap of FRGs in Clusters.

https://doi.org/10.1371/journal.pone.0316179.g002

To further explore the unique expression characteristics of FRGs between individual PD
patients, we used a consensus clustering algorithm based on the expression profiles of hub
FRGs. k = 2 appeared to have the best stability and reliability for sorting the entire cohort into
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two subtypes, including cluster 1 and cluster 2 (cluster 1 = 26, cluster 2 = 28) (Fig 2L-2N). The
heatmap shows the expression profile of FRGs among the two clusters (Fig 20).

3.2. Identification of DEGs based on FRGs

To explore the FRG function of each pattern, 453 DEGs were identified in 54 PD patients
matched with 43 control samples using the R package “limma”. As shown in Fig 3A, there
were 226 upregulated genes and 227 downregulated DEGs. Moreover, based on the FRGs,
1663 DEGs were identified between cluster 1 and cluster 2 of PD samples, including 666 upre-
gulated genes and 997 downregulated genes (Fig 3B). The hub DEGs with the intersection of
the two clusters were identified, and the top 100 are depicted in the heatmap (Fig 3C).

3.3. Gene set enrichment analysis

GSEA was used to identify the two groups’ biological functions and pathways. KEGG analysis
showed that the MAPK signaling pathway, lysosome pathway, pathways in cancer, chemokine
signaling pathway, endocytosis, and regulation of actin cytoskeleton were significantly
enriched in the PD samples (Fig 3D-3I). Subsequently, the results indicated that DEGs
between the two clusters were mainly enriched in the calcium signaling pathway, regulation of
actin cytoskeleton, dilated cardiomyopathy, neuroactive ligand-receptor interaction, ubiqui-
tin-mediated proteolysis, and purine metabolism (Fig 3]-30). Further pathways such as mela-
noma, focal adhesion, prostate cancer, and some biological processes involved in neuron
degeneration were also enriched.

3.4. Determination of hub modules in WGCNA

The application of WGCNA network analysis was established based on the GSE20292, con-
taining the age-matched 11 PD and 11 normal samples selected to accurately identify DEGs.
The independence degree was > 0.85, and the soft threshold power of 8 was selected to carry
out scale-free networks (Fig 4A and 4B). The expression values of 5665 genes were utilized for
cluster analysis and to detect the hub modules. We screened 8 key modules based on MEDiss
Thres = 0.4 according to similar expression clinical traits (Fig 4C). Among the harvested mod-
ules, the green and the dark green modules were significantly associated with the characteris-
tics of PD; thus, they were selected as the hub modules (Fig 4D). With the cutoff criteria |GS|
> 0.7 and |[MM| > 0.8, we obtained the 432 key genes shared with the green module

(Cor = 0.93, p = 5¢-10) (Fig 4E) and the 415 hub genes by the dark green module (Cor = -0.89,
p = 3e-08) (Fig 4F). Accordingly, we focused on 847 hub genes associated with PD identified
through the hub modules of WGCNA.

3.5. Functional and pathways enrichment analysis

To elucidate the latent biological functions and pathways associated with the risk of PD, we
performed GO and KEGG enrichment analysis in the hub modules. GO terms of molecular
function suggested that those genes are significantly involved in positive regulation of cytosolic
calcium ion concentration, muscle contraction mononuclear cell proliferation, lymphocyte or
leukocyte proliferation, and some immune-related biological processes (Fig 4G). Analysis of
KEGG pathways indicated that the hub genes associated with PD are involved in neuroactive
ligand-receptor or cytokine receptor interaction, hematopoietic cell lineage, complement, and
coagulation cascades, as well as JAK-STAT signaling pathway (Fig 4H). These pathways sug-
gest that neuroinflammation and cell signal transduction may participate in ferroptosis in PD
patients.
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https://doi.org/10.1371/journal.pone.0316179.9003
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3.6. Multiple algorithms identify the hub genes-related PD classifier

A total of 67 hub genes were obtained from the DEGs of the three groups (PD vs. NC, clusterl
vs. cluster2, WGCNA) intersection (Fig 5A). The PPI network shows these hub genes’ interac-
tions (Fig 5B). To explore the signature genes associated with ferroptosis in the occurrence of
PD, we found the diagnostic classifiers with five unique algorithms, including LASSO, random
forest, XGBoost, GBM, and SVM. The feature choice strategy aimed to cut down the number
of related genes (S2 Table). The LASSO regression was used to ascertain 12 key genes from the
PD-related genes (Fig 5C and 5D). We selected the 27 hub genes from the top 30 candidate
genes with the result of random forest analysis (Fig 5E). The SVM algorithm to filtrate
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https://doi.org/10.1371/journal.pone.0316179.g005

irrelevant genes and 28 indicators were gained (Fig 5F). XGBoost model algorithm was then
applied, revealing the top 17 ranked genes (Importance score > 2) as the main features (Fig
5@G). Similarly, the GBM model chose the essential signatures, and the top 20 ranked genes
(Importance score > 5) were selected (Fig 5H). Accordingly, 4 features (i.e., SI00A2, GNGT1I,
NEUROD4, and FCN2) were obtained based on the intersection of five algorithms, as shown
in the Venn diagram (Fig 5I).

3.7. Construction of PD diagnostic model

The predictive model was learned from the merged datasets, including 54 PD samples and 43
controls. To evaluate the overall prediction accuracy of the model, the training data was
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randomly generated by selecting 70% of the dataset, and the remaining 30% was used as the
test dataset. We also used NGS data GSE114517 as the validation dataset. The multivariable
logistic regression analysis was used to assess hub features. The risk score of PD was calculated
by the formula of ExpGNGT1 X (-0.7124) + ExpFCN2 X (-0.3334) + ExpS100A2 x 0.6665

+ ExpNEUROD4 X (-0.4717). The ROC curve was drawn to assess the predictive accuracy of
the PD diagnostic model by the AUC. The AUC of the training and test sets were 0.707 and
0.755, respectively (Fig 5] and 5K). Moreover, the AUC of the external validation set was
0.711 (Fig 5L). The ROC analysis results showed that the model had a higher diagnostic and
predictive value in distinguishing PD patients from normal.

3.8. Validation of diagnostic signatures in PD ferroptosis model

The expression patterns of 4 features were verified in PD samples. It indicated that the
GNGT1, FCN2, and NEUROD4 were expressed at low levels, while SI00A2 was expressed at
high levels in PD patients (Fig 6A-6D). Then, we constructed PD and ferroptosis models
using SH-SY5Y cells, which were treated with erastin and 6-OHDA with or without Lip-1. The
degeneration of dopamine was presented in the treatment of 6-OHDA. Compared with the
control or erastin group, expression of TH was decreased in the 6-OHDA group. Nevertheless,
Lip-1 inhibitor alleviated the 6-OHDA-induced loss of dopamine. To further affirm that fer-
roptosis exists in 6-OHDA treated SH-SY5Y cells, TFR, FTH1, ACSL4, and GPX4 expressions
and iron, GSH, and MDA levels were detected. Compared with the control, 6-OHDA
increased the expression of iron, TFR, ACSL4, and accumulation of MDA. The quantity of
GSH-related pathways containing GPX4 and FTH1, was significantly decreased. Those bio-
markers were all consistent with the erastin group and alleviated by the Lip-1 (Fig 6E-6M).
Finally, the filtered 4 signature genes were verified using qRT-PCR. In the 6-OHDA groups,
the expression levels of S100A2 were visibly upregulated, and the GNGT1, FCN2, and NEU-
ROD4 were downregulated compared to control cells. Yet, Lip-1 reversed this process (Fig
6N-6Q), which suggested that the PD features model consisting of GNGT1, FCN2, S100A2,
and NEUROD4 is a useful auxiliary method for diagnosing PD, especially with neuron
ferroptosis.

3.9. Construction of ceRNA network and validation of NEAT1 in PD
ferroptosis model

Based on the 4 diagnostic signature genes, corresponding miRNAs and IncRNAs were pre-
dicted using the “NetworkAnalyst”. Four miRNAs (has-miR-335-5p, hsa-miR-7b-5p, has-miR-
16b-5p, and has-miR-26b-5p) with higher significance scores, cross-linking with at least 2
genes, were selected. Then, these 4 miRNAs acted as seed nodes. Next, 150 IncRNAs were
obtained to construct the ceRNA network (Fig 7A). We extracted the IncRNAs with higher
degrees and found that NEAT]I interacted with both 4 miRNAs. The ceRNA network was then
constructed, and the NEATI was presumed to have important regulatory functions in the fer-
roptosis-related pathogenesis of PD (Fig 7B). In SH-SY5Y cells, 6-OHDA treatment increased
the transcription of NEATI and S100A2, the expression levels of SI00A2 could be well attenu-
ated by using the si-NEAT1 (Fig 7C and 7D). Further, qRT-PCR results showed that the
expression level of miR-26b-5p, targeting S100A2, was partially activated by si-NEAT1. How-
ever, there was no significant difference in miR-7b-5p levels with si-NEAT1 and si-NC (Fig 7E
and 7F). Additionally, in the presence of 6-OHDA with si-NEAT1, miR-7b-5p inhibitor par-
tially elevated the S100A2 levels, indicating that NEAT1 might competitively bind and regulate
S100A2 by suppressing miR-26b-5p (Fig 7G). We concluded that the NEAT]I deficiency blocks
the ferroptosis capacities of cells. Also, the knockdown of NEAT] rescued the down-regulated
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Fig 6. Validation of the PD diagnostic model in vitro. (A-D) The expression level of 4 features in PD. (E-J) Western
blot analysis the expression of TH, TFR, FTH, ACSL4 and GPX4 in SH-SY5Y cells treated by the 6-OHDA. (K-M) The
levels of iron, MDA and GSH in SH-SY5Y cells treated by the 6-OHDA. (N-Q) The mRNA relative expression levels of
GNGT1, FCN2, S100A2 and NEUROD4 in SH-SY5Y cells. (N = 3, *p < 0.05 vs Ctrl group, **p < 0.01 vs Ctrl group,
***p < 0.001 vs Ctrl group. #p < 0.05 vs 6-OHDA group, ##p < 0.01 vs 6-OHDA group, ###p < 0.001 vs 6-OHDA

group).
https://doi.org/10.1371/journal.pone.0316179.9006

TH levels induced by the 6-OHDA. The fluorescence of DCFH-DA probe results showed that
6-OHDA exposure significantly raised the production of ROS and reduced cell viability (Fig
7H and 7J). In agreement with the above-mentioned, NEATI knockdown made an inhibition
effect on the ferroptosis damaging of 6-OHDA (Fig 71 and 7K-70), which suggests that the
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K-O) Western blot analysis the expression of TH, TFR, FTH, ACSL4 and GPX4 in SH-SY5Y cells after NEAT1 knockdown. (N = 3,
*p < 0.05 vs Ctrl group, **p < 0.01 vs Ctrl group, ***p < 0.001 vs Ctrl group. #p < 0.05 vs 6-OHDA +si-NC group, ##p < 0.01 vs
6-OHDA +si-NC group, ###p < 0.001 vs 6-OHDA+si-NC group).

https://doi.org/10.1371/journal.pone.0316179.9007

potential correlation between NEATI and ferroptosis in PD and NEAT1/miR-7b-5p/S100A2
axis might participate in PD pathogenesis.

3.10. scRNA-seq analysis for the location and expression pattern of NEAT1

To further explore the cell diversity of NEAT1 in PD, the GSE178265, including seven PD
samples and eight normal samples, was used to perform scRNA-seq analysis. After the prelimi-
nary quality control and standardization of gene expression, 37906 cells were derived from PD
and normal samples (Fig 8A). The cells were clustered into 22 clusters (Fig 8B). Using the
marker genes (S2 Fig), we classified 22 cell clusters into nine cell populations (Fig 8C). It
showed that the nine main isolated cell groups comprising the microglial cells, astrocytes,
OPCs, oligodendrocytes, DA neurons, NonDA neurons, endothelial cells, pericytes and fibro-
blasts (Fig 8D). Subsequently, the expression and localization in SN tissue between PD and
normal samples were determined (Fig 8E). It was found that the NEAT1 were obviously
expressed in all nine kinds of cells, and the expression level were both elevated (Fig 8F).
Although the PD patients have significant loss in cell numbers and ratios of DA neurons, the
expression level of NEAT1 in PD samples were still higher than control groups (Fig 8G). It
was consistent with our result and verified that NEAT1 play an important role in the prognosis
of PD.

4. Discussion

Evidence suggests that iron metabolism is closely related to the pathogenesis of PD and that
multiple iron-regulatory proteins have potential diagnostic value in PD [15,16]. Neuroimaging
and post-mortem examination showed that iron deposition in SN can promote o-synuclein,
causing lipid peroxidation or producing ROS [17]. Moreover, few studies have shown that fer-
roptosis inhibitors could prevent ferroptosis and limit neurodegeneration in PD [18]. In this
study, we developed a statistical diagnosis model of PD that accounts for the ferroptosis
effects.

We comprehensively analyzed the expression profiles of pivotal FRGs associated with the
pathogenesis of PD samples. Based on the five GEO datasets and the online FerrDB database,
we screened out 11 differentially expressed FRGs containing 8 overexpression genes (PARP12,
PML, SLC3A2, YY1API, SOX2, SIAH2, RELA, and KEAPI) and 3 downregulated genes (SCP2,
GCH1, and GRIA3). Subsequently, 8 genes (i.e., PML, SLC3A2, SOX2, SIAH2, RELA, KEAPI,
SCP2, and GRIA3) were verified by utilizing the NGS datasets. PML is a tumor suppressor that
regulates mitochondrial ferroptosis in cancer, most probably through a stress-mediated
PML-PGC-1a-dependent mechanism, enhancing ferroptosis sensitivity [19]. SLC3A2 is the
second most important part containing the xCT after SLC7A11, inhibiting GSH synthesis. In
addition to the induction of ferroptosis, SLC3A2 is also involved in the mechanism of levodopa
absorption [20]. SOX2 is well known for its roles in the differentiation and development of
induced pluripotent stem cells; it can also block myelination in the Schwann cells with
increased inflammation [21]. SIAH2, as an E3 ubiquitin-ligases, has a key role in monoubiqui-
tylates a-synuclein or immunoreactivity in Lewy bodies [22]. RELA (p65) and KEAPI are the
hub transcription factors of the NF-KB/NRF2 signaling pathway that regulate antioxidant ele-
ments in PD [23]. The gene GRIA3 encodes the GluA3 subunit of the AMPA receptor, which
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is widely associated with neurodevelopmental disorders and is a synaptic marker of neurode-
generative diseases [24]. All these FRGs are associated with PD-related ferroptosis.

We utilized the hub FRGs to cluster consensus and divided the PD samples into two groups.
DEGs related to ferroptosis in PD are mainly involved in the MAPK signaling pathway, ubi-
quitin-mediated lysosome pathway, regulation of actin cytoskeleton, and neuroactive ligand-
receptor interaction. According to WGCNA analysis, two hub modules were identified as sig-
nificantly enriched in the calcium signaling pathway, leukocyte proliferation, migration,
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immunity, and neurotransmitter transmission or metabolism. Most of those biological pro-
cesses indicate that the ferroptosis in PD patients may be associated with neuroinflammation.
Previous studies have reported the interaction between o-synuclein and microtubule protein,
demonstrating the function of membrane structure in PD pathogenesis [25]. Moreover, the
pathways mentioned above also participate in autophagy, another special programmed cell
death that may overlap with ferroptosis in PD [26]. Our results reflect the basic molecular
function of biological processes and the continuity of potential co-expression information.

In this study, 67 hub genes were selected from the intersection with three groups (PD vs.
NG, cluster 1 vs. cluster 2, WGCNA). Subsequently, five machine learning algorithms were uti-
lized to filtrate 4 potentially pivotal FRGs features (SI00A2, GNGT1, NEUROD4, and FCN2)
related to iron metabolism and ferroptosis in neurodegeneration. Then, a novel diagnostic
4-features model was constructed. This model may screen PD patients and be convenient for
clinical work as it only contains 4 features.

S100A2 is a gene coding for an important member of S100 protein that is implicated in var-
ied functions and complex networks. As the regulatory of calcium-binding proteins, a muta-
tion in S100A2 affects cellular physiological functions, such as the downregulation of enzyme
activities, calcium dyshomeostasis, and protein phosphorylation [27]. It has been reported that
S100A2 is involved in the pathogenesis of many cancers. However, the role of SI00A2 in
tumors seems to be dual [28]. SI00A2 is also a hallmark of aging that mediates signal transduc-
tion in series of neurodegeneration. Up regulated the levels of SI00A2 altered the metal-buffer-
ing activity, such as cadmium, zinc, or iron, may reveal the underlying mechanism [29].
Previous studies proved that the SIO0A2 could activate the PI3K/AKT signaling pathway,
upregulate the GLUT1 expression, and promote glycolytic reprogramming. SI00A2 is also
associated with the immune microenvironment and neuroinflammation by enhancing the IL-
17 and TNF signaling pathways [30].

G protein subunit gamma transducin 1 is encoded by the GNGT1, which is highly expressed
in the eye and is strongly associated with retinal defects. However, GNGT1I transcript is also
expressed in the lung, heart, alimentary canal, and skeletal muscle, where the signaling mecha-
nism remains unclear [31]. GNGT1 regulates cell proliferation, migration, adhesion, and dif-
ferentiation in those tissues and induces apoptosis [32]. It remains unknown whether GNGT1
is involved in the ferroptosis of neurodegenerative disease. Some studies found that GNGT1
may be used as a biomarker of medulloblastoma, and its mutation may be related to neuroau-
toimmune diseases, such as multiple sclerosis [33,34], providing a new angle to evaluate the
inherited causes of neurodegeneration.

NEUROD¢ is widely expressed in the nervous system. It encodes the xenopus protein, also
known as Xath3 (Math3/NeuroM). The NEUROD4 has an intermediate regulatory role at neu-
ral plate stages in the primary embryo and limits the ability to drive developing neurogenesis.
Mechanistically, NEUROD4, as the Basic Helix Loop Helix (BHLH) proneural transcription
factor, drives the transition between proliferation and differentiation with the regulation of
autophosphorylation. The phospho-mutant NEUROD4 can stabilize the proneural protein
involved in the cell cycle [35]. Importantly, NEUROD4 may promote neuroinflammation and
the progression of oxidative stress in the central nervous system [36]. For another, the gene is
essential to the progression of ASCL1-mediated astrocytes efficiently transform into neurons
[37]. It may offer novel views into comprehending the molecular mechanisms underlying the
differentiation of stem cells and nerve regeneration.

FCN2 encodes the human ficolins that bind to specific pathogen-associated molecular pat-
terns and show great potential in innate immunity to infectious diseases. In normal human
plasma, FCN2 acts as a lectin-complement pathway activator to recognize pathogens [38]. The
role of FCN2 gene polymorphisms and the level of FCN2 in serum appear to be associated with

PLOS ONE | https://doi.org/10.1371/journal.pone.0316179 December 31, 2024 18/23


https://doi.org/10.1371/journal.pone.0316179

PLOS ONE

Identifying the NEAT1/miR-26b-5p/S100A2 axis as a regulator in Parkinson’s disease

various bacterial or virus diseases, including mycobacterium tuberculosis, hepatitis virus, and
dengue fever [39]. Moreover, FCN2 also contributes to rheumatic and premature delivery as

well as different kinds of cancers [40,41]. Overexpression of FCN2 inhibits hepatocellular car-
cinoma through the TGF-p signaling pathway [42]. Few studies have reported the function of
FCNZ in neurons. Our data suggest that FCN2 is a valuable marker for PD-related ferroptosis.

Herein, we developed a diagnostic model to distinguish PD based on the four ferroptosis-
related features. In the previous study, several biomarkers have been explored to participate in
the PD diagnosis, such as the a-synuclein in blood and CSF [43]. Moreover, combined with
advanced medical imaging methods, they may be of particular interest in prodromal PD diag-
nosis and be able to predict the occurrence in PD patients [44]. However, most of the research
is still focused on the clinic area, incremental evidence has highlighted the significance of
genetic and biological factors in PD diagnosis recently. Part of PD immune infiltration pat-
terns has been constructed to identify immune-related diagnostic biomarkers [45]. Based on
the relationship between iron and PD, we selected the model genes related to ferroptosis, aim-
ing to fill the gap in genetic biomarkers in PD. Our results indicated that the new model had
certain diagnostic and prominent individual predictive effects.

To further confirm our diagnostic model, we conducted an in vitro PD cell model using
6-OHDA, a neurotoxin extensively used to induce the death of dopaminergic neurons in PD.
The 6-OHDA induced ferroptosis in the human dopaminergic SH-SY5Y cells model, which is
consistent with erastin groups and other studies [46]. Data showed that the biomarkers of fer-
roptosis, TFR, ACSL4, iron, and MDA levels were significantly upregulated in the 6-OHDA
group, whereas FTH1, GPX4, and GSH were downregulated compared to control. The
6-OHDA also stimulates the loss of TH and dopamine, it also reduces NEUROD4, GNGT1,
and FCN2 mRNA while increasing SI00A2 mRNA. Yet, after treating cells with Lip-1, a partic-
ular ferroptosis inhibitor, cell damage was alieved and the change of hub genes caused by
6-OHDA was suppressed. Lip-1 can trap radicals and slow the accumulation of lipid hydroper-
oxides in PD samples [47]. Taken together, we proposed that the 4 signature genes (NEU-
ROD4, GNGT1, FCN2, and S100A2) may be the essential contributors to the progression of
PD-related ferroptosis, thus suggesting that targeting the diagnostic model may be an exploita-
tion strategy for PD treatment.

Then, the original ceRNA network was constructed, elucidating the hypothesis that NEAT1
targeting miRNAs might negatively correlate with diagnostic signature genes. NEAT1I is con-
sidered an important IncRNA associated with the proliferation or migration of tumor cells.
For example, a recent study suggested that high expression of NEATI may induce ferroptosis
by regulating miR-362-3p in the therapeutic strategy for hepatocellular carcinoma [48] and it is
also considered to be a novel diagnostic biomarkers for Alzheimer’s disease [49]. Our studies
have shown that NEATI may directly or indirectly target the 4 signature genes, especially
S100A2. The expression trend of NEATI and S100A2 is consistent with the 6-OHDA induc-
tion. Knockdown the NEAT] also inhibited the SI00A2. However, the expression of mRNA
and IncRNA were negatively correlated with the miR-26b-5p, which acts as the connection
point between SI00A2 and NEATI. These data indicate that the miR-26b-5p may have essential
regulatory roles in this axis. The miR-26b-5p has been reported to be involved in mitochon-
drial dynamics and predicted to be a specific biomarker of Alzheimer’s disease [50,51], but the
effect on NEATI or SI00A2 has not yet been studied. We concluded that miR-26b-5p is a direct
target of NEAT1I, and the SI00A2 is its specific downstream signaling protein. Functionally,
transfection of miR-26b-5p inhibitor partially reversed the downregulation of SI00A2, which
was caused by the si-NEAT1. Like the effect of Lip-1, si-NEAT1 could counteract the change
of iron-related transporters, abrogate the ROS, and elevate the expression of TH, consequently
delaying the occurrence of ferroptosis. According to the scRNA-seq results, We also found
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that the NEAT1 were highly expressed in PD, while being more pronounced in astrocytes, oli-
godendrocytes and fibroblasts. It revealed that NEAT1 upregulation might promote to MPP
+-induced neuron inflammation via NEAT1-miR-1277-5p-ARHGAP26 pathway [52]. Nota-
bly, even though dopaminergic neurons are severely depleted in PD group, we still observed
that the expression of NEAT1 remained significantly higher than the control group. This is
consistent with many previous findings regarding the role of NEAT1 in inducing autophagy,
apoptosis, cytotoxicity, oxidative stress in PD mouse or cell models [53]. Even though the
latent biologic mechanism is still undefined, we have reason to believe that NEAT]I affecting
the development of ferroptosis and the NEAT1/miR-26b-5p/S100A2 axis may be associated
with this independent model of death in PD patients.

This study has several limitations. On one hand, the datasets used in our research are based
on the public databases with a limited sample size. Different databases or threshold criteria
may lead to different results. On the other hand, we only validated our findings through in
vitro experiments. Exploring deeper molecular biological mechanisms through in vivo or stem
cell experiments is necessary in the future. Furthermore, the feature genes were derived from
post-mortem brain samples. More research should validate them in easily accessible samples
such as blood, urine, and cerebrospinal fluid to facilitate clinical application. In conclusion,
this study profound significance for exploring the mechanism of ferroptosis regulated by
NEAT1/miR-26b-5p/S100A2 axis in PD. Further experiments are needed to confirm our find-
ings, and more comprehensive genomic and normative clinical information should be per-
formed. In conclusion, our findings might provide new insights into improving the
understanding of the mechanism for ferroptosis in the prevention of PD and the potential
therapeutic targets for timely symptomatic treatment.
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